TWI544556B - Visual inspection system and visual inspection method - Google Patents

Visual inspection system and visual inspection method Download PDF

Info

Publication number
TWI544556B
TWI544556B TW103116412A TW103116412A TWI544556B TW I544556 B TWI544556 B TW I544556B TW 103116412 A TW103116412 A TW 103116412A TW 103116412 A TW103116412 A TW 103116412A TW I544556 B TWI544556 B TW I544556B
Authority
TW
Taiwan
Prior art keywords
wafer
module
image
visual inspection
actual
Prior art date
Application number
TW103116412A
Other languages
Chinese (zh)
Other versions
TW201543591A (en
Inventor
蔡振揚
周明澔
廖惇材
黃柏綸
Original Assignee
旺矽科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺矽科技股份有限公司 filed Critical 旺矽科技股份有限公司
Priority to TW103116412A priority Critical patent/TWI544556B/en
Publication of TW201543591A publication Critical patent/TW201543591A/en
Application granted granted Critical
Publication of TWI544556B publication Critical patent/TWI544556B/en

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

視覺檢測系統及視覺檢測方法 Visual inspection system and visual inspection method

本發明係有關於一種視覺檢測系統及視覺檢測方法,特別是關於一種用於半導體晶圓測試的視覺檢測系統及視覺檢測方法。 The present invention relates to a visual inspection system and a visual inspection method, and more particularly to a visual inspection system and a visual inspection method for semiconductor wafer testing.

諸如發光二極體(light emitting diode,LED)單晶粒封裝或多晶粒封裝模組等光電零組件,在出廠前大都需經過特性檢測,以藉由諸如針測(probing)對光電零組件作電性功能上的測試,或根據發光強度、色調等特性對光電零組件進行分類(sorting)。 Photovoltaic components such as single-die packages or multi-die package modules such as light-emitting diodes (LEDs) are mostly subjected to characteristic detection before leaving the factory to detect optical components by probing. Perform electrical functional tests, or sorting photoelectric components based on characteristics such as luminous intensity and hue.

在進行上述特性檢測之前的製程中,也就是晶圓切割(die saw)階段,晶圓係先貼附在藍膜(blue tape)上,並以環框夾持藍膜,接著再送至晶片切割機上進行切割。切割完後,藍膜會被拉扯而擴張,使得一顆顆的晶粒將分隔地排列在藍膜上。 In the process before the above characteristic detection, that is, in the die saw stage, the wafer is first attached to the blue tape, and the blue film is held by the ring frame, and then sent to the wafer for cutting. Cutting on the machine. After the cutting, the blue film is pulled and expanded, so that the individual crystal grains will be arranged on the blue film separately.

然而,在藍膜的實際擴張過程中,其每一部位的擴張程度並不規則且不易控制,因此往往會使藍膜上的每一 顆晶粒的方位產生偏移,且每顆晶粒的方位偏移程度不盡相同。此方位偏移的問題將會使針測與分類階段無法順利進行(因測試針及吸盤無法確實與晶粒對位)。若僅依靠目前的高階自動光學檢測(Automated Optical Inspection,AOI)設備來進行每一顆晶粒的方位校正及檢測,則處理時間將會非常緩慢。 However, in the actual expansion process of the blue film, the degree of expansion of each part is irregular and difficult to control, so it tends to make each of the blue films The orientation of the grains is offset, and the degree of azimuth offset of each grain is not the same. This problem of azimuth offset will make the needle and classification stages not smooth (because the test pins and suction cups cannot be exactly aligned with the die). If only the current high-order Automated Optical Inspection (AOI) equipment is used to perform the orientation correction and detection of each crystal, the processing time will be very slow.

因此,如何快速地進行晶粒的方位校正以減少檢測的處理時間,是目前業界亟欲投入研發資源解決的問題之一。 Therefore, how to quickly perform the orientation correction of the crystal grains to reduce the processing time of the detection is one of the problems that the industry is currently eager to invest in research and development resources.

本發明提供一種視覺檢測系統,用以檢測包含複數個晶粒之晶圓。視覺檢測系統包含承載平台、攝影模組、光源模組以及電腦模組。承載平台用以承載晶圓。攝影模組包含第一攝影單元以及第二攝影單元。第一攝影單元用以拍攝晶圓而獲得實際晶圓影像。第二攝影單元用以拍攝晶粒中之其一而獲得實際晶粒影像。光源模組與第一攝影單元分別位於承載平台的相對兩側。電腦模組用以將實際晶圓影像與標準晶圓影像進行比對而獲得第一角度差值,進而根據第一角度差值驅動承載平台轉動,並將實際晶粒影像與標準晶粒影像進行比對而獲得第二角度差值,進而根據第二角度差值驅動承載平台轉動。 The present invention provides a visual inspection system for detecting wafers comprising a plurality of dies. The visual inspection system comprises a carrying platform, a photography module, a light source module and a computer module. The carrier platform is used to carry the wafer. The photography module includes a first photography unit and a second photography unit. The first photographing unit is used to photograph the wafer to obtain an actual wafer image. The second photographing unit is configured to capture one of the crystal grains to obtain an actual crystal image. The light source module and the first photographing unit are respectively located on opposite sides of the carrying platform. The computer module compares the actual wafer image with the standard wafer image to obtain a first angle difference, and then drives the bearing platform to rotate according to the first angle difference, and performs actual grain image and standard grain image. The second angle difference is obtained by comparison, and then the bearing platform is driven to rotate according to the second angle difference.

本發明另提供一種視覺檢測方法,其利用視覺檢測系統檢測包含複數個晶粒之晶圓。視覺檢測系統包含承載 平台、攝影模組以及光源模組。攝影模組包含第一攝影單元以及第二攝影單元。光源模組與第一攝影單元分別位於承載平台的相對兩側。視覺檢測方法包含:(a)經由第一攝影單元拍攝晶圓而獲得實際晶圓影像;(b)將實際晶圓影像與標準晶圓影像進行比對而獲得第一角度差值,進而根據第一角度差值驅動承載平台轉動;(c)在根據第一角度差值轉動承載平台之後,經由第二攝影單元拍攝晶粒中之其一而獲得實際晶粒影像;以及(d)將實際晶粒影像與標準晶粒影像進行比對而獲得第二角度差值,進而根據第二角度差值驅動承載平台轉動。 The present invention further provides a visual inspection method for detecting a wafer including a plurality of dies using a visual inspection system. Visual inspection system includes bearer Platform, camera module and light source module. The photography module includes a first photography unit and a second photography unit. The light source module and the first photographing unit are respectively located on opposite sides of the carrying platform. The visual inspection method comprises: (a) obtaining a real wafer image by capturing a wafer through a first photographing unit; (b) comparing the actual wafer image with a standard wafer image to obtain a first angle difference, and further The angle difference drives the rotation of the carrier platform; (c) after rotating the carrier platform according to the first angle difference, the actual image is obtained by capturing one of the crystal grains through the second photographing unit; and (d) the actual crystal The grain image is compared with the standard grain image to obtain a second angle difference, and the carrier platform is driven to rotate according to the second angle difference.

1、3‧‧‧視覺檢測系統 1, 3‧‧‧ visual inspection system

10、30‧‧‧承載平台 10, 30‧‧‧ Carrying platform

100‧‧‧透明蓋板 100‧‧‧Transparent cover

12、32‧‧‧攝影模組 12, 32‧‧‧Photography module

120、320‧‧‧第一攝影單元 120, 320‧‧‧ first photography unit

122、322‧‧‧第二攝影單元 122, 322‧‧‧Second photography unit

14、34‧‧‧光源模組 14, 34‧‧‧Light source module

140、340a‧‧‧發光二極體 140, 340a‧‧ ‧Lighting diode

16、36‧‧‧運動模組 16, 36‧‧‧ sports modules

20‧‧‧晶圓 20‧‧‧ wafer

20a‧‧‧平邊 20a‧‧‧Flang

200‧‧‧晶粒 200‧‧‧ grain

200a‧‧‧電極 200a‧‧‧electrode

22‧‧‧環框 22‧‧‧ ring frame

24‧‧‧藍膜 24‧‧‧Blue film

26‧‧‧條碼貼紙 26‧‧‧Barcode sticker

34a‧‧‧缺口 34a‧‧ ‧ gap

340‧‧‧光板 340‧‧‧ light board

18、38‧‧‧電腦模組 18, 38‧‧‧ computer modules

S100~S106‧‧‧步驟 S100~S106‧‧‧Steps

第1圖為繪示本發明一實施方式之視覺檢測系統的示意圖。 FIG. 1 is a schematic view showing a visual inspection system according to an embodiment of the present invention.

第2A圖為繪示本發明一實施方式之視覺檢測系統之部分元件的立體分解圖。 2A is an exploded perspective view showing a part of components of a visual inspection system according to an embodiment of the present invention.

第2B圖為繪示第2A圖中之視覺檢測系統之部分元件的立體組合圖。 FIG. 2B is a perspective assembled view showing some components of the visual inspection system in FIG. 2A.

第3圖為繪示第一攝影單元所拍攝之實際晶圓影像的示意圖。 FIG. 3 is a schematic diagram showing an actual wafer image taken by the first photographing unit.

第4圖為繪示第二攝影單元所拍攝之實際晶粒影像的示意圖。 Figure 4 is a schematic diagram showing the actual grain image captured by the second camera unit.

第5圖為繪示本發明另一實施方式之視覺檢測系統的 示意圖。 FIG. 5 is a view showing a visual inspection system according to another embodiment of the present invention; schematic diagram.

第6圖為繪示本發明另一實施方式之視覺檢測系統之部分元件的立體圖。 Figure 6 is a perspective view showing a part of components of a visual inspection system according to another embodiment of the present invention.

第7圖為繪示第5圖中之光源模組與第二攝影單元的上視圖。 Fig. 7 is a top view showing the light source module and the second photographing unit in Fig. 5.

第8圖為繪示本發明一實施方式之視覺檢測方法的流程圖。 FIG. 8 is a flow chart showing a visual detection method according to an embodiment of the present invention.

以下將以圖式揭露本發明之複數個實施方式,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施方式中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之。 The embodiments of the present invention are disclosed in the following drawings, and the details of However, it should be understood that these practical details are not intended to limit the invention. That is, in some embodiments of the invention, these practical details are not necessary. In addition, some of the conventional structures and elements are shown in the drawings in a simplified schematic manner in order to simplify the drawings.

請先參閱第1圖、第2A圖以及第2B圖。第1圖為繪示本發明一實施方式之視覺檢測系統1的示意圖。第2A圖為繪示本發明一實施方式之視覺檢測系統1之部分元件的立體分解圖。第2B圖為繪示第2A圖中之視覺檢測系統1之部分元件的立體組合圖。 Please refer to Figure 1, Figure 2A and Figure 2B first. FIG. 1 is a schematic view showing a visual inspection system 1 according to an embodiment of the present invention. 2A is an exploded perspective view showing a part of components of the visual inspection system 1 according to an embodiment of the present invention. FIG. 2B is a perspective assembled view showing a part of the components of the visual inspection system 1 in FIG. 2A.

如第1圖至第2B圖所示,於本實施方式中,視覺檢測系統1用以檢測包含複數個晶粒200之晶圓20。視覺檢測系統1包含承載平台10、攝影模組12、光源模組14、運動模組16以及電腦模組18。實際上來說,待測試之晶圓 20係黏附於藍膜(blue tape)24上,且藍膜24的外緣受環框22所夾持。視覺檢測系統1的承載平台10中央處具有中空部(圖未示),而此中空部係被承載平台10的透明蓋板100所覆蓋。視覺檢測系統1係以承載平台10承載環框22,並使晶圓20(包含藍膜24)對齊於承載平台10之中空部的正上方。 As shown in FIGS. 1 to 2B, in the present embodiment, the visual inspection system 1 is used to detect a wafer 20 including a plurality of crystal grains 200. The visual inspection system 1 includes a carrying platform 10, a photography module 12, a light source module 14, a motion module 16, and a computer module 18. In fact, the wafer to be tested The 20 series adheres to the blue tape 24, and the outer edge of the blue film 24 is held by the ring frame 22. The center of the carrying platform 10 of the visual inspection system 1 has a hollow portion (not shown) which is covered by the transparent cover 100 of the carrying platform 10. The visual inspection system 1 carries the ring frame 22 with the carrier platform 10 and aligns the wafer 20 (including the blue film 24) directly above the hollow portion of the carrier platform 10.

於本實施方式中,視覺檢測系統1的攝影模組12包含第一攝影單元120以及第二攝影單元122。第一攝影單元120以及第二攝影單元12皆設置於承載平台10的上方。在使用第一攝影單元120拍攝晶圓20時,第二攝影單元122移開。在使用第二攝影單元122拍攝晶粒200時,第一攝影單元120移開。攝影模組12的第一攝影單元120具有第一視野(Field Of View,FOV),而第二攝影單元122具有第二視野。第一攝影單元120的第一視野大於第二攝影單元122的第二視野。因此,攝影模組12的第一攝影單元120可用來拍攝整個晶圓20的實際晶圓影像(如第3圖所示),而攝影模組12的第二攝影單元122可用來個別拍攝晶粒200的實際晶粒影像(如第4圖所示)。攝影模組12的第一攝影單元120與光源模組14分別位於承載平台10的相對兩側(即第2A圖中之上下兩側)。光源模組14包含複數個發光二極體(light emitting diode,LED)140,且每一發光二極體140實質上朝向晶圓20發光。藉此,光源模組14所發射之光線即可依序經由承載平台10的中空部與透明蓋板100而至晶圓20,使得攝影模組12的第一攝影單元120所 拍攝的實際晶圓影像可以清楚地顯示出晶圓20的外觀與輪廓,並使得第二攝影單元122所拍攝的實際晶粒影像可以清楚地顯示出晶粒200的外觀與輪廓。 In the present embodiment, the photographing module 12 of the visual inspection system 1 includes a first photographing unit 120 and a second photographing unit 122. The first photographing unit 120 and the second photographing unit 12 are both disposed above the carrying platform 10 . When the wafer 20 is photographed using the first photographing unit 120, the second photographing unit 122 is removed. When the second photographing unit 122 is used to photograph the crystal grain 200, the first photographing unit 120 is moved away. The first photographing unit 120 of the photographing module 12 has a first field of view (FOV), and the second photographing unit 122 has a second field of view. The first field of view of the first photographing unit 120 is greater than the second field of view of the second photographing unit 122. Therefore, the first photographing unit 120 of the photographing module 12 can be used to capture the actual wafer image of the entire wafer 20 (as shown in FIG. 3), and the second photographing unit 122 of the photographing module 12 can be used to individually photograph the crystal grains. The actual grain image of 200 (as shown in Figure 4). The first photographing unit 120 and the light source module 14 of the photographing module 12 are respectively located on opposite sides of the carrying platform 10 (ie, upper and lower sides in FIG. 2A). The light source module 14 includes a plurality of light emitting diodes (LEDs) 140, and each of the light emitting diodes 140 substantially emits light toward the wafer 20. Thereby, the light emitted by the light source module 14 can sequentially pass through the hollow portion of the carrying platform 10 and the transparent cover 100 to the wafer 20, so that the first photographing unit 120 of the photographing module 12 is The actual wafer image taken can clearly show the appearance and contour of the wafer 20, and the actual grain image captured by the second photographing unit 122 can clearly show the appearance and contour of the die 200.

另外,視覺檢測系統1的運動模組16操作性連接承載平台10,並電性連接電腦模組18。視覺檢測系統1的電腦模組18可驅動運動模組16進行移動(提供XY平台的功能)與轉動。由於本實施方式中的承載平台10與光源模組14相互固定,因此電腦模組18可藉由控制運動模組16而驅動承載平台10與光源模組14一起相對攝影模組12運動(即光源模組14隨承載平台10移動)。 In addition, the motion module 16 of the visual inspection system 1 is operatively connected to the carrier platform 10 and electrically connected to the computer module 18. The computer module 18 of the visual inspection system 1 can drive the motion module 16 to move (provide the function of the XY platform) and rotate. Since the carrying platform 10 and the light source module 14 are fixed to each other in the embodiment, the computer module 18 can drive the carrying platform 10 to move with the light source module 14 relative to the camera module 12 by controlling the motion module 16 (ie, the light source) The module 14 moves with the carrying platform 10).

於另一實施方式中,視覺檢測系統1的承載平台10亦可直接為透明,使得光源模組14所發射之光線可直接穿過透明的承載平台10而至晶圓20。 In another embodiment, the carrying platform 10 of the visual inspection system 1 can also be directly transparent, so that the light emitted by the light source module 14 can pass directly through the transparent carrying platform 10 to the wafer 20.

請參照第3圖以及第4圖。第3圖為繪示第一攝影單元120所拍攝之實際晶圓影像的示意圖。第4圖為繪示第二攝影單元122所拍攝之實際晶粒影像的示意圖。 Please refer to Figure 3 and Figure 4. FIG. 3 is a schematic diagram showing an actual wafer image taken by the first photographing unit 120. FIG. 4 is a schematic diagram showing an actual grain image captured by the second photographing unit 122.

如第3圖與第4圖所示,於本實施方式中,在實際的檢測過程中,視覺檢測系統1的電腦模組18會先將第一攝影單元120所拍攝之實際晶圓影像與一標準晶圓影像進行比對而獲得第一角度差值,進而根據第一角度差值驅動承載平台10轉動(藉由運動模組16),再將第二攝影單元122所拍攝的實際晶粒影像與一標準晶粒影像進行比對而獲得第二角度差值,進而根據第二角度差值驅動承載平台10轉動(藉由運動模組16)。 As shown in FIG. 3 and FIG. 4, in the embodiment, during the actual detection process, the computer module 18 of the visual inspection system 1 firstly images the actual wafer image captured by the first photographing unit 120. The standard wafer image is compared to obtain a first angle difference, and then the carrier platform 10 is driven to rotate according to the first angle difference (by the motion module 16), and then the actual lens image captured by the second camera unit 122 is captured. A second angle difference is obtained by comparing with a standard grain image, and then the carrier platform 10 is driven to rotate according to the second angle difference (by the motion module 16).

進一步來說,晶圓20具有第一視覺特徵,且每一晶粒200具有第二視覺特徵。舉例來說,於本實施方式中,電腦模組18係被設定以晶圓20之平邊20a作為晶圓20之第一視覺特徵(見第3圖),並設定以晶粒200上之兩電極200a的排列方向作為晶粒200的第二視覺特徵(見第4圖)。然而,晶圓20之第一視覺特徵的選定,以及晶粒200之第二視覺特徵的選定,皆不以本實施方式所舉之例子為限,實際上可由客戶端的製程定義決定。 Further, wafer 20 has a first visual characteristic and each die 200 has a second visual characteristic. For example, in the present embodiment, the computer module 18 is set with the flat side 20a of the wafer 20 as the first visual feature of the wafer 20 (see FIG. 3), and is set to two on the die 200. The arrangement direction of the electrodes 200a serves as a second visual feature of the crystal grains 200 (see Fig. 4). However, the selection of the first visual feature of the wafer 20 and the selection of the second visual feature of the die 200 are not limited to the examples of the present embodiment, and may in fact be determined by the process definition of the client.

在經由攝影模組12的第一攝影單元120拍攝實際晶圓影像之後,電腦模組18即可藉由比對實際晶圓影像中之第一視覺特徵(即上述之平邊20a)與標準晶圓影像中之第一視覺特徵而獲得上述第一角度差值,進而可根據第一角度差值快速地對晶圓20進行轉正的動作,使晶圓20之第一視覺特徵在旋轉後的位置與該標準晶圓影像的第一視覺特徵位置一致,此動作可視為對晶粒200的方位進行粗調,因此承載平台10的轉動角度可能較大。之後,電腦模組18可再經由攝影模組12的第二攝影單元122個別拍攝每一顆晶粒200的實際晶粒影像,即可藉由比對實際晶粒影像中的第二視覺特徵(即上述之晶粒200的兩電極200a的排列方向)與標準晶粒影像中之第二視覺特徵而獲得上述第二角度差值,進而可根據第二角度差值對所拍攝之晶粒200進行轉正的動作,使晶粒200之第二視覺特在旋轉後的位置與該標準晶粒影像之第二視覺特徵位置一致,此動作可視為對晶粒200的方位進行細調,因此承載平台10可能僅 需調整幾度的轉動角度。藉此,本發明之視覺檢測系統1即可快速地進行晶粒200的方位校正以減少檢測的處理時間,使得後續之針測(probing)與分類(sorting)階段能夠進行得更順利。 After the actual wafer image is captured by the first photographing unit 120 of the photographing module 12, the computer module 18 can compare the first visual feature (ie, the flat side 20a) and the standard wafer in the actual wafer image. Obtaining the first angle difference value in the first visual feature of the image, so that the wafer 20 can be quickly rotated according to the first angle difference, so that the first visual feature of the wafer 20 is rotated and The first visual feature of the standard wafer image is in the same position. This action can be regarded as coarse adjustment of the orientation of the die 200. Therefore, the rotation angle of the carrier platform 10 may be large. After that, the computer module 18 can separately capture the actual grain image of each die 200 through the second camera unit 122 of the camera module 12, that is, by comparing the second visual feature in the actual die image (ie, The arrangement direction of the two electrodes 200a of the die 200 is compared with the second visual feature in the standard grain image to obtain the second angle difference, and the film 200 can be rotated according to the second angle difference. The action of the second visual feature of the die 200 is consistent with the position of the second visual feature of the standard die image. This action can be regarded as fine tuning the orientation of the die 200, so the carrier platform 10 may only Need to adjust the angle of rotation a few degrees. Thereby, the vision detecting system 1 of the present invention can quickly perform the orientation correction of the die 200 to reduce the processing time of the detection, so that the subsequent probing and sorting phases can be performed more smoothly.

於另一實施方式中,電腦模組18亦可被設定以設置於晶圓20上之條碼貼紙26作為晶圓20之第一視覺特徵。藉此,在經由攝影模組12的第一攝影單元120拍攝實際晶圓影像之後,電腦模組18即可藉由比對實際晶圓影像中之第一視覺特徵(即上述之條碼貼紙26)與標準晶圓影像中之第一視覺特徵而獲得上述第一角度差值,進而可根據第一角度差值快速地對晶圓20進行轉正的動作。 In another embodiment, the computer module 18 can also be configured to provide the barcode sticker 26 disposed on the wafer 20 as the first visual feature of the wafer 20. Therefore, after the actual image of the wafer is captured by the first photographing unit 120 of the photographing module 12, the computer module 18 can compare the first visual feature in the actual wafer image (ie, the barcode sticker 26 described above) with The first angle difference in the standard wafer image is obtained to obtain the first angle difference, and the wafer 20 can be quickly rotated according to the first angle difference.

於本實施方式中,攝影模組12的第一攝影單元120為電荷耦合元件(Charge-coupled Device,CCD),其第一視野,即相機視野(FOV)遠大於所測物晶圓20之範圍。攝影模組12的第二攝影單元122為高階的電荷耦合元件,其解析度遠高於第一攝影單元120,但其第二視野只需大於晶粒200之範圍即可。 In the present embodiment, the first imaging unit 120 of the camera module 12 is a charge-coupled device (CCD), and the first field of view, that is, the camera field of view (FOV) is much larger than the range of the object wafer 20 . . The second photographic unit 122 of the photographic module 12 is a high-order charge-coupled element having a resolution much higher than that of the first photographic unit 120, but the second field of view only needs to be larger than the range of the dies 200.

請參照第5圖、第6圖以及第7圖。第5圖為繪示本發明另一實施方式之視覺檢測系統3的示意圖。第6圖為繪示本發明另一實施方式之視覺檢測系統3之部分元件的立體圖。第7圖為繪示第5圖中之光源模組34與第二攝影單元322的上視圖。 Please refer to Figure 5, Figure 6, and Figure 7. FIG. 5 is a schematic diagram showing a visual inspection system 3 according to another embodiment of the present invention. Fig. 6 is a perspective view showing a part of components of the visual inspection system 3 according to another embodiment of the present invention. FIG. 7 is a top view showing the light source module 34 and the second photographing unit 322 in FIG. 5.

如第5圖至第7圖所示,於本實施方式中,視覺檢測系統3用以檢測包含複數個晶粒200之晶圓20。視覺檢 測系統3包含承載平台30、攝影模組32、光源模組34、運動模組36以及電腦模組38。待測試之晶圓20係黏附於藍膜24上,且藍膜24的外緣受環框22所夾持。視覺檢測系統3的承載平台30中央處具有中空部(被晶圓20、藍膜24與環框22覆蓋,因此圖未示)。視覺檢測系統3係以承載平台30承載環框22,並使晶圓20(包含藍膜24)對齊於承載平台30之中空部的正上方。 As shown in FIGS. 5 to 7, in the present embodiment, the visual inspection system 3 is used to detect the wafer 20 including a plurality of crystal grains 200. Visual inspection The measurement system 3 includes a carrier platform 30, a camera module 32, a light source module 34, a motion module 36, and a computer module 38. The wafer 20 to be tested is adhered to the blue film 24, and the outer edge of the blue film 24 is held by the ring frame 22. The center of the carrying platform 30 of the visual inspection system 3 has a hollow portion (covered by the wafer 20, the blue film 24 and the ring frame 22, and thus is not shown). The vision detection system 3 carries the ring frame 22 with the carrier platform 30 and aligns the wafer 20 (including the blue film 24) directly above the hollow portion of the carrier platform 30.

於本實施方式中,視覺檢測系統3的攝影模組32包含第一攝影單元320以及第二攝影單元322。攝影模組32的第一攝影單元320具有第一視野,而第二攝影單元322具有第二視野。第一攝影單元320的第一視野大於第二攝影單元322的第二視野。因此,攝影模組32的第一攝影單元320可用來拍攝整個晶圓20的實際晶圓影像(如第3圖所示),而攝影模組32的第二攝影單元322可用來個別拍攝晶粒200的實際晶粒影像(如第4圖所示)。攝影模組32的第一攝影單元320與光源模組34分別位於承載平台30的相對兩側(即第6圖中之上下兩側)。藉此,光源模組34所發射之光線即可依序經由承載平台30的中空部而至晶圓20,使得攝影模組32的第一攝影單元320所拍攝的實際晶圓影像可以清楚地顯示出晶圓20的外觀與輪廓,並使得第二攝影單元322所拍攝的實際晶粒影像可以清楚地顯示出晶粒200的外觀與輪廓。 In the present embodiment, the photographing module 32 of the visual inspection system 3 includes a first photographing unit 320 and a second photographing unit 322. The first photographing unit 320 of the photographing module 32 has a first field of view, and the second photographing unit 322 has a second field of view. The first field of view of the first photographing unit 320 is greater than the second field of view of the second photographing unit 322. Therefore, the first photographing unit 320 of the photographing module 32 can be used to capture the actual wafer image of the entire wafer 20 (as shown in FIG. 3), and the second photographing unit 322 of the photographing module 32 can be used to individually photograph the crystal grains. The actual grain image of 200 (as shown in Figure 4). The first photographing unit 320 and the light source module 34 of the photographing module 32 are respectively located on opposite sides of the carrying platform 30 (ie, upper and lower sides in FIG. 6). Thereby, the light emitted by the light source module 34 can be sequentially passed to the wafer 20 through the hollow portion of the carrying platform 30, so that the actual wafer image captured by the first photographing unit 320 of the photographing module 32 can be clearly displayed. The appearance and contour of the wafer 20 are taken out, and the actual grain image captured by the second photographing unit 322 can clearly show the appearance and contour of the die 200.

另外,視覺檢測系統3的運動模組36操作性連接承載平台30,並電性連接電腦模組38。視覺檢測系統3的 電腦模組38可驅動運動模組36進行移動(提供XY平台的功能)與轉動。由於本實施方式中的承載平台30未與光源模組34相互固定,因此受電腦模組38控制之後,運動模組36只會驅動承載平台30運動於攝影模組32與光源模組34之間(即光源模組34不隨承載平台30移動) In addition, the motion module 36 of the visual inspection system 3 is operatively connected to the carrier platform 30 and electrically connected to the computer module 38. Visual inspection system 3 The computer module 38 can drive the motion module 36 to move (providing the function of the XY platform) and rotating. Since the carrying platform 30 in the embodiment is not fixed to the light source module 34, the motion module 36 only drives the carrying platform 30 to move between the camera module 32 and the light source module 34 after being controlled by the computer module 38. (ie, the light source module 34 does not move with the carrying platform 30)

進一步來說,本實施方式之光源模組34為光盤。光盤係由複數個光板340相互拼接而組成。每一光板340皆包含複數個發光二極體340a,且每一發光二極體340a實質上朝向晶圓20發光。藉此,光源模組34所發射之光線即可經由承載平台30的中空部而至晶圓20,使得攝影模組32的第一攝影單元320所拍攝的實際晶圓影像可以清楚地顯示出晶圓20的外觀與輪廓,並使得第二攝影單元322所拍攝的實際晶粒影像可以清楚地顯示出晶粒200的外觀與輪廓。並且,藉由本實施方式之拼接式光源模組34,檢測人員即可根據所欲檢測之晶圓20的大小而對應地增減光板340的數量,而不需將整個光源模組34進行拆換。另外,光板340所組合而成的光盤具有缺口34a(如第7圖所示位於光盤的角落處)。攝影模組32的第二攝影單元322位於缺口34a。 Further, the light source module 34 of the present embodiment is an optical disc. The optical disc is composed of a plurality of light panels 340 spliced to each other. Each of the light panels 340 includes a plurality of light emitting diodes 340a, and each of the light emitting diodes 340a substantially emits light toward the wafer 20. Thereby, the light emitted by the light source module 34 can pass through the hollow portion of the carrying platform 30 to the wafer 20, so that the actual wafer image captured by the first photographing unit 320 of the photographing module 32 can clearly show the crystal. The appearance and contour of the circle 20 and the actual grain image captured by the second camera unit 322 can clearly show the appearance and contour of the die 200. Moreover, with the splicing light source module 34 of the present embodiment, the detecting personnel can correspondingly increase or decrease the number of the light plates 340 according to the size of the wafer 20 to be detected, without replacing the entire light source module 34. . Further, the optical disk in which the light plates 340 are combined has a notch 34a (at the corner of the optical disk as shown in Fig. 7). The second photographing unit 322 of the photographing module 32 is located at the notch 34a.

另外,本實施方式之電腦模組38係電性連接攝影模組32、光源模組34以及運動模組36。至於本實施方式之電腦模組38的功能,皆與上一實施方式之電腦模組18相同,因此在此不再贅述。總而言之,在經由攝影模組32的第一攝影單元320拍攝實際晶圓影像之後,電腦模組38 即可藉由比對實際晶圓影像中的第一視覺特徵(即平邊20a)與標準晶圓影像中之第一視覺特徵而獲得第一角度差值,進而可根據第一角度差值快速地對晶圓20進行轉正的動作。之後,電腦模組38可再經由攝影模組32的第二攝影單元322個別拍攝每一顆晶粒200的實際晶粒影像,即可藉由比對實際晶粒影像中的第二視覺特徵(即晶粒200的兩電極200a的排列方向)與標準晶粒影像中之第二視覺特徵而獲得第二角度差值,進而可根據第二角度差值對所拍攝之晶粒200進行轉正的動作。藉此,本發明之視覺檢測系統3即可快速地進行晶粒200的方位校正以減少檢測的處理時間,使得後續之針測與分類階段能夠進行得更順利。 In addition, the computer module 38 of the present embodiment electrically connects the camera module 32, the light source module 34, and the motion module 36. The functions of the computer module 38 of the present embodiment are the same as those of the computer module 18 of the previous embodiment, and therefore will not be described herein. In summary, after the actual wafer image is captured by the first photographing unit 320 of the photographing module 32, the computer module 38 The first angle difference can be obtained by comparing the first visual feature in the actual wafer image (ie, the flat edge 20a) with the first visual feature in the standard wafer image, thereby rapidly increasing the first angle difference according to the first angle difference. The wafer 20 is turned positive. Then, the computer module 38 can separately capture the actual grain image of each die 200 through the second camera unit 322 of the camera module 32, that is, by comparing the second visual feature in the actual die image (ie, The arrangement direction of the two electrodes 200a of the die 200 is compared with the second visual feature in the standard die image to obtain a second angular difference, and the captured die 200 can be rotated according to the second angular difference. Thereby, the visual inspection system 3 of the present invention can quickly perform the orientation correction of the die 200 to reduce the processing time of the detection, so that the subsequent needle measurement and classification phases can be performed more smoothly.

於另一實施方式中,電腦模組38亦可被設定以設置於晶圓20上之條碼貼紙26作為晶圓20之第一視覺特徵。藉此,在經由攝影模組32的第一攝影單元320拍攝實際晶圓影像之後,電腦模組38即可藉由比對實際晶圓影像中之晶圓20的第一視覺特徵(即上述之條碼貼紙26)與標準晶圓影像中之第一視覺特徵而獲得第一角度差值,進而可根據第一角度差值快速地對晶圓20進行轉正的動作。 In another embodiment, the computer module 38 can also be configured to provide the barcode sticker 26 disposed on the wafer 20 as the first visual feature of the wafer 20. Therefore, after the actual wafer image is captured by the first photographing unit 320 of the photographing module 32, the computer module 38 can compare the first visual feature of the wafer 20 in the actual wafer image (ie, the barcode described above). The sticker 26) obtains a first angular difference from the first visual feature in the standard wafer image, and thereby rapidly corrects the wafer 20 according to the first angular difference.

請參照第8圖,其為繪示本發明一實施方式之視覺檢測方法的流程圖。 Please refer to FIG. 8 , which is a flow chart showing a visual detection method according to an embodiment of the present invention.

如第8圖所示,於本實施方式中,視覺檢測方法係利用視覺檢測系統檢測包含複數個晶粒之晶圓。視覺檢測系統包含承載平台、攝影模組以及光源模組。攝影模組包含第一攝影單元以及第二攝影單元。光源模組與第一攝影 單元分別位於承載平台的相對兩側。視覺檢測方法包含步驟S100~S106,如下所示。 As shown in FIG. 8, in the present embodiment, the visual inspection method detects a wafer including a plurality of crystal grains by using a visual inspection system. The visual inspection system comprises a carrying platform, a photography module and a light source module. The photography module includes a first photography unit and a second photography unit. Light source module and first photography The units are respectively located on opposite sides of the carrying platform. The visual inspection method includes steps S100 to S106 as follows.

步驟S100:經由第一攝影單元拍攝晶圓而獲得實際晶圓影像。 Step S100: Obtain an actual wafer image by capturing a wafer through the first photographing unit.

步驟S102:將實際晶圓影像與標準晶圓影像進行比對而獲得第一角度差值,進而根據第一角度差值驅動承載平台轉動。 Step S102: Comparing the actual wafer image with the standard wafer image to obtain a first angle difference, and driving the carrier platform to rotate according to the first angle difference.

步驟S104:經由第二攝影單元拍攝晶粒中之其一而獲得實際晶粒影像。 Step S104: Obtain an actual crystal image by taking one of the crystal grains through the second photographing unit.

步驟S106:將實際晶粒影像與標準晶粒影像進行比對而獲得第二角度差值,進而根據第二角度差值驅動承載平台轉動。 Step S106: comparing the actual grain image with the standard grain image to obtain a second angle difference, and then driving the bearing platform to rotate according to the second angle difference.

有關於第一攝影單元與第二攝影單元的規格以及第一視覺特徵與第二視覺特徵的選定,可參閱上述相關內容,在此不再贅述。 Regarding the specifications of the first photographic unit and the second photographic unit, and the selection of the first visual feature and the second visual feature, reference may be made to the above related content, and details are not described herein again.

由以上對於本發明之具體實施例之詳述,可以明顯地看出,本發明的視覺檢測系統所採用之攝影模組包含具有不同視野之第一攝影單元與第二攝影單元。其中,視野較大之第一攝影單元係用來拍攝整個晶圓的外觀,而視野較小之第二攝影單元係用來個別拍攝晶粒的外觀。在經由第一攝影單元獲得實際晶圓影像之後,即可藉由比對實際晶圓影像中第一視覺特徵(例如,晶圓的平邊或晶圓上的條碼貼紙)與標準晶圓影像中之第一視覺特徵而獲得第一角度差值,進而可根據第一角度差值快速地對晶圓進行轉正 的動作,此動作可視為對晶粒的方位進行粗調。之後,再經由第二攝影單元獲得實際晶粒影像,即可藉由比對實際晶粒影像中的第二視覺特徵(例如,晶粒上之兩電極)與標準晶粒影像中之第二視覺特徵而獲得第二角度差值,進而可根據第二角度差值對所拍攝之晶粒進行轉正的動作,此動作可視為對晶粒的方位進行細調。藉此,本發明之視覺檢測系統即可快速地進行晶粒的方位校正以減少檢測的處理時間,使得針測與分類階段能夠進行得更順利。 From the above detailed description of the specific embodiments of the present invention, it can be clearly seen that the photographic module used in the visual inspection system of the present invention includes a first photographic unit and a second photographic unit having different fields of view. Among them, the first photographic unit with a larger field of view is used to capture the appearance of the entire wafer, and the second photographic unit with a smaller field of view is used to individually capture the appearance of the dies. After obtaining the actual wafer image through the first photographing unit, the first visual feature in the actual wafer image (for example, the flat edge of the wafer or the barcode sticker on the wafer) and the standard wafer image can be compared. The first visual feature obtains a first angular difference, and the wafer can be quickly rotated according to the first angular difference The action, which can be considered as a coarse adjustment of the orientation of the grain. Then, the actual image of the grain is obtained through the second camera unit, that is, by comparing the second visual feature in the actual grain image (for example, two electrodes on the die) and the second visual feature in the standard grain image. The second angle difference is obtained, and the captured crystal grain can be rotated according to the second angle difference. This action can be regarded as fine adjustment of the orientation of the crystal grain. Thereby, the visual inspection system of the present invention can quickly perform the orientation correction of the crystal grains to reduce the processing time of the detection, so that the needle measurement and classification stages can be performed more smoothly.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and modified without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached.

10‧‧‧承載平台 10‧‧‧Loading platform

100‧‧‧透明蓋板 100‧‧‧Transparent cover

120‧‧‧第一攝影單元 120‧‧‧First Photographic Unit

14‧‧‧光源模組 14‧‧‧Light source module

140‧‧‧發光二極體 140‧‧‧Lighting diode

16‧‧‧運動模組 16‧‧‧Sports module

20‧‧‧晶圓 20‧‧‧ wafer

22‧‧‧環框 22‧‧‧ ring frame

24‧‧‧藍膜 24‧‧‧Blue film

26‧‧‧條碼貼紙 26‧‧‧Barcode sticker

Claims (9)

一種視覺檢測系統,用以檢測一黏附於藍膜的晶圓,該晶圓包含複數個晶粒,該視覺檢測系統包含:一承載平台,用以承載該晶圓,該承載平台具有一中空部;一攝影模組,包含:一第一攝影單元,用以拍攝該晶圓而獲得一實際晶圓影像;以及一第二攝影單元,用以拍攝該些晶粒中之其一而獲得一實際晶粒影像;一光源模組,與該第一攝影單元分別位於該承載平台的相對兩側,其中該光源模組所發射之一光線係經由該中空部而至該晶圓,使得該第一攝影單元所拍攝的該實際晶圓影像可以清楚地顯示出該晶圓的外觀與輪廓,並使得該第二攝影單元所拍攝的該實際晶粒影像可以清楚地顯示出晶粒的外觀與輪廓;以及一電腦模組,用以將該實際晶圓影像與一標準晶圓影像進行比對而獲得一第一角度差值,進而根據該第一角度差值驅動該承載平台轉動,並將該實際晶粒影像與一標準晶粒影像進行比對而獲得一第二角度差值,進而根據該第二角度差值驅動該承載平台轉動。 A visual inspection system for detecting a wafer adhered to a blue film, the wafer comprising a plurality of dies, the visual inspection system comprising: a carrier platform for carrying the wafer, the carrier platform having a hollow portion a photographic module comprising: a first photographic unit for capturing the wafer to obtain an actual wafer image; and a second photographic unit for capturing one of the dies to obtain an actual a light source module; the light source module and the first photographing unit are respectively located on opposite sides of the carrying platform, wherein a light emitted by the light source module passes through the hollow portion to the wafer, so that the first The actual wafer image captured by the photographing unit can clearly show the appearance and contour of the wafer, and the actual grain image captured by the second photographing unit can clearly show the appearance and contour of the crystal grain; And a computer module for comparing the actual wafer image with a standard wafer image to obtain a first angle difference, and driving the carrier platform to rotate according to the first angle difference, and The actual grain size image for comparison with a standard die image to obtain a second angle difference value, the difference in turn drives the second carrier based on the angular rotation of the platform. 如申請專利範圍第1項所述之視覺檢測系統,其中 該承載平台與該光源模組相互固定,該視覺檢測系統還包含一運動模組,該運動模組操作性連接該承載平台,用以受該電腦模組控制而驅動該承載平台與該光源模組一起相對該攝影模組運動。 The visual inspection system of claim 1, wherein The bearing platform and the light source module are fixed to each other, and the visual inspection system further comprises a motion module, the motion module is operatively connected to the carrying platform, and is driven by the computer module to drive the carrying platform and the light source module The groups move together relative to the camera module. 如申請專利範圍第1項所述之視覺檢測系統,還包含一運動模組,該運動模組操作性連接該承載平台,用以受該電腦模組控制而驅動該承載平台運動於該攝影模組與該光源模組之間。 The visual inspection system of claim 1, further comprising a motion module, the motion module being operatively connected to the load platform for being controlled by the computer module to drive the load platform to move to the photography module Between the group and the light source module. 如申請專利範圍第3項所述之視覺檢測系統,其中該光源模組為一光盤,並且該光盤係由複數個光板相互拼接而組成。 The visual inspection system of claim 3, wherein the light source module is an optical disc, and the optical disc is composed of a plurality of optical panels being spliced to each other. 如申請專利範圍第4項所述之視覺檢測系統,其中該光盤具有一缺口,並且該第二攝影單元位於該缺口或該承載平台上方。 The visual inspection system of claim 4, wherein the optical disc has a gap and the second photographing unit is located above the gap or the carrying platform. 如申請專利範圍第1項所述之視覺檢測系統,其中該晶圓具有一第一視覺特徵,該電腦模組係藉由比對該實際晶圓影像中之該第一視覺特徵與該標準晶圓影像中之該第一視覺特徵而獲得該第一角度差值,該第一視覺特徵為該晶圓之一平邊或設置於該晶圓上之一條碼貼紙。 The visual inspection system of claim 1, wherein the wafer has a first visual feature, and the computer module compares the first visual feature with the standard wafer in the actual wafer image. The first visual feature is obtained by the first visual feature in the image, the first visual feature being a flat edge of the wafer or a bar code sticker disposed on the wafer. 如申請專利範圍第1項所述之視覺檢測系統,其中 每一該些晶粒之一第二視覺特徵,該電腦模組係藉由比對該實際晶粒影像中之該第二視覺特徵與該標準晶粒影像中之該第二視覺特徵而獲得該第二角度差值,該第二視覺特徵為經該第二攝影單元拍攝之該晶粒上之兩電極的一排列方向。 The visual inspection system of claim 1, wherein a second visual feature of each of the plurality of dies, the computer module obtaining the second visual feature by comparing the second visual feature in the actual granule image with the second visual feature in the standard granule image The second angle difference is a direction in which the two electrodes on the die are photographed by the second photographing unit. 如申請專利範圍第1項所述之視覺檢測系統,其中該第一攝影單元為一電荷耦合元件,並具有一第一視野,該第一視野大於該晶圓之範圍,該第二攝影單元為一高階電荷耦合元件,並具有一第二視野,該第二攝影單元之解析度大於該第一攝影單元之解析度,並且該第二視野大於任一該些晶粒之範圍。 The visual inspection system of claim 1, wherein the first photographing unit is a charge coupled device and has a first field of view, the first field of view being greater than a range of the wafer, and the second photographing unit is a high-order charge coupled device having a second field of view, the resolution of the second camera unit being greater than the resolution of the first camera unit, and the second field of view being greater than the range of any of the plurality of grains. 一種視覺檢測方法,利用一視覺檢測系統檢測包含複數個晶粒之一黏附於藍膜的晶圓,該視覺檢測系統包含一承載平台、一攝影模組以及一光源模組,該承載平台具有一中空部,該攝影模組包含一第一攝影單元以及一第二攝影單元,該光源模組與該第一攝影單元分別位於該承載平台的相對兩側,該視覺檢測方法包含:(a)經由該第一攝影單元拍攝該晶圓而獲得一實際晶圓影像,其中該光源模組所發射之一光線係經由該中空部而至該晶圓,使得該第一攝影單元所拍攝的該實際晶圓影像可以清楚地顯示出該晶圓的外觀與輪廓;(b)將該實際晶圓影像與一標準晶圓影像進行比對而 獲得一第一角度差值,進而根據該第一角度差值驅動該承載平台轉動;(c)在根據該第一角度差值轉動該承載平台之後,經由該第二攝影單元拍攝該些晶粒中之其一而獲得一實際晶粒影像,其中經由該中空部而至該晶圓之該光線還使得該第二攝影單元所拍攝的該實際晶粒影像可以清楚地顯示出晶粒的外觀與輪廓;以及(d)將該實際晶粒影像與一標準晶粒影像進行比對而獲得一第二角度差值,進而根據該第二角度差值驅動該承載平台轉動。 A visual inspection method for detecting a wafer comprising a plurality of dies adhered to a blue film by using a visual inspection system, the visual inspection system comprising a carrier platform, a photographic module and a light source module, the carrier platform having a The photographic module includes a first photographic unit and a second photographic unit. The light source module and the first photographic unit are respectively located on opposite sides of the carrying platform. The visual detecting method comprises: (a) via The first photographing unit captures the wafer to obtain an actual wafer image, wherein a light emitted by the light source module passes through the hollow portion to the wafer, so that the actual crystal taken by the first photographing unit The circular image clearly shows the appearance and contour of the wafer; (b) the actual wafer image is compared with a standard wafer image. Obtaining a first angle difference, and driving the bearing platform to rotate according to the first angle difference; (c) after rotating the carrier platform according to the first angle difference, capturing the crystal grains through the second photographing unit Obtaining an actual grain image, wherein the light passing through the hollow portion to the wafer further causes the actual grain image captured by the second camera unit to clearly show the appearance of the die And (d) comparing the actual grain image with a standard grain image to obtain a second angle difference, and driving the carrier platform rotation according to the second angle difference.
TW103116412A 2014-05-08 2014-05-08 Visual inspection system and visual inspection method TWI544556B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103116412A TWI544556B (en) 2014-05-08 2014-05-08 Visual inspection system and visual inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103116412A TWI544556B (en) 2014-05-08 2014-05-08 Visual inspection system and visual inspection method

Publications (2)

Publication Number Publication Date
TW201543591A TW201543591A (en) 2015-11-16
TWI544556B true TWI544556B (en) 2016-08-01

Family

ID=55220994

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103116412A TWI544556B (en) 2014-05-08 2014-05-08 Visual inspection system and visual inspection method

Country Status (1)

Country Link
TW (1) TWI544556B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220005721A1 (en) * 2020-07-02 2022-01-06 Mpi Corporation Method of aligning wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220005721A1 (en) * 2020-07-02 2022-01-06 Mpi Corporation Method of aligning wafer

Also Published As

Publication number Publication date
TW201543591A (en) 2015-11-16

Similar Documents

Publication Publication Date Title
KR101350214B1 (en) Noncontact inspecting apparatus for light emitting diode and method thereof
JP6685126B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
TWI558996B (en) System and method for capturing illumination reflected in multiple directions
US7471381B2 (en) Method and apparatus for bump inspection
TWI626699B (en) Vision inspection device
KR20180103701A (en) Die bonding device and method of manufacturing semiconductor device
CN103376259A (en) Device and method for detecting internal defects of element
JP7010633B2 (en) Semiconductor manufacturing equipment and methods for manufacturing semiconductor equipment
JP2015227793A (en) Inspection device of optical components and inspection method thereof
CN108732189A (en) A kind of chip wafer detection device
JP2021193744A (en) Semiconductor manufacturing equipment and method for manufacturing semiconductor device
KR101442792B1 (en) Method for Inspecting Sapphire Wafer
TWI544556B (en) Visual inspection system and visual inspection method
TWI574022B (en) Die Detection Apparatus And Die Delivery Method
CN105091790A (en) Visual inspection system and visual inspection method
TWI834843B (en) Inspection equipment and inspection methods
US20170005018A1 (en) Method and device for inspection of a semiconductor device
JP6913615B2 (en) Railroad vehicle visual inspection equipment and its setting method
US7684610B2 (en) Rotating prism component inspection system
TWI832143B (en) Die bonding device and method of manufacturing semiconductor device
JP6836938B2 (en) Manufacturing method of die bonding equipment and semiconductor equipment
US11575814B2 (en) Image capturing device and appearance inspecting device including the same
TWI752558B (en) Die bonding device and manufacturing method of semiconductor device
CN110514670B (en) IC material tape inspection device
JP7299728B2 (en) Semiconductor manufacturing equipment and semiconductor device manufacturing method