TWI564578B - Test head module and reconditioning method thereof - Google Patents

Test head module and reconditioning method thereof Download PDF

Info

Publication number
TWI564578B
TWI564578B TW103142297A TW103142297A TWI564578B TW I564578 B TWI564578 B TW I564578B TW 103142297 A TW103142297 A TW 103142297A TW 103142297 A TW103142297 A TW 103142297A TW I564578 B TWI564578 B TW I564578B
Authority
TW
Taiwan
Prior art keywords
test head
thermal interface
interface material
head module
test
Prior art date
Application number
TW103142297A
Other languages
Chinese (zh)
Other versions
TW201621334A (en
Inventor
蔡國英
張文遠
余玉龍
Original Assignee
上海兆芯集成電路有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海兆芯集成電路有限公司 filed Critical 上海兆芯集成電路有限公司
Priority to TW103142297A priority Critical patent/TWI564578B/en
Priority to CN201410769026.2A priority patent/CN104502637B/en
Priority to CN201410761022.XA priority patent/CN104459212B/en
Publication of TW201621334A publication Critical patent/TW201621334A/en
Application granted granted Critical
Publication of TWI564578B publication Critical patent/TWI564578B/en

Links

Description

測試頭模組及其重新修整的方法 Test head module and method for reconditioning

本發明係有關於一種測試頭模組,且特別係有關於一種包括可重塑形的熱界面材料之測試頭模組及將其重新修整的方法。 The present invention relates to a test head module, and more particularly to a test head module including a remodelable thermal interface material and a method of refinishing the same.

在電子元件(例如,積體電路元件、晶片或晶粒等)的製造過程中,通常會使用電子元件測試裝置,以測試電子元件的性能或功能。 In the manufacture of electronic components (eg, integrated circuit components, wafers, dies, etc.), electronic component testing devices are typically used to test the performance or functionality of the electronic components.

現有的電子元件測試裝置一般包括接觸臂(handler),用以吸附並運送電子元件。此接觸臂的頂端設有測試頭模組。為了使電子元件在特定的溫度下進行測試,利用測試頭模組中的溫度調節器進行溫度控制。此外,為了提升測試頭和電子元件之間的接觸密著性及熱傳導性(thermal conductivity),在測試頭和電子元件之間會設置熱界面材料(thermal interface material,TIM)。 Existing electronic component testing devices typically include a contact handler for adsorbing and transporting electronic components. A test head module is disposed at the top end of the contact arm. In order to test the electronic components at a specific temperature, temperature control is performed using a temperature regulator in the test head module. In addition, in order to improve the contact adhesion and thermal conductivity between the test head and the electronic component, a thermal interface material (TIM) is disposed between the test head and the electronic component.

隨著熱界面材料反覆地與電子元件接觸及剝離,熱界面材料的表面會產生傷痕或缺損。如此一來,熱界面材料與電子元件之間將無法產生良好的接觸及熱傳導,進而無法精準控制電子元件的測試溫度。為避免上述問題,通常在經過特定的使用次數之後,會將熱界面材料汰舊換新。然而,如此一 來將導致生產成本的提高。因此在本領域中需要尋求進一步的改善。 As the thermal interface material repeatedly contacts and peels off the electronic component, the surface of the thermal interface material may be scratched or defective. As a result, good contact and heat conduction between the thermal interface material and the electronic component will not occur, and the test temperature of the electronic component cannot be accurately controlled. In order to avoid the above problems, the thermal interface material is usually replaced after a certain number of uses. However, such a This will lead to an increase in production costs. Therefore, there is a need in the art to seek further improvements.

本揭露之一實施例係揭示一種測試頭模組,包括:測試頭,包括至少一凹口設置於測試頭的工作面;以及熱界面材料,埋設於凹口中,其中熱界面材料的固相-液相轉換溫度介於測試頭模組的操作溫度與測試頭的熔點之間。 An embodiment of the present disclosure discloses a test head module including: a test head including at least one recess disposed on a working surface of the test head; and a thermal interface material embedded in the recess, wherein the solid phase of the thermal interface material - The liquid phase transition temperature is between the operating temperature of the test head module and the melting point of the test head.

本揭露之另一實施例係揭示一種將測試頭模組重新修整的方法,包括:提供上述的一測試頭模組;加熱以熔融熱界面材料;提供模具至熱界面材料;施加壓力,以模鑄(coining)熱界面材料;冷卻熱界面材料;以及移除模具。 Another embodiment of the present disclosure discloses a method for refinishing a test head module, comprising: providing a test head module as described above; heating to melt the thermal interface material; providing a mold to the thermal interface material; applying pressure to the mold Coating the thermal interface material; cooling the thermal interface material; and removing the mold.

為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉出較佳實施例,作詳細說明如下: The above and other objects, features, and advantages of the present invention will become more apparent and understood.

100‧‧‧測試頭模組 100‧‧‧Test head module

102‧‧‧測試頭 102‧‧‧Test head

102S‧‧‧工作面 102S‧‧‧ work surface

104‧‧‧溫度調節器 104‧‧‧temperature regulator

106‧‧‧擴散阻障層 106‧‧‧Diffusion barrier

108‧‧‧壓力調節器 108‧‧‧pressure regulator

110、110a、110b‧‧‧熱界面材料 110, 110a, 110b‧‧‧ Thermal interface materials

110S‧‧‧操作表面 110S‧‧‧Operating surface

120、120a、120b‧‧‧凹口 120, 120a, 120b‧‧‧ notches

120V‧‧‧直角 120V‧‧‧right angle

120X‧‧‧凸角 120X‧‧‧ lobes

120Y‧‧‧切角 120Y‧‧‧cut angle

120Z‧‧‧圓角 120Z‧‧‧ fillet

122、124a、124b‧‧‧凹陷部 122, 124a, 124b‧‧‧ recessed

140‧‧‧模具 140‧‧‧Mold

140S‧‧‧模具表面 140S‧‧‧Mold surface

142a、142b‧‧‧突出部 142a, 142b‧‧‧ protruding parts

150‧‧‧晶片封裝體 150‧‧‧ chip package

152‧‧‧基板 152‧‧‧Substrate

154‧‧‧晶片 154‧‧‧ wafer

156‧‧‧外部電性連接部 156‧‧‧External electrical connection

158‧‧‧底部填充材料 158‧‧‧ Underfill material

160‧‧‧內部電性連接部 160‧‧‧Internal electrical connection

200‧‧‧第一方向 200‧‧‧First direction

300‧‧‧模鑄步驟 300‧‧‧Mold casting steps

T1、T2‧‧‧厚度 T1, T2‧‧‧ thickness

第1圖為繪示出依據本揭露之一些實施例之測試頭模組及晶片封裝體的剖面示意圖。 1 is a cross-sectional view showing a test head module and a chip package in accordance with some embodiments of the present disclosure.

第2A-2C圖為繪示出依據本揭露之一些實施例之將測試頭模組重新修整之各個製程階段的剖面示意圖。 2A-2C are cross-sectional views showing various process stages for refinishing the test head module in accordance with some embodiments of the present disclosure.

第3A-3B圖為繪示出依據本揭露之一些實施例之模具的剖面示意圖。 3A-3B are cross-sectional schematic views of a mold in accordance with some embodiments of the present disclosure.

第4圖為繪示出依據本揭露之一些實施例之經過重新修整步驟的測試頭模組的剖面示意圖。 4 is a cross-sectional view showing a test head module undergoing a reconditioning step in accordance with some embodiments of the present disclosure.

第5圖為繪示出依據本揭露之一些實施例之測試頭模組的 剖面示意圖。 FIG. 5 is a diagram showing a test head module according to some embodiments of the present disclosure. Schematic diagram of the section.

第6A-6C圖為繪示出依據本揭露之一些實施例之測試頭模組的剖面示意圖。 6A-6C are cross-sectional views showing a test head module in accordance with some embodiments of the present disclosure.

為使本發明之上述和其他目的、特徵、優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下。然而,任何所屬技術領域中具有通常知識者將會瞭解本發明中各種特徵結構僅用於說明,並未依照比例描繪。事實上,為了使說明更加清晰,可任意增減各種特徵結構的相對尺寸比例。在說明書全文及所有圖式中,相同的參考標號是指相同的特徵結構。 The above and other objects, features and advantages of the present invention will become more <RTIgt; However, it will be understood by those of ordinary skill in the art that the description In fact, in order to make the description clearer, the relative size ratio of various feature structures can be arbitrarily increased or decreased. Throughout the specification and in all figures, the same reference numerals refer to the same features.

以下公開許多不同的實施方法或是例子來實行本揭露之不同特徵,以下描述具體的元件及其排列的實施例以闡述本揭露。當然這些實施例僅用以例示且不該以此限定本揭露的範圍。例如,在說明書中提到第一特徵形成於第二特徵之上,其包括第一特徵與第二特徵是直接接觸的實施例,另外也包括於第一特徵與第二特徵之間另外有其他特徵的實施例,亦即,第一特徵與第二特徵並非直接接觸。 The various features of the present disclosure are disclosed in the following, and various embodiments of the present invention are described. The embodiments are for illustrative purposes only and are not intended to limit the scope of the disclosure. For example, it is mentioned in the specification that the first feature is formed on the second feature, including an embodiment in which the first feature is in direct contact with the second feature, and additionally includes another feature between the first feature and the second feature. An embodiment of the feature, that is, the first feature is not in direct contact with the second feature.

本揭露提供一種測試頭模組及其重新修整的方法,第1圖為繪示出依據本揭露之一些實施例之測試頭模組100及晶片封裝體150的剖面示意圖。 The present disclosure provides a test head module and a method for refinishing the same. FIG. 1 is a cross-sectional view showing a test head module 100 and a chip package 150 according to some embodiments of the present disclosure.

請參照第1圖,晶片封裝體150包括基板152、晶片154、外部電性連接部156、底部填充材料158及內部電性連接部160。晶片154形成於基板152的上表面上並藉由內部電性連 接部160與基板152電性連接。外部電性連接部156形成於基板152的下表面上,用以電性連接基板152到外部電路(例如測試用的電路板)。底部填充材料158形成於基板152與晶片154之間,用以固定基板152與晶片154的相對位置。需注意的是,雖然在圖式中,晶片封裝體150包括兩個晶片154。然而,在其他實施例中,晶片封裝體150可包括一個晶片或三個以上的晶片。 Referring to FIG. 1 , the chip package 150 includes a substrate 152 , a wafer 154 , an external electrical connection portion 156 , an underfill material 158 , and an internal electrical connection portion 160 . The wafer 154 is formed on the upper surface of the substrate 152 and is electrically connected internally. The connecting portion 160 is electrically connected to the substrate 152. The external electrical connection portion 156 is formed on the lower surface of the substrate 152 for electrically connecting the substrate 152 to an external circuit (for example, a circuit board for testing). An underfill material 158 is formed between the substrate 152 and the wafer 154 to secure the relative position of the substrate 152 to the wafer 154. It should be noted that although in the drawings, the chip package 150 includes two wafers 154. However, in other embodiments, the chip package 150 can include one wafer or more than three wafers.

仍請參照第1圖,測試頭模組100包括具有凹口120的測試頭102、溫度調節器104、壓力調節器108、熱界面材料110埋設於凹口120中,而熱界面材料110在面對晶片封裝體150的方向具有操作表面110S。在本實施例中,更可包括選擇性的(optional)擴散阻障層106設置於測試頭102及熱界面材料110之間。進行測試步驟之前,測試頭模組100沿著第一方向200朝向晶片封裝體150移動,如第1A圖所示。當進行測試步驟時,其中測試頭模組100的熱界面材料110對準且直接接觸晶片封裝體150的晶片154。 Still referring to FIG. 1 , the test head module 100 includes a test head 102 having a recess 120 , a temperature regulator 104 , a pressure regulator 108 , and a thermal interface material 110 embedded in the recess 120 , and the thermal interface material 110 is in the surface. The operation surface 110S is provided in the direction of the chip package 150. In this embodiment, an optional diffusion barrier layer 106 may be disposed between the test head 102 and the thermal interface material 110. Prior to performing the test step, the test head module 100 moves toward the chip package 150 along the first direction 200, as shown in FIG. 1A. When the test step is performed, the thermal interface material 110 of the test head module 100 is aligned and directly contacts the wafer 154 of the chip package 150.

當進行測試步驟時,壓力調節器108施加一壓力至測試頭102,以確保熱界面材料110與晶片154的接觸密著性。壓力調節器108可包括任何加壓裝置,在此不再詳述。 When the test step is performed, the pressure regulator 108 applies a pressure to the test head 102 to ensure contact adhesion of the thermal interface material 110 to the wafer 154. Pressure regulator 108 can include any pressurization device and will not be described in detail herein.

當進行測試步驟時,溫度調節器104可施加一熱能至晶片154,藉以在特定的操作溫度下實施測試步驟。此操作溫度隨測試項目與晶片種類而有所不同,在一些實施例中,操作溫度介於25-130℃之間。在另一些實施例中,操作溫度可介於70-90℃之間。當測試步驟結束後,溫度調節器104可自晶片154移除熱能,藉以冷卻晶片154。溫度調節器104可包括任何 加熱器及冷卻器的組合,在此亦不再詳述。 When the test step is performed, the temperature regulator 104 can apply a thermal energy to the wafer 154 to perform the test step at a particular operating temperature. This operating temperature varies with the test item and wafer type, and in some embodiments, the operating temperature is between 25-130 °C. In other embodiments, the operating temperature can be between 70-90 °C. When the test step is complete, the temperature regulator 104 can remove thermal energy from the wafer 154 to thereby cool the wafer 154. Temperature regulator 104 can include any The combination of heater and cooler is not detailed here.

測試頭102在面對晶片封裝體150的方向具有一工作面102S。如第1圖所示,用以容置熱界面材料110的凹口120設置於測試頭102的工作面102S。當進行測試步驟時,由於測試頭102需承受來自壓力調節器108的壓力以及來自溫度調節器104的熱能,因此測試頭102可選用高熔點的硬質金屬。在一些實施例中,測試頭102的材料可包括銅、鋼、鎢、其他合適之金屬材料、或上述材料之合金或組合。在一些實施例中,測試頭102的熔點介於1000-1600℃之間。 The test head 102 has a working surface 102S in a direction facing the chip package 150. As shown in FIG. 1, a recess 120 for accommodating the thermal interface material 110 is disposed on the working surface 102S of the test head 102. When the test step is performed, since the test head 102 is subject to the pressure from the pressure regulator 108 and the thermal energy from the temperature regulator 104, the test head 102 can be selected from a high melting point hard metal. In some embodiments, the material of the test head 102 can include copper, steel, tungsten, other suitable metallic materials, or alloys or combinations of the foregoing. In some embodiments, the test head 102 has a melting point between 1000 and 1600 °C.

當進行測試步驟時,熱界面材料110的操作表面110S直接接觸晶片154的上表面。熱界面材料110的主要功能在於藉由接觸傳遞熱能,使熱能導入晶片154或自晶片154導出。因此,熱界面材料110通常具備優異的熱傳導性,且其操作表面110S與晶片154上表面之間最好具有良好的接觸密合度。 When the test step is performed, the operating surface 110S of the thermal interface material 110 directly contacts the upper surface of the wafer 154. The primary function of the thermal interface material 110 is to transfer thermal energy into or out of the wafer 154 by transferring thermal energy through contact. Therefore, the thermal interface material 110 generally has excellent thermal conductivity, and preferably has a good contact tightness between the operation surface 110S and the upper surface of the wafer 154.

在先前技術中,測試頭的工作面為一平坦的表面,熱界面材料係物理性地固定(例如,熱界面材料為鋁箔且包覆測試頭)於此工作面上。在一些實施例中,上述的物理性地固定也可以是將熱界面材料以聚合物膠合於此工作面上,但此方式可能會降低熱傳導效能。在其他實施例中中,亦可將測試頭直接接觸待測物,而不配置熱界面材料。習知的熱界面材料可包括高分子散熱材料(例如樹脂類散熱貼片或散熱膏)、硬質金屬材料(例如金屬塊材或片材)或軟質金屬材料(例如金屬箔)。然而,上述這些熱界面材料各自有其缺點。例如:高分子散熱材料的熱傳導性較金屬差,無法精準地控制操作溫度, 或是無法在短時間內達到指定的操作溫度。再者,高分子散熱材料質地較金屬軟,經過數次的使用週期後,其操作表面會因為壓力而導致變形,造成熱界面材料與晶片的接觸密合度變差,因此必須經常汰舊換新。此外,在測試步驟的操作溫度下,高分子散熱材料可能會因受熱而熔融或分解,進而黏附於晶片表面造成汙染。另一方面,因為位於晶片封裝體上的多個晶片在製造過程中通常會產生高度誤差,導致並非所有晶片的上表面皆具有相同的水平高度。再者,基於設計的需求,位於同一晶片封裝體上的晶片也可能具有不同的厚度。對於硬質金屬材料而言,其表面硬度高且不具可撓性,因此其操作表面無法與每一個晶片產生良好的接觸,將導致晶片封裝體受熱不均。再者,若為了使硬質金屬材料與晶片接觸良好而施加過大的壓力,將導致晶片產生裂痕或破損。此外,硬質金屬材料的表面一旦產生損傷或變形,即須整塊(片)更換,如此將提高製程成本。另外,雖然軟質金屬材料兼具熱傳導性與可撓性,但是由於其厚度很薄,經過數次的使用週期後,其操作表面會因為壓力而導致變形、磨損或穿孔,必須經常汰舊換新,對製程成本亦有不良影響。 In the prior art, the working surface of the test head is a flat surface, and the thermal interface material is physically fixed (for example, the thermal interface material is aluminum foil and covers the test head) on the work surface. In some embodiments, the physical fixation described above may also be to glue the thermal interface material to the work surface with a polymer, but this approach may reduce the heat transfer performance. In other embodiments, the test head can also be directly in contact with the test object without configuring the thermal interface material. Conventional thermal interface materials may include polymeric heat dissipating materials (eg, resin-based heat sink patches or thermal grease), hard metal materials (eg, metal blocks or sheets), or soft metal materials (eg, metal foils). However, each of these thermal interface materials has its disadvantages. For example, the thermal conductivity of the polymer heat dissipating material is inferior to that of the metal, and the operating temperature cannot be accurately controlled. Or the specified operating temperature cannot be reached in a short time. Furthermore, the polymer heat-dissipating material is softer than metal. After several cycles of use, the operating surface will be deformed due to pressure, resulting in poor contact between the thermal interface material and the wafer, so it must be replaced frequently. . In addition, at the operating temperature of the test step, the polymer heat dissipating material may melt or decompose due to heat, thereby adhering to the surface of the wafer to cause contamination. On the other hand, because a plurality of wafers located on a chip package typically produce a height error during the manufacturing process, not all of the upper surfaces of the wafers have the same level. Furthermore, wafers located on the same chip package may also have different thicknesses based on design requirements. For a hard metal material, its surface hardness is high and it is not flexible, so its operating surface cannot make good contact with each wafer, which will cause uneven heating of the chip package. Further, if excessive pressure is applied in order to make the hard metal material in good contact with the wafer, cracks or breakage of the wafer may occur. In addition, once the surface of the hard metal material is damaged or deformed, it must be replaced by a single piece (piece), which will increase the process cost. In addition, although the soft metal material has both thermal conductivity and flexibility, its thickness is very thin. After several cycles of use, the operating surface may be deformed, worn or perforated due to pressure, and must be replaced frequently. It also has an adverse effect on process costs.

為解決上述問題,本揭露提出一種可重新塑形的熱界面材料,其固相-液相轉換溫度介於測試頭模組的操作溫度與測試頭的熔點之間。詳細說明如下。 In order to solve the above problems, the present disclosure proposes a remodelable thermal interface material having a solid-liquid phase transition temperature between the operating temperature of the test head module and the melting point of the test head. The details are as follows.

在本揭露中,熱界面材料110的固相-液相轉換溫度必須大於測試頭模組的操作溫度,如此可使熱界面材料110在測試步驟的操作溫度下維持在固相的狀態,進而避免汙染晶片 154或是整個晶片封裝體150。再者,熱界面材料110的固相-液相轉換溫度必須小於測試頭102的熔點,如此一來,即可在不影響測試頭102形狀的前提下,對熱界面材料110進行塑形,特別是對熱界面材料110的操作表面110S進行初次塑形或重新塑形時,可避免高溫影響測試頭102形狀。 In the present disclosure, the solid-liquid phase transition temperature of the thermal interface material 110 must be greater than the operating temperature of the test head module, such that the thermal interface material 110 can be maintained in a solid phase at the operating temperature of the test step, thereby avoiding Contaminated wafer 154 or the entire chip package 150. Furthermore, the solid-liquid phase transition temperature of the thermal interface material 110 must be less than the melting point of the test head 102, so that the thermal interface material 110 can be shaped without affecting the shape of the test head 102, in particular When the operating surface 110S of the thermal interface material 110 is initially shaped or reshaped, the high temperature is prevented from affecting the shape of the test head 102.

在一些實施例中,初次塑形步驟可包括將熱界面材料110加熱至液相或熔融狀態之後填入凹口120中,再將熱界面材料110冷卻至固相的狀態而使其定形。在其他實施例中,初次塑形步驟可包括將固相的熱界面材料110填入凹口120中再加熱至液相或熔融狀態,接著再將熱界面材料110冷卻至固相的狀態而使其定形。經過前述的塑形步驟後,熱界面材料110順應性地(conformally)埋設於凹口120中,如第1圖所示。值得注意的是,上述的初次塑形步驟係指將熱界面材料110埋設於空的凹口120的步驟。 In some embodiments, the initial shaping step can include filling the thermal interface material 110 into the liquid or molten state and filling the recess 120, and then cooling the thermal interface material 110 to a solid phase to shape it. In other embodiments, the initial shaping step may include filling the solid phase thermal interface material 110 into the recess 120 and heating to a liquid phase or molten state, followed by cooling the thermal interface material 110 to a solid phase. It is shaped. After the shaping step described above, the thermal interface material 110 is conformally embedded in the recess 120, as shown in FIG. It should be noted that the initial shaping step described above refers to the step of embedding the thermal interface material 110 in the empty recess 120.

熱界面材料110可包括(但不限於)金屬、含導熱性填充料的熱塑性高分子、相變化材料或上述之組合。適合的金屬例如銦(In)、鉛(Pb)、錫(Sn)、銀(Ag)、鋰(Li)、鎘(Cd)、鋅(Zn)、鋁(Al)、鎂(Mg)、釙(Po)、鉍(Bi)或上述之合金等。特別是,若上述的純金屬之固相-液相轉換溫度過高(例如:純銀、純鋁、純鎂),可能會造成操作上的不便,此時可透過與其他金屬熔合成合金的方式形成熱界面材料110,以降低整體合金的固相-液相轉換溫度,而使熱界面材料110的固相-液相轉換溫度介於測試頭模組的操作溫度與測試頭102的熔點之間。另外,適合的熱塑性高分子可包括,例如:聚醯亞胺(poly imide, PI)等。適合的導熱性填充料可包括,例如:銦、鉛、錫、銀、鋰、鎘、鋅、鋁、鎂、銅、金、鉑或上述之合金等。在一些實施例中,熱界面材料110為銦或銦合金。 Thermal interface material 110 can include, but is not limited to, a metal, a thermoplastic polymer containing a thermally conductive filler, a phase change material, or a combination thereof. Suitable metals such as indium (In), lead (Pb), tin (Sn), silver (Ag), lithium (Li), cadmium (Cd), zinc (Zn), aluminum (Al), magnesium (Mg), germanium (Po), bismuth (Bi) or the above alloys. In particular, if the solid phase-liquid phase transition temperature of the above pure metal is too high (for example, pure silver, pure aluminum, pure magnesium), it may cause operational inconvenience, and the alloy may be melted and alloyed with other metals. The thermal interface material 110 is formed to reduce the solid phase-liquid phase transition temperature of the overall alloy such that the solid phase-liquid phase transition temperature of the thermal interface material 110 is between the operating temperature of the test head module and the melting point of the test head 102. . In addition, suitable thermoplastic polymers may include, for example, poly imide (polyimide, PI) and so on. Suitable thermally conductive fillers can include, for example, indium, lead, tin, silver, lithium, cadmium, zinc, aluminum, magnesium, copper, gold, platinum, or alloys thereof. In some embodiments, the thermal interface material 110 is indium or an indium alloy.

需注意的是,熱界面材料110的固相-液相轉換溫度可視實際應用的需要而選擇,只要此固相-液相轉換溫度介於測試頭模組的操作溫度與測試頭102的熔點之間即可。在一些實施例中,操作溫度介於70-90℃之間,且測試頭102的熔點為約1600℃,因此熱界面材料110的固相-液相轉換溫度可介於約90-1600℃之間。在其他實施例中,操作溫度介於25-130℃之間,且測試頭102的熔點為約1100℃,因此熱界面材料110的固相-液相轉換溫度可介於約130-1100℃之間。為節省塑形步驟所需的能量與時間,熱界面材料110的固相-液相轉換溫度可介於約130-360℃之間。 It should be noted that the solid-liquid phase transition temperature of the thermal interface material 110 can be selected according to the needs of practical applications, as long as the solid-liquid phase transition temperature is between the operating temperature of the test head module and the melting point of the test head 102. You can do it. In some embodiments, the operating temperature is between 70-90 ° C and the melting point of the test head 102 is about 1600 ° C, so the solid-liquid phase transition temperature of the thermal interface material 110 can be between about 90-1600 ° C. between. In other embodiments, the operating temperature is between 25-130 ° C and the melting point of the test head 102 is about 1100 ° C, so the solid-liquid phase transition temperature of the thermal interface material 110 can be between about 130-1100 ° C. between. To save energy and time required for the shaping step, the solid phase-liquid phase transition temperature of the thermal interface material 110 can be between about 130-360 °C.

在熱界面材料110的塑形步驟期間,測試頭102與熱界面材料110之間容易發生原子交換或化學反應。如此一來,將產生金屬間化合物(intermetallic compound,IMC),進而造成測試頭102及熱界面材料110的化學組成以及物理化學特性受到改變。 During the shaping step of the thermal interface material 110, atomic exchange or chemical reaction is readily between the test head 102 and the thermal interface material 110. As a result, an intermetallic compound (IMC) is generated, which in turn causes a change in the chemical composition and physicochemical properties of the test head 102 and the thermal interface material 110.

為了避免金屬間化合物的產生,可視需要(optionally)將擴散阻障層106設置於測試頭102及熱界面材料110之間,如第1圖所示。擴散阻障層106的熔點可高於熱界面材料110的固相-液相轉換溫度。如此一來,在熱界面材料110的塑形步驟中,擴散阻障層106不會因受熱而導致變形。再者,擴散阻障層106可以選用對於測試頭102及熱界面材料110不具 有任何化學活性的材料。如此一來,可避免產生金屬間化合物,進而保持測試頭102及熱界面材料110原有的化學組成以及物理化學特性。 In order to avoid the formation of intermetallic compounds, the diffusion barrier layer 106 may be disposed between the test head 102 and the thermal interface material 110 as shown in FIG. The melting point of the diffusion barrier layer 106 can be higher than the solid phase-liquid phase transition temperature of the thermal interface material 110. As a result, in the shaping step of the thermal interface material 110, the diffusion barrier layer 106 is not deformed by heat. Furthermore, the diffusion barrier layer 106 can be selected for the test head 102 and the thermal interface material 110. There are any chemically active materials. In this way, the intermetallic compound can be avoided, thereby maintaining the original chemical composition and physicochemical properties of the test head 102 and the thermal interface material 110.

可利用合適的製程將合適的材料順應性地沉積於凹口120的底部及側壁上,以形成擴散阻障層106於凹口120中。合適的擴散阻障層106材料可包括鈦、鉭、氮化鈦、氮化鉭、鈦鋯合金、氮化鈦鋯、鎳、鎳釩合金或上述之組合。合適的製程可包括物理氣相沉積(PVD)、化學氣相沉積(CVD)、金屬有機化學氣相沉積(MOCVD)、濺鍍(sputter)或上述之組合。 A suitable material can be conformally deposited on the bottom and sidewalls of the recess 120 using a suitable process to form a diffusion barrier layer 106 in the recess 120. Suitable diffusion barrier layer 106 materials may include titanium, tantalum, titanium nitride, tantalum nitride, titanium zirconium alloy, titanium zirconium nitride, nickel, nickel vanadium alloy, or combinations thereof. Suitable processes may include physical vapor deposition (PVD), chemical vapor deposition (CVD), metal organic chemical vapor deposition (MOCVD), sputtering, or a combination thereof.

此外,可對擴散阻障層106朝向熱界面材料110的表面進行粗化(texturing)處理,以形成各種微結構(圖中未繪示),藉此提升測試頭102及熱界面材料110之間的黏著性。舉例而言,微結構可包括週期性排列的圓錐、三角錐、四角錐、圓頂鐘型錐體、圓筒、半球體、立方體等凸起或凹陷的微結構,且每一個微結構的三維方向尺寸及相鄰微結構之間的間距可以是微米級或毫米級。合適的粗化處理可包括濕式蝕刻或乾式蝕刻,也可以是壓印(embossing)或其他物理性的粗化方式。由於擴散阻障層106的表面具有微結構,因此可增加擴散阻障層106與熱界面材料110的接觸面積及黏合強度。 In addition, the diffusion barrier layer 106 may be subjected to a texturing process toward the surface of the thermal interface material 110 to form various microstructures (not shown), thereby enhancing the relationship between the test head 102 and the thermal interface material 110. Adhesiveness. For example, the microstructure may include periodically arranged conical, triangular, quadrangular, dome, cone, cylinder, hemisphere, cube, or the like, or a microstructure of each of the microstructures. The directional dimension and the spacing between adjacent microstructures can be on the order of microns or millimeters. Suitable roughening treatments may include wet etching or dry etching, or embossing or other physical roughening. Since the surface of the diffusion barrier layer 106 has a microstructure, the contact area and adhesion strength of the diffusion barrier layer 106 and the thermal interface material 110 can be increased.

本揭露也提供一種將測試頭模組重新修整的方法,第2A-2C圖為繪示出依據本揭露之一些實施例之將測試頭模組重新修整之各個製程階段的剖面示意圖。為簡化起見,其中相同於第1圖的部件,將使用相同的標號並不再贅述。 The present disclosure also provides a method for refinishing the test head module, and FIG. 2A-2C is a cross-sectional view showing each process stage of refinishing the test head module according to some embodiments of the present disclosure. For the sake of simplicity, the same reference numerals will be used for the components in FIG. 1 and will not be described again.

在經過多次的使用週期後,熱界面材料110的操作 表面110S會因為壓力而導致變形。請參照第2A圖,在熱界面材料110的操作表面110S上產生凹陷部122。凹陷部122可能會造成熱界面材料110與晶片的接觸密合度變差。如前所述,在先前技術中,不論使用哪一種熱界面材料,一旦熱界面材料的操作表面因變形而無法與晶片密合接觸,就必須汰舊換新而無法重複使用。 Operation of the thermal interface material 110 after multiple cycles of use Surface 110S will deform due to pressure. Referring to FIG. 2A, a recess 122 is formed on the operating surface 110S of the thermal interface material 110. The recess 122 may cause the contact tightness of the thermal interface material 110 to the wafer to deteriorate. As described above, in the prior art, no matter which thermal interface material is used, once the operating surface of the thermal interface material cannot be brought into close contact with the wafer due to deformation, it must be replaced and cannot be reused.

為了延長熱界面材料110的使用壽命,且達到重複使用的目的,本揭露也提供一種將測試頭模組重新修整的方法。請參照第2B圖,在本實施例中,將測試頭模組重新修整的方法包括下列步驟:(a)加熱以熔融熱界面材料;(b)提供模具至熱界面材料;(c)施加壓力,以模鑄(coining)熱界面材料;(d)冷卻熱界面材料;以及(e)移除模具。 In order to extend the service life of the thermal interface material 110 and achieve the purpose of repeated use, the present disclosure also provides a method of refinishing the test head module. Referring to FIG. 2B, in the embodiment, the method for refinishing the test head module includes the following steps: (a) heating to melt the thermal interface material; (b) providing the mold to the thermal interface material; (c) applying pressure To coin the thermal interface material; (d) to cool the thermal interface material; and (e) to remove the mold.

在步驟(a)中,將熱界面材料110加熱至一溫度,而使熱界面材料110呈現液相或熔融狀態,以利進行後續的重新塑形步驟。在一些實施例中,上述溫度大約為熱界面材料110的固相-液相轉換溫度,而使熱界面材料110呈現液相或熔融狀態。如前所述,由於熱界面材料110的固相-液相轉換溫度小於測試頭102及擴散阻障層106的熔點,因此即使將熱界面材料110加熱至液相或熔融狀態,亦不會改變測試頭102及擴散阻障層106的形狀。再者,由於擴散阻障層106的化學鈍性,因此不會產生金屬間化合物,也不會改變測試頭102及熱界面材料110 原有的化學組成以及物理化學特性。 In step (a), the thermal interface material 110 is heated to a temperature such that the thermal interface material 110 assumes a liquid phase or a molten state for subsequent reshaping steps. In some embodiments, the temperature is approximately the solid-liquid phase transition temperature of the thermal interface material 110, leaving the thermal interface material 110 in a liquid phase or molten state. As described above, since the solid-liquid phase transition temperature of the thermal interface material 110 is less than the melting point of the test head 102 and the diffusion barrier layer 106, even if the thermal interface material 110 is heated to a liquid phase or a molten state, it does not change. The shape of the test head 102 and the diffusion barrier layer 106. Moreover, due to the chemical bluntness of the diffusion barrier layer 106, no intermetallic compounds are produced and the test head 102 and the thermal interface material 110 are not altered. The original chemical composition as well as physical and chemical properties.

在步驟(b)及(c)中,提供模具140接觸熱界面材料110的操作表面110S,並施加壓力進行模鑄(coining)步驟300,藉以將熱界面材料110重新塑形。如第2B圖所示,在進行模鑄(coining)步驟300時,模具140朝向熱界面材料110移動,藉以使模具140的表面140S直接與熱界面材料110的操作表面110S接觸。應可了解的是,為了確保模具140在模鑄(coining)步驟中不會變形,模具140的熔點亦大於熱界面材料110的固相-液相轉換溫度。 In steps (b) and (c), the mold 140 is contacted with the operating surface 110S of the thermal interface material 110 and pressure is applied to a coining step 300 whereby the thermal interface material 110 is reshaped. As shown in FIG. 2B, while the coining step 300 is being performed, the mold 140 is moved toward the thermal interface material 110 such that the surface 140S of the mold 140 is in direct contact with the operating surface 110S of the thermal interface material 110. It will be appreciated that in order to ensure that the mold 140 does not deform during the coining step, the melting point of the mold 140 is also greater than the solid-liquid phase transition temperature of the thermal interface material 110.

在步驟(d)及(e)中,冷卻熱界面材料110使其定形後,即可移除模具140。如第2C圖所示,經過重新修整的步驟之後,可將熱界面材料110的操作表面110S重新塑形成為平坦且不具有任何凹陷部的表面。 In steps (d) and (e), after cooling the thermal interface material 110 to shape it, the mold 140 can be removed. As shown in FIG. 2C, after the refinishing step, the operating surface 110S of the thermal interface material 110 can be reshaped into a flat surface without any depressions.

如第2A-2C圖所示,在本實施例之重新修整的步驟中,係將測試頭102取下,利用其他的加熱裝置及加壓裝置對熱界面材料110加熱及加壓。需注意的是,在其他實施例中,也可不將測試頭102取下,直接利用第1圖的溫度調節器104進行加熱及冷卻,並直接利用第1圖的壓力調節器108施加壓力,以進行上述重新修整的步驟。 As shown in Figs. 2A-2C, in the reconditioning step of the present embodiment, the test head 102 is removed, and the thermal interface material 110 is heated and pressurized by other heating means and pressurizing means. It should be noted that in other embodiments, the test head 102 may not be removed, and the temperature regulator 104 of FIG. 1 may be directly used for heating and cooling, and the pressure regulator 108 of FIG. 1 is directly used to apply pressure. Perform the above reconditioning steps.

第3A圖為繪示出依據本揭露之一些實施例之模具140的剖面示意圖。請參照第3A圖,在本實施例中,模具140具有平坦的表面140S,因此可將具有凹陷部122的操作表面110S重新塑形成平坦的表面。 3A is a cross-sectional view showing the mold 140 in accordance with some embodiments of the present disclosure. Referring to FIG. 3A, in the present embodiment, the mold 140 has a flat surface 140S, so that the operation surface 110S having the depressed portion 122 can be reshaped to form a flat surface.

然而,在其他實施例中,熱界面材料110的操作表 面110S亦可配合封裝體上的晶片表面輪廓進行塑形,以達到充分貼合的目的(特別是封裝體上有多個高度不同的晶片時),因此,所使用的模具140亦可具有不平坦的表面140S,藉以將熱界面材料110的操作表面110S塑形成晶片表面輪廓互補的形狀(如第3B圖所示)。在第3B圖中,模具140具有凹凸表面140S,其中凹凸表面140S包括兩個不同高度的突出部142a及142b。在本實施例中,利用具有凹凸表面140S的模具140進行上述重新修整的步驟,可將熱界面材料110的操作表面110S重新塑形成與表面140S互補的形狀。以下揭露一實施例加以說明。 However, in other embodiments, the operation table of the thermal interface material 110 The surface 110S can also be shaped with the surface profile of the wafer on the package to achieve a sufficient fit (especially when there are a plurality of wafers having different heights on the package). Therefore, the mold 140 used may also have no The flat surface 140S is formed by molding the operating surface 110S of the thermal interface material 110 into a shape complementary to the surface contour of the wafer (as shown in FIG. 3B). In FIG. 3B, the mold 140 has a concave-convex surface 140S, wherein the concave-convex surface 140S includes two protrusions 142a and 142b of different heights. In the present embodiment, the above-described refinishing step is performed by the mold 140 having the uneven surface 140S, and the operation surface 110S of the thermal interface material 110 can be reshaped into a shape complementary to the surface 140S. An embodiment will be described below.

第4圖為繪示出依據本揭露之一些實施例之經過重新修整步驟的測試頭模組的剖面示意圖。第4圖中的測試頭模組係利用如第3B圖所繪示的模具140進行重新修整步驟。此處為簡化圖示,在第4圖中僅繪示出測試頭102。如第4圖所示,經過重新塑形的操作表面110S將具有兩個不同深度的凹陷部124a及124b,其中這些凹陷部的深度相同於凹凸表面140S(如第3B圖所繪示)之突出部142a及142b的高度。此處為簡化圖式,僅繪示出兩個不同高度的突出部形成於凹凸表面140S上。然而,本領域中具有通常知識者應可了解,可視需要在凹凸表面140S上形成任意數量且具有任意形狀的突出部及/或凹陷部。換言之,熱界面材料110的操作表面110S不限於平坦的表面,操作表面110S亦可包括具有任何數量及形狀的突出部之凹凸表面。 4 is a cross-sectional view showing a test head module undergoing a reconditioning step in accordance with some embodiments of the present disclosure. The test head module of Fig. 4 is subjected to a refining step using a mold 140 as shown in Fig. 3B. Here, for simplicity of illustration, only test head 102 is depicted in FIG. As shown in FIG. 4, the reshaped operating surface 110S will have two different depths of recesses 124a and 124b, wherein the recesses have the same depth as the relief surface 140S (as depicted in FIG. 3B). The height of the portions 142a and 142b. Here, in order to simplify the drawing, only two protrusions of different heights are formed on the uneven surface 140S. However, those of ordinary skill in the art will appreciate that any number of protrusions and/or depressions of any shape can be formed on the relief surface 140S as desired. In other words, the operating surface 110S of the thermal interface material 110 is not limited to a flat surface, and the operating surface 110S may also include a concave-convex surface having protrusions of any number and shape.

值得注意的是,對於具有不同高度之晶片的同一晶片封裝體,或是高度不同的多個晶片封裝體,現有技術僅能 使用質地極軟的熱界面材料(例如,高分子散熱材料),否則無法在同一批次的測試步驟中進行測試。但是對於質地極軟的高分子散熱材料而言,其熱傳導性較金屬等硬質散熱材料差。然而,依據本揭露之部分實施例,使用具有凹凸表面的模具,能夠依據應用的需求,任意地調整熱界面材料之操作表面的表面起伏(topology)。如此一來,即使是使用熱傳導性較佳但質地較硬的金屬作為熱界面材料,對於具有不同高度之晶片的同一晶片封裝體,或是高度不同的多個晶片封裝體,也可在同一批次的測試步驟中進行測試。 It should be noted that for the same chip package of wafers with different heights, or a plurality of chip packages of different heights, the prior art can only Use a very soft thermal interface material (for example, a polymeric heat sink) that would otherwise not be tested in the same batch of test steps. However, for a polymer heat-dissipating material having a very soft texture, the thermal conductivity is inferior to that of a hard heat-dissipating material such as a metal. However, according to some embodiments of the present disclosure, using a mold having a concave-convex surface, the surface topography of the operating surface of the thermal interface material can be arbitrarily adjusted depending on the needs of the application. In this way, even if a metal having a better thermal conductivity but a harder texture is used as the thermal interface material, the same chip package of wafers having different heights or a plurality of chip packages having different heights may be in the same batch. Test in the next test step.

第5圖繪示本揭露之另一實施例之測試頭模組的剖面示意圖。如第5圖所示,測試頭102的工作面102S上可設置兩個凹口120a及120b。埋設於凹口120a中的熱界面材料110a厚度為T1,埋設於凹口120b中的熱界面材料110b厚度為T2,其中T2大於T1,熱界面材料110a不同於熱界面材料110b。在本實施例中,測試頭102區分為兩個獨立操作的測試區域,並且利用熱界面材料的材料及厚度差異,使這兩個測試區域控制在不同的操作溫度。因此,能夠在同一批次的測試步驟中進行不同操作溫度的測試步驟。此處為簡化圖式,僅繪示出兩個凹口。然而,本領域中具有通常知識者應可了解,可視測試的需要在測試頭102的工作面102S上形成任意數量且具有適當形狀的凹口,以對應所預測試的晶片。 FIG. 5 is a cross-sectional view showing a test head module according to another embodiment of the present disclosure. As shown in FIG. 5, two recesses 120a and 120b may be disposed on the working surface 102S of the test head 102. The thermal interface material 110a embedded in the recess 120a has a thickness T1, and the thermal interface material 110b embedded in the recess 120b has a thickness T2, wherein T2 is greater than T1, and the thermal interface material 110a is different from the thermal interface material 110b. In this embodiment, the test head 102 is divided into two independently operated test areas, and the two test areas are controlled at different operating temperatures using the material and thickness differences of the thermal interface material. Therefore, it is possible to perform test steps of different operating temperatures in the same batch of test steps. Here, to simplify the drawing, only two notches are shown. However, those of ordinary skill in the art will appreciate that the need for visual testing creates any number of well-shaped recesses on the working surface 102S of the test head 102 to correspond to the pre-tested wafer.

由上可知,依據本揭露之部分實施例,能夠依據應用的需求,將包括不同材料及/或厚度的熱界面材料分別埋設於每一個凹口中,藉以將同一個測試頭區分為多個測試區 域。如此一來,可增加測試步驟的靈活度(flexibility),亦可節省測試步驟的時間與成本。 It can be seen from the above that, according to some embodiments of the present disclosure, thermal interface materials including different materials and/or thicknesses can be respectively embedded in each recess according to the requirements of the application, thereby dividing the same test head into multiple test areas. area. In this way, the flexibility of the test step can be increased, and the time and cost of the test step can be saved.

值得注意的是,雖然第1-5圖所繪示的凹口120於工作面102S的側壁邊緣(lip top)具有一直角120V(僅繪示於第5圖),然而在其他實施例中,凹口120於工作面102S的側壁邊緣可包括其他形狀(如第6A-6C圖所示)。第6A-6C圖繪示本揭露之其他實施例之測試頭模組的剖面示意圖。此處為簡化圖示,僅繪示出測試頭102。由第6A-6C圖可知,凹口120於工作面102S的側壁邊緣可具有,例如:凸角(如第6A圖所示)、切角(如第6B圖所示)或圓角(如第6C圖所示)。更進一步說明,在第6A圖中,凹口120於工作面102S的側壁邊緣具有凸角120X。凸角120X有助於物理性固定熱界面材料110,使熱界面材料110不會自測試頭102脫落。在第6B及6C圖中,凹口120於工作面102S的側壁邊緣分別具有切角120Y及圓角120Z。切角120Y及圓角120Z使凹口120的外部口徑大於內部口徑,以利於模具140在模鑄(coining)步驟中進入凹口120中。 It should be noted that although the notch 120 illustrated in FIGS. 1-5 has a right angle of 120V on the lip top of the working surface 102S (only shown in FIG. 5), in other embodiments, The recess 120 can include other shapes on the sidewall edges of the face 102S (as shown in Figures 6A-6C). 6A-6C are cross-sectional views showing the test head module of other embodiments of the present disclosure. Here, for simplicity of illustration, only test head 102 is shown. As can be seen from Figures 6A-6C, the notch 120 can have a side wall edge of the working surface 102S, such as: a lobe (as shown in Figure 6A), a chamfer (as shown in Figure 6B), or a rounded corner (such as Figure 6C shows). Still further, in FIG. 6A, the recess 120 has a lobe 120X at the sidewall edge of the working surface 102S. The lobes 120X help to physically secure the thermal interface material 110 such that the thermal interface material 110 does not fall off the test head 102. In FIGS. 6B and 6C, the notches 120 have a chamfered angle 120Y and a rounded corner 120Z on the side wall edges of the working surface 102S, respectively. The chamfer 120Y and the rounded corner 120Z allow the outer diameter of the recess 120 to be larger than the inner diameter to facilitate entry of the mold 140 into the recess 120 during the coining step.

本揭露提出一種包括可重塑形的熱界面材料之測試頭模組,其中可重塑形的熱界面材料之固相-液相轉換溫度介於測試頭模組的操作溫度與測試頭的熔點之間。本揭露亦提出一種將測試頭模組重新修整的方法,測試頭模組包括上述可重新塑形的熱界面材料,藉由加熱使熱界面材料熔融,並使用模具而將已變形的操作表面重新塑形。 The present disclosure proposes a test head module comprising a remodelable thermal interface material, wherein the solid phase-liquid phase transition temperature of the remodelable thermal interface material is between the operating temperature of the test head module and the melting point of the test head between. The disclosure also proposes a method for refinishing the test head module, the test head module comprising the above reshaped heat interface material, melting the thermal interface material by heating, and reusing the deformed operation surface by using a mold Shaped.

相較於習知技術,本揭露所提供之包括可重塑形的熱界面材料之測試頭模組及將其重新修整的方法,至少具有 下述優點: Compared with the prior art, the test head module including the reshaped thermoplastic interface material provided by the present disclosure and the method for refinishing thereof have at least The following advantages:

(1)本揭露所提供之熱界面材料在變形或磨損後,可藉由加熱及模鑄(coining)步驟重新塑形,不需要經常汰舊換新,因此可大幅提高熱界面材料的使用壽命並節省成本。 (1) The thermal interface material provided by the present disclosure can be reshaped by heating and coining steps after deformation or wear, and does not need to be replaced frequently, thereby greatly improving the service life of the thermal interface material. And save costs.

(2)本揭露所提供之重新修整的步驟,可直接利用測試裝置中的溫度調節器及壓力調節器對熱界面材料加熱、冷卻及加壓,與既有的測製設備相容性高,不須修改或添購額外設備。因此,不會產生額外的費用。 (2) The reconditioning step provided by the present disclosure can directly use the temperature regulator and the pressure regulator in the test device to heat, cool and pressurize the thermal interface material, and has high compatibility with the existing measuring equipment. No additional equipment needs to be modified or purchased. Therefore, no additional charges will be incurred.

(3)在重新修整的步驟中,可視需要使用具有平坦表面或凹凸表面的模具。因此,能夠依據應用的需求,任意地調整熱界面材料之操作表面的表面起伏(topology)。對於具有不同高度之晶片的同一晶片封裝體,或是高度不同的多個晶片封裝體,也可在同一批次的測試步驟中進行測試。 (3) In the re-trimming step, a mold having a flat surface or a concave-convex surface may be used as needed. Therefore, the surface topography of the operating surface of the thermal interface material can be arbitrarily adjusted depending on the needs of the application. For the same chip package of wafers with different heights, or multiple chip packages of different heights, it can also be tested in the same batch of test steps.

(4)能夠依據應用的需求,將同一個測試頭區分為多個測試區域。因此,可增加測試步驟的靈活度,亦可節省測試步驟的時間與成本。 (4) The same test head can be divided into multiple test areas according to the needs of the application. Therefore, the flexibility of the test step can be increased, and the time and cost of the test step can be saved.

(5)當熱界面材料的成分或化學性質改變(例如,熱界面材料氧化)時,僅需將其加熱熔融,即可輕易自測試頭中取出。另外,當測試頭損壞或汰換時,若熱界面材料仍可使用而未變質,亦可將熱界面材料加熱熔融取出,重新安裝置新的測試頭上重複使用。對於成本昂貴的熱界面材料而言,此回收步驟可減少購置熱界面材料的費用支出。 (5) When the composition or chemical properties of the thermal interface material are changed (for example, the thermal interface material is oxidized), it is only necessary to heat and melt it, and it can be easily taken out from the test head. In addition, when the test head is damaged or replaced, if the thermal interface material can still be used without deterioration, the thermal interface material can also be heated and melted out, and re-installed on the new test head for repeated use. For costly thermal interface materials, this recycling step can reduce the expense of purchasing thermal interface materials.

綜上所述,本揭露所提供之包括可重塑形的熱界面材料之測試頭模組及將其重新修整的方法,可大幅提升熱界面材料的 使用壽命,並且可改善測試步驟的靈活度、效率,進而降低測試步驟所需的時間及費用。 In summary, the test head module including the reshaped thermoplastic interface material and the method for refinishing the same can greatly improve the thermal interface material. The service life and the flexibility and efficiency of the test steps can be reduced, which in turn reduces the time and cost of the test steps.

雖然本發明已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the invention has been described above in terms of several preferred embodiments, it is not intended to limit the scope of the present invention, and any one of ordinary skill in the art can make any changes without departing from the spirit and scope of the invention. And the scope of the present invention is defined by the scope of the appended claims.

100‧‧‧測試頭模組 100‧‧‧Test head module

102‧‧‧測試頭 102‧‧‧Test head

102S‧‧‧工作面 102S‧‧‧ work surface

104‧‧‧溫度調節器 104‧‧‧temperature regulator

106‧‧‧擴散阻障層 106‧‧‧Diffusion barrier

108‧‧‧壓力調節器 108‧‧‧pressure regulator

110‧‧‧熱界面材料 110‧‧‧ Thermal interface materials

110S‧‧‧操作表面 110S‧‧‧Operating surface

120‧‧‧凹口 120‧‧‧ notch

150‧‧‧晶片封裝體 150‧‧‧ chip package

152‧‧‧基板 152‧‧‧Substrate

154‧‧‧晶片 154‧‧‧ wafer

156‧‧‧外部電性連接部 156‧‧‧External electrical connection

158‧‧‧底部填充材料 158‧‧‧ Underfill material

160‧‧‧內部電性連接部 160‧‧‧Internal electrical connection

200‧‧‧第一方向 200‧‧‧First direction

Claims (14)

一種測試頭模組,包括:一測試頭,包括至少一凹口設置於該測試頭的一工作面;以及一熱界面材料,埋設於該至少一凹口中,其中該熱界面材料的固相-液相轉換溫度介於該測試頭模組的一操作溫度與該測試頭的熔點之間,當進行一測試頭模組重新修整時,一重新修整的溫度介於該熱界面材料的固相-液相轉換溫度與該測試頭的熔點之間,以將該熱界面材料重新塑形。 A test head module includes: a test head including at least one notch disposed on a working surface of the test head; and a thermal interface material embedded in the at least one recess, wherein the solid phase of the thermal interface material - The liquid phase transition temperature is between an operating temperature of the test head module and the melting point of the test head. When a test head module is reconditioned, a reconditioning temperature is between the solid phase of the thermal interface material - The liquid phase transition temperature is between the melting point of the test head to reshape the thermal interface material. 如申請專利範圍第1項所述之測試頭模組,其中該熱界面材料包括金屬。 The test head module of claim 1, wherein the thermal interface material comprises a metal. 如申請專利範圍第2項所述之測試頭模組,其中該金屬包括銦、鉛、錫、銀、鋰、鎘、鋅、鋁、鎂、釙、鉍或上述之合金。 The test head module of claim 2, wherein the metal comprises indium, lead, tin, silver, lithium, cadmium, zinc, aluminum, magnesium, lanthanum, cerium or an alloy thereof. 如申請專利範圍第1項所述之測試頭模組,其中該熱界面材料包括含導熱性填充料的熱塑性高分子。 The test head module of claim 1, wherein the thermal interface material comprises a thermoplastic polymer containing a thermally conductive filler. 如申請專利範圍第4項所述之測試頭模組,其中該熱塑性高分子包括聚醯亞胺。 The test head module of claim 4, wherein the thermoplastic polymer comprises polyimine. 如申請專利範圍第4項所述之測試頭模組,其中該導熱性填充料包括銦、鉛、錫、銀、鋰、鎘、鋅、鋁、鎂、銅、金、鉑或上述之合金。 The test head module of claim 4, wherein the thermally conductive filler comprises indium, lead, tin, silver, lithium, cadmium, zinc, aluminum, magnesium, copper, gold, platinum or an alloy thereof. 如申請專利範圍第1項所述之測試頭模組,其中該熱界面材料包括金屬、含導熱性填充料的熱塑性高分子、相變化材料之組合。 The test head module of claim 1, wherein the thermal interface material comprises a metal, a thermoplastic polymer containing a thermal conductive filler, and a combination of phase change materials. 如申請專利範圍第1項所述之測試頭模組,更包括一擴散阻障層設置於該測試頭及該熱界面材料之間,其中該擴散阻障層的熔點高於該熱界面材料的固相-液相轉換溫度,以當進行該測試頭模組重新修整時,該擴散阻障層隔絕該測試頭與該熱界面材料之間產生反應。 The test head module of claim 1, further comprising a diffusion barrier layer disposed between the test head and the thermal interface material, wherein a melting point of the diffusion barrier layer is higher than a thermal interface material The solid phase-liquid phase transition temperature is such that the diffusion barrier layer insulates the reaction between the test head and the thermal interface material when the test head module is reconditioned. 如申請專利範圍第8項所述之測試頭模組,其中該擴散阻障層包括鈦、鉭、氮化鈦、氮化鉭、鈦鋯合金、氮化鈦鋯、鎳、鎳釩合金或上述之組合。 The test head module of claim 8, wherein the diffusion barrier layer comprises titanium, tantalum, titanium nitride, tantalum nitride, titanium zirconium alloy, titanium zirconium nitride, nickel, nickel vanadium alloy or the like The combination. 如申請專利範圍第8項所述之測試頭模組,其中該擴散阻障層與該熱界面材料接觸的表面具有微結構,其中該微結構包括週期性排列的圓錐、三角錐、四角錐、圓頂鐘型錐體、圓筒、半球體、立方體等凸起或凹陷。 The test head module of claim 8, wherein the surface of the diffusion barrier layer in contact with the thermal interface material has a microstructure, wherein the microstructure comprises a periodically arranged cone, a triangular cone, a quadrangular pyramid, Domed bell cones, cylinders, hemispheres, cubes, etc. are raised or recessed. 如申請專利範圍第1項所述之測試頭模組,其中該至少一凹口於該工作面的側壁邊緣具有一切角、圓角或凸角。 The test head module of claim 1, wherein the at least one notch has an angle, a rounded corner or a lobed corner at a side wall edge of the working surface. 如申請專利範圍第1項所述之測試頭模組,其中該熱界面材料包括一操作表面,其中該操作表面包括具有一凹陷部、一突出部或上述之組合。 The test head module of claim 1, wherein the thermal interface material comprises an operating surface, wherein the operating surface comprises a recess, a protrusion or a combination thereof. 一種將測試頭模組重新修整的方法,包括:提供如申請專利範圍第1-12項所述之一測試頭模組;加熱以熔融該熱界面材料;提供一模具至該熱界面材料;施加一壓力,以模鑄(coining)該熱界面材料;冷卻該熱界面材料;以及移除該模具。 A method for refinishing a test head module, comprising: providing a test head module as described in claim 1-12; heating to melt the thermal interface material; providing a mold to the thermal interface material; applying a pressure to coin the thermal interface material; cooling the thermal interface material; and removing the mold. 如申請專利範圍第13項所述之將測試頭模組重新修整的方法,其中該模具具有一凹凸表面,且在冷卻該熱界面材料之後,該操作表面具有與該凹凸表面互補的表面起伏(topology)。 The method of refinishing a test head module according to claim 13, wherein the mold has a concave-convex surface, and after cooling the thermal interface material, the operation surface has a surface relief complementary to the concave-convex surface ( Topology).
TW103142297A 2014-12-05 2014-12-05 Test head module and reconditioning method thereof TWI564578B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW103142297A TWI564578B (en) 2014-12-05 2014-12-05 Test head module and reconditioning method thereof
CN201410769026.2A CN104502637B (en) 2014-12-05 2014-12-11 Method for reconditioning test head module
CN201410761022.XA CN104459212B (en) 2014-12-05 2014-12-11 Test head module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103142297A TWI564578B (en) 2014-12-05 2014-12-05 Test head module and reconditioning method thereof

Publications (2)

Publication Number Publication Date
TW201621334A TW201621334A (en) 2016-06-16
TWI564578B true TWI564578B (en) 2017-01-01

Family

ID=52905596

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103142297A TWI564578B (en) 2014-12-05 2014-12-05 Test head module and reconditioning method thereof

Country Status (2)

Country Link
CN (2) CN104459212B (en)
TW (1) TWI564578B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113163594B (en) * 2020-01-07 2024-04-09 峻立科技股份有限公司 Method for combining plastic component and circuit board
TWI752563B (en) * 2020-07-24 2022-01-11 鴻勁精密股份有限公司 Connecting apparatus and handler having the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1319690A2 (en) * 2001-12-11 2003-06-18 Shin-Etsu Chemical Co., Ltd. A thermoconducting silicone composition, its curing product and installation method, and a heat dissipating structure of a semiconductor device using same
US20040151885A1 (en) * 2003-02-04 2004-08-05 Saikumar Jayaraman Polymer matrices for polymer solder hybrid materials
CN201007722Y (en) * 2006-12-27 2008-01-16 中茂电子(深圳)有限公司 Semiconductor component testing table with flexible buffering heat conduction foundation
TW200936028A (en) * 2008-02-05 2009-08-16 Thermoshuttle Co Ltd Thermal module and system applied the phase-change metal thermal interface material
TW201425563A (en) * 2007-09-11 2014-07-01 Dow Corning Composite, thermal interface material containing the composite, and methods for their preparation and use

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003027686A2 (en) * 2001-09-27 2003-04-03 Advanced Micro Devices, Inc. Method and apparatus for temperature control of a device during testing
JP2005079253A (en) * 2003-08-29 2005-03-24 Tokyo Electron Ltd Inspection method and inspection apparatus
CN2916925Y (en) * 2006-05-15 2007-06-27 致茂电子股份有限公司 Contact device for testing electronic component
US8422762B2 (en) * 2007-10-31 2013-04-16 Advantest Corporation Abnormality detecting apparatus for detecting abnormality at interface portion of contact arm
US8459334B2 (en) * 2009-07-31 2013-06-11 International Business Machines Corporation Containment for a patterned metal thermal interface
CN102520742A (en) * 2011-11-10 2012-06-27 致茂电子(苏州)有限公司 Temperature regulation and control system for detecting platform

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1319690A2 (en) * 2001-12-11 2003-06-18 Shin-Etsu Chemical Co., Ltd. A thermoconducting silicone composition, its curing product and installation method, and a heat dissipating structure of a semiconductor device using same
US20040151885A1 (en) * 2003-02-04 2004-08-05 Saikumar Jayaraman Polymer matrices for polymer solder hybrid materials
CN201007722Y (en) * 2006-12-27 2008-01-16 中茂电子(深圳)有限公司 Semiconductor component testing table with flexible buffering heat conduction foundation
TW201425563A (en) * 2007-09-11 2014-07-01 Dow Corning Composite, thermal interface material containing the composite, and methods for their preparation and use
TW200936028A (en) * 2008-02-05 2009-08-16 Thermoshuttle Co Ltd Thermal module and system applied the phase-change metal thermal interface material

Also Published As

Publication number Publication date
CN104459212B (en) 2018-06-08
TW201621334A (en) 2016-06-16
CN104502637B (en) 2017-10-13
CN104502637A (en) 2015-04-08
CN104459212A (en) 2015-03-25

Similar Documents

Publication Publication Date Title
TW202013631A (en) Semiconductor package
TWI609464B (en) Semiconductor device and method for forming the same
KR101323877B1 (en) A heat-transfer structure
US6250127B1 (en) Heat-dissipating aluminum silicon carbide composite manufacturing method
JP2015211221A (en) Chip level heat dissipation using silicon
TWI672776B (en) Chip package structure and manufacturing method thereof
TWI564578B (en) Test head module and reconditioning method thereof
US11854936B2 (en) Semiconductor device
US20070295482A1 (en) Heat spreader for use in conjunction with a semiconducting device and method of manufacturing same
TWI587464B (en) Packaging structure and manufacturing method thereof
US11605612B2 (en) Method of manufacturing semiconductor package
TWI545709B (en) Method of manufacturing semiconductor packaging
TWI307550B (en) Polygonal, rounded, and circular flip chip ball grid array board
CN103887276B (en) Prevent bump structure and the forming method of convex some side direction etching
JP2024001301A (en) Structure and method for semiconductor packaging
JP2011052240A (en) Method for manufacturing structure provided with thermal-sprayed insulation film
TWI555142B (en) Method and apparatus for heat spreader on silicon
US20090294955A1 (en) Cooling device with a preformed compliant interface
TWM611792U (en) Heat-dissipating semiconductor package
TWI658575B (en) Contact structure, method for foroming contact structure, and memory device
JP2006140401A (en) Semiconductor integrated circuit device
JP5559773B2 (en) Manufacturing method of laminated semiconductor device
TWI744156B (en) Heat-dissipating semiconductor package and method for manufacturing the same
WO2016182425A1 (en) A lead frame for selective soldering
JPWO2018219484A5 (en)