TWI575069B - A method for continuously maintaining the growth of motor neuron precursor cells and a pharmaceutical composition - Google Patents

A method for continuously maintaining the growth of motor neuron precursor cells and a pharmaceutical composition Download PDF

Info

Publication number
TWI575069B
TWI575069B TW103138245A TW103138245A TWI575069B TW I575069 B TWI575069 B TW I575069B TW 103138245 A TW103138245 A TW 103138245A TW 103138245 A TW103138245 A TW 103138245A TW I575069 B TWI575069 B TW I575069B
Authority
TW
Taiwan
Prior art keywords
cells
olfactory
motor neuron
myelin
cell
Prior art date
Application number
TW103138245A
Other languages
English (en)
Other versions
TW201617447A (zh
Inventor
Hong-Lin Su
Hong-Chuan Pan
xiu-qin Li
Jun-Wei Zhuang
Xin-Rong Lin
hong-zhi Han
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW103138245A priority Critical patent/TWI575069B/zh
Priority to US14/929,017 priority patent/US11345888B2/en
Publication of TW201617447A publication Critical patent/TW201617447A/zh
Application granted granted Critical
Publication of TWI575069B publication Critical patent/TWI575069B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0619Neurons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/30Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/08Coculture with; Conditioned medium produced by cells of the nervous system
    • C12N2502/083Coculture with; Conditioned medium produced by cells of the nervous system sensory transducers

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Neurology (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Developmental Biology & Embryology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

持續維持運動神經元前驅細胞生長之方法及醫藥組合物
本發明係有關於維持神經幹細胞生長之方法,特別係指一種持續維持運動神經元前驅細胞生長之方法及醫藥組合物。
按,萬能胚胎幹細胞可作為一種生產所需神經細胞群之來源,係為目前具有潛力之細胞取代療法(Kozubenko N et al.,2010;Mandai M et al.,2010;Boddington SE et al.,2010)。一般來說,胚胎幹細胞分化步驟包含依序提供神經誘導因子以及區域形成因子(regional patterning factors),用以引導細胞分化以及細胞類型的轉換(cell fate conversion),給予發育階段之胚胎訊號,可使胚胎幹細胞於體外,重現體內個體的早期發育(Muguruma K et al.,2012;Willerth SM,2011)。舉例來說,抑制BMP訊號,均可使胚胎個體與胚胎幹細胞產生原始神經上皮前驅細胞(neuroepithelial progenitor cells,EPCs)。當EPCs進一步藉由給予音波狀蛋白(sonic hedgehog,SHH)以及視黃酸(retinoic acid,RA),可形成脊髓運動神經元。先前研究顯示,胚胎幹細胞衍生之神經細胞,與胚胎中的正常神經元相似,並可表現神經元正常生理功能,如釋放神經傳導物質以及可產生動作電位(action potential)。於疾病模式動物,移植胚胎幹細胞衍生神經元可回復其運動能力以及行為表現,但其成功率取決於被移植之神經元是否具有高活性與高存活率(Lopez-Gonzalez R et al.,2009;Harper JM et al.,2004;Chiba S et al.,2003)。
由於脊髓及腦幹之運動神經元其生理與病理的重要性,因此,其成為一個獨特之神經元族群而被廣泛地研究(Lopez-Gonzalez R et al.,2012;Chipman PH et al.,2012;Jessell TM et al.,2011;Thonhoff JR et al.,2009)。雖然發育過程中,複數個運動神經元之特異性轉錄因子(lineage-specific transcription factors)已被發現(Chipman PH et al.,2012;Wu CY et al.,2012;Takazawa T et al.,2012;Wada T et al.,2009),但是,相較於腦室旁與海馬迴的神經幹細胞族群,目前幾乎沒有對於運動神經元群自我複製及維持之分子基礎研究。由基因修飾小鼠之研究結果顯示,音波狀蛋白及其下游Gli路徑係為運動神經元前驅細胞生長之關鍵因子(Wu SM et al.,2012;Oh S et al.,2009;Ruiz i Altaba A,1998),惟,目前仍無法得知運動神經元前驅細胞群的生長,是否需要其他分泌因子。此外,由於運動神經元族群製備之低產出及低純度,導致關於與運動神經元增生之研究受到限制。而藉由脊髓神經元與小鼠N18神經母細胞融合,雖然得以建立且獲得永生雜交運動神經元細胞株(Raimondi A et al.,2006;Cashman NR et al.,1992),惟,該永生雜交運動神經元細胞株不僅具有多核且基因異常,能夠持續增生,並且無法呈現典型運動神經元型態及功能,例如具有長且細之軸突與傳導動作電位。
嗅神經髓鞘細胞(Olfactory ensheathing cells,OECs)係類似於周邊神經系統之許旺細胞(Schwann cells),為分佈於嗅神經細胞纖維上之神經膠質細胞(Mackay-Sim A et al.,2011;Su Z et al.,2010;Raisman G et al.,2007)。嗅神經髓鞘細胞引導嗅神經軸突通過間質組織生長,並且分泌多種用以保護嗅覺神經元之神經滋養因子。嗅神經髓鞘細胞的鑑定,並得藉由神經膠質原纖維酸性蛋白(glial fibrillary acidic protein,GFAP)、s100、p75 以及中間絲蛋白(nestin intermediate filaments)之表現而被辨認。當嗅神經髓鞘細胞與神經幹細胞共培養時,可促進神經幹細胞的分化與神經突起(neurites)的形成,但無法促進神經幹細胞的生長與複製。
幹細胞移植可成為對退化性神經疾病以及中樞神經系統病變的一種有效之治療方法。具體來說,幹細胞移植乃係藉由將幹細胞遞送進入或靠近受損之中樞神經部位,使受損中樞神經系統之神經細胞再生。目前研究證實,移植嗅神經髓鞘細胞或神經前驅細胞對於腦部損傷之實驗囓齒動物機能性改善具有正向結果,例如動物患有肌萎縮側索硬化症(amyotrophic lateral sclerosis,ALS)及脊髓損傷(Mackay-Sim A et al.,2011)。惟,目前研究之實驗時間係持續數個月,並且僅具有暫時改善神經受損相關症狀之效果,而該短期治療效果乃與移植細胞之低存活率具有高度相關性。詳言之,由於個體對於被移植細胞會產生局部發炎及排斥反應,常無法提供被移植細胞存活之適當環境與生長因子,當被移植的細胞無法複製或細胞活性降低時,將導致被移植之細胞無法與宿主細胞整合。因此,移植細胞之低存活率可能造成治療效果無法持續。
本發明之主要目的係在於提供一種持續維持運動神經元前驅細胞生長之方法,其係透過將運動神經元前驅細胞培養於一由嗅神經髓鞘細胞所建構之環境中,使運動神經元前驅細胞長期地維持自我複製以及得以被誘導分化為成熟神經元之能力,據以有效地發揮對於運動神經元之保護作用。
本發明之另一目的係在於提供一種醫藥組合物,其係包含有 效量之運動神經元前驅細胞以及至少一藥學上可接受之載體。透過將該醫藥組合物投予至一罹患運動神經元受損相關疾病之患者,例如中風、脊髓損傷、神經退化性疾病等,能夠達到重建個體之神經功能以及促進運動神經元生長之功效。
為能達成上述目的,本發明所揭之一實施例係提供一種持續維持運動神經元前驅細胞活性之方法,其係將一運動神經元前驅細胞培養於一由嗅神經髓鞘細胞所構築且適合生長之培養環境中,使該運動神經元前驅細胞能夠維持自我複製且具有分化為成熟運動神經細胞之能力。
較佳地,該培養環境係為一具有嗅神經髓鞘細胞之培養基。
其中,以低密度形式培養運動神經元前驅細胞。
其中,將數量至少一個之該運動神經元前驅細胞接種於嗅神經髓鞘細胞上進行培養。
較佳地,該培養環境係為一先處理嗅神經髓鞘細胞後之培養基,其中,係以高密度形式進行培養運動神經元前驅細胞。
藉由本發明所揭方法,該運動神經元前驅細胞係於該培養環境中被持續擴大增生超過10代,並且,單個之該運動神經元前驅細胞能形成細胞群落。
本發明之另一實施例係揭露一種醫藥組合物,其係包含一有效量之運動神經元前驅細胞以及至少一藥學上可接受之載體,其中,該運動神經元前驅細胞係以一由嗅神經髓鞘細胞所構築之環境中進行前處理。
較佳地,該運動神經元前驅細胞係以嗅神經髓鞘細胞進行前處理。
較佳地,該運動神經元前驅細胞係以一已先處理嗅神經髓鞘細胞後之培養基進行前處理。
較佳地,該醫藥組合物係更包含有嗅神經髓鞘細胞。
較佳地,該運動神經元前驅細胞與該嗅神經髓鞘細胞係以等比例進行前處理。
而本發明所揭之醫藥組合物係具有治療運動神經元疾病之用途。
較佳地,該疾病係為中風、脊髓損傷、退化性神經疾病、肌萎縮側索硬化症或任何具有運動神經元正在進行死亡之疾病。
第一圖A及B係分別為嗅神經髓鞘細胞培養第4天及第7天之外型。
第二圖係為嗅球之嗅神經髓鞘細胞、嗅黏膜之嗅神經髓鞘細胞以及幼倉鼠纖維母細胞分別進行免疫細胞染色法之結果。
第三圖A係以螢光活化細胞分選技術分析以p75抗體染色之嗅神經髓鞘細胞,其中,紅色表示被p75抗體染色之嗅神經髓鞘細胞,藍色表示未被染色之細胞。
第三圖B係為嗅神經髓鞘細胞之生長曲線圖。
第四圖係為HB9::GFP胚胎幹細胞與小鼠成骨細胞株PA6共同培養之流程示意圖。
第五圖係為與小鼠成骨細胞株共同培養至第8天之HB9::GFP+細胞。
第六圖係為HB9::GFP胚胎幹細胞以不同處理條件進行培養之流程示意 圖。
第七圖係為單個HB9::GFP+細胞接種於嗅神經髓鞘細胞經培養一週而形成細胞群落之結果
第八圖係為單個HB9::GFP+細胞接種於絲裂酶素處理之嗅神經髓鞘細胞,培養一週後之結果。
第九圖係為經嗅神經髓鞘細胞擴增後的HB9::GFP+細胞接種於PA6細胞上進行培養後之結果。
第十圖A係以免疫組織染色法分析各組大鼠表現CD11b之結果。
第十圖B係統計分析各組大鼠表現CD11b之結果,其中,*表示P值<0.05,**表示P值小於<0.01。
第十一圖A係以免疫組織染色法分析各組大鼠運動神經元表現膽鹼乙醯轉移酶之結果。
第十一圖B係統計分析各組大鼠運動神經元表現膽鹼乙醯轉移酶之結果,其中,*表示P值<0.05,**表示P值小於<0.01。
除非另有定義,於本發明之說明書及申請專利範圍所使用之技術及科學名詞之意義,其係與本發明所屬技術領域且具通常知識者之一般理解者相同。若有矛盾之情形,以本發明內容為準。
所謂「HB9::GFP胚胎幹細胞」係為未分化,且不具螢光的胚胎幹細胞,其染色體帶有一外來基因,此基因帶有HB9基因的啟動子及綠色螢光蛋白質(green fluorescent protein,GFP)。
而所謂「HB9::GFP+細胞」係為胚胎幹細胞衍生運動神經元 前驅細胞或成熟之運動神經元,具有綠色螢光。而該綠色螢光蛋白質之表現係被運動神經元專一性啟動子HB9所調控(Miles GB et al.,2004;Wichterle H et al.,2002)。HB9係為一運動神經元之專一性轉錄因子(Arber S et al.,1999),因此,僅於運動神經元能被偵測到表現綠色螢光蛋白(Miles GB et al.,2004;Soundararajan P et al.,2006)。於本發明之實例中,將以HB9::GFP+細胞,探討嗅神經髓鞘細胞對於運動神經元增生效率之影響,以及量化與嗅神經髓鞘細胞共培養之運動神經元之增生能力。
所謂「有效量」乙詞係指欲產生所求特定效果所需化合物或活性成份之量,得以其在組合物中所佔重量百分比表示。如同本發明所屬技術領域中具有通常知識者所瞭解者,該有效量會因為欲引起特定效果之投予途徑而有所不同。一般來說,活性成分或化合物於組合物中之量可佔該組合物重量之約1%至約100%,較佳者係為約30%至約100%。
所謂「藥學上能接受之載體」乙詞係包含任何標準於醫藥產品上所使用之載體,而該載體係依據組合物之型態,得為固態、半固態或液態。舉例來說,載體包含,但不限於,明膠、乳化劑、烴類混合物、水、甘油、生理食鹽水、緩衝生理鹽水、羊毛脂、石蠟、蜂蠟、二甲基硅油、乙醇。
所謂「醫藥組合物」乙詞係包含一有效量之欲產生特定效果之所需化合物或活性成份,以及至少一載體。而如同本發明所屬技術領域中具有通常知識者所瞭解者,組合物之型態得隨著欲引起特定效果之投予途徑有所不同,如錠劑、粉劑、針劑等,並且,該載體亦隨著組合物之型態而得為固態、半固態或液態。
所謂「投予」乙詞係指將一物遞送至一個體特定部位、特定細胞、特定靶點之方式,或其與個體接觸作用之途徑,一般來說,投予途徑係包含有,但不限於,口服、塗抹、噴灑、吸入、注射等。
以下,為能更進一步說明本發明之功效,將茲舉若干實例作詳細說明,惟,該等實例係為用以解說之例示,其中所使用之任何詞彙並不限制本發明說明書及申請專利範圍之範圍及意義。
必須先加以說明者,以下有關於動物試驗之實例皆已通過台灣台中榮民總醫院之倫理委員會審查。並且,除非另有加以說明,以下實例中所有用以培養及分化幹細胞之基底培養基及添加成份皆於市面上(Invitrogen)購買取得。
實例一:胚胎幹細胞之維持及分化
自美國哥倫比亞大學取得分離自HB9::GFP基因轉殖小鼠之HB9基因轉殖胚胎幹細胞(以下簡稱HB9::GFP胚胎幹細胞),其可分化為運動神經元前驅細胞及成熟運動神經元(以下簡稱HB9::GFP+細胞)。
該HB9::GFP胚胎幹細胞被維持於含有絲裂酶素C(mitomycin C)處理之小鼠胚胎纖維母細胞之高葡萄糖DMEM培養基,添加有15%胎牛血清、2mM之穀醯胺酸、0.1mM之非必須胺基酸、1mM之丙酮酸、0.1mM之2-巰基乙醇(2-mercaptoethanol,Sigma-Aldrich)以及1000U/ml之白血病抑制因子(Chemicon)。
而神經分化方法之細節為本發明技術所屬領域且具通常知識者依據先前技術所揭內容所周知者,包含無血清類胚體(serum-free embryoid-body-like,SFEB)(Watanabe K et al.,2005)、neurobasal/N2B27培養 基(Ying QL et al.,2003)以及間質細胞衍生誘導活性方法(stroma cell-derived inducing activity methods,SDIA methods)(Kawasaki H et al.,2000)。
胚胎幹細胞開始分化之首日被定義為第0天,於第3-5天將0.1μM之視黃酸(Sigma-Aldrich)加入分化培養基中,並且於5-7培養日之每天分別加入並替換200μM之外源音波狀蛋白(R&D Systems)或2μM之2,6,9-三取代嘌呤化合物(Purmorphamine,PU,Tocris)。
實例二:嗅神經髓鞘細胞之培養與純化
取重量約為250~300公克SD大鼠(Sprague-Dawley Rat),並自該大鼠之嗅黏膜(olfactory mucosa,OM)或嗅球分離出嗅神經髓鞘細胞。將該嗅神經髓鞘細胞連續培養於選擇性培養基中,於顯微鏡下觀察培養第4天及第7天之細胞外型,結果如第一圖所示。由第一圖可知,該嗅神經髓鞘細胞之外型係呈現典型紡錘狀。
更進一步地分別將分離自嗅黏膜及嗅球之嗅神經髓鞘細胞以及幼倉鼠纖維母細胞(baby hamster kidney fibroblast cells,BHK-21 cell)以免疫細胞染色法進行分析。將上述各該細胞以4%多聚甲醛(paraformaldehyde)固定及以0.3%之采酮(Triton-X 100)穿透各該細胞後,先以S100及p75之初級抗體進行免疫反應後,以0.1%Tween-20之磷酸緩衝液清洗,再與適當具螢光標記之二級抗體進行反應,並且以DAPI進行核反染色,最後以直立式顯微鏡(Nikon ECLIPSE 80I)或共軛焦顯微鏡(LSM510 Meta,Zeiss)觀察免疫染色之結果,結果如第二圖所示,其中,圖中上排紅色為以p75抗體染色之結果,圖中下排紅色為以S100進行免疫染色之結果,圖中藍色皆為以DAPI染色之結果。
將該嗅神經髓鞘細胞以p75抗體進行染色,並且以螢光活化細胞分選技術(Fluorescence Activated Cell Sorter,FACS)進行分析,再以錐蟲藍(trypan blue)排除死亡細胞,分析該嗅神經髓鞘細胞之細胞數量,並且紀錄其生長曲線,結果如第三圖所示。
由第二圖之結果顯示幾乎所有被培養之嗅神經髓鞘細胞表現嗅神經髓鞘細胞標記,例如p75、s100。但幼倉鼠纖維母細胞則不表現p75以及s100抗原。證明本培養方法可產生高純度的嗅神經髓鞘細胞。再者,由第三圖之結果顯示,相較於未被染色之嗅神經髓鞘細胞(圖中藍色部份),大多數嗅神經髓鞘細胞係能夠被p75抗體染色(圖中紅色部份),並且,該嗅神經髓鞘細胞能夠增殖,其中,細胞數達二倍量之時間(a double time)約為28~32小時。
實例三:共培養小鼠成骨細胞株與自胚胎幹細胞衍生之運動神經元
請參閱第四圖,將實例一中自小鼠HB9::GFP胚胎幹細胞與小鼠成骨細胞株(PA6細胞)依據下列培養流程進行共同培養,而此培養流程係為先前文獻所揭內容(Pan HC et al.,2011):培養第0-3天使用10%之KSR(Knockout serum replacement)培養基中,培養第3-5天使用含有視黃酸之KSR培養基,培養第5-7天使用含有視黃酸及2,6,9-三取代嘌呤化合物之NB培養基(neurobasal medium,Invitrogen),進行共同培養。而後再以NB培養基進行培養,觀察培養至第8天之該HB9::GFP+細胞,如第五圖所示。
由第五圖之結果顯示,與小鼠成骨細胞株PA6共同培養之該HB9::GFP+細胞係已分化為運動神經元而能表現綠色螢光蛋白,並且,其 外型係呈現運動神經元典型之外型。另由本案發明人等過去研究可知,自小鼠胚胎幹細胞衍生之運動神經元係會表現膽鹼乙醯轉移酶以及運動神經元之專一性蛋白MNR2(Pan HC et al.,2011),據此可知HB9::GFP胚胎幹細胞與小鼠成骨細胞株PA6共同培養後會分化成為成熟之且具有功能之運動神經元。
實例四:嗅神經髓鞘細胞能維持HB9::GFP+細胞自我複製能力
請參閱第六圖,首先,依據實例一或實例三所揭方法培養HB9::GFP胚胎幹細胞,培養至第5天。此時綠色螢光剛於分化的胚胎幹細胞中表現,而表現綠色螢光的細胞之細胞型態係為卵圓形,無神經突起,因此,此時期的綠色螢光細胞代表運動神經元前驅細胞,而與培養至第8天的成熟的運動神經元不同。
培養至第5天時,以流式細胞儀(Influx,nozzle 100m,25psi,Becton-Dickinson)分選出能表現綠色螢光之單個HB9::GFP+細胞。再以100cells/mL之低密度條件進行細胞培養,並將單個HB9::GFP+細胞分別接種於嗅神經髓鞘細胞、PA6細胞及基質膠上,培養一週。
經一週培養後發現,單個HB9::GFP+細胞僅會於嗅神經髓鞘細胞上形成一群落(colony),如第七圖所示,並且,該HB9::GFP+細胞形成之細胞群落得於嗅神經髓鞘細胞繼代超過10代而仍持續表現綠色螢光蛋白質。相反地,該HB9::GFP+細胞接種於PA6細胞或基質膠上時,僅會均勻分佈且分化成為成熟運動神經細胞,無法進行自我複製及生長。
再者,將分選出之單一HB9::GFP+細胞接種於絲裂酶素處理 之嗅神經髓鞘細胞上,使其失去細胞複製的能力。經培養一週後,結果如第八圖所示。由第八圖之結果可知,不能進行細胞複製的嗅神經髓鞘細胞係會降低HB9::GFP+細胞之增生效率,並且HB9::GFP+細胞僅能繼代5代以內。
此外,將分選出之單一HB9::GFP+細胞,以高密度條件:10000cells/mL進行培養,與經嗅神經髓鞘細胞培養一天之條件培養基(conditional media)共培養,但不與嗅神經髓鞘細胞接觸。經培養兩周,每兩天更換培養液。由此培養結果發現,單一HB9::GFP+細胞於未與嗅神經髓鞘細胞接觸下,仍可以形成細胞群落且複製,並可以繼續繼代。
由上述結果顯示,藉由與健康之嗅神經髓鞘細胞共培養,或以已培養過嗅神經髓鞘細胞之條件培養基進行培養,分別能夠提供維持運動神經元前驅細胞自我複製之專一性環境(niches),而能作為維持HB9::GFP+細胞之重要環境因子。
實例五:運動神經元之分化能力
以流式細胞儀(Influx,nozzle 100μm,25psi,Becton-Dickinson)分選出與嗅神經髓鞘細胞共同培養所得之單一第5代HB9::GFP+細胞。將分選出之該HB9::GFP+細胞接種於PA6細胞上後,培養3天內,觀察到大多數細胞可快速地延伸出軸突,成為成熟運動神經元,並且呈現出典型已分化之運動神經元型態,如第九圖所示。由第九圖顯示,於嗅神經髓鞘細胞上進行增生之HB9::GFP+細胞仍然維持分化能力,而能夠分化為成熟運動神經元。
實例六:製備脊髓損傷動物模式
本實例中用以產製脊髓損傷動物模式之方法係參考先前文獻(Cheng FC,et al.,2012;Cheng FC et al.,2010;Yang DY et al.,2012)。
取250~300公克中SD大鼠,以4%異氟醚誘導麻醉後,再以1-2%異氟醚維持麻醉狀態。藉由一平行於鎖骨而由胸骨到腋下之水平切口接觸到右側臂叢神經。將胸大肌移位,留下完整無缺之頭靜脈。鎖骨下方血管被定位,解剖軀幹下部。藉由鉗子將C7根部自脊髓抽出5分鐘後,再將傷口予以縫合,用以製備脊髓損傷大鼠。
實例七:動物試驗
將實例六中所製備之脊髓損傷大鼠分為四組,並且,於脊髓受損2週後,各該大鼠於脊椎T7-T8處進行全椎板切除手術,分別於至其受傷脊髓前角(ventral horn)以及對側未受傷之部位進行不同條件之細胞移植,其中,第一組係為2μl之磷酸鹽緩衝液,第二組係移植5x105個嗅神經髓鞘細胞,第三組係移植5x105個HB9::GFP+細胞,第四組係以2.5x105個移植嗅神經髓鞘細胞先處理(pretreatment)2.5 x105個HB9::GFP+細胞一天後,促使HB9::GFP+細胞複製,再進行移植。
細胞移植係以顯微注射方式進行,其中,脊柱右側之顯微注射係將細胞打入白質,投予位置為脊椎T8及T9中線起算0.75公釐及深度1.2公釐處,注射時間為20分鐘,注射完維持5分鐘;脊柱左側之顯微注射係將細胞打入前角,投予位置為脊椎T8及T9中線起算0.5公釐及深度1.2公釐處,注射時間為20分鐘,注射完維持5分鐘。各組大鼠進行移植1週後,將各組大鼠予以麻醉,以25毫升磷酸鹽緩衝液及100毫升、4%之多聚甲醛灌流,並且分別取其脊髓進行免疫組織化學染色,觀察CD11b、膽鹼乙醯轉移酶之表 現,結果如第十圖及第十一圖所示。
由於脊髓損傷大鼠之微膠細胞(microglial cells)過度活化,產生神經細胞發炎之現象,微膠細胞會大量表現CD11b,並且使運動神經元受到破壞。由第十圖及第十一圖之結果可知,第一組大鼠之CD11b表現量明顯高於其他組,並且以膽鹼乙醯轉移酶標定脊髓前角的運動神經元,顯示第一組大鼠之運動神經元損傷嚴重。而相較於第一組大鼠,第四組大鼠之CD11b表現量係顯著降低,並且可偵測到表現膽鹼乙醯轉移酶的大量運動神經元,顯示其內生性運動神經元大多數皆未損傷。另藉由比對第四組大鼠與第二組大鼠或第三組大鼠可知,相較於單純移植運動神經元或嗅神經髓鞘細胞,共移植運動神經元及嗅神經髓鞘細胞對宿主運動神經元的修復具有加乘效益。
藉由上述實例之結果可知,本發明所揭持續維持運動神經元前驅細胞活性之方法確實能夠使運動神經元前驅細胞於健康嗅神經髓鞘細胞存在之環境下,維持其自我複製之能力,而能對於運動神經元提供較先前技術更為顯著之保護作用。並且,培養過程中所得之該運動神經元前驅細胞於分化條件下,仍能分化成為成熟運動神經元,能有助於運動神經元之生長以及神經功能之重建。藉由上述方法,本發明得提供一種醫藥組合物與處理方式,用以將具有自我複製能力及分化能力之運動神經元前驅細胞移植至一個體中,使該運動神經元前驅細胞先行複製,進而修復或重建個體之神經受損部位,用以達到具有顯著治療運動神經元疾病之功效。
以上僅是藉由各該實例詳細說明本發明,熟知該技術領域者於不脫離本發明精神下,而對於說明書中之實施例所做的任何簡單修改或 是變化,均應為本案申請專利範圍所得涵攝者。
參考文獻
Kozubenko N, Turnovcova K, Kapcalova M, Butenko O, Anderova M, et al. (2010) Analysis of in vitro and in vivo characteristics of human embryonic stem cell-derived neural precursors. Cell Transplant 19: 471-486.
Mandai M, Ikeda H, Jin ZB, Iseki K, Ishigami C, et al. (2010) Use of lectins to enrich mouse ES-derived retinal progenitor cells for the purpose of transplantation therapy. Cell Transplant 19: 9-19.
Boddington SE, Henning TD, Jha P, Schlieve CR, Mandrussow L, et al. (2010) Labeling human embryonic stem cell-derived cardiomyocytes with indocyanine green for noninvasive tracking with optical imaging: an FDA-compatible alternative to firefly luciferase. Cell Transplant 19: 55-65.
Muguruma K, Sasai Y (2012) In vitro recapitulation of neural development using embryonic stem cells: from neurogenesis to histogenesis. Dev Growth Differ 54: 349-357.
Willerth SM (2011) Neural tissue engineering using embryonic and induced pluripotent stem cells. Stem Cell Res Ther 2: 17.
Lopez-Gonzalez R, Kunckles P, Velasco I (2009) Transient recovery in a rat model of familial amyotrophic lateral sclerosis after transplantation of motor neurons derived from mouse embryonic stem cells. Cell Transplant 18: 1171-1181.
Harper JM, Krishnan C, Darman JS, Deshpande DM, Peck S, et al. (2004) Axonal growth of embryonic stem cell-derived motoneurons in vitro and in motoneuron-injured adult rats. Proc Natl Acad Sci U S A 101: 7123-7128.
Chiba S, Iwasaki Y, Sekino H, Suzuki N (2003) Transplantation of motoneuron-enriched neural cells derived from mouse embryonic stem cells improves motor function of hemiplegic mice. Cell Transplant 12: 457-468.
Lopez-Gonzalez R, Velasco I (2012) Therapeutic potential of motor neurons differentiated from embryonic stem cells and induced pluripotent stem cells. Arch Med Res 43: 1-10.
Chipman PH, Toma JS, Rafuse VF (2012) Generation of motor neurons from pluripotent stem cells. Prog Brain Res 201: 313-331.
Jessell TM, Surmeli G, Kelly JS (2011) Motor neurons and the sense of place. Neuron 72: 419-424.
Thonhoff JR, Ojeda L, Wu P (2009) Stem cell-derived motor neurons: applications and challenges in amyotrophic lateral sclerosis. Curr Stem Cell Res Ther 4: 178-199.
Wu CY, Whye D, Mason RW, Wang W (2012) Efficient differentiation of mouse embryonic stem cells into motor neurons. J Vis Exp: e3813.
Takazawa T, Croft GF, Amoroso MW, Studer L, Wichterle H, et al. (2012) Maturation of spinal motor neurons derived from human embryonic stem cells. PLoS One 7: e40154.
Wada T, Honda M, Minami I, Tooi N, Amagai Y, et al. (2009) Highly efficient differentiation and enrichment of spinal motor neurons derived from human and monkey embryonic stem cells. PLoS One 4: e6722.
Wu SM, Tan KS, Chen H, Beh TT, Yeo HC, et al. (2012) Enhanced production of neuroprogenitors, dopaminergic neurons, and identification of target genes by overexpression of sonic hedgehog in human embryonic stem cells. Stem Cells Dev 21: 729-741.
Oh S, Huang X, Liu J, Litingtung Y, Chiang C (2009) Shh and Gli3 activities are required for timely generation of motor neuron progenitors. Dev Biol 331: 261-269.
Ruiz i Altaba A (1998) Combinatorial Gli gene function in floor plate and neuronal inductions by Sonic hedgehog. Development 125: 2203-2212.
Raimondi A, Mangolini A, Rizzardini M, Tartari S, Massari S, et al. (2006) Cell culture models to investigate the selective vulnerability of motoneuronal mitochondria to familial ALS-linked G93ASOD1. Eur J Neurosci 24: 387-399.
Cashman NR, Durham HD, Blusztajn JK, Oda K, Tabira T, et al. (1992) Neuroblastoma x spinal cord (NSC) hybrid cell lines resemble developing motor neurons. Dev Dyn 194: 209-221.
Raisman G, Li Y (2007) Repair of neural pathways by olfactory ensheathing cells. Nat Rev Neurosci 8: 312-319.
Miles GB, Yohn DC, Wichterle H, Jessell TM, Rafuse VF, et al. (2004) Functional properties of motoneurons derived from mouse embryonic stem cells. J Neurosci 24: 7848-7858.
Wichterle H, Lieberam I, Porter JA, Jessell TM (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110: 385-397.
Arber S, Han B, Mendelsohn M, Smith M, Jessell TM, et al. (1999) Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity. Neuron 23: 659-674.
Pan HC, Wu YT, Shen SC, Wang CC, Tsai MS, et al. (2011) Characterization of axon formation in the embryonic stem cell-derived motoneuron. Cell Transplant 20: 493-502.
Cheng FC, Sheu ML, Su HL, Chen YJ, Chen CJ, et al. (2012) The effect of exercise on mobilization of hematopoietic progenitor cells involved in the repair of sciatic nerve crush injury. J Neurosurg.
Cheng FC, Tai MH, Sheu ML, Chen CJ, Yang DY, et al. (2010) Enhancement of regeneration with glia cell line-derived neurotrophic factor-transduced human amniotic fluid mesenchymal stem cells after sciatic nerve crush injury. J Neurosurg 112: 868-879.
Yang DY, Sheu ML, Su HL, Cheng FC, Chen YJ, et al. (2012) Dual regeneration of muscle and nerve by intravenous administration of human amniotic fluid-derived mesenchymal stem cells regulated by stromal cell-derived factor-1alpha in a sciatic nerve injury model. J Neurosurg 116: 1357-1367.
Soundararajan P, Miles GB, Rubin LL, Brownstone RM, Rafuse VF (2006) Motoneurons derived from embryonic stem cells express transcription factors and develop phenotypes characteristic of medial motor column neurons. J Neurosci 26: 3256-3268.
Watanabe K, Kamiya D, Nishiyama A, Katayama T, Nozaki S, et al. (2005) Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci 8: 288-296.
Ying QL, Stavridis M, Griffiths D, Li M, Smith A (2003) Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 21: 183-186.
Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, et al. (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28: 31-40.

Claims (9)

  1. 一種持續維持運動神經元前驅細胞生長之方法,其係包含於一培養基中培養一運動神經元前驅細胞,使該運動神經元前驅細胞能夠維持自我複製且具有分化為成熟運動神經細胞元之能力,其特徵在於,該培養基中包含有嗅神經髓鞘細胞或其經培養後所得之物。
  2. 依據申請專利範圍第1項所述持續維持運動神經元前驅細胞活性之方法,其中,當該培養基包含有嗅神經髓鞘細胞時,則以培養密度約為每毫升100個細胞(100cells/mL)之條件進行培養。
  3. 依據申請專利範圍第1項所述持續維持運動神經元前驅細胞活性之方法,其中,當該培養基包含有嗅神經髓鞘細胞經培養後所得之物,並排除一嗅神經髓鞘細胞時,則以培養密度約為每毫升10000個細胞(10000cells/mL)之條件進行培養。
  4. 依據申請專利範圍第1項所述持續維持運動神經元前驅細胞活性之方法,其中,當該培養基包含有嗅神經髓鞘細胞時,其係將數量為至少一之該運動神經元前驅細胞接種於嗅神經髓鞘細胞上進行培養。
  5. 依據申請專利範圍第1項所述持續維持運動神經元前驅細胞活性之方法,其中,該運動神經元前驅細胞係於該培養環境中被持續擴大增生超過10代。
  6. 依據申請專利範圍第1項所述持續維持運動神經元前驅細胞生長之方法,其中,單個之該運動神經元前驅細胞係於該培養環境中 複製且形成一細胞群落。
  7. 一種製備醫藥組合物之方法,其係包含下列步驟:(a)取一運動神經元前驅細胞培養一培養基中,其中,該培養基係包含有嗅神經髓鞘細胞或其經培養後所得之物;(b)取有效量且經步驟a培養之該運動神經元神經細胞,並與至少一藥學上可接受之載體進行調製;以及(c)獲得一醫藥組合物。
  8. 依據申請專利範圍第7項所述方法,其中,該步驟b中更包含加入一嗅神經髓鞘細胞。
  9. 依據申請專利範圍第7項所述方法,其中,當該步驟a中之該培養基係含有嗅神經髓鞘細胞時,該運動神經元前驅細胞與該嗅神經髓鞘細胞係為等比例培養。
TW103138245A 2014-11-04 2014-11-04 A method for continuously maintaining the growth of motor neuron precursor cells and a pharmaceutical composition TWI575069B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW103138245A TWI575069B (zh) 2014-11-04 2014-11-04 A method for continuously maintaining the growth of motor neuron precursor cells and a pharmaceutical composition
US14/929,017 US11345888B2 (en) 2014-11-04 2015-10-30 Method and pharmaceutical composition for continuously maintaining growth of a motor neuron progenitor cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103138245A TWI575069B (zh) 2014-11-04 2014-11-04 A method for continuously maintaining the growth of motor neuron precursor cells and a pharmaceutical composition

Publications (2)

Publication Number Publication Date
TW201617447A TW201617447A (zh) 2016-05-16
TWI575069B true TWI575069B (zh) 2017-03-21

Family

ID=55851988

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103138245A TWI575069B (zh) 2014-11-04 2014-11-04 A method for continuously maintaining the growth of motor neuron precursor cells and a pharmaceutical composition

Country Status (2)

Country Link
US (1) US11345888B2 (zh)
TW (1) TWI575069B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108192924A (zh) * 2017-12-22 2018-06-22 中国人民解放军第二军医大学 Ngn2介导成年鼠嗅鞘细胞直接重编程为神经元的方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Salehi M et al. Repair of spinal cord injury by co-transplantation of embryonic stem cell-derived motor neuron and olfactory ensheathing cell. Iran Biomed J. 2009 Jul;13(3):125-35. *
Zhang J et al. Olfactory ensheathing cells promote proliferation and inhibit neuronal differentiation of neural progenitor cells through activation of Notch signaling. Neuroscience. 2008 May 2;153(2):406-13. Epub 2008 Mar 8. *

Also Published As

Publication number Publication date
TW201617447A (zh) 2016-05-16
US11345888B2 (en) 2022-05-31
US20160122710A1 (en) 2016-05-05

Similar Documents

Publication Publication Date Title
KR102625865B1 (ko) 만능 세포를 분화시키는 방법
Song et al. Atoh7 promotes the differentiation of retinal stem cells derived from Müller cells into retinal ganglion cells by inhibiting Notch signaling
CN105940101A (zh) 由人多能干细胞特化功能性颅基板衍生物
JP2014509192A (ja) 患者特異的な多分化能ニューロン幹細胞を生成する方法および組成物
WO2019019223A1 (zh) 定向诱导hiPSC分化后的神经细胞体系、诱导方法及应用
Jung et al. Characterization of neurogenic potential of dental pulp stem cells cultured in xeno/serum‐free condition: in vitro and in vivo assessment
US20230233617A1 (en) Methods for differentiating stem cells into dopaminergic progenitor cells
KR20200043297A (ko) 인간 만능 줄기세포로부터 제작된 3d 오가노이드를 해체하여 세포를 다량 확보하는 분화방법
CN105392881A (zh) 体细胞基于小分子转化为神经嵴细胞
US20190010455A1 (en) Isolation And Use Of Pluripotent Stem Cell Population From Adult Neural Crest-Derived Tissues
CN109219441A (zh) 表达间充质和神经元标志物的牙髓干细胞及其组合物治疗神经疾病的用途
Kim et al. Engineering three dimensional micro nerve tissue using postnatal stem cells from human dental apical papilla
Sethi et al. Olfactory ensheathing cells promote differentiation of neural stem cells and robust neurite extension
Baehr et al. Growth of adult rat retinal ganglion cell neurites on astrocytes
TW201323610A (zh) 由萬能幹細胞所分化之神經上皮細胞及其所使用之培養基與其分化方法
KR20070080561A (ko) 중추 또는 말초 신경계 손상 치료용 조성물
Liu et al. The effects of different phenotype astrocytes on neural stem cells differentiation in co-culture
Ganapathy et al. Astrocyte-like cells differentiated from dental pulp stem cells protect dopaminergic neurons against 6-hydroxydopamine toxicity
JP2004511266A (ja) 間葉間質細胞に対する治療的利用法
Li et al. Multipotent neural crest stem cell‐like cells from rat vibrissa dermal papilla induce neuronal differentiation of PC12 cells
Hamidabadi et al. Promoting motor functions in a spinal cord injury model of rats using transplantation of differentiated human olfactory stem cells: A step towards future therapy
US10472607B2 (en) Culture medium and method for inducing differentiation of pluripotent stem cells into neuroepithelial cells
WO2022134229A1 (zh) 一种神经干细胞诱导分化培养基及诱导分化方法
Oiticica et al. Retention of progenitor cell phenotype in otospheres from guinea pig and mouse cochlea
TWI575069B (zh) A method for continuously maintaining the growth of motor neuron precursor cells and a pharmaceutical composition