TWI556411B - Manufacturing method and structure of non-volatile memory - Google Patents

Manufacturing method and structure of non-volatile memory Download PDF

Info

Publication number
TWI556411B
TWI556411B TW100126026A TW100126026A TWI556411B TW I556411 B TWI556411 B TW I556411B TW 100126026 A TW100126026 A TW 100126026A TW 100126026 A TW100126026 A TW 100126026A TW I556411 B TWI556411 B TW I556411B
Authority
TW
Taiwan
Prior art keywords
layer
volatile memory
oxide layer
forming
etch stop
Prior art date
Application number
TW100126026A
Other languages
Chinese (zh)
Other versions
TW201306237A (en
Inventor
施泓林
陳志達
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW100126026A priority Critical patent/TWI556411B/en
Publication of TW201306237A publication Critical patent/TW201306237A/en
Application granted granted Critical
Publication of TWI556411B publication Critical patent/TWI556411B/en

Links

Description

非揮發記憶體結構及其製造方法Non-volatile memory structure and manufacturing method thereof

本案係為一種非揮發記憶體結構及其製造方法,尤指應用於半導體製程中之非揮發記憶體結構及其製造方法。The present invention relates to a non-volatile memory structure and a method of fabricating the same, and more particularly to a non-volatile memory structure and a method of fabricating the same in a semiconductor process.

非揮發記憶體(non-volatile memory)是當電源關閉後仍能保留其儲存資料記憶體元件,而可多次寫入資料之多次可程式非揮發記憶體(Multiple-Times-Programmable,簡稱MTP)廣泛應用現今之數位產品中。Non-volatile memory is a multiple-times-programmable (MTP) that can retain its stored data memory components when the power is turned off. ) Widely used in today's digital products.

可多次寫入資料之多次可程式非揮發記憶體中之記憶體單元主要由浮接閘以及控制閘所構成,其中浮接閘用儲存代表資料寫入之電荷。而可多次寫入資料非揮發記憶體單元隨其製程之不同而有不同的元件結構,常見的製程分類有三層多晶矽製程技術、兩層多晶矽製程技術以及單層多晶矽製程技術,其中單層多晶矽製程技術具有步驟較簡化的優點,但其完成之單一多晶矽非揮發記憶體,其對於儲存於浮接閘中的電荷保留(retention)能力卻是不足,例如在250℃的高溫烘烤(baking)下進行高溫惡化實驗中,浮接閘中的電荷將會嚴重流失而使源汲極間的電流大幅降低至錯誤判讀的狀態。因此,如何改善單一多晶矽非揮發記憶體之資料保留(data retention)能力,便是發展本案之主要目的。The memory unit in the multi-programmable non-volatile memory that can write data multiple times is mainly composed of a floating gate and a control gate, wherein the floating gate stores the charge written by the data. The non-volatile memory cells that can be written multiple times have different component structures depending on the process. The common process classifications include three-layer polysilicon process technology, two-layer polysilicon process technology, and single-layer polysilicon process technology, in which single-layer polysilicon is used. The process technology has the advantage of simplifying the steps, but the completed single polycrystalline non-volatile memory has insufficient retention ability for charge stored in the floating gate, for example, baking at a high temperature of 250 ° C. In the high temperature deterioration experiment, the charge in the floating gate will be seriously lost, and the current between the source and the drain will be greatly reduced to the state of erroneous interpretation. Therefore, how to improve the data retention capability of a single polycrystalline non-volatile memory is the main purpose of the development of this case.

為改善單一多晶矽非揮發記憶體之資料保留(data retention)能力,於是本案發展出一種非揮發記憶體製造方法,包含下列步驟:提供基板,該基板上方已形成有多晶矽閘極結構;於該基板與該多晶矽閘極結構上方形成接觸蝕刻停止層,該接觸蝕刻停止層至少包含氮化矽層以及第一氧化矽層,其中該氮化矽層位於該第一氧化矽層之下方;以及於該接觸蝕刻停止層上方形成內層介電層,其中該第一氧化矽層與該內層介電層相鄰且其緻密度大於該內層介電層之緻密度。In order to improve the data retention capability of a single polycrystalline non-volatile memory, a non-volatile memory manufacturing method has been developed in the present invention, which comprises the steps of: providing a substrate on which a polysilicon gate structure has been formed; Forming a contact etch stop layer over the polysilicon gate structure, the contact etch stop layer comprising at least a tantalum nitride layer and a first hafnium oxide layer, wherein the tantalum nitride layer is located below the first hafnium oxide layer; An inner dielectric layer is formed over the contact etch stop layer, wherein the first ruthenium oxide layer is adjacent to the inner dielectric layer and has a density greater than a density of the inner dielectric layer.

根據上述構想,本案所述之非揮發記憶體製造方法,其中形成該接觸蝕刻停止層之方法包含下列步驟:於該多晶矽閘極結構上方形成第二氧化矽層;於該第二氧化矽層上方形成該氮化矽層;以及於該氮化矽層上方形成該第一氧化矽層。According to the above concept, the non-volatile memory manufacturing method of the present invention, wherein the method of forming the contact etch stop layer comprises the steps of: forming a second ruthenium oxide layer over the polysilicon gate structure; above the second ruthenium oxide layer Forming the tantalum nitride layer; and forming the first tantalum oxide layer over the tantalum nitride layer.

根據上述構想,本案所述之非揮發記憶體製造方法,其中形成該接觸蝕刻停止層中之該第一氧化矽層之方法包含下列步驟:以矽酸四乙酯為原料來進行電漿加強式化學氣相沉積法來形成該第一氧化矽層,該第一氧化矽層之厚度範圍約為300埃至2000埃。According to the above concept, the non-volatile memory manufacturing method of the present invention, wherein the method of forming the first ruthenium oxide layer in the contact etch stop layer comprises the steps of: plasma-reinforced with tetraethyl phthalate as a raw material; The first ruthenium oxide layer is formed by chemical vapor deposition, and the first ruthenium oxide layer has a thickness ranging from about 300 angstroms to 2000 angstroms.

根據上述構想,本案所述之非揮發記憶體製造方法,其中形成該內層介電層之方法包含下列步驟:以常壓化學氣相沈積法來沈積該內層介電層。According to the above concept, the non-volatile memory manufacturing method of the present invention, wherein the method of forming the inner dielectric layer comprises the step of depositing the inner dielectric layer by atmospheric pressure chemical vapor deposition.

本案之另一方面係為一種非揮發記憶體結構,其包含:基板;多晶矽閘極結構,形成於該基板上方;接觸蝕刻停止層,形成於該多晶矽閘極結構上方,該接觸蝕刻停止層至少包含氮化矽層以及第一氧化矽層,其中該氮化矽層位於該第一氧化矽層之下方;以及內層介電層,形成於該第一氧化矽層表面上,其中該第一氧化矽層之緻密度大於該內層介電層之緻密度。Another aspect of the present invention is a non-volatile memory structure comprising: a substrate; a polysilicon gate structure formed over the substrate; and a contact etch stop layer formed over the polysilicon gate structure, the contact etch stop layer being at least And comprising a tantalum nitride layer and a first tantalum oxide layer, wherein the tantalum nitride layer is located below the first tantalum oxide layer; and an inner dielectric layer is formed on the surface of the first tantalum oxide layer, wherein the first The density of the ruthenium oxide layer is greater than the density of the inner dielectric layer.

根據上述構想,本案所述之非揮發記憶體結構,其中該多晶矽閘極結構至少包含單一多晶矽導體,該單一多晶矽導體為該非揮發記憶體之浮接閘。According to the above concept, the non-volatile memory structure of the present invention, wherein the polysilicon gate structure comprises at least a single polycrystalline germanium conductor, and the single polycrystalline germanium conductor is a floating gate of the non-volatile memory.

根據上述構想,本案所述之非揮發記憶體結構,其中接觸蝕刻停止層更包含第二氧化矽層,形成於該多晶矽閘極結構上方與該氮化矽層之間。According to the above concept, the non-volatile memory structure of the present invention, wherein the contact etch stop layer further comprises a second ruthenium oxide layer formed between the polysilicon gate structure and the tantalum nitride layer.

根據上述構想,本案所述之非揮發記憶體結構,其中該第一氧化矽層具有壓縮應力的特性,其厚度範圍約為300埃至2000埃。According to the above concept, the non-volatile memory structure of the present invention, wherein the first ruthenium oxide layer has a compressive stress characteristic, and has a thickness ranging from about 300 angstroms to 2000 angstroms.

根據上述構想,本案所述之非揮發記憶體結構,其中該內層介電層之材料為氧化矽。According to the above concept, the non-volatile memory structure of the present invention, wherein the material of the inner dielectric layer is yttrium oxide.

請參見圖1A,其係本案所提出之單一多晶矽非揮發記憶體之結構上視示意圖,該結構主要分為兩個部份,第一個部份是浮接閘區域11,第二個部份是控制閘區域12,其中單一多晶矽導體13係通過兩個區域,該單一多晶矽導體13通過浮接閘區域11之第一部份131的兩側分別具有源極接觸電極141、汲極接觸電極142,而該單一多晶矽導體13通過控制閘區域12之第二部份132的一側則具有控制電極143。Please refer to FIG. 1A , which is a schematic structural view of a single polycrystalline non-volatile memory as proposed in the present invention. The structure is mainly divided into two parts. The first part is the floating gate area 11 and the second part. It is a control gate region 12 in which a single polysilicon conductor 13 passes through two regions, and the single polysilicon conductor 13 has a source contact electrode 141 and a drain contact electrode 142 on both sides of the first portion 131 of the floating gate region 11, respectively. The single polysilicon conductor 13 passes through a side of the second portion 132 of the control gate region 12 to have a control electrode 143.

再請參見圖1B,其係沿圖1A中之虛線A--B與虛線A--C所取剖面的合併顯示示意圖,其中浮接閘區域11與控制閘區域12中該單一多晶矽導體13下方形成一P型井區域151,而控制閘區域12中第二部份132下方則再形成一N型井區域152,位於控制閘區域12中的P型井區域151之上。N型井區域152係用以扮演控制閘之角色。藉由通道熱載子效應(hot carrier effect),來選擇是否將電子或電洞等載子注入單一多晶矽導體13中,用以改變浮接閘的臨界電壓(threshold voltage),進而決定該記憶單元處於導通或關閉狀態,而透過源極接觸電極141、汲極接觸電極142所量測到之電流,便可判斷出該記憶單元所儲存之資料為”1”或”0”。Referring again to FIG. 1B, which is a schematic diagram showing a combined view of the cross-section taken along the broken line A--B and the broken line A--C in FIG. 1A, wherein the floating gate region 11 and the control gate region 12 are below the single polycrystalline germanium conductor 13. A P-type well region 151 is formed, and an N-type well region 152 is formed below the second portion 132 of the control gate region 12, above the P-type well region 151 in the control gate region 12. The N-type well region 152 is used to play the role of a control gate. Selecting whether a carrier such as an electron or a hole is injected into the single polysilicon conductor 13 by a channel hot carrier effect is used to change the threshold voltage of the floating gate, thereby determining the memory unit. When the current measured by the source contact electrode 141 and the drain contact electrode 142 is in the on or off state, it can be judged that the data stored in the memory unit is "1" or "0".

為能確保單一多晶矽導體13所完成之浮接閘的電荷保留(retention)能力,單一多晶矽導體13的四周環繞有各種介電材料所構成的薄膜,例如,單一多晶矽導體13下表面形成有介電層1310,單一多晶矽導體13之四周側壁上形成有間隙壁1311,而單一多晶矽導體13上表面除了金屬矽化物1312外,還形成有一接觸蝕刻停止層(Contact Etching Stop Layer,簡稱CESL)19以及內層介電層(Inter-Layer Dielectric,簡稱ILD)16,用以提供後續接觸孔蝕刻製程時使用,並且可以防止保留於浮接閘131中的電荷逸失。In order to ensure the charge retention capability of the floating gate completed by the single polysilicon conductor 13, a single polycrystalline germanium conductor 13 is surrounded by a film composed of various dielectric materials, for example, a dielectric is formed on the lower surface of the single polycrystalline germanium conductor 13. In the layer 1310, the sidewalls of the single polycrystalline germanium conductor 13 are formed with a spacer 1311, and the upper surface of the single polycrystalline germanium conductor 13 is formed with a contact etching stop layer (CESL) 19 and an inner surface in addition to the metal germanide 1312. An Inter-Layer Dielectric (ILD) 16 is used to provide a subsequent contact hole etching process, and can prevent the charge remaining in the floating gate 131 from escaping.

在本實施例中,該接觸蝕刻停止層(CESL)19主要由多層構造來完成,主要是以保形(conformal)薄膜之方式形成於單一多晶矽導體13之表面上方。以圖中所示為例,其係由氧化矽層191、氮化矽層192以及另一氧化矽層193之三層結構來構成接觸蝕刻停止層(CESL)19。其中該氧化矽層191之厚度範圍約為100埃至500埃,可利用矽酸四乙酯(Tetraethyl orthosilicate,Si(OC2H5)4,簡稱TEOS)為原料來沉積完成。至於該氧化矽層193則以矽酸四乙酯(TEOS)為原料所進行之電漿加強式化學氣相沉積法來完成,該氧化矽層193之厚度範圍約為300埃至2000埃。而該氧化矽層193可具有壓縮應力的特性,且其緻密度較後續以常壓化學氣相沈積法(Atmospheric Pressure CVD,簡稱APCVD)所完成之內層介電層16之緻密度為高,因此可有效地改善先前單一多晶矽導體13之資料保留(data retention)能力不佳的問題,例如在進行48小時的250℃高溫烘烤(baking)後,本例之源極接觸電極141與汲極接觸電極142間量測到之電流將可由33.3微安培僅降到33微安培,由此可明顯看出本實施例達成的功效增進。In the present embodiment, the contact etch stop layer (CESL) 19 is mainly formed by a multilayer structure, and is formed over the surface of the single polysilicon conductor 13 mainly in the form of a conformal film. For example, as shown in the figure, a contact etch stop layer (CESL) 19 is formed by a three-layer structure of a hafnium oxide layer 191, a tantalum nitride layer 192, and another hafnium oxide layer 193. The thickness of the yttrium oxide layer 191 ranges from about 100 angstroms to 500 angstroms, and can be deposited by using Tetraethyl orthosilicate (Si(OC2H5)4, referred to as TEOS) as a raw material. The yttrium oxide layer 193 is formed by plasma enhanced chemical vapor deposition using tetraethyl phthalate (TEOS) as a raw material. The yttrium oxide layer 193 has a thickness ranging from about 300 angstroms to about 2,000 angstroms. The yttria layer 193 may have a compressive stress characteristic, and its density is higher than that of the inner dielectric layer 16 which is subsequently completed by atmospheric pressure chemical vapor deposition (APCVD). Therefore, the problem of poor data retention capability of the previous single polycrystalline germanium conductor 13 can be effectively improved, for example, after 48 hours of high-temperature baking at 250 ° C, the source contact electrode 141 and the drain of this example are used. The current measured between the contact electrodes 142 will be reduced from 33.3 microamperes to only 33 microamperes, whereby the enhancement achieved by this embodiment is apparent.

另外,若是僅由氮化矽層192以及該氧化矽層193之兩層結構來構成接觸蝕刻停止層(CESL)19(亦即省略掉圖1B中的氧化矽層191)也是可以達到改善電荷保留不佳的問題。至於該氧化矽層193則同樣以矽酸四乙酯(TEOS)為原料所進行之電漿加強式化學氣相沉積法來完成,該氧化矽層193之厚度範圍約為300埃至2000埃。如此也可有效地改善先前單一多晶矽導體13之資料保留(data retention)能力不佳的問題,例如在進行48小時的250℃高溫烘烤(baking)後,本例之源極接觸電極141與汲極接觸電極142間量測到之電流將可由29.3微安培僅降到24.2微安培,由此可明顯看出本實施例達成的功效增進。In addition, if the contact etch stop layer (CESL) 19 is formed only by the two-layer structure of the tantalum nitride layer 192 and the tantalum oxide layer 193 (that is, the yttrium oxide layer 191 in FIG. 1B is omitted), the charge retention can be improved. Poor question. The yttrium oxide layer 193 is also formed by plasma-enhanced chemical vapor deposition using tetraethyl phthalate (TEOS) as a raw material. The yttrium oxide layer 193 has a thickness ranging from about 300 angstroms to about 2,000 angstroms. This can also effectively improve the problem of poor data retention capability of the previous single polycrystalline germanium conductor 13, for example, the source contact electrode 141 and the germanium of this example after 48 hours of high temperature baking at 250 °C. The current measured between the pole contact electrodes 142 will be reduced from only 29.3 microamperes to only 24.2 microamperes, whereby the enhancement achieved by this embodiment is apparent.

但若只以氮化矽層192之單層結構來構成接觸蝕刻停止層(CESL),則經實驗測量出之數據看出,在進行48小時的250℃高溫烘烤(baking)後,本例之源極接觸電極141與汲極接觸電極142間量測到之電流將可由27.6微安培降到0.4微安培,由此可明顯看出氮化矽層192之單層結構將無法符合需求。However, if the contact etch stop layer (CESL) is formed only by the single layer structure of the tantalum nitride layer 192, the experimentally measured data shows that after 48 hours of high temperature baking at 250 ° C, this example The current measured between the source contact electrode 141 and the drain contact electrode 142 can be reduced from 27.6 microamperes to 0.4 microamperes, and it is apparent that the single layer structure of the tantalum nitride layer 192 will not meet the demand.

再者,若以該氧化矽層191與氮化矽層192之兩層結構來構成接觸蝕刻停止層(CESL),則經實驗測量出之數據看出,在進行48小時的250℃高溫烘烤(baking)後,本例之源極接觸電極141與汲極接觸電極142間量測到之電流將可由28.16微安培降到0.88微安培,由此也可明顯看出氧化矽層191與氮化矽層192之雙層結構也無法符合需求。Further, if the contact etch stop layer (CESL) is formed by the two-layer structure of the yttrium oxide layer 191 and the tantalum nitride layer 192, the experimentally measured data shows that the temperature is baked at 250 ° C for 48 hours. After (baking), the current measured between the source contact electrode 141 and the drain contact electrode 142 of this example can be reduced from 28.16 microamperes to 0.88 microamperes, whereby the hafnium oxide layer 191 and nitride are also apparent. The two-layer structure of the 矽 layer 192 also fails to meet the demand.

當接觸蝕刻停止層(CESL)19由多層結構來完成時,完成後續源極接觸電極141、汲極接觸電極142與控制電極143所需之接觸孔之接觸孔蝕刻製程,可利用不同蝕刻配方來進行多次蝕刻。When the contact etch stop layer (CESL) 19 is completed by a multilayer structure, the contact hole etching process for completing the contact holes of the subsequent source contact electrode 141, the drain contact electrode 142 and the control electrode 143 can be performed by using different etching recipes. Multiple etchings are performed.

綜上所述,在本發明對技術進行改良後,已可有效改善習用手段的問題。雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。In summary, after the technology of the present invention is improved, the problem of the conventional means can be effectively improved. While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.

11...浮接閘區域11. . . Floating gate area

12...控制閘區域12. . . Control gate area

13...單一多晶矽導體13. . . Single polycrystalline germanium conductor

131...第一部份131. . . first part

141...源極接觸電極141. . . Source contact electrode

142...汲極接觸電極142. . . Bungee contact electrode

132...第二部份132. . . Second part

143...控制電極143. . . Control electrode

151...P型井區域151. . . P-well area

152...N型井區域152. . . N-well area

1310...介電層1310. . . Dielectric layer

1311...間隙壁1311. . . Clearance wall

1312...金屬矽化物1312. . . Metal telluride

19...接觸蝕刻停止層19. . . Contact etch stop layer

16...內層介電層16. . . Inner dielectric layer

191...氧化矽層191. . . Cerium oxide layer

192...氮化矽層192. . . Tantalum nitride layer

193...氧化矽層193. . . Cerium oxide layer

圖1A,其係本案所提出之單一多晶矽非揮發記憶體之結構上視示意圖。FIG. 1A is a schematic top view showing the structure of a single polycrystalline non-volatile memory as proposed in the present invention.

圖1B,其係本案所提出之單一多晶矽非揮發記憶體之結構剖面示意圖。FIG. 1B is a schematic cross-sectional view showing the structure of a single polycrystalline non-volatile memory as proposed in the present invention.

13...單一多晶矽導體13. . . Single polycrystalline germanium conductor

131...第一部份131. . . first part

141...源極接觸電極141. . . Source contact electrode

142...汲極接觸電極142. . . Bungee contact electrode

132...第二部份132. . . Second part

143...控制電極143. . . Control electrode

151...P型井區域151. . . P-well area

152...N型井區域152. . . N-well area

1310...介電層1310. . . Dielectric layer

1311...間隙壁1311. . . Clearance wall

1312...金屬矽化物1312. . . Metal telluride

19...接觸蝕刻停止層19. . . Contact etch stop layer

16...內層介電層16. . . Inner dielectric layer

191...氧化矽層191. . . Cerium oxide layer

192...氮化矽層192. . . Tantalum nitride layer

193...氧化矽層193. . . Cerium oxide layer

Claims (12)

一種非揮發記憶體製造方法,包含下列步驟:提供一基板,該基板上方已形成有一多晶矽閘極結構;於該基板與該多晶矽閘極結構上方形成一接觸蝕刻停止層,該接觸蝕刻停止層至少包含一氮化矽層以及一第一氧化矽層,其中該氮化矽層位於該第一氧化矽層之下方;以及於該接觸蝕刻停止層上方形成一內層介電層,其中該第一氧化矽層與該內層介電層相鄰且其緻密度大於該內層介電層之緻密度。A non-volatile memory manufacturing method comprising the steps of: providing a substrate having a polysilicon gate structure formed thereon; forming a contact etch stop layer over the substrate and the polysilicon gate structure, the contact etch stop layer being at least a tantalum nitride layer and a first tantalum oxide layer, wherein the tantalum nitride layer is under the first tantalum oxide layer; and an inner dielectric layer is formed over the contact etch stop layer, wherein the first layer The hafnium oxide layer is adjacent to the inner dielectric layer and has a density greater than the density of the inner dielectric layer. 如申請專利範圍第1項所述之非揮發記憶體製造方法,其中該多晶矽閘極結構至少包含一單一多晶矽導體。The non-volatile memory manufacturing method according to claim 1, wherein the polysilicon gate structure comprises at least a single polycrystalline germanium conductor. 如申請專利範圍第2項所述之非揮發記憶體製造方法,其中形成該多晶矽閘極結構之方法包含下列步驟:於該基板上方形成一介電層;於該介電層上方形成該單一多晶矽導體;於該單一多晶矽導體之側壁形成一間隙壁;以及於該單一多晶矽導體之上表面形成一金屬矽化物。The method for fabricating a non-volatile memory according to claim 2, wherein the method for forming the polysilicon gate structure comprises the steps of: forming a dielectric layer over the substrate; forming the single polysilicon over the dielectric layer a conductor; a spacer formed on a sidewall of the single polysilicon conductor; and a metal halide formed on a surface of the single polysilicon conductor. 如申請專利範圍第1項所述之非揮發記憶體製造方法,其中形成該接觸蝕刻停止層之方法包含下列步驟:於該多晶矽閘極結構上方形成一第二氧化矽層;於該第二氧化矽層上方形成該氮化矽層;以及於該氮化矽層上方形成該第一氧化矽層。The non-volatile memory manufacturing method of claim 1, wherein the method of forming the contact etch stop layer comprises the steps of: forming a second ruthenium oxide layer over the polysilicon gate structure; Forming the tantalum nitride layer over the tantalum layer; and forming the first tantalum oxide layer over the tantalum nitride layer. 如申請專利範圍第1項所述之非揮發記憶體製造方法,其中形成該接觸蝕刻停止層中之該第一氧化矽層之方法包含下列步驟:以矽酸四乙酯為原料來進行電漿加強式化學氣相沉積法來形成該第一氧化矽層,該第一氧化矽層之厚度範圍約為300埃至2000埃。The non-volatile memory manufacturing method according to claim 1, wherein the method for forming the first ruthenium oxide layer in the contact etch stop layer comprises the steps of: using a tetraethyl phthalate as a raw material for plasma treatment The first ruthenium oxide layer is formed by reinforced chemical vapor deposition, and the first ruthenium oxide layer has a thickness ranging from about 300 angstroms to about 2,000 angstroms. 如申請專利範圍第1項所述之非揮發記憶體製造方法,其中形成該內層介電層之方法包含下列步驟:以常壓化學氣相沈積法來沈積該內層介電層。The non-volatile memory manufacturing method according to claim 1, wherein the method of forming the inner dielectric layer comprises the step of depositing the inner dielectric layer by atmospheric pressure chemical vapor deposition. 一種非揮發記憶體結構,其包含:一基板;一多晶矽閘極結構,形成於該基板上方;一接觸蝕刻停止層,形成於該多晶矽閘極結構上方,該接觸蝕刻停止層至少包含一氮化矽層以及一第一氧化矽層,其中該氮化矽層位於該第一氧化矽層之下方;以及一內層介電層,形成於該第一氧化矽層表面上,其中該第一氧化矽層之緻密度大於該內層介電層之緻密度。A non-volatile memory structure comprising: a substrate; a polysilicon gate structure formed over the substrate; a contact etch stop layer formed over the polysilicon gate structure, the contact etch stop layer comprising at least a nitride a germanium layer and a first tantalum oxide layer, wherein the tantalum nitride layer is located under the first tantalum oxide layer; and an inner dielectric layer is formed on the surface of the first tantalum oxide layer, wherein the first oxide The density of the tantalum layer is greater than the density of the inner dielectric layer. 如申請專利範圍第7項所述之非揮發記憶體結構,其中該多晶矽閘極結構至少包含一單一多晶矽導體,該單一多晶矽導體為該非揮發記憶體之一浮接閘。The non-volatile memory structure of claim 7, wherein the polysilicon gate structure comprises at least a single polycrystalline germanium conductor, and the single polycrystalline germanium conductor is a floating gate of the non-volatile memory. 如申請專利範圍第8項所述之非揮發記憶體結構,其中該多晶矽閘極結構更包含:一介電層,形成於該基板上方及該單一多晶矽導體之下表面之間;一間隙壁,形成於該單一多晶矽導體之側壁;以及一金屬矽化物,形成於該單一多晶矽導體之上表面。The non-volatile memory structure of claim 8, wherein the polysilicon gate structure further comprises: a dielectric layer formed over the substrate and between the lower surface of the single polysilicon conductor; a spacer, Formed on a sidewall of the single polycrystalline germanium conductor; and a metal halide formed on the upper surface of the single polycrystalline germanium conductor. 如申請專利範圍第7項所述之非揮發記憶體結構,其中接觸蝕刻停止層更包含一第二氧化矽層,形成於該多晶矽閘極結構上方與該氮化矽層之間。The non-volatile memory structure of claim 7, wherein the contact etch stop layer further comprises a second ruthenium oxide layer formed between the polysilicon gate structure and the tantalum nitride layer. 如申請專利範圍第7項所述之非揮發記憶體結構,其中該第一氧化矽層具有壓縮應力的特性,其厚度範圍約為300埃至2000埃。The non-volatile memory structure of claim 7, wherein the first ruthenium oxide layer has a compressive stress characteristic and a thickness ranging from about 300 angstroms to about 2,000 angstroms. 如申請專利範圍第7項所述之非揮發記憶體結構,其中該內層介電層之材料為氧化矽。The non-volatile memory structure of claim 7, wherein the material of the inner dielectric layer is cerium oxide.
TW100126026A 2011-07-22 2011-07-22 Manufacturing method and structure of non-volatile memory TWI556411B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100126026A TWI556411B (en) 2011-07-22 2011-07-22 Manufacturing method and structure of non-volatile memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100126026A TWI556411B (en) 2011-07-22 2011-07-22 Manufacturing method and structure of non-volatile memory

Publications (2)

Publication Number Publication Date
TW201306237A TW201306237A (en) 2013-02-01
TWI556411B true TWI556411B (en) 2016-11-01

Family

ID=48169287

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100126026A TWI556411B (en) 2011-07-22 2011-07-22 Manufacturing method and structure of non-volatile memory

Country Status (1)

Country Link
TW (1) TWI556411B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10388562B2 (en) 2017-08-16 2019-08-20 Globalfoundries Inc. Composite contact etch stop layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5966600A (en) * 1997-11-21 1999-10-12 United Semiconductor Corp. DRAM process with a multilayer stack structure
US6900121B1 (en) * 2002-03-14 2005-05-31 Advanced Micro Devices, Inc. Laser thermal annealing to eliminate oxide voiding
US20060076652A1 (en) * 2004-09-30 2006-04-13 Joerg Hohage Method of forming a field effect transistor comprising a stressed channel region
US20080277708A1 (en) * 2007-05-11 2008-11-13 Samsung Electronics Co., Ltd. Semiconductor devices and methods of forming the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5966600A (en) * 1997-11-21 1999-10-12 United Semiconductor Corp. DRAM process with a multilayer stack structure
US6900121B1 (en) * 2002-03-14 2005-05-31 Advanced Micro Devices, Inc. Laser thermal annealing to eliminate oxide voiding
US20060076652A1 (en) * 2004-09-30 2006-04-13 Joerg Hohage Method of forming a field effect transistor comprising a stressed channel region
US20080277708A1 (en) * 2007-05-11 2008-11-13 Samsung Electronics Co., Ltd. Semiconductor devices and methods of forming the same

Also Published As

Publication number Publication date
TW201306237A (en) 2013-02-01

Similar Documents

Publication Publication Date Title
US20160071947A1 (en) Method including a replacement of a dummy gate structure with a gate structure including a ferroelectric material
US20080003743A1 (en) Method of manufacturing NAND flash memory device
US20110248328A1 (en) Stucture for flash memory cells
KR20060104879A (en) Semiconductor device increased channel length and method for manufacturing the same
US8389358B2 (en) Manufacturing method and structure of non-volatile memory
US9018708B2 (en) Semiconductor device and method for fabricating the same
TWI539567B (en) Semiconductor structure for reducing contact resistance
TW201405715A (en) Method of forming semiconductor structure
US20150104934A1 (en) Semiconductor device and method for fabricating the same
JP2018537866A (en) Integration of metal floating gates in non-volatile memories.
US20110156208A1 (en) Semiconductor device
KR20090036850A (en) Flash memory device and manufacturing method thereof
CN111244104A (en) SONOS memory and manufacturing method thereof
US8652911B2 (en) Semiconductor device and method of manufacturing the same
US20070231986A1 (en) Method of manufacturing flash memory device
TWI556411B (en) Manufacturing method and structure of non-volatile memory
US7202130B2 (en) Spacer for a split gate flash memory cell and a memory cell employing the same
JP2011142246A (en) Semiconductor storage device
US9123579B2 (en) 3D memory process and structures
JP2019009339A (en) Semiconductor device and method for manufacturing semiconductor device
US9006090B2 (en) Method for forming shielded gate of MOSFET
US20070221984A1 (en) Nonvolatile semiconductor memory device and method for manufacturing same
TW201445705A (en) Semiconductor device and manufacturing method of semiconductor device
WO2018123435A1 (en) Semiconductor device, and manufacturing method for same
TWI548039B (en) Method for fabricating semiconductor device