JP6913615B2 - Railroad vehicle visual inspection equipment and its setting method - Google Patents

Railroad vehicle visual inspection equipment and its setting method Download PDF

Info

Publication number
JP6913615B2
JP6913615B2 JP2017226420A JP2017226420A JP6913615B2 JP 6913615 B2 JP6913615 B2 JP 6913615B2 JP 2017226420 A JP2017226420 A JP 2017226420A JP 2017226420 A JP2017226420 A JP 2017226420A JP 6913615 B2 JP6913615 B2 JP 6913615B2
Authority
JP
Japan
Prior art keywords
floodlight
line scan
scan camera
railroad vehicle
visual inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017226420A
Other languages
Japanese (ja)
Other versions
JP2019093977A (en
Inventor
昭秀 宇野
昭秀 宇野
正範 遠藤
正範 遠藤
芳光 杉浦
芳光 杉浦
剛 一木
剛 一木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East Japan Railway Co
Original Assignee
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East Japan Railway Co filed Critical East Japan Railway Co
Priority to JP2017226420A priority Critical patent/JP6913615B2/en
Publication of JP2019093977A publication Critical patent/JP2019093977A/en
Application granted granted Critical
Publication of JP6913615B2 publication Critical patent/JP6913615B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鉄道車両の外観検査装置及びその設定方法に関する。 The present invention relates to an appearance inspection device for a railway vehicle and a method for setting the same.

以前より、ラインスキャンカメラ(「ラインセンサカメラ」とも言う)を用いて製造物等の外観検査を行う装置がある。ラインスキャンカメラはエリアセンサに比べて高解像度の画像を取得しやすく、レンズの収差に起因する歪みの少ない画像、また、一方向に長い被写体に対して全域にわたって歪みの少ない画像を取得しやすいという利点がある。 For some time, there have been devices that use line scan cameras (also called "line sensor cameras") to inspect the appearance of products. Line scan cameras are easier to acquire high-resolution images than area sensors, and are easier to acquire images with less distortion due to lens aberrations, and images with less distortion over the entire area for subjects that are long in one direction. There are advantages.

特許文献1には、ラインセンサを用いて基板の検査を行う装置が示されている。この装置は、基板表面に対して照明ユニットから検査光を斜めに入射することで、所定の層に生じる特定の欠陥を検査可能としている。 Patent Document 1 discloses an apparatus for inspecting a substrate using a line sensor. This device makes it possible to inspect a specific defect generated in a predetermined layer by obliquely injecting inspection light from the lighting unit onto the surface of the substrate.

特開2016−156830号公報Japanese Unexamined Patent Publication No. 2016-156830

現在、本発明者らは、鉄道車両の外観検査を、ラインスキャンカメラを用いて高精度にかつ高効率に行うシステムの開発を行っている。そして、本発明者らは、鉄道車両の車体下部に設けられる各種の構造物を、車両の側方から撮影して検査することを想定している。しかしながら、鉄道車両の車体下部には、側方から奥方まで複数の箇所に構造物が配置されている。このため、これらを車両の側方から撮影した場合、照明が弱いと、奥方に配置された構造物の照度が低下して、この構造物の鮮明な画像が得られないという課題が生じた。一方、照明が強すぎると、例えば手前に配置された構造物、あるいは照明が強く当たった構造物の画像に白飛びが生じて、構造物の形状把握が困難になるという課題が生じた。すなわち、奥行方向に配置が異なる複数の構造物に対して、奥方の構造物から手前の構造物まで鮮明な画像が得られるように適正な照明を当てることは容易でなかった。 At present, the present inventors are developing a system for visually inspecting a railway vehicle using a line scan camera with high accuracy and high efficiency. Then, the present inventors assume that various structures provided in the lower part of the vehicle body of the railway vehicle are photographed and inspected from the side of the vehicle. However, in the lower part of the vehicle body of the railway vehicle, structures are arranged at a plurality of places from the side to the back. For this reason, when these are photographed from the side of the vehicle, if the lighting is weak, the illuminance of the structure arranged in the back is lowered, and there is a problem that a clear image of this structure cannot be obtained. On the other hand, if the illumination is too strong, for example, the image of the structure arranged in the foreground or the structure that is strongly illuminated is overexposed, which causes a problem that it becomes difficult to grasp the shape of the structure. That is, it has not been easy to properly illuminate a plurality of structures having different arrangements in the depth direction so that a clear image can be obtained from the structure in the back to the structure in the foreground.

なお、このような課題は、鉄道車両の車体下部を側方から撮影する場合に限られるものでなく、撮影方向に奥行のある範囲の外観検査を行う場合に同様に生じると考えられる。 It should be noted that such a problem is not limited to the case where the lower part of the vehicle body of the railway vehicle is photographed from the side, and it is considered that the same problem occurs when the appearance inspection of a range having a depth in the photographing direction is performed.

本発明は、鉄道車両のうち撮影方向に奥行のある領域の画像を取得して鉄道車両の外観検査を行う装置において、奥行方向に位置の異なる複数の箇所に対して均一な鮮明さで画像を取得できるようにすることを目的とする。 The present invention is a device that acquires an image of a region of a railroad vehicle having a depth in the shooting direction and inspects the appearance of the railroad vehicle. The purpose is to be able to obtain it.

本発明は、上記目的を達成するため、
線状の撮影領域が鉄道車両の移動方向と交差する向きに配置されたラインスキャンカメラと、
鉄道車両の撮影対象領域を照らす投光器と、
前記ラインスキャンカメラの連続的な撮影により得られた鉄道車両の外観画像を分析する画像分析部と、
を備え、
前記撮影対象領域は前記ラインスキャンカメラからの距離が異なる奥行方向の幅を有し、
前記投光器は、最も光量が多くなる投光方向が、前記投光器から遠くなるほど前記ラインスキャンカメラの入光部中央と前記線状の撮影領域とを結ぶ画素列取得平面に近くなり、かつ、前記撮影対象領域の奥行方向の全域にわたって前記画素列取得平面と交わらない方向を向いていることを特徴とする鉄道車両の外観検査装置である。
In order to achieve the above object, the present invention
A line scan camera arranged so that the linear shooting area intersects the moving direction of the railroad vehicle,
A floodlight that illuminates the area to be photographed by a railroad vehicle,
An image analysis unit that analyzes an external image of a railroad vehicle obtained by continuous shooting with the line scan camera, and an image analysis unit.
With
The imaging target area has a width in the depth direction at which the distance from the line scan camera is different.
In the floodlight, the light projection direction in which the amount of light is the largest becomes closer to the pixel sequence acquisition plane connecting the center of the light input portion of the line scan camera and the linear photographing region as the distance from the floodlight increases, and the photographing This is an appearance inspection device for a railroad vehicle, characterized in that it faces a direction that does not intersect with the pixel array acquisition plane over the entire depth direction of the target area.

このような構成によれば、投光器を上記の方向に向けて配置することで、鉄道車両の撮影対象領域の奥行方向の全域を均一に照らすことが容易となる。すなわち、撮影対象領域中に、照度が高すぎて画像に白飛びが生じるような箇所と、照度が足りずに画像が不鮮明となる箇所とが生じないように照明を設定することが容易となる。これにより、鉄道車両の撮影対象領域の奥行方向の全域にわたって均一な鮮明さを有する画像を得ることができ、鉄道車両の正確な外観検査が可能となる。 According to such a configuration, by arranging the floodlights in the above-mentioned direction, it becomes easy to uniformly illuminate the entire area in the depth direction of the photographing target area of the railway vehicle. That is, it becomes easy to set the illumination so that there are no parts in the shooting target area where the illuminance is too high and the image is overexposed and where the illuminance is insufficient and the image becomes unclear. .. As a result, it is possible to obtain an image having uniform sharpness over the entire depth direction of the area to be photographed of the railway vehicle, and it is possible to accurately inspect the appearance of the railway vehicle.

ここで、前記投光器は、一方向に長い配列で並べられた複数の発光ダイオードを有し、前記配列の長手方向が前記画素列取得平面と平行になるように設置されていてもよい。 Here, the floodlight may have a plurality of light emitting diodes arranged in a long array in one direction, and may be installed so that the longitudinal direction of the array is parallel to the pixel array acquisition plane.

このような構成によれば、ラインスキャンカメラの線状の撮影領域の長手方向においても撮影対象領域を均一な明るさで照らすことが容易となり、均一な鮮明さを有する鉄道車両の画像を得ることができる。 According to such a configuration, it becomes easy to illuminate the area to be photographed with uniform brightness even in the longitudinal direction of the linear image area of the line scan camera, and an image of a railroad vehicle having uniform sharpness can be obtained. Can be done.

また、本発明に係る鉄道車両の外観検査装置は、
前記投光器と前記ラインスキャンカメラとの相対位置及び相対角度を保持するフレームを更に備えてもよい。
Further, the visual inspection device for a railway vehicle according to the present invention is
A frame that holds a relative position and a relative angle between the floodlight and the line scan camera may be further provided.

このような構成によれば、均一な照度が得られるようにラインスキャンカメラと投光器との相対位置及び相対角度が設定された後、この相対位置及び相対角度をフレームによって保持することができる。したがって、例えば工場内でラインスキャンカメラと投光器とを最適な相対位置及び相対角度に固定し、フレームごと現地に移送することで、最適な位置に配置されたラインスキャンカメラ及び投光器を容易に現地に設置することができる。 According to such a configuration, after the relative position and relative angle between the line scan camera and the floodlight are set so that uniform illuminance can be obtained, the relative position and relative angle can be held by the frame. Therefore, for example, by fixing the line scan camera and the floodlight at the optimum relative position and angle in the factory and transporting the frame together to the site, the line scan camera and the floodlight placed at the optimum position can be easily brought to the site. Can be installed.

本発明に係る鉄道車両の外観検査装置の設定方法は、
線状の撮影領域が鉄道車両の移動方向と交差する向きに配置されるラインスキャンカメラと、鉄道車両の撮影対象領域を照らす投光器とを備えた鉄道車両の外観検査装置の設定方法であって、
前記投光器を作動させて、前記撮影対象領域の奥行方向に位置の異なる複数箇所で、前記ラインスキャンカメラの入光部中央と前記線状の撮影領域とを結ぶ画素列取得平面と重なる箇所の照度を計測し、計測された輝度が、前記投光器の最も光量が多くなる投光方向の輝度よりも一段階低い所定の範囲に収まるように、前記投光器の向きを決定することを特徴とする。
The method for setting the visual inspection device for a railway vehicle according to the present invention is as follows.
It is a method of setting a railroad vehicle visual inspection device equipped with a line scan camera in which a linear shooting area intersects the moving direction of the railroad vehicle and a floodlight that illuminates the shooting target area of the railroad vehicle.
By operating the floodlight, the illuminance at a plurality of locations having different positions in the depth direction of the imaging target region and overlapping with the pixel array acquisition plane connecting the center of the light input portion of the line scan camera and the linear imaging region. Is measured, and the orientation of the floodlight is determined so that the measured brightness falls within a predetermined range one step lower than the brightness in the light projection direction in which the amount of light is the largest.

このような方法によれば、奥行のある鉄道車両の撮影対象領域に対して、奥行方向の全域を均一に照らすように投光器の向きを容易に決定することができる。これにより、撮影対象領域中に、照度が高すぎて画像に白飛びが生じるような箇所と、照度が足りずに画像が不鮮明となる箇所とが生じないように投光器の向きを設定できる。このような設定により、鉄道車両の撮影対象領域の奥行方向の全域にわたって均一な鮮明さを有する画像を得ることができ、鉄道車両の正確な外観検査が可能となる。 According to such a method, the direction of the floodlight can be easily determined so as to uniformly illuminate the entire area in the depth direction with respect to the area to be photographed of the railway vehicle having a depth. As a result, the orientation of the floodlight can be set so that there are places in the imaging target area where the illuminance is too high and the image is overexposed, and where the illuminance is insufficient and the image is unclear. With such a setting, it is possible to obtain an image having uniform sharpness over the entire depth direction of the area to be photographed of the railway vehicle, and it is possible to accurately inspect the appearance of the railway vehicle.

さらに、本発明に係る鉄道車両の外観検査装置の設定方法は、
工場において、前記複数箇所の照度を計測して前記投光器の向きを決定した後、前記投光器を決定された向きに調整し、かつ、前記ラインスキャンカメラと前記投光器とを共通のフレームに固定し、その後、前記フレームごと前記ラインスキャンカメラ及び前記投光器を現地へ搬送及び設置するようにしてもよい。
Further, the method of setting the visual inspection device for a railway vehicle according to the present invention is as follows.
In the factory, after measuring the illuminances at the plurality of locations to determine the orientation of the floodlight, the floodlight is adjusted to the determined orientation, and the line scan camera and the floodlight are fixed to a common frame. After that, the line scan camera and the floodlight may be transported and installed at the site together with the frame.

このような方法によれば、現地におけるラインスキャンカメラ及び投光器の配置の調整作業を低減でき、ラインスキャンカメラと投光器とを最適な相対位置及び相対角度に設定された状態で容易に現地に設置することができる。これにより、高い信頼性で鮮明な画像を取得できる鉄道車両の外観検査装置を提供できる。 According to such a method, the adjustment work of the arrangement of the line scan camera and the floodlight on the site can be reduced, and the line scan camera and the floodlight can be easily installed on the site with the optimum relative position and relative angle set. be able to. This makes it possible to provide a railroad vehicle visual inspection device capable of acquiring a clear image with high reliability.

本発明によれば、鉄道車両のうち撮影方向に奥行のある領域の画像を取得して鉄道車両の外観検査を行う装置において、奥行方向に位置の異なる複数の箇所に対して均一な鮮明さで画像を取得することができる。 According to the present invention, in a device that acquires an image of a region of a railroad vehicle having a depth in the shooting direction and inspects the appearance of the railroad vehicle, uniform sharpness is obtained for a plurality of locations having different positions in the depth direction. Images can be acquired.

本発明の実施形態の鉄道車両の外観検査装置を示す図である。It is a figure which shows the appearance inspection apparatus of the railroad vehicle of embodiment of this invention. ラインスキャンカメラと投光器との配置関係を示す図であり、(A)は側面図、(B)は平面図、(C)は正面図である。It is a figure which shows the arrangement relation of a line scan camera and a floodlight, (A) is a side view, (B) is a plan view, (C) is a front view. 図3(A)〜図3(D)は奥行方向に位置の異なる複数箇所で測定された投光器の配光の一例を示す図である。3 (A) to 3 (D) are views showing an example of light distribution of a floodlight measured at a plurality of locations having different positions in the depth direction. ラインスキャンカメラからの距離と照度との関係を概念的に示したグラフである。It is a graph which conceptually showed the relationship between the distance from a line scan camera and the illuminance. ラインスキャンカメラ及び投光器をフレームに固定した構成例を示す斜視図である。It is a perspective view which shows the configuration example which fixed the line scan camera and the floodlight to a frame.

以下、本発明の実施の形態について図面を参照して詳細に説明する。
図1は、本発明の実施形態の鉄道車両の外観検査装置を示す図である。図2は、ラインスキャンカメラと投光器との配置関係を示す図であり、図2(A)はその側面図、図2(B)はその平面図、図2(C)はその正面図である。
本発明の実施形態の鉄道車両の外観検査装置1は、鉄道車両の外観を検査して異常の有無を判別する装置の一部である。外観検査装置1は、具体的には、鉄道車両の車体下部に設置された複数の構造物の側面を鉄道車両の側方から撮影し、撮影された鉄道車両の外観画像を分析して異常の有無を検査する。鉄道車両の撮影対象領域には奥行方向の幅がある。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing an appearance inspection device for a railway vehicle according to an embodiment of the present invention. 2A and 2B are views showing the arrangement relationship between the line scan camera and the floodlight, FIG. 2A is a side view thereof, FIG. 2B is a plan view thereof, and FIG. 2C is a front view thereof. ..
The railway vehicle appearance inspection device 1 of the embodiment of the present invention is a part of the device that inspects the appearance of the railway vehicle and determines the presence or absence of an abnormality. Specifically, the visual inspection device 1 photographs the side surfaces of a plurality of structures installed under the vehicle body of the railway vehicle from the side of the railway vehicle, analyzes the photographed appearance image of the railway vehicle, and analyzes the photographed appearance image of the railway vehicle to obtain an abnormality. Check for presence. The area to be photographed by a railroad vehicle has a width in the depth direction.

外観検査装置1は、鉄道車両100が通過する線路の側方に設置されるラインスキャンカメラ10と、鉄道車両の撮影対象領域を照らす投光器20と、撮影された画像の分析を行う画像分析装置30とを備える。画像分析装置30は、本発明に係る画像分析部の一例に相当する。
ラインスキャンカメラ10は、光を入射する入光部11と、線状の撮像素子とを有し、線状の撮影領域に対して繰り返し撮影を実行可能な撮影装置である。ラインスキャンカメラ10は、線状の撮影領域が撮影対象の移動方向と交差するように設置され、撮影対象の移動中に撮影画像を連続的に取り込むことで、撮影対象の二次元の撮影画像を取得できる。図2(A)、(B)において、入光部11の中央と線状の撮影領域とを結んだ画素列取得平面S1を一点鎖線により示す。なお、図2(A)では、画素列取得平面S1を奥行方向の全域まで示していないが、実際には画素列取得平面S1は図2(B)の奥行範囲D1に渡って広がる面である。ラインスキャンカメラ10は、撮影対象のうち画素列取得平面S1と重なった部位の画像を一回の撮影で取得する。
The visual inspection device 1 includes a line scan camera 10 installed on the side of a railroad track through which the railroad vehicle 100 passes, a floodlight 20 that illuminates an area to be photographed by the railroad vehicle, and an image analyzer 30 that analyzes the captured image. And. The image analyzer 30 corresponds to an example of the image analysis unit according to the present invention.
The line scan camera 10 is a photographing device having a light input unit 11 for incident light and a linear image pickup element, and can repeatedly perform photographing on a linear photographing region. The line scan camera 10 is installed so that a linear shooting area intersects the moving direction of the shooting target, and continuously captures the shot image while the shooting target is moving to capture a two-dimensional shot image of the shooting target. You can get it. In FIGS. 2 (A) and 2 (B), the pixel sequence acquisition plane S1 connecting the center of the light input unit 11 and the linear photographing region is shown by a alternate long and short dash line. Although the pixel sequence acquisition plane S1 is not shown in the entire depth direction in FIG. 2 (A), the pixel sequence acquisition plane S1 is actually a plane extending over the depth range D1 in FIG. 2 (B). .. The line scan camera 10 acquires an image of a portion of the imaging target that overlaps with the pixel sequence acquisition plane S1 in a single capture.

投光器20は、複数の高輝度発光ダイオード21が、一方向に長い矩形の枠内に、複数行複数列の配列で並べられた照明である。複数の高輝度発光ダイオード21は、指向性が高く、互いに同方向を向いて配列されている。投光器20の照射光は、少ない角度で広がり、また、照射範囲の中央の照度が最も照度が高く、中央から外れるに従って照度が低くなっていく配光を有する。図2(A)、(B)において、投光器20の最も光量が多くなる投光方向を表わす配光中央L1を一点鎖線で示す。 The floodlight 20 is an illumination in which a plurality of high-intensity light emitting diodes 21 are arranged in a plurality of rows and a plurality of columns in a rectangular frame long in one direction. The plurality of high-luminance light emitting diodes 21 have high directivity and are arranged so as to face each other in the same direction. The irradiation light of the floodlight 20 has a light distribution that spreads at a small angle, the illuminance at the center of the irradiation range is the highest, and the illuminance decreases as the distance from the center deviates. In FIGS. 2 (A) and 2 (B), the light distribution center L1 representing the light projecting direction in which the amount of light of the floodlight 20 is the largest is shown by a dashed line.

画像分析装置30は、コンピュータであり、CPU(Central Processing Unit)31、RAM(Random Access Memory)32、表示部33、マウス又はキーボード等の操作部34、データ入力用のインタフェース35、及び記憶装置36を備える。記憶装置36には、撮影画像と正常画像とを比較して異常が生じていないか外観検査を行う外観検査プログラム361が格納されている。また、記憶装置36には、検査対象の鉄道車両の過去の正常画像が蓄積される正常画像データベース362と、ラインスキャンカメラ10から通信ネットワークNを介して送られてくる撮影画像を格納する撮影画像格納部363とが設けられる。 The image analyzer 30 is a computer, and is a CPU (Central Processing Unit) 31, a RAM (Random Access Memory) 32, a display unit 33, an operation unit 34 such as a mouse or a keyboard, an interface 35 for data input, and a storage device 36. To be equipped. The storage device 36 stores a visual inspection program 361 that compares a captured image with a normal image and inspects the appearance for any abnormality. Further, the storage device 36 stores a normal image database 362 in which past normal images of the railroad vehicle to be inspected are stored, and a captured image stored in the captured image sent from the line scan camera 10 via the communication network N. A storage unit 363 is provided.

外観検査プログラム361は、CPU31が実行することで複数の機能モジュールを実現させる。複数の機能モジュールには、撮影画像生成モジュール、撮影画像補正モジュール、輝度調整モジュール、及び、比較検査モジュール等が含まれる。撮影画像生成モジュールは、ラインスキャンカメラ10の撮影画像データから鉄道車両100の撮影対象領域について連続する二次元画像データを生成する。撮影画像補正モジュールは、鉄道車両100の速度バラツキ又は上下動に起因する二次元画像中の鉄道車両100の歪みを補正する。輝度調整モジュールは、撮影画像の外的要因による輝度のバラツキが除去されるように撮影画像の輝度を調整する。比較検査モジュールは、正常画像データベース362に格納された同一車両の過去の正常画像と撮影画像とを比較して変化のある箇所を抽出し異常の有無を判別する。 The visual inspection program 361 realizes a plurality of functional modules by being executed by the CPU 31. The plurality of functional modules include a captured image generation module, a captured image correction module, a brightness adjustment module, a comparative inspection module, and the like. The captured image generation module generates continuous two-dimensional image data for the imaging target area of the railroad vehicle 100 from the captured image data of the line scan camera 10. The captured image correction module corrects the distortion of the railroad vehicle 100 in the two-dimensional image due to the speed variation or vertical movement of the railroad vehicle 100. The brightness adjustment module adjusts the brightness of the captured image so as to eliminate variations in brightness due to external factors of the captured image. The comparative inspection module compares the past normal image of the same vehicle stored in the normal image database 362 with the captured image, extracts a changed portion, and determines the presence or absence of an abnormality.

外観検査プログラム361の各機能モジュールは、特に制限されるものではないが、鉄道車両100の撮影対象領域の撮影画像データをグレースケールデータとして処理する。このように色の識別を行わない場合、適正な照度で撮影対象を照らして鮮明な撮影画像を取得することが重要となる。 Each functional module of the visual inspection program 361 is not particularly limited, but processes the captured image data of the imaging target area of the railway vehicle 100 as grayscale data. When color identification is not performed in this way, it is important to illuminate the object to be photographed with an appropriate illuminance and acquire a clear photographed image.

<ラインスキャンカメラと投光器との配置の設定方法>
ラインスキャンカメラ10は、図1に示すように、鉄道車両100の下部から側方に離れた位置で、撮影方向が車体下部に向き、線状の撮影領域が鉄道車両100の進行方向と交差(例えば直交)するように設置される。
<How to set the arrangement of the line scan camera and the floodlight>
As shown in FIG. 1, the line scan camera 10 has a shooting direction facing the lower part of the vehicle body at a position separated from the lower part of the railroad vehicle 100 to the side, and a linear shooting area intersects the traveling direction of the railroad vehicle 100 ( For example, they are installed so as to be orthogonal to each other.

投光器20は、ラインスキャンカメラ10の横方向(線路に沿った方向)にずれた位置で、かつ、ラインスキャンカメラ10よりも前方(鉄道車両100に近い方)にずれた位置に設置される。さらに、投光器20は、長手方向(発光ダイオードの配列の長手方向)がラインスキャンカメラ10の画素列取得平面S1と平行になるように、かつ、照明の投光方向が鉄道車両100の車体下部へ向くように設置される。本明細書において平行とは、厳密な意味での平行だけでなく、ラインスキャンカメラ10の線状の撮影領域の長手方向をほぼ均一に照らすことができるという作用が得られる範囲で、僅かな誤差を有するものも含むものとする。 The floodlight 20 is installed at a position deviated from the line scan camera 10 in the lateral direction (direction along the railroad track) and at a position deviated from the line scan camera 10 in front (closer to the railroad vehicle 100). Further, in the floodlight 20, the longitudinal direction (longitudinal direction of the arrangement of the light emitting diodes) is parallel to the pixel array acquisition plane S1 of the line scan camera 10, and the projection direction of the illumination is toward the lower part of the vehicle body of the railway vehicle 100. It is installed so that it faces. In the present specification, "parallel" means not only parallel in a strict sense but also a slight error within a range in which the action of being able to illuminate the longitudinal direction of the linear photographing region of the line scan camera 10 almost uniformly can be obtained. It shall also include those having.

加えて、投光器20は、配光中央L1が、撮影対象領域の奥行方向の全域にわたって、ラインスキャンカメラ10の画素列取得平面S1と交わらず、かつ、投光器20から遠くなるほど画素列取得平面S1に近づく方向を向くように設置される。本実施形態において撮影対象領域は、鉄道車両100の車体下部の中央より手前側の奥行範囲D1(図1を参照)を有する。 In addition, in the floodlight 20, the light distribution center L1 does not intersect with the pixel row acquisition plane S1 of the line scan camera 10 over the entire depth direction of the imaging target area, and the farther away from the floodlight 20, the more the pixel row acquisition plane S1 becomes. It is installed so that it faces the approaching direction. In the present embodiment, the photographing target area has a depth range D1 (see FIG. 1) on the front side from the center of the lower part of the vehicle body of the railway vehicle 100.

さらに、投光器20の詳細な設置角度の決定は、上記のように投光器20を設置した後、投光器20を作動させて照度の測定を行いながら、詳細な角度調整を経て実現される。例えば、設置角度の決定作業において、図2(B)に示すように、撮影対象領域の奥行方向に位置の異なる4つの箇所Pa、Pb、Pc、Pdで、投光器20の照度が計測される。 Further, the detailed installation angle of the floodlight 20 is determined by finely adjusting the angle while installing the floodlight 20 as described above and then operating the floodlight 20 to measure the illuminance. For example, in the work of determining the installation angle, as shown in FIG. 2B, the illuminance of the floodlight 20 is measured at four locations Pa, Pb, Pc, and Pd whose positions are different in the depth direction of the imaging target area.

図3(A)〜図3(D)は奥行方向に位置の異なる複数箇所で測定された投光器の配光の一例を示す図である。図3(A)〜図3(D)は、図2(B)の4箇所Pa〜Pdの配光に相当する。 3 (A) to 3 (D) are views showing an example of light distribution of a floodlight measured at a plurality of locations having different positions in the depth direction. 3 (A) to 3 (D) correspond to the light distribution of the four locations Pa to Pd in FIG. 2 (B).

投光器20は、最も照度の高い範囲E1が適正な照度値よりも高くなり、照度が一段階低い範囲E2が適正な照度値となるように、照明強度が設定される。上記の照度が一段階低い範囲E2が、配光中で適正な照度が得られる所定範囲となる。さらに、図3(A)〜図3(D)に示すように、投光器20の配光は、最も照度の高い範囲E1が中央を占め、中央から離れるほど照度が低くなる。また、投光器20から離れる箇所ほど最も照度の高い範囲E1が小さくなる。また、照度が一段階低い範囲E2は、投光器20から離れるに従って配光の中央に近づいてくる。このため、投光器20の向きが上記のように設定されていることで、照度が一段階低い範囲E2がラインスキャンカメラ10の画素列取得平面S1に重なるか近づいた状況となる。ここで、作業員は、4箇所Pa〜Pdの配光の計測結果に基づいて、投光器20の詳細な角度合わせを行うことで、4箇所Pa〜Pdにおいて照度が一段階低い範囲E2がラインスキャンカメラ10の画素列取得平面S1に重なるように調整する。すなわち、4箇所Pa〜Pdにおいて画素列取得平面S1の照度が範囲E2に収まるように調整される。このようにして投光器20とラインスキャンカメラ10の相対角度が決定される。 In the floodlight 20, the illumination intensity is set so that the range E1 having the highest illuminance becomes higher than the appropriate illuminance value and the range E2 having one step lower illuminance becomes the appropriate illuminance value. The range E2 in which the illuminance is one step lower is a predetermined range in which an appropriate illuminance can be obtained during light distribution. Further, as shown in FIGS. 3A to 3D, the light distribution of the floodlight 20 occupies the center in the range E1 having the highest illuminance, and the illuminance decreases as the distance from the center increases. Further, the farther away from the floodlight 20, the smaller the range E1 having the highest illuminance. Further, the range E2 in which the illuminance is one step lower approaches the center of the light distribution as the distance from the floodlight 20 increases. Therefore, since the orientation of the floodlight 20 is set as described above, the range E2 in which the illuminance is one step lower overlaps with or approaches the pixel sequence acquisition plane S1 of the line scan camera 10. Here, the worker adjusts the angle of the floodlight 20 in detail based on the measurement result of the light distribution at the four locations Pa to Pd, so that the range E2 in which the illuminance is one step lower at the four locations Pa to Pd is line-scanned. The adjustment is made so as to overlap the pixel sequence acquisition plane S1 of the camera 10. That is, the illuminance of the pixel array acquisition plane S1 is adjusted to fall within the range E2 at the four locations Pa to Pd. In this way, the relative angle between the floodlight 20 and the line scan camera 10 is determined.

なお、このような投光器20の詳細な相対角度の調整は、装置単位で行う必要はない。例えば投光器20の製品ごとの配光バラツキが非常に小さい場合には、1台の投光器20を用いて詳細な相対角度を決定したら、別の装置では投光器20の詳細な相対角度の調整を行わず、決定された相対角度で投光器20を固定するのみとしてもよい。このように投光器20を配置しても、上述の調整を行った場合と同様の配光の設定を実現できる。 It is not necessary to adjust the relative angle of the floodlight 20 in detail for each device. For example, when the light distribution variation of each product of the floodlight 20 is very small, if one floodlight 20 is used to determine a detailed relative angle, another device does not adjust the detailed relative angle of the floodlight 20. , The floodlight 20 may only be fixed at a determined relative angle. Even if the floodlight 20 is arranged in this way, the same light distribution setting as in the case of making the above adjustment can be realized.

図4は、ラインスキャンカメラからの距離と照度との関係を概念的に示したグラフである。図4において、縦軸はラインスキャンカメラ10の画素列取得平面S1と重なる箇所の照度、横軸は、ラインスキャンカメラ10からの距離を示す。
先にも述べたが、照度には、画像に白飛びが生じるような高すぎる範囲(図4に「白とび」と記す)と、画像の鮮明さが低下する低すぎる範囲(図4に「光量不足」と記す)と、鮮明な画像が得られる適正な範囲(図4に「適正」と記す)とがある。しかし、上記のように投光器20の向きを設定することで、図4に示すように、撮影対象領域の奥行方向の全域にわたって、ラインスキャンカメラ10の画素列取得平面S1と重なる箇所の照度を適正にすることが可能となる。
FIG. 4 is a graph conceptually showing the relationship between the distance from the line scan camera and the illuminance. In FIG. 4, the vertical axis represents the illuminance of the portion overlapping the pixel sequence acquisition plane S1 of the line scan camera 10, and the horizontal axis represents the distance from the line scan camera 10.
As mentioned earlier, the illuminance is too high in the range where overexposure occurs in the image (indicated as "overexposure" in FIG. 4) and too low in the range where the sharpness of the image is reduced (in FIG. 4 "" There is an appropriate range (indicated as "appropriate" in FIG. 4) in which a clear image can be obtained. However, by setting the orientation of the floodlight 20 as described above, as shown in FIG. 4, the illuminance at the portion overlapping the pixel array acquisition plane S1 of the line scan camera 10 is appropriate over the entire depth direction of the imaging target area. It becomes possible to.

<装置の設置方法>
次に、ラインスキャンカメラ10及び投光器20の現地への設置手順の一例について説明する。図5は、ラインスキャンカメラ及び投光器をフレームに固定した構成例を示す斜視図である。
ラインスキャンカメラ10及び投光器20は、工場において、上述した相対位置及び相対角度の調整が行われる。調整の後、さらに工場において、ラインスキャンカメラ10及び投光器20が共通のフレーム40に固定され、その相対位置及び相対角度が保持される。
続いて、ラインスキャンカメラ10及び投光器20はフレーム40に固定したまま、現地へ搬送され、鉄道車両100が通過するレールの側方に設置される。
このような設置方法により、現地におけるラインスキャンカメラ10及び投光器20の配置の調整作業を低減することができ、高い信頼性で鮮明な画像を取得できる鉄道車両の外観検査装置1を提供できる。
<How to install the device>
Next, an example of the procedure for installing the line scan camera 10 and the floodlight 20 in the field will be described. FIG. 5 is a perspective view showing a configuration example in which the line scan camera and the floodlight are fixed to the frame.
The line scan camera 10 and the floodlight 20 are adjusted in the relative positions and relative angles described above at the factory. After the adjustment, the line scan camera 10 and the floodlight 20 are further fixed to the common frame 40 in the factory, and their relative positions and relative angles are maintained.
Subsequently, the line scan camera 10 and the floodlight 20 are transported to the site while being fixed to the frame 40, and are installed on the side of the rail through which the railroad vehicle 100 passes.
With such an installation method, it is possible to reduce the work of adjusting the arrangement of the line scan camera 10 and the floodlight 20 in the field, and it is possible to provide the visual inspection device 1 for a railway vehicle capable of acquiring a clear image with high reliability.

以上、本発明の実施形態について説明した。しかし、本発明は上記の実施形態に限られない。例えば、上記実施形態では、1組の投光器20がラインスキャンカメラ10の片側に配置された構成を一例にとって説明したが、2組の投光器がラインスキャンカメラの両側に配置される構成を適用してもよい。また、上記実施形態では、鉄道車両100の車体下部の構造物を、鉄道車両100の側方からラインスキャンカメラが撮影する構成を一例にとって説明したが、これに限られない。例えば、車体下部の構造物を車体の下方から撮影する構成、又は、車体上部を鉄道車両100の側方から撮影する構成など、撮影対象領域に奥行が生じる場合に、本発明は効果的に適用できる。その他、実施の形態で示した細部は、発明の趣旨を逸脱しない範囲で適宜変更可能である。 The embodiment of the present invention has been described above. However, the present invention is not limited to the above embodiment. For example, in the above embodiment, a configuration in which one set of floodlights 20 is arranged on one side of the line scan camera 10 has been described as an example, but a configuration in which two sets of floodlights are arranged on both sides of the line scan camera 10 is applied. May be good. Further, in the above embodiment, the configuration in which the structure under the vehicle body of the railway vehicle 100 is photographed by the line scan camera from the side of the railway vehicle 100 has been described as an example, but the present invention is not limited to this. For example, the present invention is effectively applied to a configuration in which the structure at the lower part of the vehicle body is photographed from below the vehicle body, or the upper part of the vehicle body is photographed from the side of the railway vehicle 100, and the depth is generated in the imaging target area. can. In addition, the details shown in the embodiments can be appropriately changed without departing from the spirit of the invention.

1 鉄道車両の外観検査装置
10 ラインスキャンカメラ
11 入光部
20 投光器
30 画像分析装置
D1 撮影対象領域の奥行範囲
E1 最も照度の高い範囲
E2 照度が一段階低い範囲
1 Railroad vehicle appearance inspection device 10 Line scan camera 11 Incoming light section 20 Floodlight 30 Image analyzer D1 Depth range of the area to be photographed E1 Highest illuminance range E2 One step lower illuminance range

Claims (5)

線状の撮影領域が鉄道車両の移動方向と交差する向きに配置されたラインスキャンカメラと、
鉄道車両の撮影対象領域を照らす投光器と、
前記ラインスキャンカメラの連続的な撮影により得られた鉄道車両の外観画像を分析する画像分析部と、
を備え、
前記撮影対象領域は前記ラインスキャンカメラからの距離が異なる奥行方向の幅を有し、
前記投光器は、最も光量が多くなる投光方向が、前記投光器から遠くなるほど前記ラインスキャンカメラの入光部中央と前記線状の撮影領域とを結ぶ画素列取得平面に近くなり、かつ、前記撮影対象領域の奥行方向の全域にわたって前記画素列取得平面と交わらない方向を向いていることを特徴とする鉄道車両の外観検査装置。
A line scan camera arranged so that the linear shooting area intersects the moving direction of the railroad vehicle,
A floodlight that illuminates the area to be photographed by a railroad vehicle,
An image analysis unit that analyzes an external image of a railroad vehicle obtained by continuous shooting with the line scan camera, and an image analysis unit.
With
The imaging target area has a width in the depth direction at which the distance from the line scan camera is different.
In the floodlight, the light projection direction in which the amount of light is the largest becomes closer to the pixel sequence acquisition plane connecting the center of the light input portion of the line scan camera and the linear photographing region as the distance from the floodlight increases, and the photographing An visual inspection device for a railroad vehicle, characterized in that it faces a direction that does not intersect with the pixel array acquisition plane over the entire depth direction of the target area.
前記投光器は、一方向に長い配列で並べられた複数の発光ダイオードを有し、前記配列の長手方向が前記画素列取得平面と平行になるように設置されていることを特徴とする請求項1記載の鉄道車両の外観検査装置。 The floodlight has a plurality of light emitting diodes arranged in a long array in one direction, and is installed so that the longitudinal direction of the array is parallel to the pixel array acquisition plane. The described railroad vehicle visual inspection device. 前記投光器と前記ラインスキャンカメラとの相対位置及び相対角度を保持するフレームを更に備えることを特徴とする請求項1又は請求項2記載の鉄道車両の外観検査装置。 The visual inspection device for a railway vehicle according to claim 1 or 2, further comprising a frame for holding a relative position and a relative angle between the floodlight and the line scan camera. 線状の撮影領域が鉄道車両の移動方向と交差する向きに配置されるラインスキャンカメラと、鉄道車両の撮影対象領域を照らす投光器とを備えた鉄道車両の外観検査装置の設定方法であって、
前記投光器を作動させて、前記撮影対象領域の奥行方向に位置の異なる複数箇所で、前記ラインスキャンカメラの入光部中央と前記線状の撮影領域とを結ぶ画素列取得平面と重なる箇所の照度を計測し、計測された輝度が、前記投光器の最も光量が多くなる投光方向の輝度よりも一段階低い所定の範囲に収まるように、前記投光器の向きを決定することを特徴とする鉄道車両の外観検査装置の設定方法。
It is a method of setting a railroad vehicle visual inspection device equipped with a line scan camera in which a linear shooting area intersects the moving direction of the railroad vehicle and a floodlight that illuminates the shooting target area of the railroad vehicle.
By operating the floodlight, the illuminance at a plurality of locations having different positions in the depth direction of the imaging target region and overlapping with the pixel array acquisition plane connecting the center of the light input portion of the line scan camera and the linear imaging region. The direction of the floodlight is determined so that the measured brightness falls within a predetermined range one step lower than the brightness in the direction of the floodlight where the amount of light is the largest. How to set up the visual inspection device.
工場において、前記複数箇所の照度を計測して前記投光器の向きを決定した後、前記投光器を決定された向きに調整し、かつ、前記ラインスキャンカメラと前記投光器とを共通のフレームに固定し、その後、前記フレームごと前記ラインスキャンカメラ及び前記投光器を現地へ搬送及び設置することを特徴とする請求項4記載の鉄道車両の外観検査装置の設定方法。 In the factory, after measuring the illuminances at the plurality of locations to determine the orientation of the floodlight, the floodlight is adjusted to the determined orientation, and the line scan camera and the floodlight are fixed to a common frame. The method for setting a railroad vehicle appearance inspection device according to claim 4, wherein the line scan camera and the floodlight are transported and installed at the site together with the frame.
JP2017226420A 2017-11-27 2017-11-27 Railroad vehicle visual inspection equipment and its setting method Active JP6913615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017226420A JP6913615B2 (en) 2017-11-27 2017-11-27 Railroad vehicle visual inspection equipment and its setting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017226420A JP6913615B2 (en) 2017-11-27 2017-11-27 Railroad vehicle visual inspection equipment and its setting method

Publications (2)

Publication Number Publication Date
JP2019093977A JP2019093977A (en) 2019-06-20
JP6913615B2 true JP6913615B2 (en) 2021-08-04

Family

ID=66970731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017226420A Active JP6913615B2 (en) 2017-11-27 2017-11-27 Railroad vehicle visual inspection equipment and its setting method

Country Status (1)

Country Link
JP (1) JP6913615B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110155117B (en) * 2019-06-21 2020-07-07 中国神华能源股份有限公司 Detection device
CN113340624A (en) * 2021-06-09 2021-09-03 孙洪茂 Vehicle body multi-plane detection device and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09297107A (en) * 1996-05-08 1997-11-18 Matsushita Electric Ind Co Ltd Defect inspecting device and adjusting method therefor
JP5274346B2 (en) * 2009-04-06 2013-08-28 三菱電機株式会社 Surface inspection apparatus and surface inspection method
DE102009043215A1 (en) * 2009-09-28 2011-05-19 Siemens Aktiengesellschaft Method and arrangement for controlling pantographs, clearance profiles and horizontal and vertical contact wire position on vehicle bodies
JP6110538B2 (en) * 2011-04-19 2017-04-05 芝浦メカトロニクス株式会社 Substrate inspection apparatus and method for adjusting substrate inspection apparatus
WO2017134710A1 (en) * 2016-02-03 2017-08-10 株式会社ヒロテック Molded product examination device

Also Published As

Publication number Publication date
JP2019093977A (en) 2019-06-20

Similar Documents

Publication Publication Date Title
JP5852527B2 (en) Three-dimensional shape measuring method and substrate inspection method
JP4548912B2 (en) Transparent liquid inspection apparatus, transparent liquid application apparatus, transparent liquid inspection method, and transparent liquid application method
KR101207198B1 (en) Board inspection apparatus
US8681211B2 (en) High speed optical inspection system with adaptive focusing
CN107429991B (en) Appearance inspection device and appearance inspection method
US20130342677A1 (en) Vision testing device using multigrid pattern
KR101747852B1 (en) Printed circuit board coating inspection apparatus and inspection methods thereof
US20140232850A1 (en) Vision testing device with enhanced image clarity
US20120133920A1 (en) High speed, high resolution, three dimensional printed circuit board inspection system
KR101630596B1 (en) Photographing apparatus for bottom of car and operating method thereof
CN108627512B (en) Three-dimensional detection device and method for three-dimensional detection
KR20110086222A (en) Three dimensional shape measurment apparatus
KR20130045351A (en) Apparatus and method for three dimensional inspection of wafer saw marks
KR101245622B1 (en) Vision inspection apparatus using stereo vision grid pattern
JP6913615B2 (en) Railroad vehicle visual inspection equipment and its setting method
US10330609B2 (en) Method and apparatus of inspecting a substrate with a component mounted thereon
KR20150022352A (en) Inspection method of solder joint
JP4246319B2 (en) Illumination unevenness measuring method and measuring apparatus
KR102632169B1 (en) Apparatus and method for inspecting glass substrate
JP2018040761A (en) Device for inspecting appearance of inspection target object
KR101198406B1 (en) Pattern inspection device
KR20080088946A (en) Apparatus for inspection of three-dimensional shape and method for inspection by the same
KR101442666B1 (en) Vision inspection apparatus comprising light part of plural line
KR101351004B1 (en) Carrying apparatus having camera array detecting defects
KR101132792B1 (en) Method of inspecting substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210712

R150 Certificate of patent or registration of utility model

Ref document number: 6913615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150