TWI557945B - Light-emitting diode (led) chip with a bragg reflector - Google Patents

Light-emitting diode (led) chip with a bragg reflector Download PDF

Info

Publication number
TWI557945B
TWI557945B TW104100486A TW104100486A TWI557945B TW I557945 B TWI557945 B TW I557945B TW 104100486 A TW104100486 A TW 104100486A TW 104100486 A TW104100486 A TW 104100486A TW I557945 B TWI557945 B TW I557945B
Authority
TW
Taiwan
Prior art keywords
light
bragg mirror
wavelength range
wavelength
emitting diode
Prior art date
Application number
TW104100486A
Other languages
Chinese (zh)
Other versions
TW201626602A (en
Inventor
蕭森崇
何昆年
林瓘洆
陳祖炘
Original Assignee
澤米科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 澤米科技股份有限公司 filed Critical 澤米科技股份有限公司
Priority to TW104100486A priority Critical patent/TWI557945B/en
Publication of TW201626602A publication Critical patent/TW201626602A/en
Application granted granted Critical
Publication of TWI557945B publication Critical patent/TWI557945B/en

Links

Description

具有布拉格反射鏡的發光二極體晶片 LED chip with Bragg mirror

本發明係與發光二極體晶片有關,特別是指一種具有布拉格反射鏡的發光二極體晶片。 The present invention relates to a light-emitting diode wafer, and more particularly to a light-emitting diode wafer having a Bragg mirror.

發光二極體(以下簡稱LED)晶片是半導體發光器件LED的核心部件(LED燈),LED發光的原理主要在於LED晶片的P-N結。 A light-emitting diode (hereinafter referred to as LED) wafer is a core component (LED light) of a semiconductor light-emitting device LED, and the principle of LED light-emitting is mainly the P-N junction of the LED chip.

而發出藍光或紫外光波長的光的氮化鎵類(gallium nitride-based)LED晶片主要是藉由在透明基底(例如藍寶石基底(sapphire substrate))的底部表面上形成布拉格反射鏡(distributed Bragg reflector,DBR)的技術來進行反射,除此之外,也可利用該布拉格反射鏡進行綠光波長、及紅光波長的反射。 A gallium nitride-based LED chip that emits light of a blue or ultraviolet wavelength is mainly formed by forming a Bragg reflector on a bottom surface of a transparent substrate such as a sapphire substrate. The technique of DBR) is used for reflection. In addition to this, the Bragg mirror can also be used to reflect the green wavelength and the red wavelength.

然而,參閱圖1所示,顯示習知LED晶片的布拉格反射鏡對各可見光波長與反射率(reflectivity)的函數曲線圖。一但使用該布拉格反射鏡的LED,將在藍光波長範圍中(例如400奈米(nm)至500nm的波長範圍)、綠光波長範圍中(例如500nm至600nm的波長範圍)、紅光波長範圍中(例如600nm至780nm的波長範圍)等發出的光的反射率差別不大或都相同,甚至反射率都高達100%時,該LED晶片所產生的白光(即亮度)雖然高,但是藍光的波長越低,一般為450~455nm或455~460nm,都屬於輻射傷害最強的區段,所發出的光源會慘白刺眼,不利於人眼長期觀看,此外,該LED晶片產生光源的時 間越長,光源中的螢光粉衰減越快,導致人眼接觸的藍光波段的光照則越來越強烈,從而對人眼造成傷害。 However, referring to Figure 1, a Bragg mirror of a conventional LED wafer is shown as a function of wavelengths of visible light and reflectivity. Once the LED using the Bragg mirror, it will be in the blue wavelength range (for example, in the wavelength range of 400 nm (nm) to 500 nm), in the green wavelength range (for example, in the wavelength range of 500 nm to 600 nm), and in the red wavelength range. The reflectance of light emitted in a medium (for example, a wavelength range of 600 nm to 780 nm) is not the same or the same, and even when the reflectance is as high as 100%, the white light (ie, brightness) generated by the LED chip is high, but the blue light is The lower the wavelength, generally 450~455nm or 455~460nm, which belongs to the section with the strongest radiation damage, the light source emitted will be horrible, which is not conducive to long-term viewing of the human eye. In addition, when the LED chip generates the light source The longer the interval, the faster the fluorescent powder in the light source decays, and the light in the blue light band that is in contact with the human eye becomes more and more intense, thereby causing damage to the human eye.

是以,如何開發出一種具有布拉格反射鏡的發光二極體晶片,其可解決上述問題即為本發明的創作動機。 Therefore, how to develop a light-emitting diode wafer having a Bragg mirror, which solves the above problem is the creative motive of the present invention.

本發明之目的在於提供一種具有布拉格反射鏡的發光二極體晶片,其主要使該布拉格反射鏡對於在藍光波長範圍中的波長的光反射率小於在綠光波長範圍及紅光波長範圍中的波長的光反射率,以降低藍光的反射率。 It is an object of the present invention to provide a light-emitting diode wafer having a Bragg mirror which mainly causes the Bragg mirror to have a light reflectance for wavelengths in the blue wavelength range smaller than in the green wavelength range and the red wavelength range. The light reflectance of the wavelength to reduce the reflectivity of the blue light.

緣是,為了達成前述目的,依據本發明所提供一種具有布拉格反射鏡的發光二極體晶片,包含:一基板,具有一第一表面及一反向於該第一表面的第二表面;一發光單元,配置在該基板的第一表面;一布拉格反射鏡,配置在該基板的第二表面,用以反射該發光單元發出的光;以及一金屬層,配置在該布拉格反射鏡;其特徵在於:該布拉格反射鏡對於在藍光波長範圍中的波長的光反射率小於在綠光波長範圍及紅光波長範圍中的波長的光反射率,且該布拉格反射鏡對於在藍光波長範圍中的波長的光具有不超過96%的反射率。 In order to achieve the foregoing objective, a light emitting diode chip having a Bragg mirror according to the present invention includes: a substrate having a first surface and a second surface opposite to the first surface; a light emitting unit disposed on the first surface of the substrate; a Bragg mirror disposed on the second surface of the substrate for reflecting light emitted by the light emitting unit; and a metal layer disposed on the Bragg mirror; In that: the Bragg mirror has a light reflectance for a wavelength in a blue wavelength range smaller than a wavelength in a green wavelength range and a red wavelength range, and the Bragg mirror has a wavelength in the blue wavelength range The light has a reflectance of no more than 96%.

較佳地,該布拉格反射鏡對於在藍光波長範圍中的波長的光具有95%的反射率。 Preferably, the Bragg mirror has a reflectivity of 95% for light of a wavelength in the blue wavelength range.

較佳地,該布拉格反射鏡對於在藍光波長範圍中為420奈米波長至500奈米波長的光具有95%的反射率。 Preferably, the Bragg mirror has a reflectivity of 95% for light having a wavelength of 420 nm to 500 nm in the blue wavelength range.

較佳地,該布拉格反射鏡對於在藍光波長範圍中為460±10奈米波長的光具有95%的反射率。 Preferably, the Bragg mirror has a reflectivity of 95% for light having a wavelength of 460 ± 10 nm in the blue wavelength range.

較佳地,該布拉格反射鏡對於在藍光波長範圍中為420奈米波 長至500奈米波長中,越靠近460±10奈米波長的光反射率越低。 Preferably, the Bragg mirror is 420 nm for the blue wavelength range In the wavelength of up to 500 nm, the light reflectance near the wavelength of 460 ± 10 nm is lower.

較佳地,該金屬層包含鋁或金。 Preferably, the metal layer comprises aluminum or gold.

較佳地,該金屬層更配置有一保護層。 Preferably, the metal layer is further provided with a protective layer.

較佳地,該布拉格反射鏡係由複數高折射率層及複數低折射率層所交互推疊而成。 Preferably, the Bragg mirror is formed by alternately stacking a plurality of high refractive index layers and a plurality of low refractive index layers.

較佳地,該布拉格反射鏡的高折射率層為二氧化鈦、該低折射率層為二氧化矽。 Preferably, the high refractive index layer of the Bragg mirror is titanium dioxide, and the low refractive index layer is cerium oxide.

較佳地,該布拉格反射鏡對於在藍光波長範圍中的波長的光具有90%至96%的反射率。 Preferably, the Bragg mirror has a reflectance of 90% to 96% for light of a wavelength in the blue wavelength range.

有關本發明為達成上述目的,所採用之技術、手段及其他之功效,茲舉二較佳可行實施例並配合圖式詳細說明如後。 The present invention has been described with reference to the preferred embodiments of the present invention in accordance with the accompanying drawings.

10‧‧‧基板 10‧‧‧Substrate

11‧‧‧第一表面 11‧‧‧ first surface

12‧‧‧第二表面 12‧‧‧ second surface

20‧‧‧發光單元 20‧‧‧Lighting unit

21‧‧‧第一導電型半導體層 21‧‧‧First Conductive Semiconductor Layer

22‧‧‧主動層 22‧‧‧Active layer

22‧‧‧第二導電型半導體層 22‧‧‧Second conductive semiconductor layer

30‧‧‧布拉格反射鏡 30‧‧‧Brazil mirror

31‧‧‧高折射率層 31‧‧‧High refractive index layer

32‧‧‧低折射率層 32‧‧‧Low refractive index layer

40‧‧‧金屬層 40‧‧‧metal layer

51‧‧‧透明電擊層 51‧‧‧Transparent shock layer

52‧‧‧p電極墊 52‧‧‧p electrode pad

53‧‧‧n電極墊 53‧‧‧n electrode pad

56‧‧‧保護層 56‧‧‧Protective layer

圖1係習知發光二極體晶片的布拉格反射鏡對各可見光波長與反射率的函數曲線圖。 Figure 1 is a graph of a Bragg mirror of a conventional light-emitting diode wafer as a function of wavelength and reflectance for each visible light.

圖2A係本發明第一實施例的示意圖。 Figure 2A is a schematic view of a first embodiment of the present invention.

圖2B係圖2A的局部放大圖。 2B is a partial enlarged view of FIG. 2A.

圖3係本發明第一實施例的布拉格反射鏡對各可見光波長與反射率的函數曲線圖。 Figure 3 is a graph of the Bragg mirror of the first embodiment of the present invention as a function of wavelength and reflectance for each visible light.

圖4係本發明第二實施例的布拉格反射鏡對各可見光波長與反射率的函數曲線圖。 Figure 4 is a graph of the Bragg mirror of the second embodiment of the present invention as a function of wavelength and reflectance for each visible light.

請參照圖2A、圖2B及圖3所示,本發明第一實施例所提供一種具有布拉格反射鏡的發光二極體晶片,其主要係由一基板10、一發光單元 20、一布拉格反射鏡30、及一金屬層40所構成,其中: Referring to FIG. 2A, FIG. 2B and FIG. 3, a first embodiment of the present invention provides a light-emitting diode chip having a Bragg mirror, which is mainly composed of a substrate 10 and a light-emitting unit. 20. A Bragg mirror 30 and a metal layer 40, wherein:

該基板10,具有一第一表面11及一反向於該第一表面11的第二表面12;本實施例中,該基板10為為透明基底,例如為藍寶石(Sapphire)或碳化矽(SiC)。 The substrate 10 has a first surface 11 and a second surface 12 opposite to the first surface 11; in this embodiment, the substrate 10 is a transparent substrate, such as sapphire or tantalum carbide (SiC). ).

該發光單元20,配置在該基板10的第一表面11;本實施例中該發光單元20包括配置在該基板10第一表面11的第一導電型半導體層21、一配置在該第一導電型半導體層21的主動層22、及一配置在該主動層22且與該第一導電型半導體層21相反導電型的第二導電型半導體層23,另外,於該第二導電型半導體層23上配置有透明電擊層51(氧化銦錫,ITO),在該透明電擊層51上又配置有p電極墊52,在該第一導電型半導體層21配置有n電極墊53。 The light emitting unit 20 is disposed on the first surface 11 of the substrate 10; in the embodiment, the light emitting unit 20 includes a first conductive type semiconductor layer 21 disposed on the first surface 11 of the substrate 10, and a first conductive type disposed on the first conductive layer The active layer 22 of the semiconductor layer 21 and the second conductive semiconductor layer 23 disposed on the active layer 22 opposite to the first conductive semiconductor layer 21, and the second conductive semiconductor layer 23 A transparent electric shock layer 51 (indium tin oxide, ITO) is disposed thereon, and a p-electrode pad 52 is further disposed on the transparent electric shock layer 51, and an n-electrode pad 53 is disposed on the first conductive semiconductor layer 21.

該布拉格反射鏡30,配置在該基板10的第二表面12,用以反射該發光單元20發出的光;本實施例中,該布拉格反射鏡30係由複數高折射率層31及複數低折射率層32所交互推疊而成,又該高折射率層31為二氧化鈦(TiO2)、該低折射率層32為二氧化矽(SiO2)。 The Bragg mirror 30 is disposed on the second surface 12 of the substrate 10 for reflecting the light emitted by the light emitting unit 20; in this embodiment, the Bragg mirror 30 is composed of a plurality of high refractive index layers 31 and a plurality of low refractive indices. interaction of push layer 32 are laminated, should the high refractive index layer 31 is titanium dioxide (TiO 2), the low refractive index layer 32 of silicon dioxide (SiO 2).

該金屬層40,配置在該布拉格反射鏡30;本實施例中,該金屬層40包含鋁或金,並在該金屬層40更配置有一保護層56。 The metal layer 40 is disposed on the Bragg mirror 30. In this embodiment, the metal layer 40 comprises aluminum or gold, and a protective layer 56 is further disposed on the metal layer 40.

由於該基板10、發光單元20、布拉格反射鏡30、金屬層40、及該保護層56皆為習知結構,且其組態、作動方式皆與習知相同,亦非本發明之創作重點,因此對於該等結構的詳細組成與作動方式不再詳述。 Since the substrate 10, the light-emitting unit 20, the Bragg mirror 30, the metal layer 40, and the protective layer 56 are all of the conventional structures, and the configuration and the operation manner thereof are the same as those of the prior art, and are not the focus of the present invention. Therefore, the detailed composition and operation of these structures will not be described in detail.

本發明的特點在基於上述結構型態下,該布拉格反射鏡30對於在藍光波長範圍中的波長的光反射率小於在綠光波長範圍及紅光波長範圍中的波長的光反射率,本實施例中,該布拉格反射鏡30對於在綠光波長範圍中(例如500nm至600nm的波長範圍)、紅光波長範圍中(例如600nm至780nm的波長範圍)皆為接近100%,且該布拉格反射鏡30對於在藍光波長範圍中 的波長的光具有不超過96%的反射率,本實施例中係舉該布拉格反射鏡30對於在藍光波長範圍中的波長的光具有90%至96%的反射率。更進一步說明,該布拉格反射鏡對於在藍光波長範圍中為460±10奈米波長的光具有95%的反射率,且該布拉格反射鏡30對於在藍光波長範圍中為420奈米波長至500奈米波長中,越靠近460±10奈米波長的光反射率越低。 The present invention is characterized in that, based on the above-described configuration, the Bragg mirror 30 has a light reflectance for a wavelength in a blue light wavelength range smaller than a light reflectance at a wavelength in a green light wavelength range and a red light wavelength range. In the example, the Bragg mirror 30 is close to 100% for a wavelength range of green light (for example, a wavelength range of 500 nm to 600 nm) and a wavelength range of red light (for example, a wavelength range of 600 nm to 780 nm), and the Bragg mirror 30 for the blue wavelength range The light of the wavelength has a reflectance of not more than 96%, and in this embodiment, the Bragg mirror 30 has a reflectance of 90% to 96% for light of a wavelength in the blue wavelength range. Further, the Bragg mirror has a reflectance of 95% for light having a wavelength of 460 ± 10 nm in the blue wavelength range, and the Bragg mirror 30 is for a wavelength of 420 nm to 500 nm in the blue wavelength range In the rice wavelength, the closer to the wavelength of 460 ± 10 nm, the lower the light reflectance.

以上所述即為本發明第一實施例各主要構件之結構及其組態說明。藉此,本發明至少可達到下述功效。 The above is the structure and configuration description of each main component of the first embodiment of the present invention. Thereby, the present invention at least achieves the following effects.

本發明的發光二極體晶片所發出的光源得以較為柔和不刺眼,較利於人眼長期觀看,同時當本發明的發光二極體晶片產生光源的時間越長,雖然光源中的螢光粉衰減越快,但是本發明使該布拉格反射鏡30對於在藍光波長範圍中的波長的光反射率小於在綠光波長範圍及紅光波長範圍中的波長的光反射率,且該布拉格反射鏡30對於在藍光波長範圍中的波長的光具有90%至96%的反射率,進而降低了藍光的反射率,同時也降低了人眼接觸的藍光波段的光照強烈感,從而降低對人眼造成的傷害。 The light source emitted by the LED of the present invention can be softened and glare-free, which is advantageous for long-term viewing by the human eye, and at the same time, the longer the light source of the light-emitting diode wafer of the present invention generates light source, although the fluorescent powder in the light source is attenuated. The faster, but the present invention causes the Bragg mirror 30 to have a light reflectance for a wavelength in the blue wavelength range smaller than a wavelength in the green wavelength range and the red wavelength range, and the Bragg mirror 30 is The light of the wavelength in the blue wavelength range has a reflectance of 90% to 96%, thereby reducing the reflectance of the blue light, and also reducing the strong sense of illumination of the blue light band that is in contact with the human eye, thereby reducing damage to the human eye. .

請參照圖4所示,為本發明第二實施例的布拉格反射鏡對各可見光波長與反射率的函數曲線圖,本發明第二實施例與第一實施例不同處在於。 Referring to FIG. 4, which is a graph of a Bragg mirror according to a second embodiment of the present invention as a function of visible light wavelength and reflectance, the second embodiment of the present invention differs from the first embodiment in that.

該布拉格反射鏡對於在藍光波長範圍中為420奈米波長至500奈米波長的光具有95%的反射率。 The Bragg mirror has a reflectance of 95% for light having a wavelength of 420 nm to 500 nm in the blue wavelength range.

綜上所述,上述各實施例及圖式僅為本發明的較佳實施例而已,當不能以之限定本發明實施之範圍,即大凡依本發明申請專利範圍所作的均等變化與修飾,皆應屬本發明專利涵蓋的範圍內。 In the above, the above embodiments and drawings are only the preferred embodiments of the present invention, and the scope of the present invention is not limited thereto, that is, the equivalent changes and modifications made by the scope of the present invention are all It should be within the scope of the patent of the present invention.

Claims (9)

一種具有布拉格反射鏡的發光二極體晶片,包含:一基板,具有一第一表面及一反向於該第一表面的第二表面;一發光單元,配置在該基板的第一表面;一布拉格反射鏡,配置在該基板的第二表面,用以反射該發光單元發出的光;以及一金屬層,配置在該布拉格反射鏡;其特徵在於:該布拉格反射鏡對於在藍光波長範圍中的波長的光反射率小於在綠光波長範圍及紅光波長範圍中的波長的光反射率,且該布拉格反射鏡對於在藍光波長範圍中的波長的光具有不超過96%的反射率,該布拉格反射鏡對於在藍光波長範圍中為420奈米波長至500奈米波長中,越靠近460±10奈米波長的光反射率越低。 A light emitting diode chip having a Bragg mirror, comprising: a substrate having a first surface and a second surface opposite to the first surface; a light emitting unit disposed on the first surface of the substrate; a Bragg mirror disposed on the second surface of the substrate for reflecting light emitted by the light emitting unit; and a metal layer disposed on the Bragg mirror; wherein the Bragg mirror is in a blue wavelength range The light reflectance of the wavelength is smaller than the light reflectance of the wavelength in the green wavelength range and the red light wavelength range, and the Bragg mirror has a reflectance of no more than 96% for the light of the wavelength in the blue wavelength range, the Bragg The mirror has a lower light reflectance for a wavelength of 420 nm to 500 nm in the wavelength range of 420 nm to 500 nm in the blue wavelength range. 如請求項1所述的具有布拉格反射鏡的發光二極體晶片,其中該布拉格反射鏡對於在藍光波長範圍中的波長的光具有95%的反射率。 A light-emitting diode wafer having a Bragg mirror as claimed in claim 1, wherein the Bragg mirror has a reflectance of 95% for light of a wavelength in the blue wavelength range. 如請求項2所述的具有布拉格反射鏡的發光二極體晶片,其中該布拉格反射鏡對於在藍光波長範圍中為420奈米波長至500奈米波長的光具有95%的反射率。 A light-emitting diode wafer having a Bragg mirror as claimed in claim 2, wherein the Bragg mirror has a reflectance of 95% for light having a wavelength of 420 nm to 500 nm in a blue wavelength range. 如請求項2所述的具有布拉格反射鏡的發光二極體晶片,其中該布拉格反射鏡對於在藍光波長範圍中為460±10奈米波長的光具有95%的反射率。 A light-emitting diode wafer having a Bragg mirror as claimed in claim 2, wherein the Bragg mirror has a reflectance of 95% for light having a wavelength of 460 ± 10 nm in a blue wavelength range. 如請求項1所述的具有布拉格反射鏡的發光二極體晶片,其中該金屬層包含鋁或金。 A light-emitting diode wafer having a Bragg mirror as claimed in claim 1, wherein the metal layer comprises aluminum or gold. 如請求項1所述的具有布拉格反射鏡的發光二極體晶片,其中該金屬層更配置有一保護層。 A light-emitting diode chip having a Bragg mirror according to claim 1, wherein the metal layer is further provided with a protective layer. 如請求項1所述的具有布拉格反射鏡的發光二極體晶片,其中該布拉格反 射鏡係由複數高折射率層及複數低折射率層所交互推疊而成。 A light-emitting diode wafer having a Bragg mirror as claimed in claim 1, wherein the Bragg inverse The mirror is formed by alternately stacking a plurality of high refractive index layers and a plurality of low refractive index layers. 如請求項7所述的具有布拉格反射鏡的發光二極體晶片,其中該布拉格反射鏡的高折射率層為二氧化鈦、該低折射率層為二氧化矽。 A light-emitting diode wafer having a Bragg mirror according to claim 7, wherein the high refractive index layer of the Bragg mirror is titanium dioxide and the low refractive index layer is germanium dioxide. 如請求項1所述的具有布拉格反射鏡的發光二極體晶片,其中該布拉格反射鏡對於在藍光波長範圍中的波長的光具有90%至96%的反射率。 A light-emitting diode wafer having a Bragg mirror as claimed in claim 1, wherein the Bragg mirror has a reflectance of 90% to 96% for light of a wavelength in a blue wavelength range.
TW104100486A 2015-01-08 2015-01-08 Light-emitting diode (led) chip with a bragg reflector TWI557945B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104100486A TWI557945B (en) 2015-01-08 2015-01-08 Light-emitting diode (led) chip with a bragg reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104100486A TWI557945B (en) 2015-01-08 2015-01-08 Light-emitting diode (led) chip with a bragg reflector

Publications (2)

Publication Number Publication Date
TW201626602A TW201626602A (en) 2016-07-16
TWI557945B true TWI557945B (en) 2016-11-11

Family

ID=56985182

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104100486A TWI557945B (en) 2015-01-08 2015-01-08 Light-emitting diode (led) chip with a bragg reflector

Country Status (1)

Country Link
TW (1) TWI557945B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201214780A (en) * 2010-02-12 2012-04-01 Seoul Opto Device Co Ltd Light emitting diode chip having distributed Bragg reflector and method of fabricating the same
US20140209949A1 (en) * 2013-01-25 2014-07-31 Epistar Corporation Light-emitting element comprising a reflective structure with high efficiency

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201214780A (en) * 2010-02-12 2012-04-01 Seoul Opto Device Co Ltd Light emitting diode chip having distributed Bragg reflector and method of fabricating the same
US20140209949A1 (en) * 2013-01-25 2014-07-31 Epistar Corporation Light-emitting element comprising a reflective structure with high efficiency

Also Published As

Publication number Publication date
TW201626602A (en) 2016-07-16

Similar Documents

Publication Publication Date Title
JP6831801B2 (en) Light emitting diode chip with distributed Bragg reflector
JP6374564B2 (en) Light emitting diode chip with distributed Bragg reflector and light emitting diode package with distributed Bragg reflector
TWI462333B (en) Distributed bragg reflector for reflecting light of multiple wavelengths from an led
JP6013555B2 (en) Light emitting diode chip and method of manufacturing the same
US7370993B2 (en) Light recycling illumination systems having restricted angular output
US9960330B2 (en) Flip-chip side emitting LED with top reflector, peripheral wavelength conversion element, and optical element between light emitting element and lightguide element
US20120043568A1 (en) Light-emitting devices with substrate coated with optically denser material
TWI531085B (en) Light emitting diode chip
TWI481084B (en) Optical device and method for manufacturing the same
TWI829671B (en) Light-emitting device
KR20200065072A (en) Nano-photonic reflector for LED emitters
TWI557945B (en) Light-emitting diode (led) chip with a bragg reflector
TW201610364A (en) Wavelength-converting device and illumination system using same
TW201707234A (en) Light emitting diode
TWI572057B (en) A current blocking structure of a light emitting diode
TWI517450B (en) Light emitting diode package
JP6870592B2 (en) Light emitting device
JP2016100510A (en) Light emitting diode having current diffusion structure
JP3222733U (en) Light-emitting diode with ternary compound reflection structure
CN211455717U (en) Light emitting diode with ternary compound reflection structure
JP7463986B2 (en) Micro LED display element
WO2021157738A1 (en) Optical device
TW201145560A (en) Light-emitting diode with Bragg film and metal layer
TWI517437B (en) Light emitting diode structure
TW201218458A (en) Light emitting diode