TWI544661B - Light emitting diode chip having distributed bragg reflector and method of fabricating the same - Google Patents
Light emitting diode chip having distributed bragg reflector and method of fabricating the same Download PDFInfo
- Publication number
- TWI544661B TWI544661B TW100104554A TW100104554A TWI544661B TW I544661 B TWI544661 B TW I544661B TW 100104554 A TW100104554 A TW 100104554A TW 100104554 A TW100104554 A TW 100104554A TW I544661 B TWI544661 B TW I544661B
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- distributed bragg
- bragg mirror
- emitting diode
- substrate
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000010410 layer Substances 0.000 claims description 251
- 239000000758 substrate Substances 0.000 claims description 87
- 239000004065 semiconductor Substances 0.000 claims description 53
- 229910052751 metal Inorganic materials 0.000 claims description 34
- 239000002184 metal Substances 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 29
- 230000003746 surface roughness Effects 0.000 claims description 26
- 238000002310 reflectometry Methods 0.000 claims description 17
- 230000003287 optical effect Effects 0.000 claims description 16
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 9
- 239000011241 protective layer Substances 0.000 claims description 9
- 238000000869 ion-assisted deposition Methods 0.000 claims description 6
- 238000007517 polishing process Methods 0.000 claims description 6
- 238000005498 polishing Methods 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 4
- 239000011810 insulating material Substances 0.000 claims 1
- 239000000463 material Substances 0.000 description 80
- 235000012431 wafers Nutrition 0.000 description 34
- 229910052594 sapphire Inorganic materials 0.000 description 23
- 239000010980 sapphire Substances 0.000 description 23
- 230000008569 process Effects 0.000 description 22
- 238000000151 deposition Methods 0.000 description 12
- 230000008021 deposition Effects 0.000 description 10
- 229910004298 SiO 2 Inorganic materials 0.000 description 9
- 239000002002 slurry Substances 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 239000010931 gold Substances 0.000 description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910010413 TiO 2 Inorganic materials 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 229910003460 diamond Inorganic materials 0.000 description 4
- 239000010432 diamond Substances 0.000 description 4
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 229910000420 cerium oxide Inorganic materials 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 150000002118 epoxides Chemical class 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910002601 GaN Inorganic materials 0.000 description 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000313 electron-beam-induced deposition Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 210000004508 polar body Anatomy 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 2
- -1 (Al Chemical class 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000005596 ionic collisions Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910003468 tantalcarbide Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/44—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
- H01L33/46—Reflective coating, e.g. dielectric Bragg reflector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/15—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
- H01L27/153—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0093—Wafer bonding; Removal of the growth substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/20—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
- H01L33/22—Roughened surfaces, e.g. at the interface between epitaxial layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/505—Wavelength conversion elements characterised by the shape, e.g. plate or foil
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/58—Optical field-shaping elements
- H01L33/60—Reflective elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0025—Processes relating to coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/0041—Processes relating to semiconductor body packages relating to wavelength conversion elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/0058—Processes relating to semiconductor body packages relating to optical field-shaping elements
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Led Devices (AREA)
Description
本發明的示範性實施例是有關於一種發光二極體晶片及其製造方法,且特別是有關於一種具有分佈式布拉格反射鏡的發光二極體晶片以及其製造方法。An exemplary embodiment of the present invention relates to a light emitting diode wafer and a method of fabricating the same, and more particularly to a light emitting diode wafer having a distributed Bragg mirror and a method of fabricating the same.
發出藍光或紫外光波長的光的氮化鎵類(gallium nitride-based)發光二極體晶片可用在各種不同的應用。特別地是,在市面上已有銷售發出混合色光(mixed color light)(例如背光源裝置、一般照明或其他類似照明所需的白色光)的各種不同類型發光二極體封裝體(light emitting diode package)。Gallium nitride-based LED chips that emit light at blue or ultraviolet wavelengths can be used in a variety of different applications. In particular, various types of light emitting diode packages (light emitting diodes) are commercially available that emit mixed color light (such as white light required for backlight devices, general illumination, or other similar illumination). Package).
因為由發光二極體封裝體所輸出的光可依發光二極體晶片的發光效率而決定,故用以改良發光二極體晶片的發光效率的研究持續進行著。特別地是,改良發光二極體晶片的發光效率的嘗試已在進行中。舉例而言,已研究在透明基底(例如藍寶石基底(sapphire substrate))的底部表面上形成金屬反射鏡或分佈式布拉格反射鏡(distributed Bragg reflector,DBR)的技術。Since the light outputted from the light-emitting diode package can be determined depending on the light-emitting efficiency of the light-emitting diode wafer, research for improving the light-emitting efficiency of the light-emitting diode wafer has continued. In particular, attempts to improve the luminous efficiency of light-emitting diode wafers are already underway. For example, techniques for forming a metal mirror or a distributed Bragg reflector (DBR) on the bottom surface of a transparent substrate such as a sapphire substrate have been studied.
圖1所示為根據相關技術藉著在藍寶石基底底部表面上形成鋁層而測得的反射率(reflectivity)。Figure 1 shows the reflectivity measured by forming an aluminum layer on the bottom surface of a sapphire substrate according to the related art.
由圖1可知,在藍寶石基底上未形成鋁層時,顯示的反射率約為20%,但當在藍寶石基底上形成鋁層時,在可見波長範圍內顯示的反射率約為80%,。As can be seen from Fig. 1, when the aluminum layer is not formed on the sapphire substrate, the reflectance is about 20%, but when the aluminum layer is formed on the sapphire substrate, the reflectance in the visible wavelength range is about 80%.
圖2所示為根據相關技術藉定期施加TiO2/SiO2至藍寶石基底的底部表面以形成DBR而測得的反射率。Figure 2 shows the reflectance measured by periodically applying TiO 2 /SiO 2 to the bottom surface of a sapphire substrate to form a DBR according to the related art.
如圖2所示,當形成DBR以反射從發光二極體晶片所發出的光時,例如發出具有峰值波長(peak wavelength)為460 nm的光。圖2顯示使用DBR的發光二極體中的反射率在藍光波長範圍中(例如400 nm至500 nm的波長範圍)可達到大約100%。As shown in FIG. 2, when a DBR is formed to reflect light emitted from a light emitting diode wafer, for example, light having a peak wavelength of 460 nm is emitted. Figure 2 shows that the reflectance in a light-emitting diode using DBR can reach about 100% in the blue wavelength range (e.g., in the wavelength range of 400 nm to 500 nm).
然而,DBR僅能增加可見光範圍中一部分的反射率。However, DBR can only increase the reflectivity of a portion of the visible range.
因此,對其他範圍的反射率比圖2所示的對波長範圍400 nm至500 nm的反射率低非常多。即,如圖2所示,在大部份反射率在波長550 nm或更大的波長下小於50%時,在約520 nm或更大波長的反射率突然減小。Therefore, the reflectance for other ranges is much lower than the reflectance for the wavelength range of 400 nm to 500 nm as shown in Fig. 2. That is, as shown in FIG. 2, when most of the reflectance is less than 50% at a wavelength of 550 nm or more, the reflectance at a wavelength of about 520 nm or more suddenly decreases.
因此,將使用DBR的發光二極體晶片裝設在發光二極體封裝體中以發出白光時,對於從發光二極體晶片所發出的藍色波長範圍的光,DBR顯示高反射率,但對於在綠色及/或紅色波長範圍中發出的光,DBR並未顯示有效反射特性。因此,改良發光二極體的發光效率有其限制。Therefore, when a light-emitting diode chip using DBR is mounted in a light-emitting diode package to emit white light, DBR exhibits high reflectance for light in a blue wavelength range emitted from the light-emitting diode wafer, but For light emitted in the green and/or red wavelength range, DBR does not exhibit effective reflection characteristics. Therefore, there is a limitation in improving the luminous efficiency of the light-emitting diode.
本發明之示範性實施例提供一種可增加提供混合色光(例如白光)的發光二極體封裝體的發光效率的發光二極體晶片及其製造方法。An exemplary embodiment of the present invention provides a light emitting diode wafer and a method of fabricating the same that can increase the light emitting efficiency of a light emitting diode package that provides mixed color light (for example, white light).
本發明之示範性實施例亦提供一種在廣大波長範圍內具有高反射率的DBR以及具有此DBR的發光二極體晶片。Exemplary embodiments of the present invention also provide a DBR having high reflectance over a wide range of wavelengths and a light emitting diode wafer having the DBR.
本發明附加的特徵將於以下說明中提出,且由說明中部分將顯而易知,或者可藉著實行本發明而領會。Additional features of the invention will be set forth in the description in the description.
本發明之示範性實施例揭露一種發光二極體晶片,其包括:具有第一表面與第二表面的基底;配置在基底的第一表面上的發光結構,此發光結構包括配置在第一導電型半導體層及第二導電型半導體層之間的主動層;配置在基底的第二表面上的分佈式布拉格反射鏡,此分佈式布拉格反射鏡反射由發光結構發出的光;以及配置在此分佈式布拉格反射鏡上的金屬層。此分佈式布拉格反射鏡對於在藍光波長範圍中的第一波長的光、在綠光波長範圍中的第二波長的光及在紅光波長範圍中的第三波長的光具有至少90%的反射率。An exemplary embodiment of the present invention discloses a light emitting diode wafer including: a substrate having a first surface and a second surface; a light emitting structure disposed on the first surface of the substrate, the light emitting structure including being disposed at the first conductive An active layer between the semiconductor layer and the second conductive semiconductor layer; a distributed Bragg mirror disposed on the second surface of the substrate, the distributed Bragg mirror reflecting light emitted by the light emitting structure; and being disposed therein Metal layer on a Bragg mirror. The distributed Bragg mirror has at least 90% reflection for light of a first wavelength in the blue wavelength range, light of a second wavelength in the green wavelength range, and light of a third wavelength in the red wavelength range rate.
本發明之示範性實施例亦揭露一種製造發光二極體晶片的方法,此方法包括:在基底的第一表面上形成發光結構;藉著研磨基底的第二表面而移除一部分基底;在研磨後,藉著磨光(lapping)基底而減少基底的第二表面的表面粗糙度;以及在基底的第二表面上形成分佈式布拉格反射鏡。此發光結構包括第一導電型半導體層、第二導電型半導體層與配置在第一導電型半導體層及第二導電型半導體層之間的主動層。An exemplary embodiment of the present invention also discloses a method of fabricating a light emitting diode wafer, the method comprising: forming a light emitting structure on a first surface of the substrate; removing a portion of the substrate by grinding the second surface of the substrate; Thereafter, the surface roughness of the second surface of the substrate is reduced by lapping the substrate; and a distributed Bragg mirror is formed on the second surface of the substrate. The light emitting structure includes a first conductive type semiconductor layer, a second conductive type semiconductor layer, and an active layer disposed between the first conductive type semiconductor layer and the second conductive type semiconductor layer.
應理解的是,前述一般性說明及後述詳細說明均為示範性及解釋性的,且意為提供本發明的進一步解釋,如所主張之權利範圍。It is to be understood that the foregoing general description
為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.
以下將參照所附圖式,對本發明進行更完整的說明,所附圖式中繪示本發明的示範性實施例。然而,本發明可具體表現於許多不同形式中,而不應被理解為限制於此處提出之示範性實施例中。更確切而言,提供此些實施例以使揭露內容完整,且能完全傳達本發明的範圍予所屬技術領域中具通常知識者。在此些圖式中,可能會誇大層及區域的尺寸以使圖式清楚。圖式中類似的標號表示類似的元件。The invention will now be described more fully hereinafter with reference to the accompanying drawings, in which FIG. However, the invention may be embodied in many different forms and should not be construed as being limited to the exemplary embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough, and the scope of the invention will be fully disclosed. In these figures, the dimensions of layers and regions may be exaggerated to make the drawings clear. Like numbers in the drawings indicate like elements.
圖3為根據本發明的示範性實施例所繪示具有分佈式布拉格反射鏡45的發光二極體20的剖面圖,而圖4為圖3的分佈式布拉格反射鏡45的放大剖面圖。3 is a cross-sectional view of a light emitting diode 20 having a distributed Bragg mirror 45, and FIG. 4 is an enlarged cross-sectional view of the distributed Bragg mirror 45 of FIG. 3, in accordance with an exemplary embodiment of the present invention.
參照圖3,發光二極體晶片20包括基底21、發光結構30及分佈式布拉格反射鏡45。此外,此發光二極體晶片20可包括緩衝層23、透明電極31、p電極墊33、n電極墊35、反射金屬層51及保護層53。Referring to FIG. 3, the light emitting diode chip 20 includes a substrate 21, a light emitting structure 30, and a distributed Bragg mirror 45. In addition, the LED wafer 20 may include a buffer layer 23, a transparent electrode 31, a p-electrode pad 33, an n-electrode pad 35, a reflective metal layer 51, and a protective layer 53.
基底21為透明基底,例如為藍寶石或碳化矽(SiC),但不特別限定於此。上部表面(即,基底21的前表面)可具有預定的圖案,如圖案化的藍寶石基底(patterned sapphire substrate,PSS)。同時,基底21的範圍決定整體晶片區域。在本發明的示範性實施例中,當發光二極體晶片的晶片區域相對增加時,反射效果增加。因此,基底21的範圍可為90,000 μm2或者更大。在一些實施例中,其可為1 mm2或者更大。The substrate 21 is a transparent substrate such as sapphire or tantalum carbide (SiC), but is not particularly limited thereto. The upper surface (i.e., the front surface of the substrate 21) may have a predetermined pattern, such as a patterned sapphire substrate (PSS). At the same time, the extent of the substrate 21 determines the overall wafer area. In an exemplary embodiment of the present invention, when the wafer area of the light emitting diode wafer is relatively increased, the reflection effect is increased. Therefore, the substrate 21 may have a range of 90,000 μm 2 or more. In some embodiments, it can be 1 mm 2 or greater.
在基底21上放置發光結構30。此發光結構30包括第一導電型半導體層25、第二導電型半導體層29及配置在第一導電型半導體層25和第二導電型半導體層29之間的主動層27。在此配置中,第一導電型半導體層25和第二導電型半導體層29具有彼此相反的導電型。第一導電型可為n型,而第二導電型可為p型,反之亦然。A light emitting structure 30 is placed on the substrate 21. The light emitting structure 30 includes a first conductive type semiconductor layer 25, a second conductive type semiconductor layer 29, and an active layer 27 disposed between the first conductive type semiconductor layer 25 and the second conductive type semiconductor layer 29. In this configuration, the first conductive type semiconductor layer 25 and the second conductive type semiconductor layer 29 have conductivity types opposite to each other. The first conductivity type may be an n-type and the second conductivity type may be a p-type and vice versa.
第一導電型半導體層25、主動層27及第二導電型半導體層29可由氮化鎵類化合物(即,(Al,In,Ga)N)材料製成。決定主動層27的構成元素和組成以發出所需波長的光,例如紫外光或藍光。第一導電型半導體層25及/或第二導電型半導體層29可如圖中所示以單層結構形成,或者可以多層結構形成。此外,主動層27可形成為單一量子井結構或多重量子井結構。另外,緩衝層23可介在基底21和第一導電型半導體層25之間。The first conductive type semiconductor layer 25, the active layer 27, and the second conductive type semiconductor layer 29 may be made of a gallium nitride-based compound (i.e., (Al, In, Ga) N) material. The constituent elements and composition of the active layer 27 are determined to emit light of a desired wavelength, such as ultraviolet light or blue light. The first conductive type semiconductor layer 25 and/or the second conductive type semiconductor layer 29 may be formed in a single layer structure as shown in the drawing, or may be formed in a multilayer structure. Additionally, the active layer 27 can be formed as a single quantum well structure or a multiple quantum well structure. In addition, the buffer layer 23 may be interposed between the substrate 21 and the first conductive type semiconductor layer 25.
半導體層25、27及29可使用金屬-有機化學氣相沈積(metal-organic chemical vapor deposition,MOCVD)技術或分子束磊晶(molecular beam epitaxy,MBE)技術而形成,且可藉微影及蝕刻製程圖案化第一導電型半導體層25的區域使其部分暴露。The semiconductor layers 25, 27 and 29 can be formed by metal-organic chemical vapor deposition (MOCVD) technology or molecular beam epitaxy (MBE) technology, and can be lithographically and etched. The region of the process patterning the first conductive type semiconductor layer 25 is partially exposed.
同時,透明電極層31可由例如氧化銦錫(indium tin oxide,ITO)或鎳/金(Ni/Au)而形成在第二導電型半導體層29上。由於具有比第二導電型半導體層29低的比電阻值(specific resistance),透明電極層31用以散佈電流。在透明電極層31上形成p電極墊33,而在第一導電型半導體層25上形成n電極墊35。如圖所示,p電極墊33可透過透明電極層31而電性連接至第二導電型半導體層29。Meanwhile, the transparent electrode layer 31 may be formed on the second conductive type semiconductor layer 29 by, for example, indium tin oxide (ITO) or nickel/gold (Ni/Au). The transparent electrode layer 31 is used to spread current because it has a lower specific resistance than the second conductive type semiconductor layer 29. A p-electrode pad 33 is formed on the transparent electrode layer 31, and an n-electrode pad 35 is formed on the first conductive type semiconductor layer 25. As shown, the p-electrode pad 33 is electrically connected to the second conductive semiconductor layer 29 through the transparent electrode layer 31.
同時,在下部(即,基底21的背面)放置分佈式布拉格反射鏡45。分佈式布拉格反射鏡45包括第一分佈式布拉格反射鏡40及第二分佈式布拉格反射鏡50。At the same time, a distributed Bragg mirror 45 is placed on the lower portion (i.e., the back side of the substrate 21). The distributed Bragg mirror 45 includes a first distributed Bragg mirror 40 and a second distributed Bragg mirror 50.
參照圖4,第一分佈式布拉格反射鏡40藉著重複多對第一材料層40a與第二材料層40b而形成,而第二分佈式布拉格反射鏡50藉著重複多對第三材料層50a與第四材料層50b而形成。多對第一材料層40a與第二材料層40b對於在紅色波長範圍的光(例如550 nm或630 nm)比對於在藍光波長範圍的光具有相對較高的反射率,而第二分佈式布拉格反射鏡50對於在藍色波長範圍的光(例如460 nm的光)比對於在紅色或綠色波長範圍的光具有相對較高的反射率。在此情況下,於第一分佈式布拉格反射鏡40中的材料層40a與材料層40b的光學厚度比第二分佈式布拉格反射鏡50中的材料層50a與材料層50b的光學厚度厚,或反之亦然,但不限於此。Referring to FIG. 4, the first distributed Bragg mirror 40 is formed by repeating a plurality of pairs of the first material layer 40a and the second material layer 40b, and the second distributed Bragg mirror 50 repeats the plurality of pairs of the third material layers 50a. Formed with the fourth material layer 50b. The plurality of pairs of first material layer 40a and second material layer 40b have a relatively higher reflectance for light in the red wavelength range (for example, 550 nm or 630 nm) than for light in the blue wavelength range, and the second distributed Prague Mirror 50 has a relatively high reflectivity for light in the blue wavelength range (eg, 460 nm light) versus for light in the red or green wavelength range. In this case, the optical thickness of the material layer 40a and the material layer 40b in the first distributed Bragg mirror 40 is thicker than the optical thickness of the material layer 50a and the material layer 50b in the second distributed Bragg mirror 50, or The reverse is also true, but is not limited to this.
第一材料層40a可和第三材料層50a為相同材料,即,具有相同的折射係數(n)(refractive index(n)),而第二材料層40b可和第四材料層50b為相同材料,即,具有相同的折射係數(n)。舉例而言,第一材料層40a和第三材料層50a可由二氧化鈦(TiO2)製成(n約等於2.5),而第二材料層40b和第四材料層50b可由二氧化矽(SiO2)製成(n約等於1.5)。The first material layer 40a may be the same material as the third material layer 50a, that is, have the same refractive index (n) (refractive index (n)), and the second material layer 40b may be the same material as the fourth material layer 50b. , that is, have the same refractive index (n). For example, the first material layer 40a and the third material layer 50a may be made of titanium oxide (TiO 2 ) (n is approximately equal to 2.5), and the second material layer 40b and the fourth material layer 50b may be made of cerium oxide (SiO 2 ). Made (n is approximately equal to 1.5).
同時,第一材料層40a的光學厚度(折射率×厚度)可實質上與第二材料層40b的光學厚度具有整數的倍數關係,而其光學厚度可實質上彼此相同。此外,第三材料層50a的光學厚度可實質上與第四材料層50b的光學厚度具有整數的倍數關係,而其光學厚度可實質上彼此相同。Meanwhile, the optical thickness (refractive index x thickness) of the first material layer 40a may substantially have an integral multiple relationship with the optical thickness of the second material layer 40b, and the optical thicknesses thereof may be substantially identical to each other. Furthermore, the optical thickness of the third material layer 50a may be substantially an integral multiple of the optical thickness of the fourth material layer 50b, while the optical thicknesses thereof may be substantially identical to each other.
此外,第一材料層40a的光學厚度可比第三材料層50a的光學厚度厚,而第二材料層40b的光學厚度可比第四材料層50b的光學厚度厚。第一材料層40a、第二材料層40b、第三材料層50a及第四材料層50b的光學厚度可藉著控制每一個材料層的反射係數及/或厚度來控制。Further, the optical thickness of the first material layer 40a may be thicker than the optical thickness of the third material layer 50a, and the optical thickness of the second material layer 40b may be thicker than the optical thickness of the fourth material layer 50b. The optical thicknesses of the first material layer 40a, the second material layer 40b, the third material layer 50a, and the fourth material layer 50b can be controlled by controlling the reflection coefficient and/or thickness of each material layer.
參照回圖3,由鋁(Al)、銀(Ag)或銠(Rh)或類似物製成的反射金屬層51可在布拉格反射鏡45的下部部分上形成,而用以保護布拉格反射鏡45的保護層53可形成於其上。保護層53可由任何金屬層(例如鈦(Ti)、鉻(Cr)、鎳(Ni)、鉑(Pt)、鉭(Ta)和金(Au)或其合金)製成。反射金屬層51或保護層53保護布拉格反射鏡45避免外來衝擊或污染。舉例而言,當發光二極體晶片被裝設在發光二極體封裝中時,反射金屬層51或保護層53防止分佈式布拉格反射鏡45自例如黏著劑的材料變形。此外,反射金屬層51可反射透過分佈式布拉格反射鏡45所傳遞的光。因此,分佈式布拉格反射鏡45的厚度可相對地減少。分佈式布拉格反射鏡45顯示相對高的反射率,但可傳遞具有大的入射角度的長波長範圍的可見光。因此,反射金屬層51可配置在分佈式布拉格反射鏡45的下部部分以反射透過分佈式布拉格反射鏡45的光,藉此增進發光效率。Referring back to FIG. 3, a reflective metal layer 51 made of aluminum (Al), silver (Ag) or rhodium (Rh) or the like may be formed on the lower portion of the Bragg mirror 45 to protect the Bragg mirror 45. A protective layer 53 may be formed thereon. The protective layer 53 may be made of any metal layer such as titanium (Ti), chromium (Cr), nickel (Ni), platinum (Pt), tantalum (Ta), and gold (Au) or an alloy thereof. The reflective metal layer 51 or the protective layer 53 protects the Bragg mirror 45 from external impact or contamination. For example, when the light emitting diode wafer is mounted in a light emitting diode package, the reflective metal layer 51 or the protective layer 53 prevents the distributed Bragg mirror 45 from being deformed from a material such as an adhesive. Further, the reflective metal layer 51 can reflect the light transmitted through the distributed Bragg reflector 45. Therefore, the thickness of the distributed Bragg mirror 45 can be relatively reduced. The distributed Bragg mirror 45 exhibits a relatively high reflectivity, but can transmit visible light of a long wavelength range with a large angle of incidence. Therefore, the reflective metal layer 51 can be disposed at a lower portion of the distributed Bragg mirror 45 to reflect light transmitted through the distributed Bragg mirror 45, thereby improving luminous efficiency.
根據本示範性實施例,提供包括對相對長波長的可見光具有高反射率的第一分佈式布拉格反射鏡40及對相對短波長的可見光具有高反射率的第二分佈式布拉格反射鏡50的分佈式布拉格反射鏡45,其中第一分佈式布拉格反射鏡40及第二分佈式布拉格反射鏡50堆疊而形成分佈式布拉格反射鏡45。透過結合第一分佈式布拉格反射鏡40及第二分佈式布拉格反射鏡50,分佈式布拉格反射鏡45可增加在大部分可見光範圍內的光的反射率。According to the present exemplary embodiment, there is provided a first distributed Bragg mirror 40 including high reflectance for relatively long wavelength visible light and a second distributed Bragg mirror 50 having high reflectivity for relatively short wavelength visible light. A Bragg mirror 45 in which the first distributed Bragg mirror 40 and the second distributed Bragg mirror 50 are stacked to form a distributed Bragg mirror 45. By combining the first distributed Bragg mirror 40 and the second distributed Bragg mirror 50, the distributed Bragg mirror 45 can increase the reflectivity of light over most of the visible range.
根據相關技術的分佈式布拉格反射鏡對特定波長範圍的光具有高反射率,但對於不同波長範圍的光具有相對低的反射率,使得改良在發白光的發光二極體封裝體中的發光效率有其限制。然而,根據本示範性實施例,分佈式布拉格反射鏡45對藍色波長範圍的光可具有高反射率,而對於在綠色波長範圍的光和在紅色波長範圍的光一樣具有高反射率,藉此使得改善發光二極體封裝體的發光效率能實現。A distributed Bragg mirror according to the related art has high reflectance for light of a specific wavelength range, but has relatively low reflectance for light of different wavelength ranges, so that luminous efficiency in a white-emitting light-emitting diode package is improved There are restrictions. However, according to the present exemplary embodiment, the distributed Bragg mirror 45 may have high reflectance for light of a blue wavelength range, and high reflectance for light of a green wavelength range and light of a red wavelength range, This makes it possible to improve the luminous efficiency of the light-emitting diode package.
此外,與第二分佈式布拉格反射鏡50的配置比第一分佈式布拉格反射鏡40更靠近基底21的情況相較,在第一分佈式布拉格反射鏡40的配置比第二分佈式布拉格反射鏡50更靠近基底的情況下,分佈式布拉格反射鏡45中光的散失可進一步減低。Furthermore, compared to the case where the configuration of the second distributed Bragg mirror 50 is closer to the substrate 21 than the first distributed Bragg mirror 40, the configuration of the first distributed Bragg mirror 40 is smaller than that of the second distributed Bragg mirror With 50 closer to the substrate, the loss of light in the distributed Bragg reflector 45 can be further reduced.
雖然本示範性實施例說明兩種反射鏡,即,第一分佈式布拉格反射鏡40與第二分佈式布拉格反射鏡50,但可使用更多種反射鏡。此情況下,對於長波長具有相對高反射率的反射鏡可相對較靠近發光結構30而置放。Although the present exemplary embodiment illustrates two types of mirrors, namely, a first distributed Bragg mirror 40 and a second distributed Bragg mirror 50, more types of mirrors can be used. In this case, a mirror having a relatively high reflectance for a long wavelength can be placed relatively close to the light emitting structure 30.
此外,在本示範性實施例中,於第一分佈式布拉格反射鏡40中的第一材料層40a的厚度彼此可不相同。再者,第二材料層40b的厚度彼此可不相同。另外,於第二分佈式布拉格反射鏡50中的第三材料層50a的厚度彼此可不相同。此外,第四材料層40b的厚度彼此可不相同。Further, in the present exemplary embodiment, the thicknesses of the first material layers 40a in the first distributed Bragg mirror 40 may be different from each other. Furthermore, the thicknesses of the second material layers 40b may be different from each other. In addition, the thicknesses of the third material layers 50a in the second distributed Bragg mirror 50 may be different from each other. Further, the thicknesses of the fourth material layers 40b may be different from each other.
本示範性實施例說明材料層40a、材料層40b、材料層50a與材料層50b為由二氧化矽(SiO2)或二氧化鈦(TiO2)製成,但不限於此。因此,它們可由其他材料(例如氮化矽(Si3N4)、化合物半導體或其類似物)製成。然而,在第一材料層40a與第二材料層40b之間的折射率差異以及在第三材料層50a與第四材料層50b之間的折射率差異可至少為0.5。The present exemplary embodiment illustrates that the material layer 40a, the material layer 40b, the material layer 50a, and the material layer 50b are made of cerium oxide (SiO 2 ) or titanium oxide (TiO 2 ), but are not limited thereto. Therefore, they can be made of other materials such as tantalum nitride (Si 3 N 4 ), compound semiconductors or the like. However, the difference in refractive index between the first material layer 40a and the second material layer 40b and the difference in refractive index between the third material layer 50a and the fourth material layer 50b may be at least 0.5.
此外,在第一分佈式布拉格反射鏡40中的第一材料層40a和第二材料層40b的對數愈多且在第二分佈式布拉格反射鏡50中的第三材料層50a和第四材料層50b的對數愈多,反射率會變得愈高。全部的對數共可為20或者更多。Furthermore, the more the number of pairs of the first material layer 40a and the second material layer 40b in the first distributed Bragg mirror 40 and the third material layer 50a and the fourth material layer in the second distributed Bragg mirror 50 The more the logarithm of 50b, the higher the reflectivity will become. The total number of logs can be 20 or more.
可在形成分佈式布拉格反射鏡45之前控制基底21的背面之表面粗糙度。當基底21的背面之表面粗糙度相對大時,其可能難以在廣大波長範圍中藉分佈式布拉格反射鏡45而獲得高反射率。當分佈式布拉格反射鏡45和基底21間的界面有缺陷,分佈式布拉格反射鏡45會易於變形。即使在將發光二極體晶片裝設至例如發光二極體封裝體中時施加輕微的熱處理(thermal process),此變形仍可能造成分佈式布拉格反射鏡45折射率減小的問題。可控制基底21的背面的表面粗糙度使其具有3 nm或更小的均方根(root-mean-square,RMS)值。或者,基底21的背面的表面粗糙度可具有2 nm或更小的RMS值。在一些實施例中,其可具有1 nm或更小的RMS值。The surface roughness of the back surface of the substrate 21 can be controlled before the distributed Bragg mirror 45 is formed. When the surface roughness of the back surface of the substrate 21 is relatively large, it may be difficult to obtain high reflectance by the distributed Bragg mirror 45 in a wide wavelength range. When the interface between the distributed Bragg reflector 45 and the substrate 21 is defective, the distributed Bragg mirror 45 is easily deformed. Even when a light-emitting diode process is applied to, for example, a light-emitting diode package, a slight thermal process is applied, which may cause a problem of a decrease in the refractive index of the distributed Bragg mirror 45. The surface roughness of the back surface of the substrate 21 can be controlled to have a root-mean-square (RMS) value of 3 nm or less. Alternatively, the surface roughness of the back surface of the substrate 21 may have an RMS value of 2 nm or less. In some embodiments, it can have an RMS value of 1 nm or less.
現在將說明製造分佈式布拉格反射鏡45及發光二極體晶片的方法。A method of manufacturing a distributed Bragg mirror 45 and a light emitting diode wafer will now be described.
首先,在形成分佈式布拉格反射鏡45前控制基底21的表面粗糙度。舉例而言,其上形成有發光結構的基底21的背面最先被研磨,以移除一部分基底21。在此情況下,基底21的背面藉著研磨(grinding)而被刮劃(scratch),使其相對地非常粗糙。其後,以具有小顆粒的研磨漿對基底21的表面進行磨光(lapping)。在磨光製程中,溝槽(groove)(如基底21的表面中的刮痕等)的深度被減少,藉此減少了表面粗糙度。在此情況下,基底21的背面的表面粗糙度可藉著控制磨光製程中使用的鑽石研磨漿的顆粒尺寸以及表面平板(surface plate)而控制在3 μm者更小。然而,一般而言,難以僅使用利用表面平板和研磨漿顆粒的磨光製程來控制表面粗糙度。因此,在藉著磨光製程來減少表面粗糙度之後,基底21的背面可藉著化學機械研磨(chemical mechanical polishing,CMP)製程進行拋光。基底21的背面的表面粗糙度可藉著CMP製程控制而達到1 nm或者更小。First, the surface roughness of the substrate 21 is controlled before the distributed Bragg mirror 45 is formed. For example, the back surface of the substrate 21 on which the light emitting structure is formed is first ground to remove a portion of the substrate 21. In this case, the back surface of the substrate 21 is scratched by grinding to make it relatively rough. Thereafter, the surface of the substrate 21 is subjected to lapping with a slurry having small particles. In the buffing process, the depth of the groove (such as scratches in the surface of the substrate 21, etc.) is reduced, thereby reducing the surface roughness. In this case, the surface roughness of the back surface of the substrate 21 can be controlled to be smaller at 3 μm by controlling the particle size of the diamond slurry used in the polishing process and the surface plate. However, in general, it is difficult to control the surface roughness using only a buffing process using surface plates and abrasive particles. Therefore, after the surface roughness is reduced by the buffing process, the back surface of the substrate 21 can be polished by a chemical mechanical polishing (CMP) process. The surface roughness of the back surface of the substrate 21 can be controlled to 1 nm or less by the CMP process control.
然後,具有不同折射率的材料層(如TiO2、SiO2與Si3N4或其類似物)交替地沈積在基底21的表面上。這些材料層的沈積可藉不同的方法進行,如濺鍍(sputtering)、電子束沈積(electron beam deposition)、電漿輔助化學氣相沈積(plasma enhanced chemical vapor deposition,PECVD)法等。特別的是,可使用離子輔助沈積(ion assisted deposition)。離子輔助沈積藉著測量沈積在基底21上的材料層的反射率而形成具有適當厚度的材料層,使其適於形成分佈式布拉格反射鏡的材料層。Then, the material layer (e.g., TiO 2, SiO 2 and Si 3 N 4 or the like) having different refractive indices are alternately deposited on the surface of the substrate 21. The deposition of these material layers can be carried out by various methods such as sputtering, electron beam deposition, plasma enhanced chemical vapor deposition (PECVD), and the like. In particular, ion assisted deposition can be used. Ion-assisted deposition forms a layer of material having a suitable thickness by measuring the reflectivity of a layer of material deposited on substrate 21, making it suitable for forming a layer of material for a distributed Bragg mirror.
在形成分佈式布拉格反射鏡之後,金屬層可在分佈式布拉格反射鏡上形成。其後,基底被切塊,從而完成個別的發光二極體晶片。After forming a distributed Bragg mirror, the metal layer can be formed on a distributed Bragg mirror. Thereafter, the substrate is diced to complete the individual light-emitting diode wafers.
圖5所示為根據本發明的另一示範性實施例的分佈式布拉格反射鏡55的剖面圖。根據本示範性實施例的發光二極體晶片實質上與參照圖3及圖4說明的發光二極體晶片類似。圖3及圖4顯示並說明分佈式布拉格反射鏡45具有第一分佈式布拉格反射鏡40與第二分佈式布拉格反射鏡50的堆疊結構。另一方面,在根據本示範性實施例的分佈式布拉格反射鏡55中,混合多對第一材料層40a和第二材料層40b與多對第三材料層50a和第四材料層50b。換句話說,至少一對第三材料層50a和第四材料層50b置放在多對第一材料層40a和第二材料層40b之間。此外,至少一對第一材料層40a和第一材料層40b置放在多對第三材料層50a和第四材料層50b之間。在此種配置中,第一材料層40a、第二材料層40b、第三材料層50a和第四材料層50b的光學厚度被控制,以對於在廣大可見光範圍內的光具有高反射率。因此,每個構成分佈式布拉格反射鏡的材料層的光學厚度彼此可不相同。FIG. 5 shows a cross-sectional view of a distributed Bragg mirror 55 in accordance with another exemplary embodiment of the present invention. The light emitting diode wafer according to the present exemplary embodiment is substantially similar to the light emitting diode wafer described with reference to FIGS. 3 and 4. 3 and 4 show and illustrate that the distributed Bragg mirror 45 has a stacked structure of a first distributed Bragg mirror 40 and a second distributed Bragg mirror 50. On the other hand, in the distributed Bragg mirror 55 according to the present exemplary embodiment, a plurality of pairs of the first material layer 40a and the second material layer 40b and the plurality of pairs of the third material layer 50a and the fourth material layer 50b are mixed. In other words, at least a pair of the third material layer 50a and the fourth material layer 50b are placed between the plurality of pairs of the first material layer 40a and the second material layer 40b. Further, at least a pair of the first material layer 40a and the first material layer 40b are placed between the plurality of pairs of the third material layer 50a and the fourth material layer 50b. In this configuration, the optical thicknesses of the first material layer 40a, the second material layer 40b, the third material layer 50a, and the fourth material layer 50b are controlled to have high reflectance for light in a wide range of visible light. Therefore, the optical thicknesses of each of the material layers constituting the distributed Bragg mirror may be different from each other.
圖6為根據本發明的另一示範性實施例所示的具有多個發光單元的發光二極體晶片20a的剖面圖。FIG. 6 is a cross-sectional view of a light emitting diode wafer 20a having a plurality of light emitting units, according to another exemplary embodiment of the present invention.
參照圖6,發光二極體晶片20a包括在基底21上的多個發光單元。此外,發光二極體晶片20a可包括分佈式布拉格反射鏡45和金屬層51及/或保護層53。Referring to FIG. 6, the light emitting diode wafer 20a includes a plurality of light emitting units on the substrate 21. Further, the light emitting diode chip 20a may include a distributed Bragg mirror 45 and a metal layer 51 and/or a protective layer 53.
基底21和分佈式布拉格反射鏡45類似於參照圖3、圖4及圖5而說明的分佈式布拉格反射鏡,因此將省略其詳細說明。然而,基底21可為與多個發光單元電絕緣的絕緣體。舉例而言,基底21可為圖案化的藍寶石基底。The substrate 21 and the distributed Bragg mirror 45 are similar to the distributed Bragg mirror described with reference to FIGS. 3, 4, and 5, and thus detailed description thereof will be omitted. However, the substrate 21 may be an insulator that is electrically insulated from the plurality of light emitting units. For example, substrate 21 can be a patterned sapphire substrate.
同時,置放多個相互隔離的發光單元30。多個發光單元30的每一個與參照圖3的發光結構30相同,因此將省略其中的詳細說明。此外,緩衝層23可介在發光單元30與基底21間,且緩衝層23亦可彼此相互隔離。At the same time, a plurality of mutually isolated light-emitting units 30 are placed. Each of the plurality of light emitting units 30 is the same as the light emitting structure 30 with reference to FIG. 3, and thus detailed description thereof will be omitted. In addition, the buffer layer 23 can be interposed between the light emitting unit 30 and the substrate 21, and the buffer layer 23 can also be isolated from each other.
第一絕緣層37覆蓋發光單元30的前表面。第一絕緣層37具有在第一導電型半導體層25上的開口及在第二導電型半導體層29上的開口。發光單元30的側壁被第一絕緣層37所覆蓋。第一絕緣層37亦覆蓋在發光單元30之間區域的基底21。第一絕緣層37可由二氧化矽(SiO2)層或氮化矽(silicon nitride)層形成,且可為在200℃至300℃的溫度範圍中使用電漿化學氣相沈積法所形成的層。在此情況中,可形成第一絕緣層37而具有4500 至1 μm的厚度。當形成第一絕緣層而具有小於4500 的厚度時,由於在發光單元底部側的階梯覆蓋特性(step coverage characteristic)而會形成具有相對小的厚度的第一絕緣層,且可能在接線(wiring)與形成在第一絕緣層上的發光單元之間發生電性短路(electrical short circuit)。同時,當第一絕緣層的厚度變得較大時,可預防電性短路,但光的透射率(transmittance)可能劣化而減少了發光效率。因此,較佳為形成厚度不超過1 μm的第一絕緣層。The first insulating layer 37 covers the front surface of the light emitting unit 30. The first insulating layer 37 has an opening on the first conductive type semiconductor layer 25 and an opening on the second conductive type semiconductor layer 29. The side wall of the light emitting unit 30 is covered by the first insulating layer 37. The first insulating layer 37 also covers the substrate 21 in the region between the light emitting units 30. The first insulating layer 37 may be formed of a cerium oxide (SiO 2 ) layer or a silicon nitride layer, and may be a layer formed by plasma chemical vapor deposition in a temperature range of 200 ° C to 300 ° C. . In this case, the first insulating layer 37 may be formed to have 4500 To a thickness of 1 μm. When forming the first insulating layer and having less than 4500 At the thickness of the first insulating layer having a relatively small thickness due to a step coverage characteristic on the bottom side of the light emitting unit, and possibly wiring and light emission formed on the first insulating layer An electrical short circuit occurs between the units. Meanwhile, when the thickness of the first insulating layer becomes larger, an electrical short circuit can be prevented, but the transmittance of light may be deteriorated to reduce the luminous efficiency. Therefore, it is preferable to form the first insulating layer having a thickness of not more than 1 μm.
同時,在第一絕緣層37上形成接線39。接線39透過開口而電性連接至第一導電型半導體層25和第二導電型半導體層29。透明電極層31可配置於第二導電型半導體層29上,且接線可連接至透明電極層31。此外,接線39分別電性連接相鄰的發光單元30的第一導電型半導體層25至第二導電型半導體層29,使得發光單元30的串聯陣列可形成。可形成多個串聯陣列,並各自反向並聯,使得它們可連接至交流電(alternating current,AC)電源。此外,連接至發光單元的串聯陣列的橋接整流器(未繪示)可被連接,且發光單元可在交流電電源下以此橋接整流器而驅動。此橋接整流器可藉連接具有相同結構的發光單元(如使用接線29的發光單元30)。At the same time, a wiring 39 is formed on the first insulating layer 37. The wiring 39 is electrically connected to the first conductive type semiconductor layer 25 and the second conductive type semiconductor layer 29 through the opening. The transparent electrode layer 31 may be disposed on the second conductive type semiconductor layer 29, and the wiring may be connected to the transparent electrode layer 31. In addition, the wires 39 are electrically connected to the first conductive type semiconductor layer 25 to the second conductive type semiconductor layer 29 of the adjacent light emitting units 30, respectively, so that a series array of the light emitting units 30 can be formed. Multiple series arrays can be formed and each connected in anti-parallel such that they can be connected to an alternating current (AC) power source. In addition, a series of bridge rectifiers (not shown) connected to the light unit can be connected, and the light unit can be driven with the bridge rectifier under an alternating current source. This bridge rectifier can be connected by a light-emitting unit having the same structure (such as the light-emitting unit 30 using the wiring 29).
另一方面,接線可將相鄰發光單元的第一導電型半導體層25相互連接,或者將鄰發光單元的第二導電型半導體層29相互連接。因此,可提供以串聯及並聯方式連接的多個發光單元。On the other hand, the wiring may connect the first conductive type semiconductor layers 25 of the adjacent light emitting units to each other or the second conductive type semiconductor layers 29 of the adjacent light emitting units to each other. Therefore, a plurality of light emitting units connected in series and in parallel can be provided.
接線39可由導體材料(例如摻雜的半導體材料(如多晶矽)或金屬)所製成。特別地是,可以多層結構形成接線39,例如鉻或鈦的下層及鉻或鈦的上層。此外,金、金/鎳或金/鋁的金屬層可介在下層與上層之間。Wiring 39 can be made of a conductive material such as a doped semiconductor material such as polysilicon or a metal. In particular, the wires 39 may be formed in a multilayer structure, such as a lower layer of chromium or titanium and an upper layer of chromium or titanium. In addition, a metal layer of gold, gold/nickel or gold/aluminum may be interposed between the lower layer and the upper layer.
第二絕緣層41可覆蓋接線39與第一絕緣層37。第二絕緣層41防止接線39被溼氣或其他類似物污染,並防止了接線39與發光單元30因外部衝擊而被損壞。The second insulating layer 41 may cover the wiring 39 and the first insulating layer 37. The second insulating layer 41 prevents the wiring 39 from being contaminated by moisture or the like, and prevents the wiring 39 and the light emitting unit 30 from being damaged by an external impact.
第二絕緣層41可以與第一絕緣層37及氧化矽層相同的材料或氮化矽層形成。第二絕緣層41可為在200℃至300℃的溫度範圍中使用電漿化學氣相沈積法(PECVD)所形成的層,與第一絕緣層類似。此外,當第一絕緣層藉著使用PECVD法形成時,第二絕緣層可在第一絕緣層的沈積溫度(deposition temperature)的-20%至+20%之溫度範圍中沈積,或者可在相同沈積溫度下沈積。The second insulating layer 41 may be formed of the same material as the first insulating layer 37 and the yttria layer or a tantalum nitride layer. The second insulating layer 41 may be a layer formed using plasma chemical vapor deposition (PECVD) in a temperature range of 200 ° C to 300 ° C, similar to the first insulating layer. Further, when the first insulating layer is formed by using a PECVD method, the second insulating layer may be deposited in a temperature range of -20% to +20% of a deposition temperature of the first insulating layer, or may be the same Deposition at the deposition temperature.
同時,當與第一絕緣層37相比,第二絕緣層41可相對地薄,並可具有500 或更大的厚度。第二絕緣層41相對比第一絕緣層37薄,可防止第二絕緣層自第一絕緣層剝落。此外,當第二絕緣層較2500 薄時,其可能難以保護接線與發光單元免受外界衝擊或濕氣的滲透。Meanwhile, the second insulating layer 41 may be relatively thin compared to the first insulating layer 37, and may have 500 Or greater thickness. The second insulating layer 41 is thinner than the first insulating layer 37, and the second insulating layer can be prevented from peeling off from the first insulating layer. In addition, when the second insulation layer is 2500 When thin, it may be difficult to protect the wiring and the light unit from external impact or moisture penetration.
同時,磷光體層43可置放在發光二極體晶片20a上。磷光體層43可為樹脂分散在磷光體中的層或藉著電泳方法沈積的層。磷光體層43覆蓋第二絕緣層41,藉此轉換自發光單元30所發出的光之波長。At the same time, the phosphor layer 43 can be placed on the light emitting diode chip 20a. The phosphor layer 43 may be a layer in which a resin is dispersed in a phosphor or a layer deposited by an electrophoresis method. The phosphor layer 43 covers the second insulating layer 41, thereby converting the wavelength of light emitted from the light emitting unit 30.
圖7為用以說明根據本發明另一示範性實施例的具有多個發光單元的發光二極體晶片20b的剖面圖。FIG. 7 is a cross-sectional view for explaining a light emitting diode wafer 20b having a plurality of light emitting units, according to another exemplary embodiment of the present invention.
參照圖7,根據本示範性實施例的發光二極體晶片20b實質上與前面提及的發光二極體晶片20a類似,但它們在發光單元30的形狀及接線39連接的第一導電型半導體層25的部分的方面並不相同。Referring to FIG. 7, the light-emitting diode wafer 20b according to the present exemplary embodiment is substantially similar to the aforementioned light-emitting diode wafer 20a, but they are in the shape of the light-emitting unit 30 and the first conductive type semiconductor to which the wiring 39 is connected. Aspects of portions of layer 25 are not identical.
意即,發光二極體晶片20a的發光單元30具有第一導電型半導體層25的暴露的上表面,而接線39連接至第一導電型半導體層25的上表面。與發光二極體晶片20a不同,根據本示範性實施例的發光二極體晶片20b的發光單元30被形成而具有傾斜的側表面以暴露第一導電型半導體層25的傾斜的側表面,而接線39連接至第一導電型半導體層25的傾斜的側表面。That is, the light emitting unit 30 of the light emitting diode wafer 20a has the exposed upper surface of the first conductive type semiconductor layer 25, and the wiring 39 is connected to the upper surface of the first conductive type semiconductor layer 25. Unlike the light emitting diode wafer 20a, the light emitting unit 30 of the light emitting diode wafer 20b according to the present exemplary embodiment is formed to have an inclined side surface to expose the inclined side surface of the first conductive type semiconductor layer 25, and The wiring 39 is connected to the inclined side surface of the first conductive type semiconductor layer 25.
因此,根據本示範性實施例,除了分離發光單元的製程外,不需要進行暴露第一導電型半導體層25上部表面的單獨製程,藉此可簡化製程。另外,不需暴露第一導電型半導體層25的上部表面,藉此可避免主動層27的面積減少。此外,由於接線39沿著第一導電型半導體層25的傾斜的側表面連接,因此可改善發光單元30的電流散佈表現,且因此,可減少正向電壓(forward voltage),並可改善發光二極體晶片20b的可靠度。Therefore, according to the present exemplary embodiment, in addition to the process of separating the light emitting cells, a separate process of exposing the upper surface of the first conductive type semiconductor layer 25 is not required, whereby the process can be simplified. In addition, it is not necessary to expose the upper surface of the first conductive type semiconductor layer 25, whereby the area reduction of the active layer 27 can be avoided. Further, since the wirings 39 are connected along the inclined side surfaces of the first conductive type semiconductor layer 25, the current dispersion performance of the light emitting unit 30 can be improved, and therefore, the forward voltage can be reduced, and the light emission can be improved. The reliability of the polar body chip 20b.
實驗例Experimental example
圖8為顯示根據入射角的分佈式布拉格反射鏡的反射率變化之模擬圖。在此情況中,分佈式布拉格反射鏡藉著交替地在玻璃基底上堆疊40層的SiO2與TiO2而製成。個別控制每一個層的厚度而使得入射角度為0°的400 nm至700 nm的整個區域具有99%或更大的反射率。因此,分佈式布拉格反射鏡整體厚度為2.908 μm。同時,在實質上使用的發光二極體晶片的情況中,入射角約為60°或者更大角度的光入射會全部被反射,這是由於在藍寶石基底(n約等於1.78)與SiO2(n約等於1.48)之間的折射率差異所致,而因此,省略入射角為60°或者更大角度的模擬。同時,圖8的圖顯示在反射率100%的部分的整個可見區域(其類似於圖9中所示的圖)。Figure 8 is a simulation diagram showing the change in reflectance of a distributed Bragg mirror according to an incident angle. In this case, the distributed Bragg mirror is made by alternately stacking 40 layers of SiO 2 and TiO 2 on a glass substrate. The thickness of each layer is individually controlled so that the entire region of 400 nm to 700 nm having an incident angle of 0° has a reflectance of 99% or more. Therefore, the distributed Bragg mirror has an overall thickness of 2.908 μm. Meanwhile, in the case of a substantially used light-emitting diode wafer, light incident at an incident angle of about 60 or more will be totally reflected due to the sapphire substrate (n is approximately equal to 1.78) and SiO 2 ( The difference in refractive index between n is approximately equal to 1.48), and therefore, the simulation of the angle of incidence of 60 or more is omitted. Meanwhile, the graph of FIG. 8 shows the entire visible region of the portion at 100% reflectance (which is similar to the graph shown in FIG. 9).
如由圖8的圖所能理解的,40層的分佈式布拉格反射鏡關於在整個可見區域中0°的入射角度而顯示99%或者更高的超高反射率。然而,當入射至分佈式布拉格反射鏡的光的入射角度增加,可理解長波長的可見光的反射率衰減。當入射角度超過30°,對於700 nm波長的光的反射率降至99%或者更低。As can be understood from the graph of Fig. 8, the 40-layer distributed Bragg mirror exhibits an ultra-high reflectance of 99% or higher with respect to an incident angle of 0° in the entire visible region. However, when the incident angle of light incident on the distributed Bragg mirror is increased, it is understood that the reflectance of the long-wavelength visible light is attenuated. When the incident angle exceeds 30°, the reflectance for light at 700 nm is reduced to 99% or lower.
圖9A與圖9B分別顯示藉著增加分佈式布拉格反射鏡的堆疊數來改善對於入射角度在50°及60°的長波長入射光的反射率的實例。9A and 9B respectively show an example of improving the reflectance of long-wavelength incident light with incident angles of 50° and 60° by increasing the number of stacked Bragg mirrors.
參照圖9A及圖9B,如圖8中所說明,在分佈式布拉格反射鏡具有40層(40L)而總厚度為2.908 μm的情況中,對於入射角度50°的反射率(40L-50°)及對於入射角度60°的反射率(40L-60°)比在長波長的可見區域中對於入射角度0°的反射率(40L-0°)減少許多。此外,在可見區域的中間區域(例如是在鄰近510 nm至520 nm)的部分發生折射率衰減。Referring to FIGS. 9A and 9B, as illustrated in FIG. 8, in the case where the distributed Bragg mirror has 40 layers (40 L) and the total thickness is 2.908 μm, the reflectance for an incident angle of 50° (40 L - 50°) And the reflectance (40L-60°) for the incident angle of 60° is much reduced compared to the reflectance (40L-0°) for the incident angle of 0° in the visible region of the long wavelength. In addition, refractive index decay occurs in a portion of the intermediate region of the visible region (eg, adjacent to 510 nm to 520 nm).
然而,當分佈式布拉格反射鏡的層的數目增加到48層(總厚度:3.829 μm)或52層(總厚度:4.367 μm)時,即使入射角大,亦可能獲得實質上在廣大波長區域內均勻的高反射率。However, when the number of layers of the distributed Bragg mirror is increased to 48 layers (total thickness: 3.829 μm) or 52 layers (total thickness: 4.367 μm), even if the incident angle is large, it is possible to obtain substantially in a wide wavelength region. Uniform high reflectivity.
因此,增加分佈式布拉格反射鏡的堆疊數目可以改善反射率,並對於大入射角度的入射光維持高反射率。然而,增加分佈式布拉格反射鏡的堆疊數目導致製程時間的增加,且可能在分佈式布拉格反射鏡中會造成裂痕。Therefore, increasing the number of stacked Bragg mirrors can improve the reflectance and maintain high reflectance for incident light at a large incident angle. However, increasing the number of stacked Bragg mirrors results in an increase in process time and may cause cracks in distributed Bragg mirrors.
圖10A與圖10B分別為顯示在進行切割製程(dicing process)後的分佈式布拉格反射鏡的平面圖。在此情況中,圖10A所示的情況為以離子輔助沈積方法堆疊40層的分佈式布拉格反射鏡,而圖10B所示為以離子輔助沈積方法堆疊48層的分佈式布拉格反射鏡。10A and 10B are plan views showing distributed Bragg mirrors after performing a dicing process, respectively. In this case, the case shown in Fig. 10A is a distributed Bragg mirror in which 40 layers are stacked by ion assisted deposition, and Fig. 10B is a distributed Bragg mirror in which 48 layers are stacked by ion assisted deposition.
當堆疊了40層時(圖10A),在分佈式布拉格反射鏡中不會出現裂痕,而當堆疊了48層時(圖10B),在佈式布拉格反射鏡中出現裂痕。當堆疊了52層時(未繪示),同樣會出現裂痕。When 40 layers were stacked (Fig. 10A), cracks did not occur in the distributed Bragg mirror, and when 48 layers were stacked (Fig. 10B), cracks appeared in the cloth Bragg mirror. When 52 layers are stacked (not shown), cracks also occur.
在分佈式布拉格反射鏡中出現裂痕的原因並不清楚,但被認為與離子輔助沈積法有關。即,由於高密度的層藉著離子對撞而沈積,壓力累積在分佈式布拉格反射鏡中,而因此在切割基底期間,於分佈式布拉格反射鏡中會出現裂痕。因此,可能不適合僅藉由增加堆疊數目來大量製造發光二極體晶片。The reason for cracks in distributed Bragg mirrors is not clear, but is believed to be related to ion assisted deposition. That is, since the high-density layer is deposited by ion collision, the pressure is accumulated in the distributed Bragg mirror, and thus cracks may occur in the distributed Bragg mirror during the cutting of the substrate. Therefore, it may not be suitable to mass-produce a light-emitting diode wafer only by increasing the number of stacks.
與此理解有關,如圖3中所說明的,可在分佈式布拉格反射鏡中形成反射金屬層,使得對於具有大入射角度的光的相對高的反射率可以維持。In connection with this understanding, as illustrated in Figure 3, a reflective metal layer can be formed in a distributed Bragg mirror such that a relatively high reflectivity for light having a large angle of incidence can be maintained.
表1中顯示根據施加反射金屬層(Al)與否在白色發光二極體封裝體狀態中分佈式布拉格反射鏡的堆疊數目、一種環氧化物及相對的發光效率。在這些實驗例中,除了分佈式布拉格反射鏡、反射金屬層及環氧化物的類型之外,其他條件(例如發光二極體的類型與封裝體的類型)均相同。分佈式布拉格反射鏡的層的堆疊數目為40,而有關未施加Al反射金屬層(以"X"表示)的發光二極體晶片的發光二極體封裝體(樣品1號)之發光效率以百分比(%)表示。Table 1 shows the number of stacked Bragg mirrors, an epoxide, and relative luminous efficiency in the state of a white light-emitting diode package depending on whether a reflective metal layer (Al) is applied or not. In these experimental examples, other conditions (such as the type of the light-emitting diode and the type of the package) were the same except for the types of the distributed Bragg reflector, the reflective metal layer, and the epoxide. The number of stacked layers of the distributed Bragg mirror is 40, and the luminous efficiency of the light emitting diode package (sample No. 1) of the light emitting diode chip to which the Al reflective metal layer (indicated by "X") is not applied is Percentage (%) is indicated.
比較樣品1與樣品2及樣品5與樣品6,當未施加Al反射金屬層時,可知在發光效率依據所使用作為黏著劑的環氧化物的種類而有所不同。即,使用透明環氧樹脂的樣品顯示出比使用銀膠的樣品高的發光效率。這顯示分佈式布拉格反射鏡的反射率在沒有Al反射金屬層存在時會受到黏著劑的影響。Comparing Sample 1 with Sample 2, Sample 5, and Sample 6, when the Al reflective metal layer was not applied, it was found that the luminous efficiency differs depending on the type of epoxide used as the adhesive. That is, the sample using the transparent epoxy resin showed higher luminous efficiency than the sample using the silver paste. This shows that the reflectivity of the distributed Bragg mirror is affected by the adhesive in the absence of the Al reflective metal layer.
同時,當使用同一種類的黏著劑時,施加有Al反射金屬層的樣品(以"O"表示)顯示較其他樣品高的發光效率。例如,比較樣品1與樣品3、樣品2與樣品4及樣品5與樣品7,可知當施加Al反射金屬層時,發光效率改善。Meanwhile, when the same kind of adhesive is used, the sample to which the Al reflective metal layer is applied (indicated by "O") shows higher luminous efficiency than the other samples. For example, comparing Sample 1 with Sample 3, Sample 2 and Sample 4, and Sample 5 and Sample 7, it is understood that when an Al reflective metal layer is applied, the luminous efficiency is improved.
同時,比較樣品1與樣品5及樣品2與樣品6,當使用相同的黏著劑而未施加Al反射金屬層時,可知根據堆疊數目的增加,發光效率改善。可理解分佈式布拉格反射鏡堆疊數目的增加可改善在廣大入射角度範圍中分佈式布拉格反射鏡的反射率,藉此造成發光效率的改善。Meanwhile, comparing Sample 1 with Sample 5 and Sample 2 and Sample 6, when the same adhesive was used without applying the Al reflective metal layer, it was found that the luminous efficiency was improved according to the increase in the number of stacks. It will be appreciated that an increase in the number of distributed Bragg mirror stacks may improve the reflectivity of the distributed Bragg mirror over a wide range of incident angles, thereby resulting in improved luminous efficiency.
然而,比較樣品3與樣品7,當施加Al反射金屬層和銀膠時,儘管堆疊數目增加,發光效率卻沒有差異。藉著Al反射金屬層而對於具有大入射角度的長波長可見光維持相對高的反射率。因此,當施加分佈式布拉格反射鏡和反射金屬層時,可知當減少分佈式布拉格反射鏡的堆疊數目時,在封裝體等級(package level)可達到良好的發光效率。此外,分佈式布拉格反射鏡的堆疊數目減少可防止在分佈式布拉格反射鏡中出現裂痕。However, comparing Sample 3 with Sample 7, when the Al reflective metal layer and the silver paste were applied, although the number of stacks was increased, there was no difference in luminous efficiency. A relatively high reflectance is maintained for long-wavelength visible light having a large incident angle by the Al reflective metal layer. Therefore, when a distributed Bragg mirror and a reflective metal layer are applied, it is known that when the number of stacked Bragg mirrors is reduced, good luminous efficiency can be achieved at a package level. Furthermore, the reduced number of stacks of distributed Bragg mirrors prevents cracks in the distributed Bragg mirrors.
同時,當施加Al反射金屬層至分佈式布拉格反射鏡時,可觀察到在晶片等級(chip level)的分佈式布拉格反射鏡的反射率減少。此現象被認為與基底的表面粗糙度密切相關。以下,將說明基底的表面粗糙度在晶片等級對於分佈式布拉格反射鏡的反射率之影響。At the same time, when an Al reflective metal layer is applied to the distributed Bragg mirror, a decrease in the reflectance of the distributed Bragg mirror at the chip level can be observed. This phenomenon is considered to be closely related to the surface roughness of the substrate. Hereinafter, the influence of the surface roughness of the substrate on the reflectance of the wafer level to the distributed Bragg mirror will be explained.
圖11為顯示在使用銅表面平板的藍寶石基底磨光製程後,根據是否進行CMP的分佈式布拉格反射鏡的反射率之圖。Figure 11 is a graph showing the reflectance of a distributed Bragg mirror according to whether or not CMP is performed after a sapphire substrate polishing process using a copper surface plate.
首先,在藍寶石基底的背面研磨之後,藉著使用具有3 μm的顆粒之鑽石研磨漿而進行使用銅表面平板的磨光製程。在進行使用銅表面平板的磨光製程後,藍寶石基底的背面之表面粗糙度顯示均方根值(RMS)在5 μm×5 μm的區域中約為5.12 nm。First, after the back surface of the sapphire substrate was ground, a polishing process using a copper surface plate was performed by using a diamond slurry having particles of 3 μm. After performing the buffing process using the copper surface plate, the surface roughness of the back surface of the sapphire substrate showed a root mean square value (RMS) of about 5.12 nm in a region of 5 μm × 5 μm.
其後,在藍寶石基底的背面經受CMP製程後,藉由控制TiO2與SiO2的厚度來形成前面所提及的第一分佈式布拉格反射鏡和第二分佈式布拉格反射鏡以製造樣品(實例1)。另一方面,比較例與實例1類似,直接形成分佈式布拉格反射鏡而不進行CMP製程以製造樣品。使用20 kg的量的SiO2研磨漿進行CMP製程,而在CMP製程後,藍寶石基底的表面粗糙度於5 μm×5 μm的區域中顯示約0.25 nm的RMS值。Thereafter, after the sapphire substrate is subjected to a CMP process, the first distributed Bragg mirror and the second distributed Bragg mirror mentioned above are formed by controlling the thickness of TiO 2 and SiO 2 to fabricate a sample (example) 1). On the other hand, the comparative example was similar to Example 1 in that a distributed Bragg mirror was directly formed without performing a CMP process to fabricate a sample. The CMP process was carried out using a 20 kg amount of SiO 2 slurry, and after the CMP process, the surface roughness of the sapphire substrate showed an RMS value of about 0.25 nm in a region of 5 μm × 5 μm.
在比較例的情況下,如圖10所示,在可見光範圍中分佈式布拉格反射鏡顯示約90%或更大的反射率,但依據波長的反射率不規則,且在鄰近550 nm處顯示90%或較小的值。另一方面,在實例1中的情況,在可見光的廣大波長範圍中,分佈式布拉格反射鏡大部分的反射率顯示接近100%的值。In the case of the comparative example, as shown in FIG. 10, the distributed Bragg mirror exhibits a reflectance of about 90% or more in the visible light range, but the reflectance according to the wavelength is irregular, and 90 is displayed adjacent to 550 nm. % or smaller value. On the other hand, in the case of Example 1, in the broad wavelength range of visible light, most of the reflectance of the distributed Bragg mirror shows a value close to 100%.
圖12為顯示約500 nm的鋁層沈積在與圖11中的實例與比較例以相同方法製造的樣品上之後的反射率的圖。Fig. 12 is a graph showing the reflectance after deposition of an aluminum layer of about 500 nm on a sample fabricated in the same manner as the example of Fig. 11 and the comparative example.
在比較例的情況中,已確認在Al沈積之後,反射率減少相當多。另一方面,在實例的情況中,即使在沈積Al之後仍維持高反射率,而無反射率減少的情況。In the case of the comparative example, it has been confirmed that the reflectance is considerably reduced after the deposition of Al. On the other hand, in the case of the example, the high reflectance is maintained even after the deposition of Al, and there is no case where the reflectance is reduced.
在比較例中,被認為在Al沈積後才顯示出反射率減少的現象,這是因為在使用電子束沈積技術來沈積Al時,根據比較例所形成在藍寶石基底上而具有粗糙表面的分佈式布拉格反射鏡因界面缺陷而變形。在實例1的情況中,因為藍寶石基底的表面粗糙度佳,已確認當Al沈積時,分佈式布拉格反射鏡不變形而反射率維持。In the comparative example, it is considered that the phenomenon of the decrease in reflectance is exhibited after the deposition of Al because the distribution of the rough surface is formed on the sapphire substrate according to the comparative example when depositing Al using the electron beam deposition technique. The Bragg mirror is deformed due to interface defects. In the case of Example 1, since the surface roughness of the sapphire substrate was good, it was confirmed that when Al was deposited, the distributed Bragg mirror was not deformed and the reflectance was maintained.
圖13、圖14與圖15為顯示根據在使用錫表面平台的磨光製程期間依研磨漿顆粒的尺寸的反射率圖。Figures 13, 14 and 15 are graphs showing reflectance according to the size of the slurry particles during the buffing process using a tin surface platform.
在此種配置中,包含在鑽石顆粒中的研磨漿的尺寸與鑽石顆粒分別為3 μm、4 μm與6 μm。在使用錫表面平台進行磨光製程後,根據鑽石顆粒尺寸,藍寶石基底的表面粗糙度顯示的RMS值約2.40 nm、3.35 nm與4.18 nm。In this configuration, the size of the slurry contained in the diamond particles is 3 μm, 4 μm and 6 μm, respectively. After polishing using a tin surface platform, the surface roughness of the sapphire substrate shows an RMS value of about 2.40 nm, 3.35 nm, and 4.18 nm, depending on the diamond particle size.
在藉著錫表面平台進行磨光製程及沈積如圖8的實例中500 nm的Al之後,形成與實例1相同的分佈式布拉格反射鏡。After the buffing process was performed by the tin surface platform and the Al of 500 nm in the example of FIG. 8 was deposited, the same distributed Bragg mirror as in Example 1 was formed.
如由圖式中可理解的,在使用3 μm的研磨漿與錫表面平台進行磨光製程之後,在可見光範圍的廣大波長範圍中,分佈式布拉格反射鏡的反射率為90%或更大。然而,當沈積Al時,在鄰近550 nm處的反射率稍微地減少。As can be understood from the drawings, after using a 3 μm slurry and a tin surface platform for the buffing process, the distributed Bragg mirror has a reflectance of 90% or more in a wide wavelength range of the visible light range. However, when Al is deposited, the reflectance at approximately 550 nm is slightly reduced.
相對地,如圖14與圖15所示,在使用4 μm或6 μm的研磨漿及錫表面平台進行磨光製程之後,在鄰近550 nm處分佈式布拉格反射鏡的反射率並未達到90%,且在沈積Al之後,反射率降至80%或更低。In contrast, as shown in Figures 14 and 15, after using a 4 μm or 6 μm slurry and a tin surface platform for the buffing process, the reflectivity of the distributed Bragg reflector is less than 90% at 550 nm. And after depositing Al, the reflectance is reduced to 80% or less.
可由上述實驗例中理解,在分佈式布拉格反射鏡形成之前,藍寶石基底的表面粗糙度對於分佈式布拉格反射鏡的反射率有影響。此外,當控制藍寶石基底的表面粗糙度使具有3 nm或更小的RMS值時,相對地改善了反射特性。此外,當藍寶石基底的表面粗糙度為1 nm或更小時,可預期即使在沈積Al之後,反射率不會減少。It can be understood from the above experimental examples that the surface roughness of the sapphire substrate has an influence on the reflectance of the distributed Bragg mirror before the formation of the distributed Bragg mirror. Further, when the surface roughness of the sapphire substrate is controlled so as to have an RMS value of 3 nm or less, the reflection characteristics are relatively improved. Further, when the surface roughness of the sapphire substrate is 1 nm or less, it is expected that the reflectance does not decrease even after deposition of Al.
如由以上說明中顯而易知的,根據本發明的示範性實施例,可提供在廣大波長範圍內具有高反射率的分佈式布拉格反射鏡,以改善實施混合色光(如白光)的發光二極體封裝體的發光效率。此外,亦可藉由控制其上形成有分佈式布拉格反射鏡的基底的表面粗糙度確保分佈式布拉格反射鏡的反射率。As is apparent from the above description, according to an exemplary embodiment of the present invention, a distributed Bragg mirror having a high reflectance over a wide wavelength range can be provided to improve the implementation of a mixed color light (e.g., white light). The luminous efficiency of the polar body package. Furthermore, the reflectivity of the distributed Bragg mirror can also be ensured by controlling the surface roughness of the substrate on which the distributed Bragg mirror is formed.
對所屬技術領域中具有通常知識者而言,在不脫離本發明的精神與範疇內,對本發明可進行不同的修正或更動。因此,意為若本發明之修正或更動落在所附申請專利範圍及其等效範圍內,本發明涵蓋之。The invention may be modified or modified differently without departing from the spirit and scope of the invention. Therefore, it is intended that the present invention cover the modifications of the invention and the scope of the appended claims.
20、20a、20b...發光二極體晶片20, 20a, 20b. . . Light-emitting diode chip
21...基底twenty one. . . Base
23...緩衝層twenty three. . . The buffer layer
25...半導體層25. . . Semiconductor layer
27...主動層27. . . Active layer
29...半導體層29. . . Semiconductor layer
30...發光結構(發光單元)30. . . Light-emitting structure (lighting unit)
31...透明電極層31. . . Transparent electrode layer
33、35...電極墊33, 35. . . Electrode pad
37...第一絕緣層37. . . First insulating layer
39...接線39. . . wiring
40...第一分佈式布拉格反射鏡40. . . First distributed Bragg mirror
40a...第一材料層40a. . . First material layer
40b...第二材料層40b. . . Second material layer
41...第二絕緣層41. . . Second insulating layer
43...磷光體層43. . . Phosphor layer
45、55...分佈式布拉格反射鏡45, 55. . . Distributed Bragg mirror
50...第二分佈式布拉格反射鏡50. . . Second distributed Bragg mirror
50a...第三材料層50a. . . Third material layer
50b...第四材料層50b. . . Fourth material layer
51...金屬層51. . . Metal layer
53...保護層53. . . The protective layer
為提供本發明進一步的理解而包含所附圖式,其併入並構成此說明書的一部分,繪示本發明之實施例,並與說明一併用以解釋本發明之原理。The accompanying drawings, which are incorporated in and in the
圖1為根據相關技術在藍寶石基底上形成鋁的反射率圖。1 is a graph showing the reflectance of aluminum formed on a sapphire substrate according to the related art.
圖2為根據相關技術在藍寶石基底上的分佈式布拉格反射鏡的反射率圖。2 is a reflectance diagram of a distributed Bragg mirror on a sapphire substrate in accordance with the related art.
圖3為根據本發明一示範性實施例的具有分佈式布拉格反射鏡的發光二極體晶片的剖面圖。3 is a cross-sectional view of a light emitting diode wafer having a distributed Bragg mirror, in accordance with an exemplary embodiment of the present invention.
圖4為圖3之分佈式布拉格反射鏡的放大剖面圖。4 is an enlarged cross-sectional view of the distributed Bragg mirror of FIG. 3.
圖5為根據本發明另一示範性實施例的分佈式布拉格反射鏡的剖面圖。FIG. 5 is a cross-sectional view of a distributed Bragg mirror in accordance with another exemplary embodiment of the present invention.
圖6為根據本發明另一示範性實施例的具有多個發光單元的發光二極體晶片的剖面圖。FIG. 6 is a cross-sectional view of a light emitting diode wafer having a plurality of light emitting units, in accordance with another exemplary embodiment of the present invention.
圖7為根據本發明另一示範性實施例的具有多個發光單元的發光二極體晶片的剖面圖。FIG. 7 is a cross-sectional view of a light emitting diode wafer having a plurality of light emitting units, in accordance with another exemplary embodiment of the present invention.
圖8為根據入射角的分佈式布拉格反射鏡的反射率變化之模擬圖。Figure 8 is a simulation of the change in reflectivity of a distributed Bragg mirror based on the angle of incidence.
圖9A與圖9B分別為顯示藉著增加分佈式布拉格反射鏡的堆疊數來改善對於入射角度在50°及60°的長波長入射光的反射率的實例。9A and 9B respectively show an example of improving the reflectance of long-wavelength incident light with incident angles of 50° and 60° by increasing the number of stacked Bragg mirrors.
圖10A與圖10B分別為顯示在進行切割製程後的分佈式布拉格反射鏡的平面圖。10A and 10B are plan views showing distributed Bragg mirrors after performing a cutting process, respectively.
圖11為顯示在使用銅表面平板的藍寶石基底磨光製程後,根據化學機械研磨(CMP)的存在與否的分佈式布拉格反射鏡的反射率圖。Figure 11 is a graph showing the reflectance of a distributed Bragg mirror according to the presence or absence of chemical mechanical polishing (CMP) after a sapphire substrate polishing process using a copper surface plate.
圖12為顯示在以類似圖11的方法所製造的分佈式布拉格反射鏡上沈積鋁反射金屬層後的反射率圖。Figure 12 is a graph showing the reflectance after deposition of an aluminum reflective metal layer on a distributed Bragg mirror fabricated in a manner similar to that of Figure 11.
圖13、圖14與圖15為顯示在使用錫表面平台的磨光製程期間根據研磨漿顆粒尺寸的反射率圖。Figures 13, 14 and 15 are graphs showing the reflectance according to the particle size of the slurry during the buffing process using a tin surface platform.
20...發光二極體晶片20. . . Light-emitting diode chip
21...基底twenty one. . . Base
23...緩衝層twenty three. . . The buffer layer
25...半導體層25. . . Semiconductor layer
27...主動層27. . . Active layer
29...半導體層29. . . Semiconductor layer
30...發光結構(發光單元)30. . . Light-emitting structure (lighting unit)
31...透明電極層31. . . Transparent electrode layer
33、35...電極墊33, 35. . . Electrode pad
40...第一分佈式布拉格反射鏡40. . . First distributed Bragg mirror
45...分佈式布拉格反射鏡45. . . Distributed Bragg mirror
50...第二分佈式布拉格反射鏡50. . . Second distributed Bragg mirror
51...金屬層51. . . Metal layer
53...保護層53. . . The protective layer
Claims (18)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20100013166 | 2010-02-12 | ||
KR1020100115347A KR101712543B1 (en) | 2010-02-12 | 2010-11-19 | Light emitting diode chip having distributed bragg reflector and method of fabricating the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201214780A TW201214780A (en) | 2012-04-01 |
TWI544661B true TWI544661B (en) | 2016-08-01 |
Family
ID=44930241
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105119652A TWI627767B (en) | 2010-02-12 | 2011-02-11 | Light emitting diode having distributed bragg reflector and method of fabricating the same |
TW100104554A TWI544661B (en) | 2010-02-12 | 2011-02-11 | Light emitting diode chip having distributed bragg reflector and method of fabricating the same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105119652A TWI627767B (en) | 2010-02-12 | 2011-02-11 | Light emitting diode having distributed bragg reflector and method of fabricating the same |
Country Status (2)
Country | Link |
---|---|
KR (2) | KR101712543B1 (en) |
TW (2) | TWI627767B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140062216A (en) * | 2012-11-14 | 2014-05-23 | 엘지이노텍 주식회사 | Light emittng device |
KR20140096654A (en) * | 2013-01-28 | 2014-08-06 | 엘지이노텍 주식회사 | Light emitting device |
KR102364160B1 (en) * | 2014-03-06 | 2022-02-21 | 서울반도체 주식회사 | Backlight module with mjt led and backlight unit having the same |
TWI557945B (en) * | 2015-01-08 | 2016-11-11 | 澤米科技股份有限公司 | Light-emitting diode (led) chip with a bragg reflector |
KR102319813B1 (en) * | 2015-03-06 | 2021-11-01 | 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 | Light Emitting Device |
KR20190022326A (en) * | 2017-08-24 | 2019-03-06 | 서울바이오시스 주식회사 | Light emitting diode having distributed bragg reflector |
TWI685162B (en) * | 2019-05-30 | 2020-02-11 | 宏捷科技股份有限公司 | Manufacturing method of surface-fired laser |
CN111146321B (en) * | 2020-02-17 | 2024-06-25 | 佛山市国星半导体技术有限公司 | LED chip with DBR insulation protection and uniform light emitting performance and manufacturing method thereof |
CN115956298A (en) * | 2020-08-19 | 2023-04-11 | 首尔伟傲世有限公司 | Light emitting diode and display device having the same |
TWI816177B (en) * | 2021-08-30 | 2023-09-21 | 晶元光電股份有限公司 | Light emitting device |
CN114242858B (en) * | 2022-02-28 | 2022-05-17 | 江西兆驰半导体有限公司 | Epitaxial structure of red and yellow GaAs diode and preparation method thereof |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3532752B2 (en) * | 1997-02-03 | 2004-05-31 | 株式会社東芝 | Semiconductor device separation method |
US6570186B1 (en) * | 2000-05-10 | 2003-05-27 | Toyoda Gosei Co., Ltd. | Light emitting device using group III nitride compound semiconductor |
US6515308B1 (en) * | 2001-12-21 | 2003-02-04 | Xerox Corporation | Nitride-based VCSEL or light emitting diode with p-n tunnel junction current injection |
US7654452B2 (en) * | 2003-07-11 | 2010-02-02 | Tc License Ltd. | Self-service electronic toll collection unit and system |
EP1658642B1 (en) * | 2003-08-28 | 2014-02-26 | Panasonic Corporation | Semiconductor light emitting device, light emitting module, lighting apparatus, display element and manufacturing method of semiconductor light emitting device |
JP4116960B2 (en) * | 2003-09-30 | 2008-07-09 | 松下電器産業株式会社 | Semiconductor light emitting device, light emitting module, lighting device, and method for manufacturing semiconductor light emitting device |
WO2006137711A1 (en) * | 2005-06-22 | 2006-12-28 | Seoul Opto-Device Co., Ltd. | Light emitting device and method of manufacturing the same |
JP2007273975A (en) * | 2006-03-10 | 2007-10-18 | Matsushita Electric Works Ltd | Light-emitting device |
TW200834969A (en) * | 2007-02-13 | 2008-08-16 | Epistar Corp | Light-emitting diode and method for manufacturing the same |
TWI352438B (en) * | 2007-08-31 | 2011-11-11 | Huga Optotech Inc | Semiconductor light-emitting device |
JP5634003B2 (en) * | 2007-09-29 | 2014-12-03 | 日亜化学工業株式会社 | Light emitting device |
JPWO2009057551A1 (en) * | 2007-11-02 | 2011-03-10 | コニカミノルタオプト株式会社 | Optical element |
US8368100B2 (en) * | 2007-11-14 | 2013-02-05 | Cree, Inc. | Semiconductor light emitting diodes having reflective structures and methods of fabricating same |
KR20090072980A (en) * | 2007-12-28 | 2009-07-02 | 서울옵토디바이스주식회사 | Light emitting diode and method of fabricating the same |
-
2010
- 2010-11-19 KR KR1020100115347A patent/KR101712543B1/en active Application Filing
-
2011
- 2011-02-11 TW TW105119652A patent/TWI627767B/en active
- 2011-02-11 TW TW100104554A patent/TWI544661B/en active
-
2017
- 2017-02-24 KR KR1020170024851A patent/KR101899484B1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
TW201214780A (en) | 2012-04-01 |
KR101899484B1 (en) | 2018-09-19 |
KR20170023919A (en) | 2017-03-06 |
KR20110093587A (en) | 2011-08-18 |
TW201635592A (en) | 2016-10-01 |
KR101712543B1 (en) | 2017-03-07 |
TWI627767B (en) | 2018-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6374564B2 (en) | Light emitting diode chip with distributed Bragg reflector and light emitting diode package with distributed Bragg reflector | |
US10128306B2 (en) | Light emitting diode chip having distributed bragg reflector and method of fabricating the same | |
TWI544661B (en) | Light emitting diode chip having distributed bragg reflector and method of fabricating the same | |
JP6368061B2 (en) | Light emitting diode package | |
JP5855344B2 (en) | Light emitting diode chip having distributed Bragg reflector and method of manufacturing the same | |
US9362459B2 (en) | High reflectivity mirrors and method for making same | |
KR20110053064A (en) | Light emitting diode chip and light emitting diode package each having distributed bragg reflector | |
KR101562375B1 (en) | Light emitting diode chip and light emitting diode package each having distributed bragg reflector |