TWI576088B - 穿戴式裝置之生理參數監測方法 - Google Patents

穿戴式裝置之生理參數監測方法 Download PDF

Info

Publication number
TWI576088B
TWI576088B TW104142003A TW104142003A TWI576088B TW I576088 B TWI576088 B TW I576088B TW 104142003 A TW104142003 A TW 104142003A TW 104142003 A TW104142003 A TW 104142003A TW I576088 B TWI576088 B TW I576088B
Authority
TW
Taiwan
Prior art keywords
processing unit
measurement signal
wearable device
heartbeat
interval
Prior art date
Application number
TW104142003A
Other languages
English (en)
Other versions
TW201720366A (zh
Inventor
劉豐瑜
李仁貴
Original Assignee
國立臺北科技大學
仁寶電腦工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺北科技大學, 仁寶電腦工業股份有限公司 filed Critical 國立臺北科技大學
Priority to TW104142003A priority Critical patent/TWI576088B/zh
Application granted granted Critical
Publication of TWI576088B publication Critical patent/TWI576088B/zh
Publication of TW201720366A publication Critical patent/TW201720366A/zh

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

穿戴式裝置之生理參數監測方法
本案係關於一種生理參數監測方法,尤指一種穿戴式裝置之生理參數監測方法。
近年來,由於消費者對健康的重視,許多應用於健康監測的產品應運而生,且為了能更有效率的管理個人健康,市面上已有多種具備生理紀錄功能的手錶、手環等穿戴式裝置,供使用者紀錄並監測生理的相關參數,例如心率、正常心跳間距之標準差(Standard Deviation of Normal-to-Normal intervals,SDNN)、相鄰心跳間期之差的均方根值(Root Mean Square of Successive Differences)、低頻(Low Frequency,LF,例如0.04Hz至0.15Hz)功率以及高頻(High Frequency,HF,例如0.15Hz至0.4Hz)功率等。
一般而言,心率是指心臟跳動的頻率,心率可以提供許多生理上之訊息。已知的穿戴式裝置擷取心率的方法是使用光容積信號(Photoplethysmography,PPG)感測器以及心電圖(Electrocardiography,ECG)感測器來擷取心臟脈動信號,並在擷取心臟脈動信號後,將其直接進行快速傅立葉轉換,將時域的心臟脈動信號轉換成頻域的心臟脈動的功率頻譜,再透過分析心臟脈動的功率頻譜來取得心率資料。
然而,在傳統計算心率的演算法中,由於必需將時域的心臟脈動信號轉換成頻域的心臟脈動的功率頻譜,再藉由分析功率頻譜來獲得心率,故需耗費大量的儲存空間和運算的資源,且若延續使用上述演算法來獲取心率以外的生理參數,如正常心跳間距之標準差或相鄰心跳間期之差的均方根值等時域統計較為方便的生理參數,對於有限的儲存空間、運算能力與電池續航力之穿戴式裝置而言更是龐大的負擔。
本案之目的在於提供一種穿戴式裝置之生理參數監測方法,其無需藉由分析功率頻譜來獲得心率等其他時域統計較為方便的生理參數,並且能更有效率的獲取心率以外的生理參數,藉此更能有效率的運用儲存空間和運算的資源。
本案之另一目的在於提供一種穿戴式裝置之生理參數監測方法,其可即時地擷取心率等生理參數,且可大幅減少儲存的量測訊息的資料量,藉此更能有效率的運用儲存空間。
為達前述目的,本案之一較佳實施態樣為提供一種穿戴式裝置之生理參數監測方法,該穿戴式裝置包含一感測單元以及一處理單元,該生理參數監測方法包含步驟:該感測單元感測心跳脈動而產生包含複數個心跳週期的一量測信號;該處理單元儲存該量測信號並透過該量測信號執行一間隔演算以產生一規律心跳的時間間隔;該處理單元依據該規律心跳的時間間隔計算至少一第一生理參數;該處理單元將該量測信號進行重新取樣或內插;該處理單元將該量測信號進行頻譜分析以產生一頻域信號;以及該處理單元透過分析該頻域信號以獲得至少一第二生理參數。
體現本案特徵與優點的一些典型實施例將在後段的說明中詳細敘述。應理解的是本案能夠在不同的態樣上具有各種的變化,其皆不脫離本案的範圍,且其中的說明及圖式在本質上係當作說明之用,而非用於限制本案。
第1圖係為本案穿戴式裝置之示意圖,以及第2圖係為本案較佳實施例之穿戴式裝置之架構圖。如第1及2圖所示,本案之穿戴式裝置1可為智慧手錶。於其他實施例中,穿戴式裝置1亦可為手環或指環,且不以此為限。本案之穿戴式裝置1包含感測單元2、濾波單元3、處理單元4、顯示單元5、儲能單元6、電量控制單元7以及無線傳輸單元8。感測單元2係包含至少一感測器,其中感測器可為例如但不限於光容積信號(Photoplethysmographic sensor,PPG)感測器或是心電圖(Electrocardiography,ECG)感測器,且該感測器係透過感測心跳脈動來產生量測信號。濾波單元3係連接於感測單元2,且架構於過濾量測信號在心跳範圍之外不必要的雜訊,其中濾波單元3可以透過硬體濾波器或是軟體濾波器來組合成高通濾波器(High pass filter)、低通濾波器(Low pass filter)或帶通濾波器(Band pass filter)等方式實現。於一些實施例中,由於穿戴式裝置1的運算能力與儲存空間有限,故在使用軟體濾波器時,需選定適當或特定的濾波器階數(orders)。處理單元4係連接於濾波單元3,且架構於控制穿戴式裝置1之運作以及進行資料的運算、演算法的執行以及資料的儲存。顯示單元5係連接於處理單元4,且接收處理單元4傳輸之資料以顯示生理參數或其他提醒訊息。儲能單元6係連接於處理單元4,用以儲存電能以及提供穿戴式裝置1運作所需電能,其中儲能單元6以電池為較佳。電量控制單元7係連接於儲能單元6以及處理單元4,用以控制儲能單元6釋放電能之多寡,俾使穿戴式裝置1運作於例如正常模式或節能模式。無線傳輸單元8係連接於處理單元4,且架構於接收或傳輸無線訊號。
請參閱第1、2及3圖,其中第3圖係為本案較佳實施例之生理參數監測方法之流程圖。首先,如步驟S11所示,感測單元2會先感測一段時間的心跳脈動而產生包含複數個心跳週期的量測信號,其中心跳週期指的是前一次心臟收縮完畢到下一次心臟收縮結束之間的時間。然後,如步驟S12所示,處理單元4將包含複數個心跳週期的量測信號儲存且執行間隔演算,並透過間隔演算來產生一規律心跳的時間間隔。接著,如步驟S13所示,該處理單元4會依據該規律心跳的時間間隔來計算出至少一第一生理參數。請參閱第4A及4B圖,其中第4A圖係為透過心電圖感測器所檢測出來的示範性的心跳間隔示意圖,第4B圖係為透過光容積信號感測器所檢測出來的示範性的心跳間隔示意圖,兩個相鄰波峰的時間的間隔就是指第4A圖中的 至 序列及第4B圖中的 至 序列。其中至少一第一生理參數可為但不限於心率、正常心跳間距之標準差以及相鄰心跳間期之差的均方根值。舉例而言,心率獲得的方式可透過計算每分鐘出現的波峰個數來獲得,正常心跳間距之標準差可以根據例如公式1獲得,相鄰心跳間期之差的均方根值可以根據例如公式2獲得, (公式1) (公式2)   其中,RR是指兩個相鄰波峰的時間的間隔,N是指正常心跳的總數, 是指第i個RR, 是指N個心跳的RR平均值。然後,如步驟S14所示,該處理單元4將該量測信號進行重新取樣或內插,因為量測信號為不等間隔的非週期訊號或是類週期訊號,因此在進行頻率分析之前可重新取樣或內插成等間隔。接著,如步驟S15所示,該處理單元4將該量測信號進行頻譜分析以產生一頻域信號,其中量測信號之頻譜分析可利用例如但不限於快速傅立葉轉換(Fast Fourier Transform,FFT)以及韋爾奇快速傅立葉轉換(Welch Fast Fourier Transform,Welch FFT)等頻譜分析方式實現。於本實施例中,所取得之第一生理參數,例如正常心跳間距之標準差與人類睡眠品質具關聯性,因此得用於睡眠品質偵測,使用者可透過不同的正常心跳間距之標準差,來判斷自己處於淺層睡眠或是深度睡眠。舉例而言,當取得之正常心跳間距之標準差值大於一預設門檻值時,判斷為淺層睡眠。當取得之正常心跳間距之標準差值不大於該預設門檻值時,則判斷為深層睡眠。最後,如步驟S16所示,該處理單元4透過分析頻域信號以獲得至少一第二生理參數,其中,第二生理參數可為但不限於低頻(Low Frequency,LF)功率以及高頻(High Frequency,HF)功率,透過分析頻譜分析的結果可以取得低頻(例如0.04Hz至0.15Hz)功率以及高頻(例如0.15Hz至0.4Hz)功率。於本實施例中,所取得之第二生理參數,低頻功率及高頻功率,則可對應區分出不同的情緒狀態。
由上述說明可知,本案之穿戴式裝置1及其生理參數監測方法無需藉由分析功率頻譜來獲得心率、正常心跳間距之標準差以及相鄰心跳間期之差的均方根值等其他時域統計較為方便的生理參數,並且能更有效率的獲取心率以外的生理參數,藉此更能有效率的運用儲存空間和運算的資源。於本實施例中,前述之第一生理參數以及第二生理參數可透過穿戴式裝置1之顯示單元5顯示,藉此可提供使用者許多生理上的訊息,以利健康紀錄與管理,例如但不限於正常心跳間距之標準差代表自律神經強弱的程度、相鄰心跳間期之差的均方根值與副交感神經有密切關聯以及高低頻功率的變化可以當作自律神經活性的指標等。
於一些實施例中,在步驟S11與步驟S12之間可執行步驟S115,透過濾波單元3濾除量測信號的雜訊,如此可以濾除心跳範圍之外不必要的雜訊。此外,在步驟S14與步驟S15之間,也就是進行頻譜分析之前,可執行步驟S145,透過處理單元4進行一窗函數運算,執行窗函數運算主要是避免信號頻譜中各譜線之間相互干擾,使測量的結果偏離實際值,也就是產生頻譜泄露(Leakage)的情形,另外,所選用的窗函數可為但不限於漢明窗(Hamming window)或韓恩窗(Hann window)。
請參閱第1、2、3、4A、4B及5圖,其中第5圖係為第3圖所示之間隔演算之流程圖。首先,如步驟S21所示,處理單元4以一連續資料位置與振幅關係或一連續時間與振幅關係為基礎來判斷資料位置或時間點的量測信號是否為波峰,感測信號在還未進行頻譜分析前,為一時域信號,時域信號在連續的資料軸上或連續的時間軸上具有相對應的振幅大小,透過比較振幅大小或波峰檢測的相關演算可以量測出信號在特定的資料位置或時間點是否為一波峰。接著,若S21判斷的結果是一波峰,則執行步驟S22,該處理單元4記錄判斷是一波峰的該資料位置或該時間點;若S21判斷的結果不是一波峰,則重新執行步驟S21。在取得複數個波峰的資料位置或該時間點後,執行步驟S23,處理單元4會計算任兩個相鄰波峰之資料位置間隔再乘上單位間隔的時間或計算任兩個相鄰波峰之時間點間隔以取得心跳的時間間隔。接著,執行步驟S24,透過該處理單元4判斷獲取的心跳的時間間隔是否合乎人體正常心跳的時間間隔範圍,若不合理,則移除偏異的該心跳的時間間隔以產生規律的時間間隔。
於一些實施例中,在步驟S22與步驟S23之間可加入步驟S225,透過該處理單元4釋放已經紀錄過該資料位置或該時間點所相對應的該量測信號的儲存空間,由於在每一心跳週期會產生一個波峰,故在紀錄完波峰所在的資料位置或時間點後,該處理單元4可以釋放已經紀錄過該資料位置或該時間點所相對應的心跳週期的量測信號的儲存空間,如此一來可以更有效率的運用儲存空間。
第6圖係為優化儲存之流程圖,第7圖係為第6圖所示之優化儲存之示意圖,其中第6圖係為第3圖步驟S12中,處理單元4儲存量測信號之優化儲存之流程。如第6及7圖所示,優化儲存之流程包含步驟S31至S33,首先,如步驟S31,處理單元4讀取感測單元2感測到的至少一個完整的心跳週期的量測信號或讀取經過濾波的至少一個完整的心跳週期量測信號,並透過該至少一個完整的心跳週期的振幅來計算出振幅大小的平均值(如第7圖之振幅大小的平均值Avg)。然後,如步驟S32,處理單元4利用振幅的平均值乘上一係數,制訂出振幅的預設門檻值 (如第7圖之預設門檻值H),其中該預設門檻值依感測單元2的廠牌、型號或解析度而異,其範圍可為但不限於前述振幅大小的平均值的1.5倍至2倍之間。接著,如步驟S33,處理單元4持續讀取量測信號,並且當量測信號的振幅由低至高達到或超過預設門檻值時(如第7圖之第一時點t1),開始儲存量測信號,並持續儲存量測信號直到量測信號的振幅由高至低達到或低於預設門檻值時(如第7圖之第二時點t2)停止儲存,之後,繼續讀取量測信號,當量測信號的振幅再度由低至高達到或超過預設門檻值時(如第7圖之第三時點t3),開始儲存量測信號,並持續儲存量測信號直到量測信號的振幅由高至低達到或低於預設門檻值時(如第7圖之第四時點t4)停止儲存,並以此方式不斷重複,直至儲存複數個心跳週期的量測信號為止。如此一來,因為不需要儲存所有的量測信號,故可以大幅減低資料的儲存空間。
綜上所述,本案提供一種穿戴式裝置之生理參數監測方法,其無需藉由分析功率頻譜來獲得心率等其他時域統計較為方便的生理參數,並且能更有效率的獲取心率以外的生理參數,藉此更能有效率的運用儲存空間和運算的資源,並且更透過一優化的間隔演算流程,大幅減少儲存的量測訊息的資料量,藉此更能有效率的運用儲存空間。
本案得由熟習此技術之人士任施匠思而為諸般修飾,然皆不脫如附申請專利範圍所欲保護者。
1‧‧‧穿戴式裝置
2‧‧‧感測單元
3‧‧‧濾波單元
4‧‧‧處理單元
5‧‧‧顯示單元
6‧‧‧儲能單元
7‧‧‧電量控制單元
8‧‧‧無線傳輸單元
S11至S16、S115、S145‧‧‧生理參數監測方法之流程步驟
S21至S24、S225‧‧‧間隔演算之流程步驟
S31至S33‧‧‧優化間隔演算之流程步驟
Avg‧‧‧振幅大小的平均值
H‧‧‧預設門檻值
t1至t4‧‧‧第一時點至第四時點
第1圖係為本案穿戴式裝置之示意圖。 第2圖顯示本案較佳實施例之穿戴式裝置之架構圖。 第3圖顯示本案較佳實施例之生理參數監測方法之流程圖。 第4A圖係為透過心電圖感測器所檢測出來的示範性的心跳間隔示意圖。 第4B圖係為透過光容積信號感測器所檢測出來的示範性的心跳間隔示意圖。 第5圖係為第3圖所示之間隔演算之流程圖。 第6圖係為優化儲存之流程圖。 第7圖係為第6圖所示之優化儲存之示意圖。
S11至S16、S115、S145‧‧‧生理參數監測方法之流程 步驟

Claims (9)

  1. 一種穿戴式裝置之生理參數監測方法,該穿戴式裝置包含一感測單元以及一處理單元,該生理參數監測方法包含步驟:(a)該感測單元感測心跳脈動而產生包含複數個心跳週期的一量測信號;(b)該處理單元儲存該量測信號並透過該量測信號執行一間隔演算以產生一規律心跳的時間間隔;(c)該處理單元依據該規律心跳的時間間隔計算至少一第一生理參數;(d)該處理單元將該量測信號進行重新取樣或內插;(e)該處理單元將該量測信號進行頻譜分析以產生一頻域信號;以及(f)該處理單元透過分析該頻域信號以獲得至少一第二生理參數;其中於該步驟(b)中,儲存該量測信號的方法更包含步驟:(b11)該處理單元讀取該量測信號並計算至少一個完整的心跳週期的振幅的平均值;(b12)該處理單元利用該振幅的平均值乘上一係數,以設定該振幅的一預設門檻值;(b13)該處理單元持續讀取該量測信號,並且當該量測信號的振幅由低至高達到或超過該預設門檻值時,開始儲存該量測信號,並持續儲存該量測信號直到該量測信號的振幅由高至低達到或低於該預設門檻值時停止儲存;以及(b14)重複該步驟(b13),直至儲存複數個心跳週期的該量測信號。
  2. 如申請專利範圍第1項所述之穿戴式裝置之生理參數監測方法,其中該穿戴式裝置更包含一濾波單元連接於該感測單元與該處理單元,且於該步驟(a)與該步驟(b)之間更包括步驟:該濾波單元濾除該量測信號的雜訊。
  3. 如申請專利範圍第1項所述之穿戴式裝置之生理參數監測方法,其中於該步驟(d)與該步驟(e)之間更包括步驟:該處理單元進行一窗函數運算。
  4. 如申請專利範圍第3項所述之穿戴式裝置之生理參數監測方法,其中該窗函數運算係由一漢明窗函數或一韓恩窗函數實現。
  5. 如申請專利範圍第1項所述之穿戴式裝置之生理參數監測方法,其中該步驟(e)中的該頻譜分析方式係為快速傅立葉轉換或韋爾奇快速傅立葉轉換。
  6. 如申請專利範圍第1項所述之穿戴式裝置之生理參數監測方法,其中該步驟(c)中的該第一生理參數包括心率、正常心跳間距之標準差以及相鄰心跳間期之差的均方根值之至少一者。
  7. 如申請專利範圍第1項所述之穿戴式裝置之生理參數監測方法,其中該步驟(f)中的該第二生理參數包括低頻功率以及高頻功率之至少一者。
  8. 如申請專利範圍第1項所述之穿戴式裝置之生理參數監測方法,其中該步驟(b)中的該間隔演算更包含步驟:(b21)該處理單元以一連續資料位置與振幅關係或一連續時間與振幅關係為基礎以判斷一資料位置或一時間點的量測信號是否為一波峰;(b22)若判斷結果是一波峰,該處理單元記錄判斷是一波峰的該資料位置或該時間點;若判斷結果不是一波峰,則重新執行步驟(b21);(b23)該處理單元計算任兩個相鄰波峰之資料位置間隔再乘上單位間隔的時間或計算任兩個相鄰波峰之時間點間隔以取得心跳的時間間隔;以及(b24)該處理單元移除偏異的該心跳的時間間隔以產生該規律的時間間隔。
  9. 如申請專利範圍第9項所述之穿戴式裝置之生理參數監測方法,其中於該步驟(b22)與該步驟(b23)之間更包括步驟:該處理單元釋放已經紀錄過該資料位置或該時間點所相對應的該量測信號的一儲存空間。
TW104142003A 2015-12-14 2015-12-14 穿戴式裝置之生理參數監測方法 TWI576088B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104142003A TWI576088B (zh) 2015-12-14 2015-12-14 穿戴式裝置之生理參數監測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104142003A TWI576088B (zh) 2015-12-14 2015-12-14 穿戴式裝置之生理參數監測方法

Publications (2)

Publication Number Publication Date
TWI576088B true TWI576088B (zh) 2017-04-01
TW201720366A TW201720366A (zh) 2017-06-16

Family

ID=59240664

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104142003A TWI576088B (zh) 2015-12-14 2015-12-14 穿戴式裝置之生理參數監測方法

Country Status (1)

Country Link
TW (1) TWI576088B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110236509A (zh) * 2018-03-07 2019-09-17 台北科技大学 于视频中实时分析生理特征的方法
CN110403593A (zh) * 2018-04-26 2019-11-05 新唐科技股份有限公司 心率侦测方法
TWI695316B (zh) * 2019-01-18 2020-06-01 國立交通大學 生理感測方法及其裝置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI671057B (zh) * 2018-08-20 2019-09-11 遠東新世紀股份有限公司 心跳週期的分析方法、裝置及系統
TWI696192B (zh) * 2019-03-29 2020-06-11 麗臺科技股份有限公司 心電圖訊號判斷裝置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050240087A1 (en) * 2003-11-18 2005-10-27 Vivometrics Inc. Method and system for processing data from ambulatory physiological monitoring
CN101642368A (zh) * 2008-08-04 2010-02-10 南京大学 自主神经功能信号的处理方法、装置和测试系统
US8515519B2 (en) * 2004-07-13 2013-08-20 Dexcom, Inc. Transcutaneous analyte sensor
TW201446217A (zh) * 2013-06-11 2014-12-16 Univ Nat Taiwan Science Tech 檢測穴位體表微循環血流之裝置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050240087A1 (en) * 2003-11-18 2005-10-27 Vivometrics Inc. Method and system for processing data from ambulatory physiological monitoring
US8515519B2 (en) * 2004-07-13 2013-08-20 Dexcom, Inc. Transcutaneous analyte sensor
CN101642368A (zh) * 2008-08-04 2010-02-10 南京大学 自主神经功能信号的处理方法、装置和测试系统
TW201446217A (zh) * 2013-06-11 2014-12-16 Univ Nat Taiwan Science Tech 檢測穴位體表微循環血流之裝置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110236509A (zh) * 2018-03-07 2019-09-17 台北科技大学 于视频中实时分析生理特征的方法
CN110403593A (zh) * 2018-04-26 2019-11-05 新唐科技股份有限公司 心率侦测方法
TWI695316B (zh) * 2019-01-18 2020-06-01 國立交通大學 生理感測方法及其裝置

Also Published As

Publication number Publication date
TW201720366A (zh) 2017-06-16

Similar Documents

Publication Publication Date Title
AU2016293110B2 (en) Processing biological data
TWI576088B (zh) 穿戴式裝置之生理參數監測方法
EP3334337B1 (en) Monitoring of sleep phenomena
US9655532B2 (en) Wearable physiological monitoring and notification system based on real-time heart rate variability analysis
Peng et al. Extraction of heart rate variability from smartphone photoplethysmograms
JP6516846B2 (ja) 睡眠監視のデバイス及び方法
TWI538660B (zh) 心跳偵測模組及其偵測、去噪方法
US8666482B2 (en) Method, system and software product for the measurement of heart rate variability
CN104757957A (zh) 一种血压连续测量方法及可穿戴血压连续测量装置
TWI667011B (zh) 心率檢測方法以及心率檢測裝置
US10022057B1 (en) Wearable physiological monitoring and notification system based on real-time heart rate variability analysis
JPWO2009150744A1 (ja) 睡眠状態モニタリング装置、モニタリングシステムおよびコンピュータプログラム
JP2011115188A (ja) 睡眠状態モニタリング装置、モニタリングシステムおよびコンピュータプログラム
Lagido et al. Using the smartphone camera to monitor heart rate and rhythm in heart failure patients
US20230290517A1 (en) Methods of determining physiological information based on bayesian peak selection and monitoring devices incorporating the same
JP6522327B2 (ja) 脈波解析装置
JP2020517337A (ja) アーチファクト耐性脈拍変動測定
Coffen et al. Real-time wireless health monitoring: an ultra-low power biosensor ring for heart disease monitoring
Chanwimalueang et al. Modelling stress in public speaking: Evolution of stress levels during conference presentations
Lee et al. The analysis of sleep stages with motion and heart rate signals from a handheld wearable device
EP3975202A1 (en) Device and system for detecting heart rhythm abnormalities
TWI462728B (zh) 依據歷史資料判斷睡眠階段之系統及其方法
JP2016043191A (ja) 生体信号解析装置、生体信号解析システム、及び、生体信号解析方法
TWI575474B (zh) 人體器官之生理微震動感測系統及方法
Jahan et al. A low cost stethoscopic system for real time auscultation of heart sound