TWI553123B - Control apparatus and control method of converter blowing equipment - Google Patents
Control apparatus and control method of converter blowing equipment Download PDFInfo
- Publication number
- TWI553123B TWI553123B TW103133386A TW103133386A TWI553123B TW I553123 B TWI553123 B TW I553123B TW 103133386 A TW103133386 A TW 103133386A TW 103133386 A TW103133386 A TW 103133386A TW I553123 B TWI553123 B TW I553123B
- Authority
- TW
- Taiwan
- Prior art keywords
- blowing process
- blowing
- carbon concentration
- molten steel
- parameter
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/42—Constructional features of converters
- C21C5/46—Details or accessories
- C21C5/4673—Measuring and sampling devices
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/30—Regulating or controlling the blowing
- C21C5/35—Blowing from above and through the bath
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/38—Removal of waste gases or dust
- C21C5/40—Offtakes or separating apparatus for converter waste gases or dust
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
- Feedback Control In General (AREA)
Description
本發明是有關於一種轉爐吹煉設備的控制裝置及控制方法,對在吹煉處理途中取樣時點以後的爐料(charge)的送氧量進行控制,以使吹煉處理結束時的熔鋼中碳濃度達到目標碳濃度。 The present invention relates to a control device and a control method for a converter blowing apparatus, which controls the amount of oxygen supplied to the charge after sampling at the time of the blowing process, so that the carbon in the molten steel at the end of the blowing process The concentration reaches the target carbon concentration.
在鋼鐵廠內使用的轉爐吹煉設備中,是利用對熔鋼吹入氧氣的吹煉處理來進行熔鋼中的雜質的去除及升溫,藉此對吹煉處理結束時的熔鋼的成分及溫度進行控制,以使其等處於所指定的範圍內。然而,在吹煉處理時,熔鋼中的氧化反應加遽,熔鋼達到高溫,因此難以時時刻刻對熔鋼的成分及溫度進行測量。 In the converter blowing equipment used in the steel plant, the impurities in the molten steel are removed and heated by the blowing treatment of blowing oxygen into the molten steel, thereby the composition of the molten steel at the end of the blowing treatment and The temperature is controlled so that it is within the specified range. However, at the time of the blowing treatment, the oxidation reaction in the molten steel is increased, and the molten steel reaches a high temperature, so that it is difficult to measure the composition and temperature of the molten steel at all times.
因此,在實際作業中,是根據所取樣的吹煉處理途中的熔鋼的成分分析結果對在取樣時點的熔鋼中的碳濃度進行推斷,並利用所推斷的熔鋼中碳濃度及脫碳氧效率模型公式,而算出為了使熔鋼的成分及溫度處於所指定的範圍內而在取樣時點以後所需要的送氧量(以下記作必要送氧量)。再者,所述脫碳氧效率模型公式是利用熔鋼中碳濃度而算出脫碳氧效率的公式。脫碳氧效率是指吹入至轉爐內的每單位氧氣量的向轉爐外排出的碳量。通 常,若熔鋼中碳濃度高,則脫碳氧效率升高。 Therefore, in actual work, the carbon concentration in the molten steel at the sampling point is estimated based on the composition analysis result of the molten steel during the sampling of the blowing process, and the carbon concentration and decarburization in the molten steel are estimated. The oxygen efficiency model formula calculates the amount of oxygen to be supplied (hereinafter referred to as the required oxygen supply amount) after the sampling time in order to set the composition and temperature of the molten steel within the specified range. Furthermore, the decarburization efficiency model formula is a formula for calculating the decarburization efficiency by using the carbon concentration in the molten steel. The decarburization efficiency refers to the amount of carbon discharged to the outside of the converter per unit of oxygen amount blown into the converter. through Often, if the carbon concentration in the molten steel is high, the decarburization efficiency is increased.
此外,在所述脫碳氧效率模型公式中有設定參數,在作業時根據作業條件對設定參數的值進行變更,並根據已變更設定參數的值的脫碳氧效率模型公式算出脫碳氧效率。然而,脫碳氧效率模型公式所表示的熔鋼中碳濃度與脫碳氧效率的關係不僅因作業條件,而且因包含時間變化及季節變化在內的各種各樣的因素而複雜地變化。因此,通常難以對脫碳氧效率模型公式的設定參數進行適當地變更而高精度地算出脫碳氧效率。 Further, in the decarburization efficiency model formula, there is a setting parameter, and the value of the setting parameter is changed according to the working condition during the operation, and the decarburization efficiency is calculated according to the decarburization efficiency model formula in which the value of the setting parameter is changed. . However, the relationship between the carbon concentration in the molten steel and the decarburization efficiency expressed by the decarburization efficiency model formula is complicated not only by the working conditions but also by various factors including time changes and seasonal changes. Therefore, it is generally difficult to appropriately change the setting parameters of the decarburization efficiency model formula and calculate the decarburization efficiency with high precision.
由於如上所述的背景,已提出有用以對脫碳氧效率模型公式的設定參數進行適當設定的方法。具體而言,在專利文獻1中,記載有如下方法:選擇作業條件與下一次爐料接近的過往爐料,以使吹煉處理結束時熔鋼中碳濃度與實績值的誤差的合計值達到最小的方式來確定脫碳氧效率模型公式的設定參數,所述吹煉處理結束時熔鋼中碳濃度是利用所選擇的過往爐料的吹煉處理途中熔鋼中碳濃度及脫碳氧效率模型公式而算出。又,在專利文獻2中,記載有利用作業條件的回歸方程式來確定脫碳氧效率模型公式的設定參數即最大脫碳氧效率及脫碳氧效率降低係數的方法,且揭示排氣測量資訊的利用對回歸方程式的係數的確定有效。 Due to the background as described above, a method for appropriately setting the setting parameters of the decarburization efficiency model formula has been proposed. Specifically, Patent Document 1 describes a method of selecting a past charge having a working condition close to that of the next charge so as to minimize the total value of the error between the carbon concentration and the actual value in the molten steel at the end of the blowing process. The method determines the setting parameter of the decarburization oxygen efficiency model formula, and the carbon concentration in the molten steel at the end of the blowing treatment is a model formula of carbon concentration and decarburization efficiency in the molten steel during the blowing process of the selected past charge. Calculated. Further, Patent Document 2 describes a method for determining a maximum decarburization efficiency and a decarburization efficiency reduction coefficient, which are set parameters of a decarburization efficiency model formula, using a regression equation of operating conditions, and discloses exhaust gas measurement information. It is effective to use the determination of the coefficient of the regression equation.
現有技術文獻 Prior art literature
專利文獻 Patent literature
專利文獻1:日本專利特開2010-7150號公報 Patent Document 1: Japanese Patent Laid-Open Publication No. 2010-7150
專利文獻2:日本專利特開2012-117090號公報 Patent Document 2: Japanese Patent Laid-Open Publication No. 2012-117090
但是,專利文獻1所記載的方法是僅利用作業條件及所取樣的熔鋼的成分分析值來確定脫碳氧效率模型公式的設定參數。因此,無法考慮到因各種外部干擾或未測量資訊而產生的吹煉處理反應的推移變化,從而在精度的提高方面有侷限。再者,作為所述外部干擾或未測量資訊,可例示投入至熔鋼中的輔料的成分或良率、測量誤差等。又,作為實時掌握吹煉處理反應的推移變化的1個指標,有排氣流量或成分分析值,但在專利文獻1中並未涉及該些資訊的利用。 However, the method described in Patent Document 1 determines the setting parameter of the decarburization efficiency model formula using only the working conditions and the component analysis values of the sampled molten steel. Therefore, variations in the progress of the blowing treatment reaction due to various external disturbances or unmeasured information cannot be considered, and there is a limitation in improving the accuracy. Further, as the external disturbance or unmeasured information, components or yields, measurement errors, and the like of the excipients introduced into the molten steel can be exemplified. In addition, there is an exhaust gas flow rate or a component analysis value as one index for realizing the change in the transition of the blowing treatment reaction in real time. However, Patent Document 1 does not disclose the use of such information.
另一方面,在專利文獻2所記載的方法中,是藉由將利用排氣測量資訊而算出的爐內蓄氧量包含於一次回歸方程式的說明變量中來考慮吹煉處理反應的推移變化。然而,難以利用一次回歸方程式來高精度地表達以非線性數式表示的脫碳氧效率模型公式的設定參數。因此,根據專利文獻2所記載的方法,藉由脫碳氧效率模型公式而獲得的脫碳氧效率的計算精度有可能下降。 On the other hand, in the method described in Patent Document 2, the change in the blowing process reaction is considered by including the amount of stored oxygen in the furnace calculated by the exhaust gas measurement information in the explanatory variable of the primary regression equation. However, it is difficult to express the setting parameters of the decarburization oxygen efficiency model formula expressed by the nonlinear equation with high precision using one regression equation. Therefore, according to the method described in Patent Document 2, the calculation accuracy of the decarburization efficiency obtained by the decarburization efficiency model formula may be lowered.
再者,雖可考慮到亦存在如下情況,即,若對排氣測量資訊進行加工便可高精度地表達設定參數,但在專利文獻2中,並無排氣測量資訊的加工方法的相關具體描述。又,為了進行回歸計算,需要預先針對過往的爐料算出最佳的最大脫碳氧效率及脫碳氧效率降低係數,然而在專利文獻2中並無其計算方法的相關具體描述。 In addition, it is conceivable that the setting parameters can be expressed with high precision if the exhaust gas measurement information is processed. However, in Patent Document 2, there is no specific processing method of the exhaust gas measurement information. description. Further, in order to perform the regression calculation, it is necessary to calculate the optimum maximum decarburization efficiency and the decarburization efficiency reduction coefficient for the past charge in advance, but there is no specific description of the calculation method in Patent Document 2.
此外,脫碳氧效率模型公式的設定參數的值不一定限於在1爐料份的吹煉處理過程中不發生變化。根據發明者等人的資料分析,獲得如下見解:特別是當吹入至轉爐內的攪拌氣體的流量在爐料中發生變化時,脫碳氧效率模型公式的設定參數會受到攪拌氣體的流量的影響而發生變化。但是,專利文獻1及專利文獻2所記載的方法並未考慮到1爐料份的吹煉處理過程中的設定參數的值的變化。因此,根據專利文獻1、專利文獻2所記載的方法,藉由脫碳氧效率模型公式而獲得的脫碳氧效率的計算精度有可能下降。 Further, the value of the setting parameter of the decarburization efficiency model formula is not necessarily limited to that it does not change during the blowing process of the 1 charge portion. According to the data analysis by the inventors and the like, the following findings are obtained: in particular, when the flow rate of the stirring gas blown into the converter changes in the charge, the set parameter of the decarburization efficiency model formula is affected by the flow rate of the stirred gas. And it has changed. However, the methods described in Patent Document 1 and Patent Document 2 do not take into consideration the change in the value of the setting parameter during the blowing process of the one charge portion. Therefore, according to the methods described in Patent Document 1 and Patent Document 2, the calculation accuracy of the decarburization efficiency obtained by the decarburization efficiency model formula may be lowered.
本發明是為了解決如上所述的問題而成者,目的在於提供一種轉爐吹煉設備的控制裝置及控制方法,可藉由高精度地算出脫碳氧效率,而將吹煉處理結束時的熔鋼中碳濃度高精度地控制成目標碳濃度。 The present invention has been made to solve the above problems, and an object of the invention is to provide a control device and a control method for a converter blowing apparatus, which are capable of calculating the decarburization efficiency with high precision and melting at the end of the blowing process. The carbon concentration in the steel is controlled to a target carbon concentration with high precision.
為了解決所述問題而達成目的,本發明的轉爐吹煉設備的控制裝置是對在吹煉處理途中取樣時點以後的爐料的送氧量進行控制,以使吹煉處理結束時的熔鋼中碳濃度達到目標碳濃度,所述轉爐吹煉設備的控制裝置的特徵在於包括:模型公式計算部,利用模型公式算出脫碳氧效率,所述模型公式至少將熔鋼中碳濃度及攪拌氣體流量設為輸入變量,將脫碳氧效率設為輸出變量,且具有1個以上的設定參數;模型參數修正部,針對吹煉處理已結束的多個過往爐料,利用在吹煉處理途中取樣時點的熔鋼 中碳濃度、排氣的流量及排氣的成分濃度以及吹煉處理結束時的熔鋼中碳濃度、排氣的流量及排氣的成分濃度,對至少1個所述設定參數進行修正;過往處理權數計算部,根據吹煉處理已結束的多個過往爐料的作業條件與吹煉處理過程中的爐料的作業條件的差異、以及吹煉處理途中的爐料的相對於在吹煉處理途中取樣時點的過往爐料的模型公式的相似度,算出各過往爐料的權數;吹煉過程中模型參數生成部,利用已藉由所述模型參數修正部而修正的各過往爐料的設定參數及藉由所述過往處理權數計算部而算出的各過往爐料的權數,算出吹煉處理過程中的爐料的設定參數;以及送氧量計算部,利用脫碳氧效率,算出在吹煉處理途中取樣時點以後的吹煉處理途中的爐料的送氧量,所述脫碳氧效率是所述模型公式計算部利用在吹煉處理途中取樣時點所測量的熔鋼中碳濃度、目標碳濃度及藉由所述吹煉過程中模型參數生成部而算出的設定參數而算出。 In order to achieve the object of solving the above problems, the control device for the converter blowing apparatus of the present invention controls the amount of oxygen supplied to the charge after the sampling point in the middle of the blowing process so that the carbon in the molten steel at the end of the blowing process The concentration control reaches the target carbon concentration, and the control device of the converter blowing apparatus is characterized by comprising: a model formula calculation unit that calculates the decarburization oxygen efficiency by using a model formula, wherein the model formula sets at least the carbon concentration and the agitation gas flow rate in the molten steel. For the input variable, the decarburization efficiency is set as the output variable, and has one or more setting parameters. The model parameter correction unit uses the melting point at the time of sampling during the blowing process for the plurality of past charges that have been completed in the blowing process. steel At least one of the set parameters is corrected for the medium carbon concentration, the flow rate of the exhaust gas, the component concentration of the exhaust gas, the carbon concentration in the molten steel at the end of the blowing process, the flow rate of the exhaust gas, and the component concentration of the exhaust gas; The processing weight calculation unit is based on the difference between the operating conditions of the plurality of past charges that have been completed in the blowing process and the operating conditions of the charge during the blowing process, and the time during which the charge in the middle of the blowing process is sampled during the blowing process. The similarity of the model formula of the past charge, the weight of each past charge is calculated; the model parameter generation unit during the blowing process uses the setting parameters of each of the past charge corrected by the model parameter correction unit and by the In the past, the weight of each of the past charges calculated by the processing weight calculation unit is used to calculate the setting parameter of the charge during the blowing process, and the oxygen supply amount calculation unit calculates the blowing after the sampling time in the middle of the blowing process by the decarburization efficiency. The amount of oxygen supplied to the charge during the refining process, wherein the decarburization efficiency is measured by the model formula calculation unit at the time of sampling during the blowing process The carbon concentration in the molten steel, the target carbon concentration, and the setting parameters calculated by the model parameter generating unit in the blowing process are calculated.
本發明的轉爐吹煉設備的控制裝置如所述發明,其特徵在於:所述模型參數修正部是對設定參數進行修正,以使在吹煉處理途中取樣時點所測量的熔鋼中碳濃度與使所述模型公式成立的在吹煉處理途中取樣時點的熔鋼中碳濃度的差、在吹煉處理結束時所測量的熔鋼中碳濃度與使所述模型公式成立的吹煉處理結束時的熔鋼中碳濃度的差、及各設定參數的與標準值的差的加權平方和最小化。 A control device for a converter blowing apparatus according to the present invention is characterized in that: the model parameter correcting unit corrects the setting parameter so that the carbon concentration in the molten steel measured at the point of sampling during the blowing process is When the model formula is established, the difference in carbon concentration in the molten steel at the time of sampling in the middle of the blowing process, the carbon concentration in the molten steel measured at the end of the blowing process, and the blowing process in which the model formula is established are completed. The difference in the carbon concentration in the molten steel and the weighted squared sum of the differences between the set parameters and the standard values are minimized.
本發明的轉爐吹煉設備的控制裝置如所述發明,其特徵 在於:所述過往處理權數計算部是使在吹煉處理途中取樣時點及吹煉處理即將結束前的每單位熔鋼重量的攪拌氣體流量包含於所述作業條件中。 The control device of the converter blowing apparatus of the present invention is characterized by the invention described above In the past processing weight calculation unit, the flow rate of the stirring gas per unit weight of the molten steel before the end of the sampling process and the end of the blowing process is included in the working conditions.
為了解決如上所述的問題而達成目的,本發明的轉爐吹煉設備的控制方法是對在吹煉處理途中取樣時點以後的爐料的送氧量進行控制,以使吹煉處理結束時的熔鋼中碳濃度達到目標碳濃度,所述轉爐吹煉設備的控制方法的特徵在於包括:修正步驟,針對吹煉處理已結束的多個過往爐料,利用在吹煉處理途中取樣時點的熔鋼中碳濃度、排氣的流量及排氣的成分濃度以及吹煉處理結束時的熔鋼中碳濃度、排氣的流量及排氣的成分濃度,對模型公式的至少1個設定參數進行修正,所述模型公式至少將熔鋼中碳濃度及攪拌氣體流量設為輸入變量,將脫碳氧效率設為輸出變量;權數計算步驟,根據吹煉處理已結束的多個過往爐料的作業條件與吹煉處理過程中的爐料的作業條件的差異、以及吹煉處理途中的爐料的相對於在吹煉處理途中取樣時點的過往爐料的模型公式的相似度,算出各過往爐料的權數;參數計算步驟,利用在所述修正步驟中經修正的各過往爐料的設定參數及在所述權數計算步驟中所算出的各過往爐料的權數,算出吹煉處理過程中的爐料的設定參數;以及利用脫碳氧效率,算出在吹煉處理途中取樣時點以後的吹煉處理途中的爐料的送氧量,所述脫碳氧效率是利用在吹煉處理途中取樣時點所測量的熔鋼中碳濃度、目標碳濃度以及在所述參數計算步驟中所算出的設定參數,根據所述模型 公式而算出。 In order to achieve the object of solving the above problems, the control method of the converter blowing apparatus of the present invention is to control the amount of oxygen supplied to the charge after the sampling point in the middle of the blowing process so that the molten steel at the end of the blowing process The medium carbon concentration reaches the target carbon concentration, and the control method of the converter blowing apparatus is characterized by comprising: a correction step of using carbon in the molten steel at the time of sampling during the blowing process for the plurality of past charges that have been completed in the blowing process Correcting at least one setting parameter of the model formula by the concentration, the flow rate of the exhaust gas, the component concentration of the exhaust gas, the carbon concentration in the molten steel at the end of the blowing process, the flow rate of the exhaust gas, and the component concentration of the exhaust gas, The model formula sets at least the carbon concentration and the agitation gas flow rate in the molten steel as input variables, and the decarburization oxygen efficiency as an output variable; the weight calculation step, according to the working conditions and the blowing treatment of the plurality of past charge materials that have been completed by the blowing process The difference in the working conditions of the charge during the process, and the model of the charge in the middle of the blowing process relative to the previous charge at the point of sampling during the blowing process The similarity of the formula is used to calculate the weight of each of the past charges; the parameter calculation step is calculated by using the set parameters of the past charge corrected in the correction step and the weights of the respective charge calculated in the weight calculation step. The setting parameter of the charge during the blowing process; and the oxygen-removing oxygen efficiency is used to calculate the oxygen supply amount of the charge during the blowing process after the sampling time in the middle of the blowing process, and the decarburization efficiency is utilized in blowing The carbon concentration in the molten steel measured at the sampling point in the process, the target carbon concentration, and the set parameters calculated in the parameter calculation step, according to the model Calculated by the formula.
根據本發明的轉爐吹煉設備的控制裝置及控制方法,藉由高精度地算出脫碳氧效率,可將吹煉處理結束時的熔鋼中碳濃度高精度地控制成目標碳濃度。 According to the control device and the control method of the converter blowing apparatus of the present invention, by calculating the decarburization efficiency with high precision, the carbon concentration in the molten steel at the end of the blowing process can be accurately controlled to the target carbon concentration.
10‧‧‧控制終端機 10‧‧‧Control terminal
20‧‧‧資料庫伺服器(DB伺服器) 20‧‧‧Database Server (DB Server)
20a‧‧‧作業資料庫(作業DB) 20a‧‧‧Working database (job DB)
20b‧‧‧主資訊資料庫(主資訊DB) 20b‧‧‧Main Information Database (Main Information DB)
20c‧‧‧參數資料庫(參數DB) 20c‧‧‧Parameter database (parameter DB)
30‧‧‧控制裝置 30‧‧‧Control device
31‧‧‧輸入輸出部 31‧‧‧Input and Output Department
32‧‧‧第1處理部 32‧‧‧First Processing Department
32a‧‧‧模型參數修正部 32a‧‧‧Model Parameter Correction Department
33‧‧‧第2處理部 33‧‧‧2nd Processing Department
33a‧‧‧過往處理權數計算部 33a‧‧‧Processing Weight Calculation Department
33b‧‧‧吹煉過程中模型參數生成部 33b‧‧‧Model parameter generation department during the blowing process
33c‧‧‧送氧量計算部 33c‧‧‧Oxygen supply calculation department
34‧‧‧模型公式計算部 34‧‧‧Model Formula Calculation Department
40‧‧‧輸入裝置 40‧‧‧ Input device
50‧‧‧顯示裝置 50‧‧‧ display device
100‧‧‧轉爐 100‧‧‧ converter
101‧‧‧熔鋼 101‧‧‧Fused steel
102‧‧‧噴槍 102‧‧‧ spray gun
103‧‧‧熔渣 103‧‧‧ slag
104‧‧‧導管 104‧‧‧ catheter
105‧‧‧排氣檢測部 105‧‧‧Exhaust detection department
106‧‧‧排氣流量計 106‧‧‧Exhaust flowmeter
107‧‧‧通氣孔 107‧‧‧Ventinel
108‧‧‧流量計 108‧‧‧ Flowmeter
S1~S4、S11~S17‧‧‧步驟 S1~S4, S11~S17‧‧‧ steps
圖1是表示應用作為本發明的一實施形態的轉爐吹煉設備的控制裝置及控制方法的轉爐吹煉設備及其控制系統的構成的示意圖。 1 is a schematic diagram showing a configuration of a converter blowing device and a control system to which a control device and a control method of a converter blowing device according to an embodiment of the present invention are applied.
圖2是表示圖1所示的控制裝置的構成的方塊圖。 Fig. 2 is a block diagram showing the configuration of the control device shown in Fig. 1;
圖3是表示攪拌氣體的影響係數的函數例的圖。 3 is a view showing an example of a function of an influence coefficient of a stirring gas.
圖4是表示熔鋼中碳濃度與脫碳氧效率的關係的圖。 Fig. 4 is a graph showing the relationship between the carbon concentration in the molten steel and the decarburization efficiency.
圖5是表示作為本發明的一實施形態的模型參數修正處理的流程的流程圖。 Fig. 5 is a flowchart showing the flow of model parameter correction processing as an embodiment of the present invention.
圖6是表示作為本發明的一實施形態的送氧量計算處理的流程的流程圖。 Fig. 6 is a flowchart showing the flow of oxygen supply amount calculation processing according to an embodiment of the present invention.
圖7是表示單位攪拌氣體流量與累計送氧量的關係例的圖。 Fig. 7 is a view showing an example of the relationship between the unit stirring gas flow rate and the cumulative oxygen supply amount.
以下,參照圖式,對作為本發明的一實施形態的轉爐吹煉設備的控制裝置及控制方法進行說明。 Hereinafter, a control device and a control method of a converter blowing apparatus according to an embodiment of the present invention will be described with reference to the drawings.
[轉爐吹煉設備的構成] [Composition of converter blowing equipment]
首先,參照圖1,對應用作為本發明的一實施形態的轉爐吹煉設備的控制裝置及控制方法的轉爐吹煉設備的構成進行說明。 First, a configuration of a converter blowing device to which a control device and a control method of a converter blowing device according to an embodiment of the present invention are applied will be described with reference to Fig. 1 .
圖1是表示應用作為本發明的一實施形態的轉爐吹煉設備的控制裝置及控制方法的轉爐吹煉設備及其控制系統的構成的示意圖。如圖1所示,在應用作為本發明的一實施形態的轉爐吹煉設備的控制裝置及控制方法的轉爐吹煉設備中,在轉爐100內的熔鋼101上配置噴槍(lance)102,自噴槍102的前端部向熔鋼101噴出高壓氧氣。藉由自噴槍102噴出的高壓氧氣,熔鋼101內的雜質成分被氧化而進入至熔渣(slag)103內(吹煉處理)。 1 is a schematic diagram showing a configuration of a converter blowing device and a control system to which a control device and a control method of a converter blowing device according to an embodiment of the present invention are applied. As shown in FIG. 1, in a converter blowing apparatus to which a control device and a control method of a converter blowing apparatus according to an embodiment of the present invention are applied, a lance 102 is disposed on a molten steel 101 in the converter 100, and The front end portion of the spray gun 102 ejects high-pressure oxygen to the molten steel 101. The high-pressure oxygen gas ejected from the lance 102 causes the impurity component in the molten steel 101 to be oxidized and enters the slag 103 (blowing treatment).
在轉爐100的上部,設置有排氣導煙用的導管(duct)104,在導管104的內部,設置有排氣檢測部105及排氣流量計106,所述排氣檢測部105用以對伴隨著吹煉處理而排出的排氣的各成分(例如,CO、CO2、O2、N2、H2O、Ar等)的濃度進行檢測,所述排氣流量計106用以對排氣的流量進行測量。排氣的流量是藉由對文丘里管(Venturi tube)或節流口(orifice)的上游與下游的差壓進行測量,基於測量值進行計算而求出。由於排氣為氣體,體積因溫度或壓力而發生變化,因此計算值被換算成標準狀態(例如溫度為0℃,壓力為1個大氣壓)的氣體流量。 A duct 104 for exhaust gas guiding is provided in an upper portion of the converter 100, and an exhaust detecting unit 105 and an exhaust flow meter 106 are provided inside the duct 104, and the exhaust detecting unit 105 is used to The concentration of each component (for example, CO, CO 2 , O 2 , N 2 , H 2 O, Ar, etc.) of the exhaust gas discharged along with the blowing process is detected, and the exhaust flow meter 106 is used to align The flow of gas is measured. The flow rate of the exhaust gas is obtained by measuring the differential pressure between the upstream and downstream of a Venturi tube or an orifice, and calculating based on the measured value. Since the exhaust gas is a gas and the volume changes due to temperature or pressure, the calculated value is converted into a gas flow rate in a standard state (for example, a temperature of 0 ° C and a pressure of 1 atm).
在轉爐100內的熔鋼101中,經由形成於轉爐100的底部的通氣孔107吹入作為惰性氣體的Ar氣體,藉由Ar氣體對熔鋼101進行攪拌,藉此促進高壓氧氣與熔鋼101的反應。吹入至熔鋼101的Ar氣體的流量(攪拌氣體流量)是利用流量計108來 測量。熔鋼101的溫度及成分是在吹煉處理途中暫時測量,並根據所測量的資訊,確定高壓氧氣的供給量(送氧量)及供給速度(送氧速度)或攪拌氣體流量等。又,在吹煉處理即將開始前及吹煉處理結束後,進行熔鋼101的溫度及成分的分析。通常,吹煉處理的操作量是在吹煉處理開始前暫時設定,並在獲得吹煉處理途中的熔鋼的溫度及成分的測量值之後加以修正。本發明是有關於後者的送氧量的確定。 In the molten steel 101 in the converter 100, Ar gas as an inert gas is blown through a vent hole 107 formed in the bottom of the converter 100, and the molten steel 101 is stirred by Ar gas, thereby promoting high-pressure oxygen and molten steel 101. Reaction. The flow rate of the Ar gas blown into the molten steel 101 (stirring gas flow rate) is obtained by using the flow meter 108 measuring. The temperature and composition of the molten steel 101 are temporarily measured during the blowing process, and the supply amount (oxygen supply amount) of high pressure oxygen, the supply speed (oxygen delivery rate), the flow rate of the agitation gas, and the like are determined based on the measured information. Further, the temperature and composition of the molten steel 101 are analyzed immediately before the start of the blowing process and after the completion of the blowing process. Usually, the operation amount of the blowing treatment is temporarily set before the start of the blowing treatment, and is corrected after obtaining the measured value of the temperature and composition of the molten steel in the middle of the blowing treatment. The present invention relates to the determination of the amount of oxygen supplied to the latter.
[控制系統的構成] [Composition of control system]
其次,參照圖1,對應用作為本發明的一實施形態的轉爐吹煉設備的控制裝置及控制方法的轉爐吹煉設備的控制系統的構成進行說明。 Next, a configuration of a control system of a converter blowing apparatus to which a control device and a control method of a converter blowing apparatus according to an embodiment of the present invention are applied will be described with reference to FIG.
如圖1所示,應用作為本發明的一實施形態的轉爐吹煉設備的控制裝置及控制方法的轉爐吹煉設備的控制系統包括控制終端機10、資料庫伺服器(DB伺服器)20、控制裝置30、輸入裝置40及顯示裝置50作為主要構成要素。 As shown in FIG. 1, a control system of a converter blowing apparatus to which a control device and a control method of a converter blowing apparatus according to an embodiment of the present invention is applied includes a control terminal 10, a database server (DB server) 20, The control device 30, the input device 40, and the display device 50 are main components.
控制終端機10由個人電腦(personal computer)或工作站(work station)等資訊處理裝置構成。控制終端機10對送氧量、送氧速度、攪拌氣體流量、噴槍102的高度及輔料投入量進行控制,以使熔鋼101的成分濃度達到所需的範圍內,並且收集送氧量、送氧速度、攪拌氣體流量、噴槍高度及輔料投入量的實績值的資料作為操作量實績。 The control terminal 10 is composed of an information processing device such as a personal computer or a work station. The control terminal 10 controls the oxygen supply amount, the oxygen supply rate, the agitation gas flow rate, the height of the spray gun 102, and the auxiliary material input amount so that the component concentration of the molten steel 101 reaches a desired range, and the oxygen supply amount is collected and sent. The data on the actual value of the oxygen velocity, the agitated gas flow rate, the height of the spray gun, and the amount of the auxiliary input were used as the operation amount.
DB伺服器20包括作業資料庫(作業DB)20a、主資訊 資料庫(主資訊DB)20b及參數資料庫(參數DB)20c。 The DB server 20 includes a job database (job DB) 20a, main information Database (master information DB) 20b and parameter database (parameter DB) 20c.
作業DB 20a儲存有吹煉處理已結束的過往爐料的相關時間序列及時間序列以外的作業實績資訊、以及執行吹煉處理過程中的爐料的相關時間序列及時間序列以外的作業實績資訊。時間序列的作業實績資訊包括操作量實績的相關資料(送氧量、送氧速度、攪拌氣體流量、噴槍高度及輔料投入量的時間序列資訊)、操作量計劃的相關資料(預定送氧量、預定送氧速度、預定攪拌氣體流量、預定噴槍高度及預定輔料投入量的時間序列資訊)、及排氣實績的相關資料(排氣的成分濃度及流量的時間序列資訊)。時間序列以外的作業實績資訊包括規格資訊(熔鐵資訊(鋼種)、製造規格(目標碳濃度、目標溫度))、操作量的計劃的相關資料(預定總送氧量、預定輔料總投入量、預定攪拌氣體總量),以及總送氧量的實績值及吹煉處理前後與吹煉處理過程中的熔鋼的成分濃度及溫度的相關資料。 The work DB 20a stores work time information other than the relevant time series and time series of the past charge that has been completed in the blowing process, and job performance information other than the time series and the time series of the charge during the execution of the blowing process. The time series of performance information includes information on the actual amount of operation (oxygen delivery rate, oxygen delivery rate, agitated gas flow rate, spray gun height, and time series information of the auxiliary material input amount), and information on the operation amount plan (scheduled oxygen supply amount, The scheduled oxygen delivery rate, the predetermined agitation gas flow rate, the predetermined spray gun height, and the time series information of the predetermined auxiliary material input amount, and the relevant information of the exhaust performance (time series information of the component concentration and flow rate of the exhaust gas). The actual performance information other than the time series includes specification information (melt iron information (steel type), manufacturing specifications (target carbon concentration, target temperature)), and information on the planned operation amount (predetermined total oxygen supply amount, total predetermined auxiliary material input amount, The amount of the predetermined stirring gas, and the actual value of the total oxygen supply amount, and the relevant information of the composition concentration and temperature of the molten steel before and after the blowing treatment and the blowing process.
主資訊DB 20b儲存有為了執行下述模型參數修正處理及送氧量計算處理所需要的物理常數、臨限值、設定參數等資料。 The main information DB 20b stores data such as physical constants, threshold values, setting parameters, and the like required to execute the model parameter correction processing and the oxygen supply amount calculation processing described below.
參數DB 20c儲存有在下述模型參數修正處理中針對各過往爐料所修正的脫碳氧效率模型公式的設定參數。 The parameter DB 20c stores setting parameters of the decarburization oxygen efficiency model formula corrected for each of the past charges in the model parameter correction processing described below.
控制裝置30將藉由控制終端機10而收集到的操作量實績、以及藉由排氣檢測部105及排氣流量計106而測量到的排氣的成分濃度及流量(排氣實績)設為吹煉過程中爐料資訊,根據吹煉過程中爐料資訊算出必要送氧量,且將計算結果輸出至控制 終端機10或顯示裝置50。關於控制裝置30的詳細構成將在後文描述。 The control device 30 sets the actual operation amount collected by the control terminal 10 and the component concentration and flow rate (exhaust performance) of the exhaust gas measured by the exhaust gas detecting unit 105 and the exhaust gas flow meter 106. In the blowing process, the charge information is calculated according to the charge information in the blowing process, and the calculation result is output to the control. Terminal 10 or display device 50. The detailed configuration of the control device 30 will be described later.
輸入裝置40由鍵盤或滑鼠指標(mouse pointer)等輸入裝置構成,在輸入下述處理的相關各種資訊時加以操作。顯示裝置50由陰極射線管(Cathode Ray Tube,CRT)或液晶顯示器等顯示裝置構成,顯示控制裝置30的各種處理結果。 The input device 40 is constituted by an input device such as a keyboard or a mouse pointer, and is operated when various kinds of information related to the following processing are input. The display device 50 is constituted by a display device such as a cathode ray tube (CRT) or a liquid crystal display, and displays various processing results of the control device 30.
[控制裝置的構成] [Composition of control device]
其次,參照圖2,對控制裝置30的構成進行說明。 Next, the configuration of the control device 30 will be described with reference to Fig. 2 .
圖2是表示作為本發明的一實施形態的控制裝置30的構成的方塊圖。如圖2所示,作為本發明的一實施形態的控制裝置30包括輸入輸出部31、第1處理部32、第2處理部33及模型公式計算部34。輸入輸出部31對控制裝置30與外部裝置之間的資訊的發送與接收進行控制。第1處理部32、第2處理部33及模型公式計算部34藉由控制裝置30內的運算處理裝置執行電腦程式來實現。第1處理部32包括模型參數修正部32a。第2處理部33包括過往處理權數計算部33a、吹煉過程中模型參數生成部33b及送氧量計算部33c。關於該些各部分的功能將在後文描述。 FIG. 2 is a block diagram showing a configuration of a control device 30 according to an embodiment of the present invention. As shown in FIG. 2, the control device 30 according to an embodiment of the present invention includes an input/output unit 31, a first processing unit 32, a second processing unit 33, and a model formula calculation unit 34. The input/output unit 31 controls transmission and reception of information between the control device 30 and an external device. The first processing unit 32, the second processing unit 33, and the model formula calculation unit 34 are realized by executing a computer program by the arithmetic processing unit in the control device 30. The first processing unit 32 includes a model parameter correction unit 32a. The second processing unit 33 includes a past processing weight calculation unit 33a, a model parameter generation unit 33b during the blowing process, and a oxygen supply amount calculation unit 33c. The functions of each of these sections will be described later.
具有如上所述的構成的控制裝置30藉由執行以下所示的模型參數修正處理及送氧量計算處理,而高精度地算出脫碳氧效率,從而將吹煉處理結束時的熔鋼中碳濃度高精度地控制成目標碳濃度。以下,對執行模型參數修正處理及送氧量計算處理時的控制裝置30的動作進行說明。 The control device 30 having the above-described configuration performs the model parameter correction processing and the oxygen supply amount calculation processing described below, thereby accurately calculating the decarburization efficiency and thereby carbon in the molten steel at the end of the blowing treatment. The concentration is controlled to a target carbon concentration with high precision. Hereinafter, the operation of the control device 30 when the model parameter correction processing and the oxygen supply amount calculation processing are executed will be described.
[模型參數修正處理] [Model parameter correction processing]
首先,參照圖3至圖5,對作為本發明的一實施形態的模型參數修正處理的流程進行說明。 First, a flow of model parameter correction processing as an embodiment of the present invention will be described with reference to Figs. 3 to 5 .
在作為本發明的一實施形態的控制裝置30中,模型參數修正部32a在經由輸入輸出部31獲得吹煉處理已結束的爐料的作業實績資訊時,將作業時所使用的脫碳氧效率模型公式的設定參數修正為與作業實績資訊相一致。 In the control device 30 according to the embodiment of the present invention, the model parameter correcting unit 32a obtains the decarburization efficiency model used in the work when the work performance information of the charge that has been completed in the blowing process is obtained via the input/output unit 31. The setting parameters of the formula are corrected to be consistent with the job performance information.
在本實施形態中,脫碳氧效率模型公式是藉由非線性函數或區間線性函數來描述,例如,如以下所示的數式(1)、數式(2)般表示。以下所示的數式(1)是用以計算相對於送氧量單位消耗量(Nm3/噸:將送氧量[Nm3]除以處理對象的熔鋼重量[噸]所得者)的熔鋼中碳濃度減少量(%)的公式。數式(1)中,參數C為熔鋼中碳濃度,k、q、p為設定參數。又,參數α為攪拌氣體(Ar氣體)的影響係數,如由以下的數式(2)所示,成為藉由攪拌氣體流量單位消耗量(Nm3/Hr/噸:將攪拌氣體流量除以處理對象的熔鋼重量所得者)Vb而確定的值。攪拌氣體影響係數α的值既可藉由表格(table)來賦予,亦可藉由連續函數來賦予。將攪拌氣體影響係數α的函數例示於圖3。此時,模型參數修正部32a自主資訊DB 20b讀入函數的設定參數。 In the present embodiment, the decarburization efficiency model formula is described by a nonlinear function or an interval linear function, and is expressed, for example, by the formula (1) and the formula (2) shown below. The following formula (1) is used to calculate the amount of consumption per unit of oxygen supply (Nm 3 /ton: the oxygen supply amount [Nm 3 ] divided by the weight of the molten steel to be treated [ton]) The formula for the amount of carbon concentration reduction (%) in molten steel. In the formula (1), the parameter C is the carbon concentration in the molten steel, and k, q, and p are setting parameters. Further, the parameter α is an influence coefficient of the stirring gas (Ar gas), and is expressed by the stirring gas flow rate unit (Nm 3 /Hr/ton: dividing the stirring gas flow rate by the following formula (2) The value determined by the treatment of the weight of the molten steel of the object) V b . The value of the agitation gas influence coefficient α can be given by a table or by a continuous function. A function of the agitation gas influence coefficient α is exemplified in Fig. 3 . At this time, the model parameter correcting unit 32a reads the setting parameters of the function from the autonomous information DB 20b.
[數式1]
[數式2]α=f(Vb)…(2) [Expression 2] α = f (V b ) (2)
圖4表示攪拌氣體影響係數α為固定時的數式(1)的曲線圖。如圖4所示,隨著熔鋼中碳濃度C的值增加,脫碳氧效率dC/dO2上升。但是,脫碳氧效率dC/dO2不會超過設定參數k。其理由在於,在熔鋼中碳濃度C為充分的狀態下,所吹入的氧氣量會對脫碳量形成制約。又,若熔鋼中碳濃度C低於設定參數q則脫碳氧效率為0,是指若熔鋼中碳濃度C未達設定參數q以上的值,則脫碳反應自身不會產生。又,若改變設定參數p,則如圖4所示,脫碳反應速度發生變化。 Fig. 4 is a graph showing the equation (1) when the stirring gas influence coefficient α is fixed. As shown in FIG. 4, as the value of the carbon concentration C in the molten steel increases, the decarburization oxygen efficiency dC/dO 2 rises. However, the decarburization efficiency dC/dO 2 does not exceed the set parameter k. The reason for this is that, in a state in which the carbon concentration C in the molten steel is sufficient, the amount of oxygen to be blown forms a restriction on the amount of decarburization. Further, if the carbon concentration C in the molten steel is lower than the set parameter q, the decarburization efficiency is 0, which means that if the carbon concentration C in the molten steel does not reach the value of the set parameter q or more, the decarburization reaction itself does not occur. Further, when the setting parameter p is changed, as shown in Fig. 4, the decarburization reaction rate changes.
在數式(1)所示的脫碳氧效率模型公式中,是在設定參數p上乘以攪拌氣體影響係數α,因此若攪拌氣體影響係數α的值變小,則脫碳反應速度增加。在本發明中,是藉由將攪拌氣體影響係數α導入至脫碳氧效率模型公式中,來謀求模型精度的提高。設定參數如以上所示有k、p、q三個,但針對每個爐料修正哪個設定參數,只要根據作為對象的轉爐吹煉設備的特性來確定即可。在本實施形態中,設定參數k的值為固定,僅對設定參數p、設定參數q的進行修正。即,將設定參數p、設定參數q的 標準值設為P、Q,將修正量設為δp、δq,利用以下的數式(3)、數式(4)所示的和的形式對標準值P、標準值Q進行修正。 In the decarburization efficiency model formula shown by the formula (1), the set parameter p is multiplied by the agitation gas influence coefficient α. Therefore, if the value of the agitation gas influence coefficient α becomes small, the decarburization reaction rate increases. In the present invention, the model accuracy is improved by introducing the stirring gas influence coefficient α into the decarburization oxygen efficiency model formula. The setting parameters are three, k, p, and q, but it is sufficient to correct which setting parameter is to be determined for each charge as long as it is based on the characteristics of the target converter equipment. In the present embodiment, the value of the setting parameter k is fixed, and only the setting parameter p and the setting parameter q are corrected. That is, the parameter p and the setting parameter q will be set. The standard value is P and Q, and the correction amount is δp and δq, and the standard value P and the standard value Q are corrected by the combination of the following equations (3) and (4).
[數式3]P+δp…(3) [Expression 3] P+δp...(3)
[數式4]Q+δq…(4) [Expression 4] Q+δq...(4)
以下,參照圖5,對作為本發明的一實施形態的模型參數修正處理的流程進行具體說明。 Hereinafter, the flow of the model parameter correction processing which is one embodiment of the present invention will be specifically described with reference to Fig. 5 .
圖5是表示作為本發明的一實施形態的模型參數修正處理的流程的流程圖。圖5所示的流程圖以吹煉處理已結束的時序為開始,模型參數修正處理進入至步驟S1的處理。 Fig. 5 is a flowchart showing the flow of model parameter correction processing as an embodiment of the present invention. The flowchart shown in FIG. 5 starts with the timing at which the blowing process has ended, and the model parameter correction processing proceeds to the processing of step S1.
在步驟S1的處理中,模型參數修正部32a經由輸入輸出部31獲得吹煉處理已結束的爐料的作業實績資訊。藉此,步驟S1的處理結束,模型參數修正處理進入至步驟S2的處理。 In the process of step S1, the model parameter correcting unit 32a obtains the work performance information of the charge that has been subjected to the blowing process via the input/output unit 31. Thereby, the process of step S1 is completed, and the model parameter correction process proceeds to the process of step S2.
在步驟S2的處理中,模型參數修正部32a利用在步驟S1的處理中所獲得的作業實績資訊,算出在吹煉處理途中取樣時點的熔鋼中碳濃度(分析值)Cs、脫碳氧效率dCs/dO2及攪拌氣體影響係數αs、以及吹煉處理結束時的熔鋼中碳濃度(分析值)Ce、 脫碳氧效率dCe/dO2、攪拌氣體影響係數αe。 In the process of step S2, the model parameter correcting unit 32a calculates the carbon concentration (analytical value) C s and the decarburized oxygen in the molten steel at the time of sampling at the time of the blowing process by using the work performance information obtained in the process of step S1. The efficiency dC s /dO 2 and the stirring gas influence coefficient α s , and the carbon concentration (analytical value) C e in the molten steel at the end of the blowing treatment, the decarburization oxygen efficiency dC e /dO 2 , and the stirring gas influence coefficient α e .
具體而言,當將在吹煉處理途中取樣時點的熔鋼中碳濃度及吹煉處理結束時的熔鋼中碳濃度分別設為Cs、Ce時,在吹煉處理途中取樣時點的脫碳氧效率dCs/dO2及吹煉處理結束時的脫碳氧效率dCe/dO2可利用在吹煉處理途中取樣時點的排氣實績及吹煉結束時的排氣實績,根據以下所示的數式(5)來計算。 Specifically, when the carbon concentration in the molten steel at the point of sampling during the blowing process and the carbon concentration in the molten steel at the end of the blowing treatment are respectively C s and C e , the point at the time of sampling during the blowing process is taken off. The carbon-oxygen efficiency dC s /dO 2 and the decarburization oxygen efficiency dC e /dO 2 at the end of the blowing treatment can be obtained by the exhaust gas performance at the time of sampling during the blowing process and the exhaust performance at the end of the blowing, according to the following The equation (5) is shown to calculate.
其中,設為對伴隨著排氣的流量及成分濃度的分析而產生的時間延遲已予以考慮。又,在吹煉處理途中取樣時點的攪拌氣體影響係數αs及吹煉處理結束時的攪拌氣體影響係數αe可分別藉由將在吹煉處理途中取樣時點的攪拌氣體流量單位消耗量Vb及吹煉處理結束時的攪拌氣體流量單位消耗量Vb代入至數式(2)來計算。藉此,步驟S2的處理結束,模型參數修正處理進入至步驟S3的處理。 Among them, the time delay caused by the analysis of the flow rate and component concentration of the exhaust gas has been considered. Further, the stirring gas influence coefficient α s at the sampling point in the middle of the blowing process and the stirring gas influence coefficient α e at the end of the blowing process can be respectively consumed by the agitating gas flow rate unit amount B b at the time of sampling in the middle of the blowing process. And the stirring gas flow rate unit consumption amount V b at the end of the blowing process is substituted into the formula (2). Thereby, the process of step S2 is completed, and the model parameter correction process proceeds to the process of step S3.
[數式5]dC/dO2=Vex×ρc/22.4*12.0/1000/Vo…(5) [Expression 5] dC/dO 2 =V ex ×ρ c /22.4*12.0/1000/V o (5)
此處,在數式(5)中,參數Vex、參數Vo、參數ρc分別表示熔鋼分析時的排氣流量[Nm3/Hr]、送氧流量[Nm3/Hr]、排氣中的CO氣體及CO2氣體的濃度之和[%]。當在該些的測量值中包含大量雜訊時,既可利用移動平均值等已施加過濾處理的值來代替,亦可利用已進行有偏誤差(biased error)的校正的值來代替。 Here, in the formula (5), the parameter V ex , the parameter V o , and the parameter ρ c respectively represent the exhaust gas flow rate [Nm 3 /Hr], the oxygen supply flow rate [Nm 3 /Hr], and the row in the analysis of the molten steel. The sum of the concentrations of CO gas and CO 2 gas in the gas [%]. When a large amount of noise is included in the measured values, the value to which the filtering process has been applied, such as a moving average value, may be used instead of the corrected value of the biased error.
在步驟S3的處理中,模型參數修正部32a利用在步驟S2的處理中所算出的值,對設定參數p、設定參數q進行修正,以使得在吹煉處理途中取樣時點及吹煉處理結束時利用脫碳氧效率模型公式而算出的脫碳氧效率相對於實績值的誤差儘可能減小。但是,在對設定參數p、設定參數q進行修正時,是使設定參數p、設定參數q不大幅偏離於標準值P、標準值Q。在本實施形態中,自計算處理的容易性考慮,使用以下的數式(6)所示的誤差函數J對設定參數p、設定參數q進行修正。 In the process of step S3, the model parameter correcting unit 32a corrects the setting parameter p and the setting parameter q by using the value calculated in the process of step S2 so that the sampling time and the blowing process are completed during the blowing process. The error of the decarburization efficiency calculated from the decarburization efficiency model formula is reduced as much as possible with respect to the actual value. However, when the setting parameter p and the setting parameter q are corrected, the setting parameter p and the setting parameter q are not largely deviated from the standard value P and the standard value Q. In the present embodiment, the setting parameter p and the setting parameter q are corrected using the error function J shown in the following equation (6) from the viewpoint of the easiness of the calculation processing.
此處,數式(6)中的第1項及第2項分別表示利用在吹煉處理途中取樣時點的脫碳氧效率模型公式及吹煉處理結束時的脫碳氧效率模型公式而算出的脫碳氧效率的誤差。獲得將步驟S2的處理結果代入至數式(1),進行移項而計算出兩邊的對數的等式的兩邊的差者成為數式(6)式的第1項及第2項。又,數式 (6)的第3項及第4項是為了防止設定參數p、設定參數q大幅偏離標準值P、標準值Q而添加。數式(6)中的參數σs、參數σe、參數σp、參數σq是本裝置的用戶所設定的值,若將參數值設定得小,則可減小數式(6)中所對應項的分母的誤差。作為所述參數的設定方法的示例,有如下方法:針對多個過往爐料計算數式(6)的各項的分母值,並計算關於所述各個分母值的標準偏差,將該些的值設為所述參數的設定值。 Here, the first term and the second term in the formula (6) respectively represent the decarburization oxygen efficiency model formula at the time of sampling during the blowing process and the decarburization oxygen efficiency model formula at the end of the blowing process. Error in decarburization efficiency. The difference between the two sides of the equation of the equation (6) obtained by substituting the processing result of step S2 into the equation (1) and shifting the term to calculate the logarithm of the two sides is obtained as the first term and the second term of the equation (6). Further, the third term and the fourth term of the equation (6) are added to prevent the setting parameter p and the setting parameter q from largely deviating from the standard value P and the standard value Q. The parameter σ s , the parameter σ e , the parameter σ p , and the parameter σ q in the equation (6) are values set by the user of the device, and if the parameter value is set to be small, the equation (6) can be reduced. The error of the denominator of the corresponding term. As an example of the setting method of the parameter, there is a method of calculating a denominator value of each item of the formula (6) for a plurality of past charges, and calculating a standard deviation with respect to the respective denominator values, and setting the values of the respective denominators Is the set value of the parameter.
在所述處理中,是以使誤差函數J最小化的方式來確定設定參數p的修正量δp、設定參數q的修正量δq,但由於誤差函數J為修正量δp、修正量δq的二次多項式,因此最小解可藉由逆矩陣計算(inverse matrix calculation)而算出。具體而言,首先,利用以下所示的數式(7)來表達誤差函數J。此處,數式(7)中,x是以修正量δp、修正量δq為要素的二維行向量,D為2×2的常數陣列,E為二維常數行向量,F為常數無向量項。附加於向量的右肩上的T是指轉置。 In the above-described processing, the correction amount δp of the setting parameter p and the correction amount δq of the setting parameter q are determined such that the error function J is minimized, but the error function J is the correction amount δp and the correction amount δq twice. Polynomial, so the minimum solution can be calculated by inverse matrix calculation. Specifically, first, the error function J is expressed by the following equation (7). Here, in the equation (7), x is a two-dimensional row vector with the correction amount δp and the correction amount δq as elements, D is a constant array of 2×2, E is a two-dimensional constant row vector, and F is a constant without vector. item. The T attached to the right shoulder of the vector refers to the transposition.
[數式7]J=xTDx+ETx+F…(7) [Expression 7] J=x T Dx+E T x+F...(7)
當誤差函數J藉由所述數式(7)來表達時,在以下所示的數式(8)成立時,誤差函數J取得最小值。 When the error function J is expressed by the equation (7), the error function J takes a minimum value when the equation (8) shown below is established.
[數式8]
若對所述數式(8)進行變形,則獲得以下所示的數式(9)。 When the equation (8) is deformed, the following equation (9) is obtained.
藉由所述計算而可計算出使誤差函數J為最小的修正量δp、修正量δq,因此利用所述修正量δp、修正量δq,藉由數式(3)、數式(4)來對設定參數p、設定參數q進行修正。再者,即使在使用與數式(7)不同的誤差函數J的情況下,只要利用非線性最優化法等,亦可進行設定參數p、設定參數q的修正計算。藉此,步驟S3的處理結束,模型參數修正處理進入至步驟S4的處理。 By the calculation, the correction amount δp and the correction amount δq which minimize the error function J can be calculated. Therefore, the correction amount δp and the correction amount δq are obtained by the equations (3) and (4). Correct the setting parameter p and setting parameter q. In addition, even when the error function J different from the equation (7) is used, the correction calculation of the setting parameter p and the setting parameter q can be performed by using the nonlinear optimization method or the like. Thereby, the process of step S3 is completed, and the model parameter correction process proceeds to the process of step S4.
在步驟S4的處理中,模型參數修正部32a經由輸入輸出部31,將已藉由步驟S3的處理而修正的設定參數p、設定參數q儲存至參數DB 20c。藉此,步驟S4的處理結束,一系列的模型參數修正處理結束。 In the process of step S4, the model parameter correcting unit 32a stores the setting parameter p and the setting parameter q corrected by the process of step S3 to the parameter DB 20c via the input/output unit 31. Thereby, the processing of step S4 ends, and a series of model parameter correction processing ends.
[送氧量計算處理] [Oxygen supply calculation process]
其次,參照圖6、圖7,對作為本發明的一實施形態的送氧量 計算處理的流程進行說明。 Next, an oxygen supply amount as an embodiment of the present invention will be described with reference to Figs. 6 and 7 . The flow of the calculation process will be described.
圖6是表示作為本發明的一實施形態的送氧量計算處理的流程的流程圖。圖6所示的流程圖以控制裝置30已獲得在吹煉處理途中取樣時點的熔鋼分析結果的時序為開始,送氧量計算處理進入至步驟S11的處理。 Fig. 6 is a flowchart showing the flow of oxygen supply amount calculation processing according to an embodiment of the present invention. The flowchart shown in FIG. 6 starts with the timing at which the control device 30 has obtained the molten steel analysis result at the time of sampling in the middle of the blowing process, and the oxygen supply amount calculation process proceeds to the process of step S11.
在步驟S11的處理中,過往處理權數計算部33a自作業DB 20a及主資訊DB 20b分別讀入過往爐料的作業實績資訊及各種設定值。藉此,步驟S11的處理結束,送氧量計算處理進入至步驟S12的處理。 In the process of step S11, the past processing weight calculation unit 33a reads the work performance information of the past charge and various setting values from the work DB 20a and the main information DB 20b, respectively. Thereby, the process of step S11 is completed, and the oxygen supply amount calculation process proceeds to the process of step S12.
在步驟S12的處理中,過往處理權數計算部33a自過往爐料僅選擇與吹煉處理途中的爐料為相同種類的爐料。其中,所謂爐料為相同種類,例如是指以下方面相同。藉此,步驟S12的處理結束,送氧量計算處理進入至步驟S13的處理。 In the process of the step S12, the past process weight calculation unit 33a selects only the same type of charge from the past charge as the charge in the middle of the blowing process. Here, the charge is the same type, and is, for example, the same as the following points. Thereby, the process of step S12 is completed, and the oxygen supply amount calculation process advances to the process of step S13.
(1)處理目的相同:脫P吹煉、脫C吹煉及普通吹煉(同時進行脫P吹煉與脫C吹煉)中的一者 (1) The same purpose of treatment: one of P-blowing, C-blowing, and ordinary blowing (simultaneous P-blowing and C-blowing)
(2)最終的目標碳濃度及目標溫度屬於相同範圍(範圍的臨限值已儲存於主資訊DB 20b內) (2) The final target carbon concentration and target temperature belong to the same range (the threshold of the range has been stored in the main information DB 20b)
(3)吹煉處理執行日為自當前至指定天數以內 (3) The execution date of the blowing process is from the current to the specified number of days
在步驟S13的處理中,過往處理權數計算部33a算出在步驟S12的處理中所選擇的過往爐料的作業條件與吹煉處理途中的爐料的作業條件之間的差異值,以作業條件的差異值由小至大的順序對過往爐料進行排序,選擇自經排序的過往爐料的開頭算 起至指定數N的過往爐料。再者,差異值例如可藉由以下所示的數式(10)而算出。以下的數式(10)所示的ε(i)表示第i個過往爐料的作業條件與吹煉處理途中的爐料的作業條件的差異,由作業條件的差異的平方值的加權和構成。 In the process of step S13, the previous processing weight calculation unit 33a calculates the difference value between the working condition of the past charge selected in the process of step S12 and the working condition of the charge during the blowing process, and the difference value of the working condition Sort the past charge from small to large, choose the beginning of the sorted past charge From the previous charge of the specified number N. Further, the difference value can be calculated, for example, by the following formula (10). ε(i) shown in the following formula (10) indicates the difference between the working condition of the i-th past charge and the working condition of the charge during the blowing process, and is composed of a weighted sum of the square values of the difference in the working conditions.
數式(10)中,參數xp(p=1~n)表示吹煉處理途中的爐料的第p個作業實績資訊(吹煉處理前熔鋼的測量資訊、在吹煉處理途中取樣時點的熔鋼分析值、在吹煉處理途中取樣時點的操作量(攪拌氣體流量等)及吹煉處理結束時預定操作量(攪拌氣體流量等)),參數x'i,p表示第i個過往爐料的第p個作業實績資訊(使用吹煉處理前熔鋼的測量資訊、在吹煉處理途中取樣時點的熔鋼分析值、在吹煉處理途中取樣時點的操作量(攪拌氣體流量等)及吹煉處理結束時操作量實績(攪拌氣體流量等)),參數Wp表示權數係數。ε(i)的值越小,則過往爐料的作業條件與吹煉處理途中爐料的作業條件越相似。藉此,步驟S13的處理結束,送氧量計算處理進入至步驟S14的處理。 In the formula (10), the parameter x p (p=1 to n) indicates the p-th work performance information of the charge in the middle of the blowing process (measurement information of the molten steel before the blowing process, and the point at the time of sampling during the blowing process) The analysis value of the molten steel, the operation amount at the time of sampling during the blowing process (stirring gas flow rate, etc.), and the predetermined operation amount (stirring gas flow rate, etc.) at the end of the blowing process, the parameter x' i,p represents the i-th past charge The p-th work performance information (measurement information of the molten steel before the blowing treatment, the analysis value of the molten steel at the time of sampling during the blowing process, the operation amount at the time of sampling during the blowing process (stirring gas flow rate, etc.) and blowing At the end of the refining process, the actual amount of operation (stirring gas flow rate, etc.), and the parameter W p represents the weight coefficient. The smaller the value of ε(i), the more similar the operating conditions of the past charge to the operating conditions of the charge during the blowing process. Thereby, the process of step S13 is completed, and the oxygen supply amount calculation process proceeds to the process of step S14.
[數式10]ε(i)=W1×(x1-x'i,1)^2+W2×(x2-x'i,2)^2+W3×(x3-x'i,3)^2+…+Wn×(xn-x'i,n)^2…(10) [Expression 10] ε(i)=W 1 ×(x 1 -x' i,1 )^2+W 2 ×(x 2 -x' i,2 )^2+W 3 ×(x 3 -x ' i,3 )^2+...+W n ×(x n -x' i,n )^2...(10)
在步驟S14的處理中,過往處理權數計算部33a針對在步驟S13的處理中所選擇的N個過往爐料,分別算出以下的數式 (11)所示的值di(i=1~N)。值di表示吹煉處理途中爐料的相對於在吹煉處理途中取樣時點的過往爐料i的脫碳氧效率模型公式的相似度(模型相似度)。數式(11)中,參數pi、參數qi表示針對過往爐料i而計算出的設定參數p、設定參數q,且儲存於參數DB 20c內。 In the process of step S14, the previous processing weight calculation unit 33a calculates the value d i (i=1 to N) represented by the following equation (11) for the N past charges selected in the process of step S13. . The value d i represents the similarity (model similarity) of the decarburization oxygen efficiency model formula of the charge of the past charge in the middle of the blowing process with respect to the past charge i at the time of sampling during the blowing process. In the equation (11), the parameter p i and the parameter q i indicate the setting parameter p and the setting parameter q calculated for the past charge i, and are stored in the parameter DB 20c.
參數Cs、參數dCs/dO2、參數αs分別是吹煉處理途中爐料的熔鋼中碳濃度、脫碳氧效率及攪拌氣體影響係數,且利用作業實績資訊,藉由與模型參數修正處理中的步驟S2的處理同樣的處理而算出。若值di為0,則吹煉處理途中的爐料的熔鋼分析時資訊已完全滿足過往爐料i的脫碳氧效率模型公式。又,亦可對差異值ε(i)的公式中的項進行加權而添加於值di的公式中。藉此,步驟S14的處理結束,送氧量計算處理進入至步驟S15的處理。 The parameter C s , the parameter dC s /dO 2 , and the parameter α s are respectively the carbon concentration, the decarburization oxygen efficiency and the agitation gas influence coefficient of the molten steel in the charge during the blowing process, and are corrected by the model parameters by using the operational performance information. The process of step S2 in the process is calculated by the same process. If the value d i is 0, the information of the molten steel analysis of the charge during the blowing process completely satisfies the decarburization efficiency model formula of the past charge i. Further, the term in the formula of the difference value ε(i) may be weighted and added to the formula of the value d i . Thereby, the process of step S14 is completed, and the oxygen supply amount calculation process advances to the process of step S15.
在步驟S15的處理中,過往處理權數計算部33a將藉由步驟S14的處理而算出的模型相似度di代入至以下的數式(12),藉此算出藉由步驟S13的處理而選擇的N個過往爐料的權數wi(i=1~N)。此處,數式(12)中的參數dmax是指di(i=1~N)的最大值。藉此,步驟S15的處理結束,送氧量計算處理進入至步 驟S16的處理。 In the process of step S15, the previous process weight calculation unit 33a substitutes the model similarity d i calculated by the process of step S14 into the following equation (12), thereby calculating the process selected by the process of step S13. The weights of the N past charges, w i (i = 1 to N). Here, the parameter d max in the formula (12) means the maximum value of d i (i=1 to N). Thereby, the process of step S15 is completed, and the oxygen supply amount calculation process advances to the process of step S16.
在步驟S16的處理中,吹煉過程中模型參數生成部33b利用以下所示的數式(13),算出吹煉處理途中的爐料的相關設定參數p、設定參數q。然後,模型公式計算部34使用所算出的設定參數p、設定參數q,利用脫碳氧效率模型公式算出脫碳氧效率。藉此,步驟S16的處理結束,送氧量計算處理進入至步驟S17的處理。 In the process of the step S16, the model parameter generating unit 33b in the blowing process calculates the setting parameter p and the setting parameter q of the charge in the middle of the blowing process by the following equation (13). Then, the model formula calculation unit 34 calculates the decarburization efficiency by the decarburization efficiency model formula using the calculated setting parameter p and the setting parameter q. Thereby, the process of step S16 is completed, and the oxygen supply amount calculation process proceeds to the process of step S17.
在步驟S17的處理中,送氧量計算部33c利用藉由步驟S16的處理而算出的脫碳氧效率,算出在吹煉處理途中取樣時點以後所需要的送氧量(必要送氧量),並將計算結果輸出至控制終端機10及顯示裝置50。此處,脫碳氧效率的倒數等於碳濃度變化(減少)1%所需要的每單位熔鋼的氧氣量(Nm3/噸),因此只要自吹煉處理途中的熔鋼中碳濃度至目標碳濃度為止對脫碳氧效率的倒 數值進行積分,便可算出為了使熔鋼中碳濃度達到目標碳濃度所需要的送氧量(每單位熔鋼)。 In the process of the step S17, the oxygen supply amount calculation unit 33c calculates the oxygen supply amount (necessary oxygen supply amount) required after the sampling time in the middle of the blowing process, using the decarburization efficiency calculated by the process of step S16. The calculation result is output to the control terminal unit 10 and the display device 50. Here, the reciprocal of the decarburization efficiency is equal to the amount of oxygen per unit of molten steel (Nm 3 /ton) required for the carbon concentration change (decrease) of 1%, so as long as the carbon concentration in the molten steel from the blowing process is to the target By integrating the reciprocal value of the decarburization efficiency until the carbon concentration, the amount of oxygen (per unit molten steel) required to achieve the target carbon concentration in the molten steel can be calculated.
具體而言,送氧量計算部33c自作業DB 20a讀入吹煉處理途中的爐料的預定攪拌氣體流量。在本實施形態中,如圖7所示,預定攪拌氣體流量是在由累計送氧量(送氧完畢的氧氣量累計值)確定的每個區間進行設定。此處,Vos是指在吹煉處理途中取樣時點的累計送氧量。再者,在圖7中,在吹煉處理途中熔鋼分析以後,單位攪拌氣體流量自Vb3變更為Vb4。當如上所述在吹煉處理途中對單位攪拌氣體流量進行變更時,只要如下所述般計算必要送氧量即可。 Specifically, the oxygen supply amount calculation unit 33c reads the predetermined agitation gas flow rate of the charge in the middle of the blowing process from the work DB 20a. In the present embodiment, as shown in Fig. 7, the predetermined agitation gas flow rate is set in each section determined by the cumulative oxygen supply amount (the oxygen supply integrated value of oxygen supply completion). Here, V os refers to the cumulative oxygen supply amount at the time of sampling during the blowing process. Further, in FIG. 7, the way in the blowing process the molten steel after analysis, the gas flow from the unit was stirred V b 3 is changed to V b 4. When the unit stirring gas flow rate is changed during the blowing process as described above, the necessary oxygen supply amount may be calculated as follows.
首先,送氧量計算部33c使用影響係數αs及設定參數p、設定參數q,計算累計送氧量為Vo3時的熔鋼中碳濃度C3,所述影響係數αs是利用在吹煉過程中取樣時點的單位攪拌氣體流量Vb3及數式(2)來計算,所述設定參數p、設定參數q是藉由步驟S16的處理而算出。所述熔鋼中碳濃度C3可藉由以下所示的數式(14)而算出。再者,數式(14)中的參數Y可藉由以下所示的數式(15)來表示。並且,送氧量計算部33c利用單位攪拌氣體流量Vb4及數式(2)計算影響係數α4,並利用影響係數α4及設定參數p、設定參數q,計算對數式(1)所示的脫碳氧效率模型公式的倒數值自熔鋼中碳濃度C3至目標碳濃度Ce為止進行積分所得的值。 First, the oxygen supply amount calculation unit 33c calculates the carbon concentration C 3 in the molten steel when the cumulative oxygen supply amount is V o 3 using the influence coefficient α s , the set parameter p, and the set parameter q, and the influence coefficient α s is utilized. The unit stirring gas flow rate V b 3 and the equation (2) at the sampling point during the blowing process are calculated, and the setting parameter p and the setting parameter q are calculated by the processing of step S16. The carbon concentration C 3 in the molten steel can be calculated by the following formula (14). Further, the parameter Y in the formula (14) can be expressed by the formula (15) shown below. Further, the oxygen supply amount calculation unit 33c calculates the influence coefficient α 4 using the unit agitation gas flow rate V b 4 and the equation (2), and calculates the logarithm equation (1) using the influence coefficient α 4 , the set parameter p, and the set parameter q. The inverse value of the decarburization efficiency model formula shown is the value obtained by integrating the carbon concentration C 3 to the target carbon concentration C e in the molten steel.
所述值是為了使熔鋼中碳濃度C自熔鋼中碳濃度C3下 降至目標碳濃度Ce為止所需要的每單位熔鋼重量的氧氣量,因此藉由將所述值乘以熔鋼重量,可算出必要氧氣量△O2 f。為了最終使熔鋼中碳濃度C自熔鋼中碳濃度C3下降至目標碳濃度Ce為止所需要的氧氣量為(△O2+△O2 f)。在本實施形態中,已揭示單位攪拌氣體流量在吹煉處理途中取樣時點以後僅變更1次的示例,但在變更多次的情況下,亦可藉由同樣的處理來進行計算。再者,以上所述的積分計算既可藉由迭代計算來進行,亦可藉由解析方式來進行計算。藉此,步驟S17的處理結束,一系列的送氧量計算處理結束。 The value is the amount of oxygen per unit of molten steel required to reduce the carbon concentration C in the molten steel from the carbon concentration C 3 in the molten steel to the target carbon concentration C e , and thus by multiplying the value by melting The weight of the steel can be calculated as the necessary amount of oxygen ΔO 2 f . The amount of oxygen required to finally reduce the carbon concentration C in the molten steel from the carbon concentration C 3 in the molten steel to the target carbon concentration C e is (ΔO 2 + ΔO 2 f ). In the present embodiment, an example has been described in which the flow rate per unit agitation gas is changed only once after the sampling in the middle of the blowing process. However, when the number of changes is repeated a plurality of times, the calculation may be performed by the same process. Furthermore, the above-mentioned integral calculation can be performed by an iterative calculation or by an analytical method. Thereby, the process of step S17 is completed, and a series of oxygen supply amount calculation process is completed.
如由以上的說明可知,作為本發明的一實施形態的轉爐吹煉設備的控制裝置30是利用排氣的流量及成分濃度來對脫碳氧效率模型公式的設定參數進行設定,因此可考慮到吹煉處理反應的推移變化而高精度地算出脫碳氧效率。而且,控制裝置30在脫 碳氧效率模型公式的變量中添加攪拌氣體流量,從而使吹煉處理過程中的攪拌氣體流量的變化的影響反映至脫碳氧效率模型公式,因此可高精度地算出脫碳氧效率。藉此,可高精度地算出脫碳氧效率,從而將吹煉處理結束時的熔鋼中碳濃度高精度地控制成目標碳濃度。 As is apparent from the above description, the control device 30 of the converter blowing apparatus according to the embodiment of the present invention sets the setting parameters of the decarburization efficiency model formula by the flow rate and component concentration of the exhaust gas. The decarburization efficiency is calculated with high accuracy in the change of the transition of the blowing treatment reaction. Moreover, the control device 30 is off The agitation gas flow rate is added to the variable of the carbon-oxygen efficiency model formula, so that the influence of the change in the agitation gas flow rate during the blowing process is reflected to the decarburization oxygen efficiency model formula, so that the decarburization oxygen efficiency can be calculated with high precision. Thereby, the decarburization efficiency can be calculated with high precision, and the carbon concentration in the molten steel at the end of the blowing process can be accurately controlled to the target carbon concentration.
[實施例] [Examples]
將本發明應用於轉爐離線實績資料而進行其精度驗證。針對100個以上的爐料,計算自在吹煉處理途中取樣時點的熔鋼中碳濃度至目標碳濃度為止的必要送氧量,並與送氧量實績進行比較。其結果已確認,與現有技術(對模型參數以作業群為單位進行固定的技術)相比較,可使必要送氧量的誤差平均降低50%以上。 The invention is applied to the converter offline performance data to verify its accuracy. The necessary oxygen supply amount from the carbon concentration in the molten steel to the target carbon concentration at the time of sampling at the time of sampling during the blowing process is calculated for 100 or more charge materials, and compared with the actual oxygen supply amount. As a result, it has been confirmed that the error of the required oxygen supply amount can be reduced by an average of 50% or more as compared with the prior art (the technique of fixing the model parameters in units of the operation group).
[產業上之可利用性] [Industrial availability]
本發明可適用於如下處理:對在吹煉處理途中取樣時點以後的爐料的送氧量進行控制,以使吹煉處理結束時的熔鋼中碳濃度達到目標碳濃度。 The present invention can be applied to a process of controlling the oxygen supply amount of the charge after sampling at the time of the blowing process so that the carbon concentration in the molten steel at the end of the blowing process reaches the target carbon concentration.
10‧‧‧控制終端機 10‧‧‧Control terminal
20‧‧‧資料庫伺服器(DB伺服器) 20‧‧‧Database Server (DB Server)
20a‧‧‧作業資料庫(作業DB) 20a‧‧‧Working database (job DB)
20b‧‧‧主資訊資料庫(主資訊DB) 20b‧‧‧Main Information Database (Main Information DB)
20c‧‧‧參數資料庫(參數DB) 20c‧‧‧Parameter database (parameter DB)
30‧‧‧控制裝置 30‧‧‧Control device
40‧‧‧輸入裝置 40‧‧‧ Input device
50‧‧‧顯示裝置 50‧‧‧ display device
100‧‧‧轉爐 100‧‧‧ converter
101‧‧‧熔鋼 101‧‧‧Fused steel
102‧‧‧噴槍 102‧‧‧ spray gun
103‧‧‧熔渣 103‧‧‧ slag
104‧‧‧導管 104‧‧‧ catheter
105‧‧‧排氣檢測部 105‧‧‧Exhaust detection department
106‧‧‧排氣流量計 106‧‧‧Exhaust flowmeter
107‧‧‧通氣孔 107‧‧‧Ventinel
108‧‧‧流量計 108‧‧‧ Flowmeter
Claims (4)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013204284 | 2013-09-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201525147A TW201525147A (en) | 2015-07-01 |
TWI553123B true TWI553123B (en) | 2016-10-11 |
Family
ID=52742913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103133386A TWI553123B (en) | 2013-09-30 | 2014-09-26 | Control apparatus and control method of converter blowing equipment |
Country Status (6)
Country | Link |
---|---|
JP (1) | JP5822053B2 (en) |
KR (1) | KR101657930B1 (en) |
CN (1) | CN105593381B (en) |
BR (1) | BR112016006704A2 (en) |
TW (1) | TWI553123B (en) |
WO (1) | WO2015045766A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6376200B2 (en) * | 2015-11-02 | 2018-08-22 | Jfeスチール株式会社 | Molten state estimation device, molten state estimation method, and molten metal manufacturing method |
KR102133215B1 (en) * | 2016-03-23 | 2020-07-13 | 닛폰세이테츠 가부시키가이샤 | Method for preliminary chartering and control device for chartering |
EP3770279B1 (en) * | 2018-03-19 | 2022-08-10 | JFE Steel Corporation | Molten metal component estimation device, molten metal component estimation method, and molten metal production method |
CN111742066B (en) * | 2018-05-28 | 2022-06-28 | 日本制铁株式会社 | Converter blowing method |
CN111079537B (en) * | 2019-11-18 | 2023-09-26 | 中冶赛迪技术研究中心有限公司 | Method, system, machine-readable medium and equipment for identifying smelting working conditions of converter |
TWI697564B (en) * | 2019-12-09 | 2020-07-01 | 財團法人金屬工業研究發展中心 | Heat treatment furnace |
CN115125358B (en) * | 2021-03-25 | 2023-09-12 | 宝山钢铁股份有限公司 | Automatic weighing virtual bin control method for converter alloy |
CN116356101B (en) * | 2023-04-28 | 2024-03-22 | 福建三宝钢铁有限公司 | Smelting process with high oxygen supply strength |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004059955A (en) * | 2002-07-25 | 2004-02-26 | Jfe Steel Kk | Method for controlling converter blowing |
JP2006233324A (en) * | 2005-01-28 | 2006-09-07 | Jfe Steel Kk | Method for controlling end point of blowing in converter |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101008072B1 (en) * | 2003-09-05 | 2011-01-13 | 주식회사 포스코 | Method for Refinig Molten Pig Iron in Converter |
JP2009052082A (en) * | 2007-08-27 | 2009-03-12 | Jfe Steel Kk | Method for deciding oxygen feeding flow rate pattern in converter dephosphorization blowing |
JP2010007150A (en) * | 2008-06-30 | 2010-01-14 | Jfe Steel Corp | Method for estimating carbon concentration in molten steel |
JP5527180B2 (en) * | 2010-11-29 | 2014-06-18 | 新日鐵住金株式会社 | Converter blowing method and converter blowing system |
CN102373310B (en) * | 2011-10-19 | 2013-06-12 | 北京科技大学 | Method for guiding converter reblowing process operation |
CN103194574B (en) * | 2012-12-17 | 2014-06-11 | 西安电子科技大学 | Dynamic regulation method of VOD refined end point carbon content prediction model |
-
2014
- 2014-09-03 BR BR112016006704A patent/BR112016006704A2/en not_active Application Discontinuation
- 2014-09-03 KR KR1020167008255A patent/KR101657930B1/en active IP Right Grant
- 2014-09-03 WO PCT/JP2014/073218 patent/WO2015045766A1/en active Application Filing
- 2014-09-03 JP JP2015530793A patent/JP5822053B2/en active Active
- 2014-09-03 CN CN201480053751.8A patent/CN105593381B/en not_active Expired - Fee Related
- 2014-09-26 TW TW103133386A patent/TWI553123B/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004059955A (en) * | 2002-07-25 | 2004-02-26 | Jfe Steel Kk | Method for controlling converter blowing |
JP2006233324A (en) * | 2005-01-28 | 2006-09-07 | Jfe Steel Kk | Method for controlling end point of blowing in converter |
Also Published As
Publication number | Publication date |
---|---|
BR112016006704A2 (en) | 2017-08-01 |
CN105593381B (en) | 2017-05-10 |
KR101657930B1 (en) | 2016-09-19 |
CN105593381A (en) | 2016-05-18 |
WO2015045766A1 (en) | 2015-04-02 |
JP5822053B2 (en) | 2015-11-24 |
JPWO2015045766A1 (en) | 2017-03-09 |
TW201525147A (en) | 2015-07-01 |
KR20160040732A (en) | 2016-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI553123B (en) | Control apparatus and control method of converter blowing equipment | |
JP6583594B1 (en) | Molten metal component estimation device, molten metal component estimation method, and molten metal manufacturing method | |
JP6376200B2 (en) | Molten state estimation device, molten state estimation method, and molten metal manufacturing method | |
TWI488973B (en) | Compensating apparatus, method and method for refining iron | |
JP6414045B2 (en) | Molten component estimation device and molten component estimation method | |
CN112154218B (en) | Molten metal component estimation device, molten metal component estimation method, and molten metal production method | |
JP6311659B2 (en) | Method for estimating layer thickness distribution in blast furnace, method for operating blast furnace, and apparatus for estimating layer thickness distribution in blast furnace | |
JP6658804B2 (en) | Initial component concentration correction device, initial component concentration correction method, refining process state estimation method, and converter operation method | |
JP2012149341A (en) | Estimation method of molten metal component and estimation apparatus of molten metal component | |
JP5211600B2 (en) | Industrial process control method and apparatus | |
TWI627284B (en) | Molten pig iron preparation processing method and molten pig iron preparation processing control device | |
JP6060613B2 (en) | Gas flow estimation apparatus and gas flow estimation method | |
WO2023095647A1 (en) | Intra-furnace state inference device, intra-furnace state inference method, and molten steel manufacturing method | |
KR20230042731A (en) | Refining process control device and scouring process control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |