TWI570803B - A deep silicon etch method - Google Patents
A deep silicon etch method Download PDFInfo
- Publication number
- TWI570803B TWI570803B TW103143959A TW103143959A TWI570803B TW I570803 B TWI570803 B TW I570803B TW 103143959 A TW103143959 A TW 103143959A TW 103143959 A TW103143959 A TW 103143959A TW I570803 B TWI570803 B TW I570803B
- Authority
- TW
- Taiwan
- Prior art keywords
- etching
- sidewall
- gas
- smear
- interface
- Prior art date
Links
Landscapes
- Drying Of Semiconductors (AREA)
Description
本發明涉及半導體製造領域,尤其涉及一種深矽蝕刻方法。The present invention relates to the field of semiconductor fabrication, and more particularly to a deep etch method.
蝕刻工藝是指在製造半導體元件過程中採用化學溶液或腐蝕性氣體或電漿除去晶圓內或晶圓表面膜層中不需要的部分的工藝。通常主要用化學溶液進行蝕刻的方法為濕式蝕刻,採用腐蝕性氣體或電漿進行蝕刻的方法為乾式蝕刻。目前,可以使電路圖形變得更精細的乾式蝕刻得到越來越廣泛的使用。The etching process refers to a process of removing a unnecessary portion in a wafer or a wafer surface film layer by using a chemical solution or a corrosive gas or a plasma during the process of manufacturing a semiconductor device. Generally, the method of etching mainly with a chemical solution is wet etching, and the method of etching with a corrosive gas or plasma is dry etching. At present, dry etching, which can make circuit patterns finer, is more and more widely used.
濕式蝕刻中,用強酸的化學反應進行各向同性蝕刻,即使被光罩覆蓋的部分也可以被蝕刻。相反,乾式蝕刻用反應離子蝕刻,其中,用例如電漿態的鹵素的腐蝕性化學氣體和電漿態離子進行蝕刻。因此,乾式蝕刻可以實現只在晶圓上按垂直方向進行蝕刻的各向異性蝕刻,所以,乾式蝕刻適用於要求高精度的精細工藝,例如,適用於超大型積體電路(VLSI)工藝。In the wet etching, isotropic etching is performed by a chemical reaction of a strong acid, and even a portion covered by the photomask can be etched. In contrast, dry etching is performed by reactive ion etching in which etching is performed using a corrosive chemical gas such as a plasma halogen and a plasma ion. Therefore, the dry etching can realize an anisotropic etching in which the etching is performed only on the wafer in the vertical direction. Therefore, the dry etching is suitable for a fine process requiring high precision, for example, for a very large integrated circuit (VLSI) process.
傳統的等離子處理裝置包含導入處理氣體的反應腔室,所述反應腔室內配置有由一對上部電極和下部電極組成的平行平板電極。在將處理氣體導入反應腔室內的同時,在下部電極上施加高頻電壓,在電極間形成高頻電場,在高頻電場的作用下形成處理氣體的電漿。A conventional plasma processing apparatus includes a reaction chamber into which a processing gas is introduced, and a parallel plate electrode composed of a pair of upper electrodes and lower electrodes is disposed in the reaction chamber. While introducing the processing gas into the reaction chamber, a high-frequency voltage is applied to the lower electrode to form a high-frequency electric field between the electrodes, and a plasma of the processing gas is formed by the high-frequency electric field.
習知技術的深矽通孔蝕刻主要包括製造矽通孔或者溝槽。其中,在從光阻的圖形轉移到硬遮罩的圖形過程中,要保證被轉移到硬遮罩上的圖形不會變形就要保證在蝕刻硬遮罩的過程中不會發生側壁蝕刻,也不會最終造成尺寸偏移。為了足夠的蝕刻速率,還要避免深矽通孔蝕刻成為等方向性蝕刻(isotropic etch)。在元件精度要求越來越高的趨勢下,上述兩個要求通常不能被兼顧。通常出現的問題包括蝕刻中側壁出現弧形輪廓線,使得蝕刻所得的線條尺寸與光罩所定義的線條尺寸出現很大的關鍵尺寸偏移(CD shift)。The well-known deep hole via etching of the prior art mainly involves the fabrication of via vias or trenches. Among them, in the process of transferring the pattern from the photoresist to the hard mask, it is necessary to ensure that the pattern transferred to the hard mask is not deformed, so that sidewall etching is not performed during the etching of the hard mask. It will not eventually cause a size shift. For sufficient etch rate, deep via etching is also avoided as an isotropic etch. In the trend of higher and higher component accuracy requirements, the above two requirements can not usually be taken into account. Common problems include the presence of a curved outline on the sidewall of the etch, such that the line size of the etch and the line size defined by the reticle exhibit a large critical shift (CD shift).
因此,業內需要一種深矽通孔蝕刻機制,能夠保證蝕刻形貌,又能夠保持較高蝕刻速率。Therefore, there is a need in the industry for a deep via etch mechanism that ensures etched topography while maintaining a high etch rate.
針對背景技術中的上述問題,本發明提出了一種深矽蝕刻方法。In view of the above problems in the background art, the present invention proposes a deep etch method.
本發明提供了一種深矽蝕刻方法,其中,所述蝕刻方法包括如下步驟:The present invention provides a deep etching method, wherein the etching method comprises the following steps:
非等向性蝕刻步驟,提供第一反應氣體在電漿作用下對矽材料層進行蝕刻,並蝕刻至一定深度,以露出一蝕刻界面,所述蝕刻界面包括側壁,所述第一反應氣體包括蝕刻氣體和側壁保護氣體,所述側壁保護氣體用於補償所述蝕刻氣體對該側壁在橫向方向上的蝕刻作用;An anisotropic etching step, providing a first reactive gas to etch the layer of germanium material under the action of plasma, and etching to a depth to expose an etching interface, the etching interface comprising a sidewall, the first reactive gas comprising An etching gas and a sidewall shielding gas for compensating an etching action of the etching gas on the sidewall in a lateral direction;
側壁保護步驟,提供第二反應氣體,在電漿作用下,在所述蝕刻界面的側壁形成側壁保護層,附著在所述蝕刻界面的側壁表面,所述第二反應氣體包括側壁保護氣體;a sidewall protecting step, providing a second reactive gas, forming a sidewall protective layer on the sidewall of the etching interface under the action of the plasma, adhered to the sidewall surface of the etching interface, and the second reactive gas includes a sidewall shielding gas;
交替循環所述非等向性蝕刻步驟和側壁保護步驟,直到蝕刻到達目標深度。The anisotropic etching step and the sidewall protecting step are alternately cycled until the etching reaches the target depth.
進一步地,所述非等向性蝕刻步驟和側壁保護步驟的執行時間比為大於5:1。Further, the execution time ratio of the anisotropic etching step and the sidewall protection step is greater than 5:1.
進一步地,所述非等向性蝕刻步驟和側壁保護步驟的執行時間比為大於5:1,小於20:1。Further, the execution time ratio of the anisotropic etching step and the sidewall protection step is greater than 5:1 and less than 20:1.
進一步地,所述第一反應氣體包括的蝕刻氣體為SF6 。Further, the first reactive gas includes an etching gas of SF 6 .
進一步地,所述第一反應氣體包括的側壁保護氣體包括C4 F8 、O2 、SiF4 。Further, the first reaction gas includes a sidewall shielding gas including C 4 F 8 , O 2 , SiF 4 .
進一步地,所述第一反應氣體中的蝕刻氣體和側壁保護氣體的比例為4:1至2:1。。Further, the ratio of the etching gas and the sidewall shielding gas in the first reaction gas is 4:1 to 2:1. .
進一步地,所述第一反應氣體包括的側壁保護氣體包括C4 F8 或者O2 。Further, the first reaction gas includes a sidewall shielding gas including C 4 F 8 or O 2 .
進一步地,所述矽材料層上面還設置有光罩層或者光阻層。Further, a mask layer or a photoresist layer is further disposed on the layer of germanium material.
進一步地,交替循環所述非等向性蝕刻步驟和側壁保護步驟,直到蝕刻到達目標深度以形成矽通孔或者溝槽。Further, the anisotropic etching step and the sidewall protecting step are alternately cycled until the etching reaches a target depth to form a via hole or a trench.
進一步地,所述蝕刻方法在感應耦合型電漿蝕刻腔室中進行。Further, the etching method is performed in an inductively coupled plasma etching chamber.
執行本發明的深矽蝕刻方法所得到的矽通孔/矽溝槽深度深,並且其從上到下橫向寬度都趨於一致,並未出現習知技術的側壁呈現波浪形或者側壁呈現錐形的問題。並且,本發明在兼顧矽通孔/矽溝槽形貌的同時,保持了較高的蝕刻速度。The enthalpy of the 矽 矽 矽 矽 矽 执行 , , 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行 执行The problem. Moreover, the present invention maintains a high etching rate while taking into account the shape of the through-hole/germanium trench.
以下結合附圖,對本發明的具體實施方式進行說明。Specific embodiments of the present invention will be described below with reference to the accompanying drawings.
深孔矽蝕刻一般是在感應耦合型電漿蝕刻腔室中進行。圖1是感應耦合型電漿處理腔室的結構示意圖。感應耦合電漿處理裝置100 包括金屬側壁102和絕緣頂板104,構成一個氣密的真空封閉殼體,並且由抽真空泵(未示出)抽真空。所述絕緣頂板104 僅作為示例,也可以採用其它的頂板樣式,比如穹頂形狀的,帶有絕緣材料視窗的金屬頂板等。基座106包括一靜電夾盤(未示出),所述靜電夾盤上放置著待處理的基片W。偏置功率被施加到所述靜電夾盤上,以產生對基片W的夾持力。射頻電源108的射頻功率被施加到位於絕緣頂板104上的射頻功率發射裝置上。其中,在本實施例中,所述射頻發射裝置包括射頻線圈110。處理氣體從氣源經過管線被供應到反應腔內,以點燃並維持等離子,從而在基片W上進行深矽蝕刻製程。優選地,處理氣體從氣體注入口112進入腔室。Deep hole etch is typically performed in an inductively coupled plasma etch chamber. 1 is a schematic view showing the structure of an inductively coupled plasma processing chamber. The inductively coupled plasma processing apparatus 100 includes a metal sidewall 102 and an insulating top plate 104 that form a hermetic vacuum enclosure and is evacuated by an evacuation pump (not shown). The insulating top plate 104 is merely an example, and other top plate patterns such as a dome-shaped metal top plate with an insulating window may be used. The susceptor 106 includes an electrostatic chuck (not shown) on which the substrate W to be processed is placed. Bias power is applied to the electrostatic chuck to create a clamping force on the substrate W. The RF power of the RF power source 108 is applied to a RF power transmitting device located on the insulating top plate 104. In the embodiment, the radio frequency transmitting device includes a radio frequency coil 110. The process gas is supplied from the gas source through the line to the reaction chamber to ignite and sustain the plasma, thereby performing a deep etch process on the substrate W. Preferably, the process gas enters the chamber from the gas injection port 112.
習知技術的深矽蝕刻機制通常包括兩種,其一是普通深矽蝕刻,也就是非博世(Non-Bosch process)深矽蝕刻。圖2是習知技術的非博世深矽蝕刻通孔/溝槽的形貌示意圖。非博世深矽蝕刻是同時通入反應氣體和側壁保護氣體,從而同時進行蝕刻和側壁保護步驟。由於同時進行蝕刻和側壁保護步驟,非博世深矽蝕刻的蝕刻速度很快,而且不會出現博世製程的側壁呈現波浪狀的形貌。但是,非博世深矽蝕刻的缺點也十分明顯,如圖2所示,其以光罩層202為光罩對矽基底204進行蝕刻,最後製成的矽通孔或者矽溝槽200會呈現錐形,上部分的開口較大,隨著矽通孔或者矽溝槽的垂直延伸,開口越來越小。The deep etching mechanism of the prior art generally includes two types, one of which is ordinary deep etching, that is, a non-Bosch process deep etching. 2 is a schematic view showing the morphology of a non-Bosch deep etched via/groove of the prior art. The non-Bosch deep etch is a simultaneous introduction of a reactive gas and a sidewall shielding gas to simultaneously perform etching and sidewall protection steps. Due to the simultaneous etching and sidewall protection steps, the non-Bosch deep etch etch rate is fast and there is no wavy appearance on the sidewalls of the Bosch process. However, the disadvantages of the non-Bosch deep etch are also very obvious. As shown in FIG. 2, the ruthenium substrate 204 is etched by using the mask layer 202 as a mask, and the resulting through-hole or the trench 200 is tapered. In the shape, the opening of the upper portion is larger, and the opening becomes smaller as the through hole or the vertical extension of the groove.
習知技術的深矽蝕刻機制的另一種用得較多的是博世工藝,博世工藝(Bosch process)可切換地單獨實施蝕刻步驟和側壁保護步驟,循環實施蝕刻步驟和側壁保護步驟以達到蝕刻深度。圖3是習知技術的博世深矽蝕刻通孔/溝槽的工藝步驟流程圖,如圖3a所示,首先執行蝕刻步驟,以光罩層302為光罩,對矽基板304進行蝕刻,以得到開口306。接下來執行側壁保護步驟,如圖3b所示,在光罩層302的上方以及蝕刻界面的側壁沉積側壁保護層308。然後繼續執行蝕刻步驟,如圖3c所示形成深度更深的蝕刻界面,如圖3c所示,博世蝕刻方法會在蝕刻界面的側壁形成波浪狀的形貌,最後形成的深孔300(矽通孔或者矽溝槽)也會是波浪狀的形貌,並且,其蝕刻效率也很低下。Another use of the deep etch mechanism of the prior art is the Bosch process. The Bosch process can switch the etching step and the sidewall protection step separately, and the etching step and the sidewall protection step are performed cyclically to achieve the etching depth. . 3 is a flow chart of a process step of etching a through hole/trench in the prior art by Bosch. As shown in FIG. 3a, an etching step is first performed, and the mask layer 302 is used as a mask to etch the germanium substrate 304. An opening 306 is obtained. Next, a sidewall protection step is performed, as shown in FIG. 3b, a sidewall protection layer 308 is deposited over the mask layer 302 and on the sidewalls of the etch interface. Then, the etching step is continued, and a deeper etching interface is formed as shown in FIG. 3c. As shown in FIG. 3c, the Bosch etching method forms a wavy topography on the sidewall of the etching interface, and finally forms a deep hole 300. Or the trenches are also wavy, and the etching efficiency is also very low.
為了解決上述問題,本發明提出了一種深矽蝕刻方法。圖4a~4d是根據本發明一個具體實施例的深矽蝕刻方法的工藝步驟流程圖。下面結合附圖4a~4d對本發明提供的深矽蝕刻方法進行詳細介紹,其包括如下步驟。In order to solve the above problems, the present invention proposes a deep etch method. 4a-4d are flow diagrams of process steps of a simmer etching process in accordance with an embodiment of the present invention. The deep etching method provided by the present invention is described in detail below with reference to FIGS. 4a to 4d, and includes the following steps.
如圖4a所示,首先執行非等向性蝕刻步驟,提供第一反應氣體在電漿作用下對矽材料層404進行蝕刻,並蝕刻至一定深度,以露出一蝕刻界面406,所述蝕刻界面406包括側壁404a。其中,所述第一反應氣體包括蝕刻氣體和側壁保護氣體,蝕刻氣體用於將矽材料層蝕刻至預定深度,側壁保護氣體在蝕刻的過程中同時在蝕刻界面406的側壁404a上做側壁保護層。由於側壁保護氣體和蝕刻氣體是同時作用的,因此側壁404a上的側壁保護層在該步驟中並不能保留下來,因為其會被蝕刻作用侵蝕掉,儘管如此,本步驟中在側壁404a上的側壁保護層還是中和了蝕刻作用橫向上的作用力,又兼顧了蝕刻速度。As shown in FIG. 4a, an anisotropic etching step is first performed to provide a first reactive gas to etch the germanium material layer 404 under plasma and etched to a depth to expose an etch interface 406. 406 includes a sidewall 404a. Wherein, the first reactive gas comprises an etching gas and a sidewall shielding gas, the etching gas is used for etching the germanium material layer to a predetermined depth, and the sidewall shielding gas simultaneously forms a sidewall protective layer on the sidewall 404a of the etching interface 406 during the etching process. . Since the sidewall shielding gas and the etching gas act simultaneously, the sidewall protective layer on the sidewall 404a cannot be retained in this step because it is eroded by the etching effect, however, the sidewall on the sidewall 404a in this step The protective layer also neutralizes the force in the lateral direction of the etching action, taking into account the etching speed.
如圖4b所示,然後執行側壁保護步驟,提供第二反應氣體,在電漿作用下,在所述蝕刻界面406的側壁形成側壁保護層408,附著在所述蝕刻界面406的側壁406a表面。其中,所述第二反應氣體包括側壁保護氣體。側壁保護層408能夠對已經做好的蝕刻界面的橫向擴散趨勢進行保護和補償,待下一步執行非等向性蝕刻步驟時不會破壞上一個非等向性蝕刻步驟已經做好的深度,還可以繼續往下延伸,因而不會出現習知技術出現的蝕刻形貌呈現錐形的問題。As shown in FIG. 4b, a sidewall protection step is then performed to provide a second reactive gas. Under the action of the plasma, a sidewall protective layer 408 is formed on the sidewall of the etched interface 406 to adhere to the surface of the sidewall 406a of the etched interface 406. Wherein, the second reaction gas comprises a sidewall shielding gas. The sidewall protection layer 408 can protect and compensate the lateral diffusion tendency of the etched interface that has been completed, and does not destroy the depth that the previous anisotropic etching step has been completed when the non-isotropic etching step is performed next. It can continue to extend downwards, so that there is no problem that the etching morphology of the prior art appears to be tapered.
如圖4c所示,繼續執行第二次非等向性蝕刻步驟,提供第一反應氣體在電漿作用下對矽材料層404繼續進一步地進行蝕刻,並蝕刻至一定更深的深度。其中,所述第一反應氣體包括蝕刻氣體和側壁保護氣體,蝕刻氣體用於繼續將矽材料層404蝕刻至預定深度,側壁保護氣體在蝕刻的過程中同時在蝕刻界面406的側壁404a上繼續做側壁保護層。在此步驟中,前個側壁保護步驟所沉積的側壁保護層408會被同時蝕刻掉,但是補償了蝕刻作用在已經做好的深度之橫向蝕刻蔓延趨勢。本步驟中在側壁404a上同時新形成的側壁保護層依然會負責中和蝕刻作用在本步驟所蝕刻的深度的橫向上的作用力,並兼顧了蝕刻速度。As shown in Figure 4c, a second anisotropic etch step is continued to provide a first reactive gas to further etch the germanium material layer 404 under the action of the plasma and etch to a deeper depth. Wherein, the first reactive gas comprises an etching gas and a sidewall shielding gas, and the etching gas is used to continue etching the germanium material layer 404 to a predetermined depth, and the sidewall protective gas continues to be simultaneously performed on the sidewall 404a of the etching interface 406 during the etching process. Sidewall protection layer. In this step, the sidewall protection layer 408 deposited by the previous sidewall protection step is simultaneously etched away, but compensates for the tendency of the etching to spread at a depth that has already been achieved. The newly formed sidewall protective layer on the sidewall 404a in this step is still responsible for neutralizing the etching force in the lateral direction of the depth etched by this step, and taking into consideration the etching speed.
如圖4d所示,繼續執行第二次側壁保護步驟,提供第二反應氣體,在電漿作用下,在所述蝕刻界面406的側壁形成側壁保護層408’,附著在所述蝕刻界406面的側壁406a表面。其中,所述第二反應氣體包括側壁保護氣體。接下來交替循環所述非等向性蝕刻步驟和側壁保護步驟,直到蝕刻到達目標深度。As shown in FIG. 4d, the second sidewall protection step is continued to provide a second reactive gas. Under the action of the plasma, a sidewall protective layer 408' is formed on the sidewall of the etching interface 406, and is attached to the etching boundary 406. The surface of the side wall 406a. Wherein, the second reaction gas comprises a sidewall shielding gas. The anisotropic etching step and the sidewall protecting step are then alternately cycled until the etching reaches the target depth.
進一步地,所述非等向性蝕刻步驟和側壁保護步驟如上文所述交替進行,兩者的執行時間比為大於5:1。本發明在非等向性蝕刻步驟上設置較多時間,這樣可以保持蝕刻速率,並且由於非等向性蝕刻步驟也有側壁保護作用同時進行,所以也一定程度上保證了矽通孔/矽溝槽的形貌不會產生錐形,因此可以執行較多時間。Further, the anisotropic etching step and the sidewall protecting step are alternately performed as described above, and the execution time ratio of both is greater than 5:1. The present invention provides more time in the anisotropic etching step, so that the etching rate can be maintained, and since the anisotropic etching step also has sidewall protection simultaneously, the through hole/矽 trench is also ensured to some extent. The shape does not produce a cone, so more time can be performed.
優選地,所述所述非等向性蝕刻步驟和側壁保護步驟的執行時間比為大於5:1,小於20:1。例如,包括6:1、7.2:1、9:1、12:1、13.5:1、18:1等。Preferably, the execution time ratio of the anisotropic etching step and the sidewall protection step is greater than 5:1 and less than 20:1. For example, it includes 6:1, 7.2:1, 9:1, 12:1, 13.5:1, 18:1, and the like.
進一步地,所述第一反應氣體包括的蝕刻氣體為SF6 。Further, the first reactive gas includes an etching gas of SF 6 .
進一步地,所述第一反應氣體包括的側壁保護氣體包括C4 F8 、O2 、SiF4 。Further, the first reaction gas includes a sidewall shielding gas including C 4 F 8 , O 2 , SiF 4 .
進一步地,所述第一反應氣體中的蝕刻氣體和側壁保護氣體的比例為4:1至2:1,例如3.8:1、3.2:1、2.35:1、2.58:1等。Further, the ratio of the etching gas and the sidewall shielding gas in the first reaction gas is 4:1 to 2:1, for example, 3.8:1, 3.2:1, 2.35:1, 2.58:1, or the like.
進一步地,所述第一反應氣體包括的側壁保護氣體包括C4 F8 或者O2 。Further, the first reaction gas includes a sidewall shielding gas including C 4 F 8 or O 2 .
進一步地,所述矽材料層上面還設置有光罩層或者光阻層,用於作為光罩對矽材料層進行蝕刻,從而形成矽通孔或者矽溝槽Further, the enamel material layer is further provided with a photomask layer or a photoresist layer for etching the ruthenium material layer as a reticle to form a 矽 or a trench
進一步地,交替循環所述非等向性蝕刻步驟和側壁保護步驟,直到蝕刻到達目標深度以形成矽通孔或者溝槽400。Further, the anisotropic etching step and the sidewall protecting step are alternately cycled until the etching reaches a target depth to form a via hole or trench 400.
圖5是根據本發明一個具體實施例的深矽蝕刻方法所製造的通孔/溝槽的形貌示意圖。如圖5所示,執行本發明的深矽蝕刻方法所得到的矽通孔/矽溝槽400深度深,並且其從上到下橫向寬度都趨於一致,並未出現習知技術的側壁呈現波浪形或者側壁呈現錐形的問題。並且,本發明在兼顧矽通孔/矽溝槽400形貌的同時,保持了較高的蝕刻速度。FIG. 5 is a schematic view showing the shape of a via/groove manufactured by a simmer etching method according to an embodiment of the present invention. As shown in FIG. 5, the through-hole/germanium trench 400 obtained by performing the squeezing etching method of the present invention has a deep depth, and the lateral widths thereof tend to be uniform from top to bottom, and the sidewalls of the prior art are not presented. The wavy or side wall presents a problem of taper. Moreover, the present invention maintains a high etching rate while taking into account the topography of the via/germ trench 400.
儘管本發明的內容已經通過上述優選實施例作了詳細介紹,但應當認識到上述的描述不應被認為是對本發明的限制。在本領域中具有通常知識者閱讀了上述內容後,對於本發明的多種修改和替代都將是顯而易見的。因此,本發明的保護範圍應由所附的請求項來限定。此外,不應將請求項中的任何附圖標記視為限制所涉及的請求項;“包括”一詞不排除其它請求項或說明書中未列出的裝置或步驟;“第一”、“第二”等詞語僅用來表示名稱,而並不表示任何特定的順序。Although the present invention has been described in detail by the preferred embodiments thereof, it should be understood that the foregoing description should not be construed as limiting. Various modifications and alterations of the present invention will be apparent to those of ordinary skill in the art. Accordingly, the scope of the invention should be defined by the appended claims. In addition, any reference signs in the claim should not be construed as limiting the claim. The term "comprising" does not exclude the other claim or the means or steps not listed in the specification; "first", " Words such as "two" are used only to denote a name, and do not denote any particular order.
100‧‧‧感應耦合電漿處理裝置
102‧‧‧金屬側壁
104‧‧‧絕緣頂板
106‧‧‧基座
108‧‧‧射頻電源
110‧‧‧射頻線圈
112‧‧‧氣體注入口
200‧‧‧矽通孔或者矽溝槽
202‧‧‧光罩層
204‧‧‧矽基底
300‧‧‧深孔
302‧‧‧光罩層
304‧‧‧矽基板
306‧‧‧開口
308‧‧‧側壁保護層
400‧‧‧矽通孔或者溝槽
404‧‧‧矽材料層
404a‧‧‧側壁
406‧‧‧蝕刻界面
406a‧‧‧側壁
408、408’‧‧‧側壁保護層
W‧‧‧基片100‧‧‧Inductively coupled plasma processing unit
102‧‧‧Metal sidewall
104‧‧‧Insulated roof
106‧‧‧Base
108‧‧‧RF power supply
110‧‧‧RF coil
112‧‧‧ gas injection port
200‧‧‧矽through hole or trench
202‧‧‧mask layer
204‧‧‧矽Base
300‧‧‧Deep hole
302‧‧‧mask layer
304‧‧‧矽 substrate
306‧‧‧ openings
308‧‧‧ sidewall protection
400‧‧‧矽through hole or groove
404‧‧‧矽 material layer
404a‧‧‧ side wall
406‧‧‧ etching interface
406a‧‧‧ side wall
408, 408'‧‧‧ sidewall protection
W‧‧‧ substrates
[圖1]是感應耦合型電漿處理腔室的結構示意圖; [圖2]是習知技術的非博世深矽蝕刻通孔/溝槽的形貌示意圖; [圖3a]~[圖3c]是習知技術的博世深矽蝕刻通孔/溝槽的工藝步驟流程圖; [圖4a]~[圖4d]是根據本發明一個具體實施例的深矽蝕刻方法的工藝步驟流程圖; [圖5]是根據本發明一個具體實施例的深矽蝕刻方法所製造的通孔/溝槽的形貌示意圖。[Fig. 1] is a schematic structural view of an inductively coupled plasma processing chamber; [Fig. 2] is a schematic view showing the morphology of a non-Bosch deep etched via/groove of the prior art; [Fig. 3a]~[Fig. 3c] A flow chart of a process step of etching a through hole/groove in the prior art by Bosch; [Fig. 4a] to [Fig. 4d] is a flow chart of a process step of a simmer etching method according to an embodiment of the present invention; 5] is a schematic view of the shape of a via/groove manufactured by a simmer etching method according to an embodiment of the present invention.
400‧‧‧矽通孔或者溝槽 400‧‧‧矽through hole or groove
Claims (7)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410221761.XA CN105097440B (en) | 2014-05-23 | 2014-05-23 | A kind of deep silicon etching method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201545232A TW201545232A (en) | 2015-12-01 |
TWI570803B true TWI570803B (en) | 2017-02-11 |
Family
ID=54577618
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103143959A TWI570803B (en) | 2014-05-23 | 2014-12-16 | A deep silicon etch method |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105097440B (en) |
TW (1) | TWI570803B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020215183A1 (en) * | 2019-04-22 | 2020-10-29 | Applied Materials, Inc. | Methods for etching a material layer for semiconductor applications |
CN114477077A (en) * | 2022-02-11 | 2022-05-13 | 丹东华顺电子有限公司 | Silicon deep groove etching method |
CN116598254B (en) * | 2023-07-19 | 2023-09-29 | 粤芯半导体技术股份有限公司 | Method for forming deep trench isolation structure |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201225176A (en) * | 2010-09-14 | 2012-06-16 | Advanced Micro Fabrication Equipment Shanghai Co Ltd | Bottom outlet silicon etching method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4450042A (en) * | 1982-07-06 | 1984-05-22 | Texas Instruments Incorporated | Plasma etch chemistry for anisotropic etching of silicon |
EP0414372A3 (en) * | 1989-07-21 | 1991-04-24 | Sony Corporation | Dry etching methods |
US9159574B2 (en) * | 2012-08-27 | 2015-10-13 | Applied Materials, Inc. | Method of silicon etch for trench sidewall smoothing |
-
2014
- 2014-05-23 CN CN201410221761.XA patent/CN105097440B/en active Active
- 2014-12-16 TW TW103143959A patent/TWI570803B/en active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201225176A (en) * | 2010-09-14 | 2012-06-16 | Advanced Micro Fabrication Equipment Shanghai Co Ltd | Bottom outlet silicon etching method |
Also Published As
Publication number | Publication date |
---|---|
CN105097440A (en) | 2015-11-25 |
TW201545232A (en) | 2015-12-01 |
CN105097440B (en) | 2018-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI478234B (en) | Method of etching silicon nitride films | |
JP6532066B2 (en) | How to etch atomic layers | |
TWI514462B (en) | Method of etching features in silicon nitride films | |
TWI570802B (en) | Electrolytic etching device | |
JP3527901B2 (en) | Plasma etching method | |
KR20150098197A (en) | Etching method and plasma processing apparatus | |
JP2007035860A (en) | Manufacturing method of semiconductor device | |
JP2013131587A (en) | Plasma processing method | |
TWI654651B (en) | Semiconductor substrate etching method | |
TWI570803B (en) | A deep silicon etch method | |
JP5203340B2 (en) | Manufacturing method of semiconductor device | |
JP4184851B2 (en) | Plasma processing method | |
CN105810582A (en) | Etching method | |
WO2003056617A1 (en) | Etching method and plasma etching device | |
JP2009076711A (en) | Method for manufacturing semiconductor apparatus | |
JP2014220387A (en) | Plasma etching method | |
JP5041696B2 (en) | Dry etching method | |
JP2016207753A (en) | Plasma etching method | |
JP2005123550A (en) | Anisotropic etching method | |
TWI495009B (en) | A Plasma Etching Method with Silicon Insulating Layer | |
JP5774356B2 (en) | Plasma processing method | |
JP4541193B2 (en) | Etching method | |
JP2004259927A (en) | Dry etching method | |
TWI512826B (en) | Dry etching method | |
JP5918886B2 (en) | Plasma processing method |