TWI539137B - Measuring device and measuring method - Google Patents

Measuring device and measuring method Download PDF

Info

Publication number
TWI539137B
TWI539137B TW103116601A TW103116601A TWI539137B TW I539137 B TWI539137 B TW I539137B TW 103116601 A TW103116601 A TW 103116601A TW 103116601 A TW103116601 A TW 103116601A TW I539137 B TWI539137 B TW I539137B
Authority
TW
Taiwan
Prior art keywords
tested
signal
subtraction
parameter
curvature
Prior art date
Application number
TW103116601A
Other languages
Chinese (zh)
Other versions
TW201543000A (en
Inventor
rui-hua Hong
Silvano Donati
Tiziana Tambosso
Original Assignee
Nat Univ Chung Hsing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Chung Hsing filed Critical Nat Univ Chung Hsing
Priority to TW103116601A priority Critical patent/TWI539137B/en
Publication of TW201543000A publication Critical patent/TW201543000A/en
Application granted granted Critical
Publication of TWI539137B publication Critical patent/TWI539137B/en

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

量測裝置及量測方法 Measuring device and measuring method

本發明是有關於一種裝置及方法,特別是指一種量測裝置及量測方法。 The present invention relates to an apparatus and method, and more particularly to a measuring apparatus and a measuring method.

在半導體製程中,讓原有的晶片上長出新結晶以製成新半導體層晶片的磊晶技術,是一項很重要的技術,而晶片之所以會形成凹或凸的形貌,主要原因是在磊晶製程中,後來磊晶的半導體層與原本晶片薄膜的晶格常數不同或熱膨脹係數之不同,使整體的磊晶結構產生形變,而過大的形變將造成磊晶結構薄膜破裂。在磊晶技術中,若可即時量測磊晶結構的曲率變化,可以根據曲率變化決定通入氣體之流量及施加之溫度,減少整體磊晶結構產生形變,因此,量測磊晶結構的曲率變化愈顯重要。 In the semiconductor process, it is an important technology to make new crystals on the original wafer to make the epitaxial technology of the new semiconductor layer wafer. The main reason is that the wafer will form a concave or convex shape. In the epitaxial process, the epitaxial semiconductor layer and the original wafer film have different lattice constants or different thermal expansion coefficients, which cause the overall epitaxial structure to be deformed, and excessive deformation causes the epitaxial film to rupture. In the epitaxial technology, if the curvature change of the epitaxial structure can be measured instantaneously, the flow rate of the gas to be applied and the temperature applied can be determined according to the curvature change, thereby reducing the deformation of the overall epitaxial structure, and therefore, measuring the curvature of the epitaxial structure Change is more and more important.

然而目前市面上,用來量測曲率變化的機台成本較高,因而無法普及使用。 However, on the market today, the machine used to measure the change of curvature has a high cost and thus cannot be widely used.

因此,本發明之第一目的,即在提供一種低成本,又可量測出待測物體曲率變化的量測裝置。 Accordingly, a first object of the present invention is to provide a measuring device which is low in cost and which can measure the change in curvature of an object to be measured.

於是,本發明量測裝置包含: 一光學單元,發射連續的雷射光束至一待測物體的表面形成一路徑並產生複數反射光;一位置偵測器,用以接收該等反射光且包括沿著一第一方向間隔設置的一第一電極及一第二電極,使每一反射光分別在該第一電極、該第二電極形成一第一電流、一第二電流,且該第一電流及該第二電流的大小分別與該反射光入射至該位置偵測器的一入射點至該第一電極、該第二電極的距離成反比;及一運算單元,電連接該位置偵測器以接收每一第一、第二電流,且將該第一、第二電流進行相減來產生一減法信號,並將該第一、第二電流進行相加來產生一加法信號,該運算單元根據該等減法信號與該等加法信號進行運算,來得到該待測物體的表面由該雷射光束形成之路徑的曲率,其中該曲率與該減法信號成正比,且與該加法信號成反比。 Thus, the measuring device of the present invention comprises: An optical unit that emits a continuous laser beam to a surface of an object to be measured to form a path and generates a plurality of reflected lights; a position detector for receiving the reflected light and including an interval along a first direction a first electrode and a second electrode, wherein each of the reflected light forms a first current and a second current at the first electrode and the second electrode, respectively, and the first current and the second current respectively And the distance from the incident point of the reflected light to the position detector to the first electrode and the second electrode is inversely proportional; and an operation unit electrically connecting the position detector to receive each of the first and the first Two currents, and subtracting the first and second currents to generate a subtraction signal, and adding the first and second currents to generate an addition signal, the operation unit according to the subtraction signals and the The addition signal is operated to obtain a curvature of a path formed by the laser beam on the surface of the object to be tested, wherein the curvature is proportional to the subtraction signal and inversely proportional to the addition signal.

本發明之第二目的,即在提供一種低成本,又可量測出待測物體曲率變化的量測方法。 A second object of the present invention is to provide a measurement method which is low in cost and which can measure the curvature change of an object to be measured.

本發明量測方法包含:(A)利用一光學單元發射連續的雷射光束至一待測物體的表面形成一路徑並產生複數反射光;(B)利用一位置偵測器接收該等反射光,使每一反射光分別在沿著一第一方向間隔設置的一第一電極、一第二電極形成一第一電流、一第二電流,且該第一電流及該第二電流的大小分別與該反射光入射至該位置偵測器的 一入射點至該第一電極、該第二電極的距離成反比;及(C)利用一運算單元接收每一第一、第二電流,且將該第一、第二電流進行相減來產生一減法信號,並將該第一、第二電流進行相加來產生一加法信號,且利用該運算單元根據該等減法信號與該等加法信號進行運算,來得到該待測物體的表面由該雷射光束形成之路徑的曲率,其中該曲率與該減法信號成正比,且與該加法信號成反比。 The measuring method of the present invention comprises: (A) using an optical unit to emit a continuous laser beam to a surface of an object to be measured to form a path and generating a plurality of reflected lights; (B) receiving the reflected light by using a position detector. Forming a first current and a second current in a first electrode and a second electrode respectively disposed along a first direction, and respectively, the magnitudes of the first current and the second current are respectively And the reflected light is incident on the position detector An incident point is inversely proportional to a distance between the first electrode and the second electrode; and (C) receiving, by an arithmetic unit, each of the first and second currents, and subtracting the first and second currents to generate a subtraction signal, and adding the first and second currents to generate an addition signal, and calculating, by the operation unit, the subtraction signal and the addition signal to obtain a surface of the object to be tested The curvature of the path formed by the laser beam, wherein the curvature is proportional to the subtraction signal and inversely proportional to the addition signal.

1‧‧‧光學單元 1‧‧‧ Optical unit

11‧‧‧雷射二極體電路 11‧‧‧Laser diode circuit

12‧‧‧調整驅動電路 12‧‧‧Adjusting the drive circuit

121‧‧‧第一放大器 121‧‧‧First amplifier

122‧‧‧電晶體 122‧‧‧Optoelectronics

21‧‧‧平台 21‧‧‧ platform

211‧‧‧載盤 211‧‧‧Package

22‧‧‧馬達 22‧‧‧Motor

3‧‧‧位置偵測器 3‧‧‧Location detector

31‧‧‧基板層 31‧‧‧ substrate layer

32‧‧‧本質層 32‧‧‧Essential layer

33‧‧‧電阻層 33‧‧‧resistance layer

34‧‧‧第一電極 34‧‧‧First electrode

35‧‧‧第二電極 35‧‧‧second electrode

36‧‧‧入射點 36‧‧‧ incident point

4‧‧‧運算單元 4‧‧‧ arithmetic unit

41‧‧‧轉換器 41‧‧‧ converter

411‧‧‧第二放大器 411‧‧‧second amplifier

412‧‧‧第三放大器 412‧‧‧3rd amplifier

413‧‧‧輸出端 413‧‧‧output

414‧‧‧輸出端 414‧‧‧output

42‧‧‧加法器 42‧‧‧Adder

421‧‧‧第四放大器 421‧‧‧4th amplifier

43‧‧‧減法器 43‧‧‧Subtractor

431‧‧‧第五放大器 431‧‧‧5th amplifier

44‧‧‧處理器 44‧‧‧ processor

5‧‧‧顯示器 5‧‧‧ display

6‧‧‧待測物體 6‧‧‧ objects to be tested

LD‧‧‧雷射二極體 LD‧‧‧Laser diode

D‧‧‧二極體 D‧‧‧ diode

R‧‧‧可變電阻 R‧‧‧Variable resistor

R1‧‧‧第一電阻 R 1 ‧‧‧first resistance

R2‧‧‧第二電阻 R 2 ‧‧‧second resistance

R3‧‧‧第三電阻 R 3 ‧‧‧third resistor

R4‧‧‧第四電阻 R 4 ‧‧‧fourth resistor

R5‧‧‧第五電阻 R 5 ‧‧‧ fifth resistor

R6‧‧‧第六電阻 R 6 ‧‧‧6th resistor

R7‧‧‧第七電阻 R 7 ‧‧‧ seventh resistor

R8‧‧‧第八電阻 R 8 ‧‧‧8th resistor

R9‧‧‧第九電阻 R 9 ‧‧‧ninth resistor

R10‧‧‧第十電阻 R 10 ‧‧‧10th resistor

R11‧‧‧第十一電阻 R 11 ‧‧‧Eleventh resistor

R12‧‧‧第十二電阻 R 12 ‧‧‧12th resistor

C1‧‧‧第一電容 C 1 ‧‧‧first capacitor

C2‧‧‧第二電容 C 2 ‧‧‧second capacitor

IX1‧‧‧第一電流 I X1 ‧‧‧First current

IX2‧‧‧第二電流 I X2 ‧‧‧second current

V1‧‧‧第一電壓 V 1 ‧‧‧First voltage

V2‧‧‧第二電壓 V 2 ‧‧‧second voltage

Vneg‧‧‧負電源 V neg ‧‧‧Negative power supply

Sum‧‧‧加法信號 Sum‧‧ Addition signal

Diff‧‧‧減法信號 Diff‧‧‧ subtraction signal

A01‧‧‧承載步驟 A01‧‧‧ Carrying steps

A02‧‧‧移動步驟 A02‧‧‧ move steps

A03‧‧‧驅動調整步驟 A03‧‧‧Drive adjustment steps

A‧‧‧發射步驟 A‧‧‧ launching steps

B‧‧‧偵測步驟 B‧‧‧Detection steps

C‧‧‧運算步驟 C‧‧‧Operation steps

C1‧‧‧轉換步驟 C1‧‧‧ conversion steps

C2‧‧‧相加步驟 C2‧‧‧Addition steps

C3‧‧‧相減步驟 C3‧‧‧ subtraction steps

C4‧‧‧處理步驟 C4‧‧‧Processing steps

C5‧‧‧判斷步驟 C5‧‧‧ judgment steps

C6‧‧‧沉積運算步驟 C6‧‧‧Deposition calculation steps

D‧‧‧顯示步驟 D‧‧‧Display steps

本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是一方塊圖,說明本發明量測裝置的一較佳實施例;圖2是一電路圖,說明該較佳實施例的一光學單元;圖3是一示意圖,說明該較佳實施例的一平台;圖4是一結構圖,說明該較佳實施例的一位置偵測器;圖5是一電路圖,說明該較佳實施例的一轉換器;圖6是一電路圖,說明該較佳實施例的一加法器及一減法器;圖7是一流程圖,說明該較佳實施例執行本發明量測方法的步驟;圖8是一量測圖,說明該較佳實施例的一加法信號;圖9是一量測圖,說明該較佳實施例的一減法信號;圖10是一量測圖,說明該較佳實施例的一除法信號; 圖11是一示意圖,說明該較佳實施例判斷一待測物體的表面為凹形;圖12是一示意圖,說明該較佳實施例判斷一待測物體的表面為凸形;及圖13是一模擬圖,說明該較佳實施例用以判斷厚度的該加法訊號。 Other features and advantages of the present invention will be apparent from the embodiments of the present invention. FIG. 1 is a block diagram illustrating a preferred embodiment of the measuring device of the present invention; FIG. 2 is a circuit diagram. An optical unit of the preferred embodiment; FIG. 3 is a schematic diagram showing a platform of the preferred embodiment; FIG. 4 is a structural diagram illustrating a position detector of the preferred embodiment; FIG. A circuit diagram illustrating a converter of the preferred embodiment; FIG. 6 is a circuit diagram illustrating an adder and a subtractor of the preferred embodiment; FIG. 7 is a flow chart illustrating the execution of the preferred embodiment The steps of the method for measuring the invention; FIG. 8 is a measurement diagram illustrating an addition signal of the preferred embodiment; FIG. 9 is a measurement diagram illustrating a subtraction signal of the preferred embodiment; FIG. 10 is an amount Mapping to illustrate a divide signal of the preferred embodiment; Figure 11 is a schematic view showing the preferred embodiment for determining that the surface of an object to be tested is concave; Figure 12 is a schematic view showing that the preferred embodiment determines that the surface of the object to be tested is convex; and Figure 13 is A simulation diagram illustrating the addition signal used to determine the thickness of the preferred embodiment.

參閱圖1,本發明量測裝置之較佳實施例,發射連續的雷射光束至一待測物體6產生複數反射光,將該等反射光處理以得到該待測物體6的曲率值及表面形貌。在本例中,該量測裝置可與一磊晶製程的設備結合,則可在磊晶製程中,即時量測磊晶結構的曲率變化及磊晶層的厚度,且該量測裝置包含一光學單元1、一平台21、一馬達22、一位置偵測器(Position Sensing Detector,PSD)3、一運算單元4,及一顯示器5。 Referring to FIG. 1, a preferred embodiment of the measuring device of the present invention emits a continuous laser beam to an object 6 to be measured to generate a plurality of reflected lights, and the reflected light is processed to obtain a curvature value and a surface of the object 6 to be tested. Morphology. In this example, the measuring device can be combined with an epitaxial processing device to instantly measure the curvature change of the epitaxial structure and the thickness of the epitaxial layer in the epitaxial process, and the measuring device comprises a The optical unit 1, a platform 21, a motor 22, a Position Sensing Detector (PSD) 3, an arithmetic unit 4, and a display 5.

該光學單元1包括一雷射二極體電路11,及一電連接該雷射二極體電路11的調整驅動電路12,該調整驅動電路12可驅動該雷射二極體電路11發射該等雷射光束並控制其功率強度、聚焦點遠近。 The optical unit 1 includes a laser diode circuit 11 and an adjustment driving circuit 12 electrically connected to the laser diode circuit 11. The adjustment driving circuit 12 can drive the laser diode circuit 11 to emit the same. The laser beam controls its power intensity and focus point.

參閱圖2,該雷射二極體電路11具有一雷射二極體LD,及一二極體D。該雷射二極體LD具有一接地的陽極,及一陰極。該二極體D用以保護該雷射二極體LD避免接收逆電流而燒毀,且具有一電連接該雷射二極體LD陰極的陽極,及一電連接該雷射二極體LD陽極的陰極。 Referring to FIG. 2, the laser diode circuit 11 has a laser diode LD and a diode D. The laser diode LD has a grounded anode and a cathode. The diode D is used to protect the laser diode LD from receiving a reverse current and is burned, and has an anode electrically connected to the cathode of the laser diode LD, and an anode electrically connected to the laser diode Cathode.

該調整驅動電路12具有一第一電阻R1、一第二電阻R2、一可變電阻R、一第一放大器121、一電晶體122,及一第三電阻R3。該第一電阻R1具有一接地的第一端,及一第二端。該第二電阻R2具有一第一端,及一電連接一負電源Vneg的第二端。該可變電阻R具有一電連接該第一電阻R1的第二端的第一端、一第二端,及一電連接該第二電阻R2的第一端的第三端。該第一放大器121具有一電連接該可變電阻R的第二端的非反相輸入端、一反相輸入端,及一輸出端。該電晶體122為一NPN型的雙載子接面電晶體,具有一電連接該第一放大器121的反相輸入端的射極、一電連接該第一放大器121的輸出端的基極,及一電連接該雷射二極體LD的陰極的集極。該第三電阻R3具有一電連接該電晶體122的射極的第一端,及一電連接該負電源Vneg的第二端。 The adjustment driving circuit 12 has a first resistor R 1 , a second resistor R 2 , a variable resistor R, a first amplifier 121, a transistor 122, and a third resistor R 3 . The first resistor R 1 has a grounded first end and a second end. The second resistor R 2 has a first end and a second end electrically connected to a negative power source V neg . The variable resistor R having a resistance R is connected electrically to the first and second ends of the first 1, a second terminal and a third terminal electrically connected to the second resistor R 2 to the first end. The first amplifier 121 has a non-inverting input terminal electrically connected to the second end of the variable resistor R, an inverting input terminal, and an output terminal. The transistor 122 is an NPN-type bipolar junction transistor having an emitter electrically connected to the inverting input end of the first amplifier 121, a base electrically connected to the output end of the first amplifier 121, and a base The collector of the cathode of the laser diode LD is electrically connected. The third resistor R 3 has a first end electrically connected to the emitter of the transistor 122 and a second end electrically connected to the negative power source V neg .

參閱圖3,在本例中,該等待測物體6為沉積的晶片,該平台21包括六分別用以盛放該等待測物體6的載盤211,該馬達22驅動該平台21朝著順時鐘方向公轉,並使該等載盤211分別朝著逆時鐘方向自轉。 Referring to FIG. 3, in this example, the waiting object 6 is a deposited wafer, and the platform 21 includes six carriers 211 for holding the waiting object 6, respectively, and the motor 22 drives the platform 21 toward the clock. The directions are revolved, and the carriers 211 are rotated in the counterclockwise direction, respectively.

參閱圖4,該位置偵測器3的結構可視為一PIN二極體(P-intrinsic-N Diode),且包括一材質為N型高阻值矽基板的基板層31、一位於該基板層31上且材質為高電阻半導體的本質層32、一位於該本質層32上且材質為P型半導體的電阻層33,及二位於該電阻層33上且沿著一第一方向X間隔設置並分別鄰近該電阻層33的兩相反邊上的第一 電極34、第二電極35,該第一、第二電極34、35的材質為金屬。該位置偵測器3用以接收該等反射光,每一反射光會入射至該電阻層33且在一入射點36位置形成電子電洞對,分別由該第一電極34及該第二電極35收集並分別形成一第一電流IX1,及一第二電流IX2。需注意的是,該入射點36的位置在該第一、第二電極34、35之間。其中,該第一、第二電流IX1、IX2的數值大小分別與該入射點36至第一、第二電極34、35的距離成反比。因此,根據該第一、第二電流IX1、IX2的數值大小,可判斷該入射點36在該電阻層33的位置。此外,在該入射點36位置形成的電子電洞對的多寡,與入射至該電阻層33的反射光大小成正比,而該反射光的大小又可由該雷射光所控制。 Referring to FIG. 4, the structure of the position detector 3 can be regarded as a PIN diode (P-intrinsic-N Diode), and includes a substrate layer 31 made of an N-type high resistance 矽 substrate, and a substrate layer. An intrinsic layer 32 of a high-resistance semiconductor, a resistive layer 33 on the intrinsic layer 32 and a material of a P-type semiconductor, and two on the resistive layer 33 and spaced apart along a first direction X and The first electrode 34 and the second electrode 35 are respectively adjacent to opposite sides of the resistive layer 33, and the first and second electrodes 34 and 35 are made of metal. The position detector 3 is configured to receive the reflected light, and each of the reflected light is incident on the resistive layer 33 and forms an electron hole pair at an incident point 36, respectively, by the first electrode 34 and the second electrode. 35 collects and separately forms a first current I X1 and a second current I X2 . It should be noted that the position of the incident point 36 is between the first and second electrodes 34, 35. The magnitudes of the first and second currents I X1 and I X2 are inversely proportional to the distance from the incident point 36 to the first and second electrodes 34 and 35, respectively. Therefore, based on the magnitudes of the first and second currents I X1 and I X2 , the position of the incident point 36 at the resistive layer 33 can be determined. In addition, the number of pairs of electron holes formed at the position of the incident point 36 is proportional to the amount of reflected light incident on the resistive layer 33, and the size of the reflected light can be controlled by the laser light.

參閱圖1與圖5,該運算單元4包括一轉換器41、一加法器42、一減法器43,及一處理器44。該轉換器41具有一第二放大器411、一第三放大器412、一第四電阻R4,及一第五電阻R5。該第二放大器411具有一接地的非反相輸入端、一電連接該第二電極35並接收該第二電流IX2的反相輸入端,及一輸出端413。該第三放大器412具有一接地的非反相輸入端、一電連接該第一電極34並接收該第一電流IX1的反相輸入端,及一輸出端414。該第四電阻R4具有一電連接該第二放大器411的反向輸入端的第一端,及一電連接該第二放大器411的輸出端413的第二端。該第五電阻R5具有一電連接該第三放大器412的反向輸入端的第一端,及一電連接該第三放大器412的輸出端414的 第二端。 Referring to FIGS. 1 and 5, the arithmetic unit 4 includes a converter 41, an adder 42, a subtractor 43, and a processor 44. The converter 41 has a second amplifier 411, a third amplifier 412, a fourth resistor R 4 , and a fifth resistor R 5 . The second amplifier 411 has a grounded non-inverting input terminal, an inverting input terminal electrically connected to the second electrode 35 and receiving the second current I X2 , and an output terminal 413 . The third amplifier 412 has a grounded non-inverting input, an inverting input electrically connected to the first electrode 34 and receiving the first current I X1 , and an output 414 . The fourth resistor R 4 has a first end electrically connected to the inverting input terminal of the second amplifier 411, and a second end electrically connected to the output end 413 of the second amplifier 411. The fifth resistor R 5 has an electrical output of the third amplifier 412 to the first end, and electrically connected to a third inverting input terminal of the amplifier 412 is connected to the second ends 414.

參閱圖5與圖6,該加法器42具有一第四放大器421、一第六電阻R6、一第七電阻R7、一第八電阻R8,及一第一電容C1。該第四放大器421具有一接地的非反相輸入端、一反相輸入端,及一輸出一加法信號Sum的輸出端。該第六電阻R6具有一電連接該第二放大器411的輸出端413的第一端,及一電連接該第四放大器421的反相輸入端的第二端。該第七電阻R7具有一電連接該第三放大器412的輸出端414的第一端,及一電連接該第四放大器421的反相輸入端的第二端。該第八電阻R8具有一電連接該第四放大器421的反相輸入端的第一端,及一電連接該第四放大器421的輸出端的第二端。該第一電容C1具有一電連接該第八電阻R8的第一端的第一端,及一電連接該第八電阻R8的第二端的第二端。 Referring to FIGS. 5 and 6, the adder 42 has a fourth amplifier 421, a sixth resistor R 6, a seventh resistor R 7, an eighth resistor R 8, and a first capacitor C 1. The fourth amplifier 421 has a grounded non-inverting input terminal, an inverting input terminal, and an output terminal for outputting an addition signal Sum. The sixth resistor R 6 has a first end electrically connected to the output end 413 of the second amplifier 411, and a second end electrically connected to the inverting input end of the fourth amplifier 421. The seventh resistor R 7 having an electrical output of the third amplifier 412 is connected to the end of the first end 414 and a second end electrically connected to the inverting input of the fourth amplifier 421. The eighth resistor R 8 has a first end electrically connected to the inverting input end of the fourth amplifier 421, and a second end electrically connected to the output end of the fourth amplifier 421. The first capacitor C 1 having a first end electrically connected to a first terminal of the eighth resistor R 8, and an eighth resistor R electrically connected to the second end of the second end 8.

該減法器43具有一第五放大器431、一第九電阻R9、一第十電阻R10、一第十一電阻R11、一第十二電阻R12,及一第二電容C2。該第五放大器431具有一非反相輸入端、一反相輸入端,及一輸出一減法信號Diff的輸出端。該第九電阻R9具有一接地的第一端,及一電連接該第五放大器431的非反相輸入端的第二端。該第十電阻R10具有一電連接該第二放大器411的輸出端413的第一端,及一電連接該第九電阻R9的第二端的第二端。該第十一電阻R11具有一電連接該第三放大器412的輸出端414的第一端,及一電連接該第五放大器431的反向輸入端的第二端。該 第十二電阻R12具有一電連接該第十一電阻R11的第二端的第一端,及一電連接該第五放大器431的輸出端的第二端。該第二電容C2具有一電連接該第十二電阻R12的第一端的第一端,及一電連接該第十二電阻R12的第二端的第二端。 The subtractor 43 has a fifth amplifier 431, a ninth resistor R 9, a tenth resistor R 10, a eleventh resistor R 11, a twelfth resistor R 12, and a second capacitor C 2. The fifth amplifier 431 has a non-inverting input terminal, an inverting input terminal, and an output terminal for outputting a subtraction signal Diff. The ninth resistor R 9 has a grounded first end and a second end electrically connected to the non-inverting input of the fifth amplifier 431. The tenth resistor R 10 has a second amplifier electrically connected to the output terminal 411 of the first end, and an electrical connector 413 of the ninth second ends of the resistor R 9. The eleventh resistor R 11 having an electrical output of the third amplifier 412 is connected to the end of the first end 414 and a second end electrically connected to the inverting input terminal of the fifth amplifier 431. The twelfth resistor R 12 has a first end electrically connected to the second end of the eleventh resistor R 11, and a second terminal electrically connected to the fifth output terminal of the amplifier 431. The second capacitor C 2 having a first end electrically connected to a first end of the twelfth resistor R 12, and a second end electrically connected to the second end 12 of the twelfth resistor R.

參閱圖1、圖3與圖7,該量測裝置執行一種量測方法,用以量測該等待測物體6的表面形貌的曲率值、變化趨勢及厚度,該量測方法包含以下步驟: Referring to FIG. 1, FIG. 3 and FIG. 7, the measuring device performs a measuring method for measuring the curvature value, the change trend and the thickness of the surface topography of the waiting object 6, and the measuring method comprises the following steps:

步驟A01:利用該平台21來承載該等待測物體6,即將需量測的該等待測物體6放置在該平台21上。在本例中,將需量測的該等晶片分別放置在該平台21的載盤211上。 Step A01: The platform 21 is used to carry the waiting object 6 , and the waiting object 6 to be measured is placed on the platform 21 . In this example, the wafers to be measured are placed on the carrier 211 of the platform 21, respectively.

步驟A02:利用該馬達22驅動該平台21移動,使該等待測物體6在該平台21上被該馬達22驅動而移動,則該雷射二極體電路11發射連續的雷射光束至該等待測物體6可產生整體表面的複數反射光。在本例中,該馬達22驅動該平台21公轉及該等載盤211分別自轉,則可取得該等晶片在沉積的過程中的該等反射光。 Step A02: The motor 22 is used to drive the platform 21 to move, so that the waiting object 6 is driven by the motor 22 to move on the platform 21, and the laser diode circuit 11 emits a continuous laser beam to the waiting. The object 6 can produce a plurality of reflected light of the entire surface. In this example, the motor 22 drives the platform 21 to revolve and the carriers 211 rotate, respectively, to obtain the reflected light of the wafers during deposition.

步驟A03:利用該調整驅動電路12驅動該雷射二極體電路11發射該雷射光束,並調整該雷射光束的功率強度、聚焦點遠近。在本例中,調整該可變電阻R進而控制流經該雷射二極體LD的電流,如圖2所示,則可控制該雷射二極體LD發射雷射光束的功率強度、聚焦點遠近。 Step A03: The laser diode circuit 11 is driven by the adjustment driving circuit 12 to emit the laser beam, and the power intensity and the focus point of the laser beam are adjusted. In this example, the variable resistor R is adjusted to control the current flowing through the laser diode LD. As shown in FIG. 2, the power intensity and focus of the laser beam emitted by the laser diode LD can be controlled. Far and near.

步驟A:利用該光學單元1的雷射二極體電路11發射連續的雷射光束至該等待測物體6的表面分別形成 一路徑並產生複數的反射光。 Step A: using the laser diode circuit 11 of the optical unit 1 to emit a continuous laser beam to form a surface of the waiting object 6 A path produces a complex reflected light.

步驟B:利用該位置偵測器3接收該等反射光,使每一反射光分別在該第一電極34、該第二電極35形成相關於該入射點36位置資訊的該第一電流IX1、該第二電流IX2,如圖4所示。 Step B: receiving the reflected light by the position detector 3, so that each reflected light forms the first current I X1 related to the position information of the incident point 36 at the first electrode 34 and the second electrode 35, respectively. The second current I X2 is as shown in FIG. 4 .

步驟B的詳細作法為:該位置偵測器3設置鄰近該雷射二極體電路11,則當量測的該待測物體6的表面為水平時,產生的反射光入射至該位置偵測器3的入射點36位於該第一、第二電極34、35之間的中點,則在該第一、第二電極34、35分別收集到的該第一、第二電流IX1、IX2相同;若量測的該待測物體6的表面呈現凹形或凸形時,該入射點36會較靠近其中一電極,且較鄰近該入射點36的電極收集到的電流較大。例如該入射點36較靠近該第二電極35,則該第一、第二電極34、35分別感應到的第一、第二電流IX1、IX2如下所示:IX1=(LX/2-XA)*I0/LX............(1) The detailed operation of step B is: the position detector 3 is disposed adjacent to the laser diode circuit 11, and when the surface of the object 6 to be measured is equivalent, the generated reflected light is incident on the position detection. The incident point 36 of the device 3 is located at a midpoint between the first and second electrodes 34, 35, and the first and second currents I X1 , I respectively collected at the first and second electrodes 34, 35 X2 is the same; if the surface of the object 6 to be measured is concave or convex, the incident point 36 is closer to one of the electrodes, and the current collected by the electrode adjacent to the incident point 36 is larger. For example, the incident point 36 is closer to the second electrode 35, and the first and second currents I X1 and I X2 respectively sensed by the first and second electrodes 34 and 35 are as follows: I X1 = (L X / 2-X A )*I 0 /L X ............(1)

IX2=(LX/2+XA)*I0/LX...........(2) I X2 = (L X /2+X A )*I 0 /L X ...........(2)

其中,參數Lx為該第一、第二電極34、35之間的距離,參數XA為該第一、第二電極34、35之間的中點與該入射點36的距離,I0為該入射點36位於該第一、第二電極34、35之間的中點時,該第一、第二電極34、35分別收集到相同的電流。 Wherein, the parameter Lx is the distance between the first and second electrodes 34, 35, and the parameter X A is the distance between the midpoint between the first and second electrodes 34, 35 and the incident point 36, and I 0 is When the incident point 36 is located at a midpoint between the first and second electrodes 34, 35, the first and second electrodes 34, 35 respectively collect the same current.

將公式(2)與公式(1)相減的結果,除上公式(2)與公式(1)相加的結果得到: (IX2-IX1)/(IX1+IX2)=2XA/LX...........(3) The result of subtracting the formula (2) from the formula (1) is obtained by adding the formula (2) and the formula (1): (I X2 -I X1 ) / (I X1 +I X2 )=2X A /L X ...........(3)

從該公式(3)可得到參數XA的值,因此就可得到相關該入射點36位置的資訊。 The value of the parameter X A can be obtained from the formula (3), so that information on the position of the incident point 36 can be obtained.

步驟C:利用該運算單元4接收每一第一、第二電流IX1、IX2,且將該第一、第二電流IX1、IX2進行相減來產生該減法信號Diff,並將該第一、第二電流IX1、IX2進行相加來產生該加法信號Sum,且利用該運算單元4根據該等減法信號Diff與該等加法信號Sum進行運算,來得到量測的該待測物體6的表面由該雷射光束形成之路徑的曲率,其中該曲率與該減法信號Diff成正比,且與該加法信號Sum成反比,且步驟C更包括以下子步驟: Step C: receiving, by the operation unit 4, each of the first and second currents I X1 and I X2 , and subtracting the first and second currents I X1 and I X2 to generate the subtraction signal Diff, and The first and second currents I X1 and I X2 are added to generate the addition signal Sum, and the operation unit 4 performs an operation according to the subtraction signal Diff and the addition signal Sum to obtain the measured measurement. The surface of the object 6 is curvature of the path formed by the laser beam, wherein the curvature is proportional to the subtraction signal Diff and inversely proportional to the addition signal Sum, and the step C further comprises the following substeps:

子步驟C1:利用該轉換器41接收該第一、第二電流IX1、IX2並進行電流至電壓轉換來分別產生一第一電壓V1,及一第二電壓V2。在本例中,從該第二放大器411的反向輸入端接收該第二電流IX2,從該第二放大器411的輸出端413輸出該第二電壓V2,從該第三放大器412的反向輸入端接收該第一電流IX1,從該第三放大器412的輸出端414輸出該第一電壓V1,如圖5所示。 Sub-step C1: The first and second currents I X1 and I X2 are received by the converter 41 and current-to-voltage conversion is performed to generate a first voltage V 1 and a second voltage V 2 , respectively . In this example, the second current I X2 is received from the inverting input of the second amplifier 411, and the second voltage V 2 is output from the output 413 of the second amplifier 411 from the inverse of the third amplifier 412. The first current I X1 is received from the input terminal, and the first voltage V 1 is output from the output terminal 414 of the third amplifier 412, as shown in FIG.

子步驟C2:利用該加法器42接收該第一、第二電壓V1、V2並進行訊號相加而輸出該加法信號Sum。在本例中,該第一、第二電壓V1、V2分別經過該第六、第七電阻R6、R7輸入至該第四放大器421的反相輸入端,從該第四放大器421的輸出端輸出該加法信號Sum,如圖6所示,且該加法信號Sum隨時間的變化如圖8所示。 Sub-step C2: The first and second voltages V 1 and V 2 are received by the adder 42 and signal addition is performed to output the addition signal Sum. In this example, the first and second voltages V 1 and V 2 are input to the inverting input terminals of the fourth amplifier 421 through the sixth and seventh resistors R 6 and R 7 , respectively, from the fourth amplifier 421 . The output terminal outputs the addition signal Sum as shown in FIG. 6, and the change of the addition signal Sum with time is as shown in FIG.

子步驟C3:利用該減法器43接收該第一、第二電壓V1、V2並進行訊號相減而輸出該減法信號Diff。在本例中,該第一、第二電壓V1、V2分別經過該第十一、第十電阻R11、R10輸入至該第五放大器431的反相、非反相輸入端,從該第五放大器431的輸出端輸出該減法信號Diff,如圖6所示,且該減法信號Diff隨時間的變化如圖9所示。 Sub-step C3: receiving the first and second voltages V 1 and V 2 by the subtractor 43 and performing signal subtraction to output the subtraction signal Diff. In this example, the first and second voltages V 1 and V 2 are input to the inverting and non-inverting input terminals of the fifth amplifier 431 through the eleventh and tenth resistors R 11 and R 10 , respectively. The output of the fifth amplifier 431 outputs the subtraction signal Diff, as shown in FIG. 6, and the variation of the subtraction signal Diff with time is as shown in FIG.

子步驟C4:利用該處理器44接收該等加法信號Sum及該等減法信號Diff,並將該等減法信號Diff與其對應的加法信號Sum代入一曲率公式處理而得到量測的該待測物體6的表面之曲率,該曲率公式如下所示:C=W(Diff/Sum)/HD...........(4) Sub-step C4: The processor 44 receives the addition signal Sum and the subtraction signal Diff, and substitutes the subtraction signal Diff and its corresponding addition signal Sum into a curvature formula to obtain the measured object 6 to be measured. The curvature of the surface, the curvature formula is as follows: C=W(Diff/Sum)/HD...........(4)

其中,參數C為量測的該待測物體6的曲率,參數W為該位置偵測器3平行該第一方向X的邊長之二分之一,參數H為該位置偵測器3至量測的該待測物體6的高度,參數D為該雷射光束在量測的該待測物體6的表面形成之路徑的長度。 The parameter C is the measured curvature of the object 6 to be measured, and the parameter W is one-half of the side length of the position detector 3 parallel to the first direction X, and the parameter H is the position detector 3 to The height of the object 6 to be measured is measured, and the parameter D is the length of the path formed by the laser beam on the surface of the object 6 to be measured.

在本例中,利用該處理器44將每一減法信號Diff與其對應的加法信號Sum相除得到一除法信號,該等除法信號隨時間的變化如圖10所示,利用該處理器44將圖10內的最大值減去最小值後除以二,取得該等除法信號的一中間值帶入公式(4)處理,即可得到量測的該待測物體6的表面之曲率。 In this example, the processor 44 divides each subtraction signal Diff by its corresponding addition signal Sum to obtain a division signal. The division signal changes with time as shown in FIG. The maximum value in 10 is subtracted from the minimum value and divided by two, and an intermediate value of the division signals is taken into the equation (4) to obtain the measured curvature of the surface of the object 6 to be measured.

子步驟C5:利用該處理器44根據該等減法信號Diff隨時間的變化來判斷量測的該待測物體6的表面由 該雷射光束形成之路徑的形貌。 Sub-step C5: using the processor 44 to determine, according to the change of the subtraction signal Diff over time, the surface of the object 6 to be measured is measured by The shape of the path formed by the laser beam.

子步驟C5的詳細作法:參閱圖11,當量測的該待測物體6的表面為凹形時,該反射光入射至該位置偵測器3的入射點36的變化,會先鄰近該第二電極35、至該第一、二電極34、35的中點,再鄰近該第一電極34,在本例中,設定該減法信號Diff為該第一電流IX1減該第二電流IX2,則該減法信號Diff的趨勢為先從負值遞增經過零到正值。 Detailed operation of sub-step C5: Referring to FIG. 11, when the surface of the object 6 to be measured is concave, the change of the incident light 36 incident on the position detector 3 will be adjacent to the first a second electrode 35, to a midpoint of the first and second electrodes 34, 35, and then adjacent to the first electrode 34. In this example, the subtraction signal Diff is set to be the first current I X1 minus the second current I X2 Then, the trend of the subtraction signal Diff is first from a negative value to a positive value.

參閱圖12,當量測的該待測物體6的表面為凸形時,該反射光入射至該位置偵測器3的入射點36的變化,會先鄰近該第一電極34、至該第一、二電極34、35的中點,再鄰近該第二電極35,在本例中,設定該減法信號Diff為該第一電流IX1減該第二電流IX2,則該減法信號Diff的趨勢為先從正值遞減經過零到負值。 Referring to FIG. 12, when the surface of the object 6 to be measured is convex, the change of the incident light incident on the position detector 3 will be adjacent to the first electrode 34 to the first The midpoint of the first and second electrodes 34, 35 is adjacent to the second electrode 35. In this example, the subtraction signal Diff is set to the first current I X1 minus the second current I X2 , and the subtraction signal Diff is The trend is first to decrement from positive to zero.

若量測的該待測物體6的表面為水平時,該反射光入射點36的位置會一直在該第一、二電極34、35的中點,則該減法信號Diff一直為零。因此,從該減法信號Diff的變化,就可用以判斷該待測物體6的表面由該雷射光束形成之路徑的形貌。需注意的是,該減法信號Diff的趨勢會隨著該運算單元4設定由該第二電流IX2相減該第一電流IX1或是該第一電流IX1相減該第二電流IX2而改變,且亦會與該平台21乘載該待測物體6移動的方向相關。此外,該除法信號正比於該減法信號Diff,則從該除法信號隨時間變化的趨勢也可以判斷該待測物體6的表面形貌。 If the measured surface of the object 6 to be measured is horizontal, the position of the reflected light incident point 36 will always be at the midpoint of the first and second electrodes 34, 35, and the subtraction signal Diff is always zero. Therefore, the change from the subtraction signal Diff can be used to determine the topography of the path formed by the laser beam on the surface of the object 6 to be measured. It is noted that the trend of the subtraction signal Diff will vary with the computing unit 4 is set by the second current I X2 subtracting the first current of the first current I X1 I X1 or subtracting the second current I X2 The change is also related to the direction in which the platform 21 is loaded by the object 6 to be measured. Further, the division signal is proportional to the subtraction signal Diff, and the surface topography of the object 6 to be measured can also be judged from the tendency of the division signal to change with time.

子步驟C6:參閱圖1,可再利用該處理器44得知該等晶片在磊晶製成時的厚度,以判斷該等晶片在沉積時是否均勻,利用該處理器44對該等減法信號值為零時所對應的加法信號Sum進行取樣以得到多個加法取樣點,並將該等加法取樣點轉換成複數個隨時間的變化的弦波,則開始沉積至結束的晶片的厚度為: Sub-step C6: Referring to FIG. 1, the processor 44 can be used to know the thickness of the wafers during epitaxial fabrication to determine whether the wafers are uniform during deposition, and the processor 44 uses the subtraction signals. When the value is zero, the corresponding addition signal Sum is sampled to obtain a plurality of additive sampling points, and the additive sampling points are converted into a plurality of sine waves which change with time, and the thickness of the wafer which starts to be deposited to the end is:

其中,參數d為量測的該晶片的厚度,參數λ為該雷射光束的波長,參數n為形成量測的該晶片的材料的折射係數,m為複數個隨時間變化的弦波數目。 Wherein, the parameter d is the measured thickness of the wafer, the parameter λ is the wavelength of the laser beam, the parameter n is the refractive index of the material of the wafer forming the measurement, and m is the number of sine waves varying with time.

子步驟C6的詳細作法:當該等晶片在沉積的過程中,該多個加法取樣點隨時間的變化在本例中會呈現4.5個弦波,如圖13所示,該處理器44將弦波個數及該雷射光束的波長代入公式(5)處理,即可得到該等晶片分別在沉積時的厚度。 Sub-step C6 is detailed: when the wafers are deposited, the variation of the plurality of additive sampling points over time will exhibit 4.5 chords in this example. As shown in FIG. 13, the processor 44 will chord. The number of waves and the wavelength of the laser beam are substituted into equation (5) to obtain the thickness of the wafers when they are deposited.

步驟D:利用該顯示器5接收並顯示從該運算單元4得到的資訊,例如顯示該等待測物體6表面的曲率、該處理器44從該減法信號Diff或該除法信號分別判斷出該等待測物體6表面的形狀,及該等待測物體6的沉積厚度。 Step D: receiving and displaying information obtained from the operation unit 4 by using the display 5, for example, displaying the curvature of the surface of the object to be measured 6, and the processor 44 respectively determining the waiting object from the subtraction signal Diff or the division signal 6 The shape of the surface, and the thickness of the deposited object 6 to be deposited.

此外,該加法器42、該減法器43、該處理器44,及該顯示器5亦可以軟體方式來實現的電腦程式,輸入至一具備電腦處理能力的硬體裝置(如一處理器),即可執行該加法器42、該減法器43、該處理器44,及該顯示器5需執行的動作。 In addition, the adder 42, the subtractor 43, the processor 44, and the computer program that can be implemented by the display 5 in a software manner can be input to a hardware device (such as a processor) having computer processing capability. The adder 42, the subtractor 43, the processor 44, and the actions to be performed by the display 5 are executed.

綜上所述,上述該較佳實施例利用該位置偵測器3及該運算單元4施行量測方法,可從該待測物體6的反射光得知表面形貌的曲率值及趨勢,若該待測物體6為沉積的晶片,在沉積的過程施行量測方法,可得知該待測物體6的沉積厚度,則可降低成本而可普及使用,故確實能達成本發明之目的。 In summary, the preferred embodiment uses the position detector 3 and the computing unit 4 to perform a measurement method, and the curvature value and trend of the surface topography can be obtained from the reflected light of the object 6 to be measured. The object to be tested 6 is a deposited wafer, and a measurement method is performed during the deposition process, and the deposition thickness of the object to be tested 6 can be known, and the cost can be reduced and the data can be widely used, so that the object of the present invention can be achieved.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。 The above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the simple equivalent changes and modifications made by the patent application scope and patent specification content of the present invention, All remain within the scope of the invention patent.

1‧‧‧光學單元 1‧‧‧ Optical unit

11‧‧‧雷射二極體電路 11‧‧‧Laser diode circuit

12‧‧‧調整驅動電路 12‧‧‧Adjusting the drive circuit

21‧‧‧平台 21‧‧‧ platform

22‧‧‧馬達 22‧‧‧Motor

3‧‧‧位置偵測器 3‧‧‧Location detector

4‧‧‧運算單元 4‧‧‧ arithmetic unit

41‧‧‧轉換器 41‧‧‧ converter

42‧‧‧加法器 42‧‧‧Adder

43‧‧‧減法器 43‧‧‧Subtractor

44‧‧‧處理器 44‧‧‧ processor

5‧‧‧顯示器 5‧‧‧ display

6‧‧‧待測物體 6‧‧‧ objects to be tested

Claims (16)

一種量測裝置,包含:一光學單元,發射連續的雷射光束至一待測物體的表面形成一路徑並產生複數反射光;一位置偵測器,用以接收該等反射光且包括沿著一第一方向間隔設置的一第一電極及一第二電極,使每一反射光分別在該第一電極、該第二電極形成一第一電流、一第二電流,且該第一電流及該第二電流的大小分別與該反射光入射至該位置偵測器的一入射點至該第一電極、該第二電極的距離成反比;及一運算單元,電連接該位置偵測器以接收每一第一、第二電流,且將該第一、第二電流進行相減來產生一減法信號,並將該第一、第二電流進行相加來產生一加法信號,該運算單元根據該等減法信號與該等加法信號進行運算,來得到該待測物體的表面由該雷射光束形成之路徑的曲率,其中該曲率與該減法信號成正比,且與該加法信號成反比。 A measuring device comprising: an optical unit that emits a continuous laser beam to a surface of an object to be measured to form a path and generates a plurality of reflected lights; and a position detector for receiving the reflected light and including along a first electrode and a second electrode are disposed in a first direction, so that each of the reflected light respectively forms a first current and a second current at the first electrode and the second electrode, and the first current and The magnitude of the second current is inversely proportional to the distance from the incident point of the reflected light to the first electrode and the second electrode; and an arithmetic unit electrically connected to the position detector Receiving each of the first and second currents, and subtracting the first and second currents to generate a subtraction signal, and adding the first and second currents to generate an addition signal, the operation unit is configured according to The subtraction signals are operated with the addition signals to obtain a curvature of a path formed by the laser beam on the surface of the object to be tested, wherein the curvature is proportional to the subtraction signal and inversely proportional to the addition signal. 如請求項1所述的量測裝置,其中,該運算單元包括:一轉換器,接收該第一、第二電流並進行電流至電壓轉換來分別產生一第一電壓,及一第二電壓;一加法器,接收該第一、第二電壓並進行訊號相加而輸出該加法信號;一減法器,接收該第一、第二電壓並進行訊號相減而輸出該減法信號;及 一處理器,接收該等加法信號及該等減法信號,並將該等減法信號與其對應的加法信號代入一曲率公式處理而得到該待測物體的表面之曲率,該曲率公式如下所示:C=W(Diff/Sum)/HD其中,參數C為該待測物體的曲率,參數W為該位置偵測器平行該第一方向的邊長之二分之一,參數Diff為該減法信號,參數Sum為該加法信號,參數H為該位置偵測器至該待測物體的高度,參數D為該雷射光束在該待測物體的表面形成之路徑的長度。 The measuring device of claim 1, wherein the computing unit comprises: a converter, receiving the first and second currents and performing current to voltage conversion to respectively generate a first voltage and a second voltage; An adder receiving the first and second voltages and performing signal addition to output the addition signal; a subtractor receiving the first and second voltages and performing signal subtraction to output the subtraction signal; and a processor receives the addition signals and the subtraction signals, and substitutes the subtraction signals and their corresponding addition signals into a curvature formula to obtain a curvature of a surface of the object to be tested. The curvature formula is as follows: C =W(Diff/Sum)/HD, where the parameter C is the curvature of the object to be tested, and the parameter W is one-half of the side length of the position detector parallel to the first direction, and the parameter Diff is the subtraction signal. The parameter Sum is the addition signal, the parameter H is the height of the position detector to the object to be tested, and the parameter D is the length of the path formed by the laser beam on the surface of the object to be tested. 如請求項1所述的量測裝置,還包含:一平台,承載該待測物體;及一馬達,驅動該平台移動,使該待測物體在該平台上可讓該光學單元產生該待測物體整體表面的反射光。 The measuring device according to claim 1, further comprising: a platform carrying the object to be tested; and a motor driving the platform to move, so that the object to be tested is on the platform, and the optical unit generates the to-be-tested The reflected light from the entire surface of the object. 如請求項3所述的量測裝置,其中,該平台包括複數分別用以盛放該等待測物體的載盤,該馬達驅動該平台公轉及該等載盤分別自轉。 The measuring device of claim 3, wherein the platform comprises a plurality of carriers for holding the object to be measured, the motor driving the platform to revolve and the carriers respectively rotating. 如請求項2所述的量測裝置,其中,該處理器將每一減法信號與其對應的加法信號相除得到一除法信號,再將該等除法信號取一中間值代入該曲率公式,以得到該待測物體的曲率。 The measuring device of claim 2, wherein the processor divides each subtraction signal by a corresponding addition signal to obtain a division signal, and then substitutes the division signal for an intermediate value into the curvature formula to obtain The curvature of the object to be tested. 如請求項2所述的量測裝置,其中,該處理器根據該等減法信號隨時間的變化來判斷該待測物體的表面由該 雷射光束形成之路徑的形貌。 The measuring device of claim 2, wherein the processor determines that the surface of the object to be tested is determined by the change of the subtraction signal over time The shape of the path formed by the laser beam. 如請求項6所述的量測裝置,其中,當該待測物體的表面為凹形,該入射點的位置變化為:先靠近該第一、第二電極的其中之一、至該第一、二電極的中點、再靠近另一該第一、第二電極,則該減法信號隨時間的變化為從負值到正值或是從正值到負值,相關於該入射點的移動方向;當該待測物體的表面為水平時,該入射點的位置會一直在該第一、二電極的中點,則該減法信號隨時間的變化一直維持零;當該待測物體的表面為凸形,該減法信號隨時間的變化相反於該待測物體的表面為凹形時。 The measuring device of claim 6, wherein when the surface of the object to be tested is concave, the position of the incident point changes to: first approach one of the first and second electrodes, to the first And the midpoint of the two electrodes, and then closer to the other of the first and second electrodes, the change of the subtraction signal with time is from a negative value to a positive value or a positive value to a negative value, and the movement related to the incident point Direction; when the surface of the object to be tested is horizontal, the position of the incident point will always be at the midpoint of the first and second electrodes, then the subtraction signal maintains zero with time; when the surface of the object to be tested In the convex shape, the change of the subtraction signal with time is opposite to when the surface of the object to be tested is concave. 如請求項2所述的量測裝置,其中,該待測物體為一薄膜沉積的晶片,該處理器對該等減法信號值為零時所對應的加法信號進行取樣以得到多個加法取樣點,並將該等加法取樣點轉換成複數個隨時間變化的弦波,則開始沉積至結束的晶片的厚度為: 其中,參數d為該晶片的厚度,參數λ為該雷射光束的波長,參數n為形成該晶片的材料的折射係數,m為複數個隨時間變化的弦波數目。 The measuring device of claim 2, wherein the object to be tested is a thin film deposited wafer, and the processor samples the addition signal corresponding to the subtraction signal value to zero to obtain a plurality of additive sampling points. And converting the additive sampling points into a plurality of time-varying sine waves, the thickness of the wafer starting to be deposited to the end is: Wherein, the parameter d is the thickness of the wafer, the parameter λ is the wavelength of the laser beam, the parameter n is the refractive index of the material forming the wafer, and m is the number of sine waves varying with time. 一種量測方法,包含:(A)利用一光學單元發射連續的雷射光束至一待測物體的表面形成一路徑並產生複數反射光;(B)利用一位置偵測器接收該等反射光,使每一反射 光分別在沿著一第一方向間隔設置的一第一電極、一第二電極形成一第一電流、一第二電流,且該第一電流及該第二電流的大小分別與該反射光入射至該位置偵測器的一入射點至該第一電極、該第二電極的距離成反比;及(C)利用一運算單元接收每一第一、第二電流,且將該第一、第二電流進行相減來產生一減法信號,並將該第一、第二電流進行相加來產生一加法信號,且利用該運算單元根據該等減法信號與該等加法信號進行運算,來得到該待測物體的表面由該雷射光束形成之路徑的曲率,其中該曲率與該減法信號成正比,且與該加法信號成反比。 A measuring method comprising: (A) using an optical unit to emit a continuous laser beam to a surface of an object to be measured to form a path and generating a plurality of reflected lights; (B) receiving the reflected light by using a position detector. To make each reflection The light respectively forms a first current and a second current in a first electrode and a second electrode spaced apart along a first direction, and the magnitudes of the first current and the second current are respectively incident on the reflected light And (C) receiving each of the first and second currents by using an arithmetic unit, and the first and second The two currents are subtracted to generate a subtraction signal, and the first and second currents are added to generate an addition signal, and the operation unit performs an operation on the subtraction signal according to the subtraction signals to obtain the The surface of the object to be tested is curvature of the path formed by the laser beam, wherein the curvature is proportional to the subtraction signal and inversely proportional to the addition signal. 如請求項9所述的量測方法,其中,該步驟(C)包括:(C1)利用該運算單元接收該第一、第二電流並進行電流至電壓轉換來分別產生一第一電壓,及一第二電壓;(C2)利用該運算單元接收該第一、第二電壓並進行訊號相加而輸出該加法信號;(C3)利用該運算單元接收該第一、第二電壓並進行訊號相減而輸出該減法信號;及(C4)利用該運算單元接收該等加法信號及該等減法信號,並將該等減法信號與其對應的加法信號代入一曲率公式處理而得到該待測物體的表面之曲率,該曲率公式如下所示: C=W(Diff/Sum)/HD其中,參數C為該待測物體的曲率,參數W為該位置偵測器平行該第一方向的邊長之二分之一,參數Diff為該減法信號,參數Sum為該加法信號,參數H為該位置偵測器至該待測物體的高度,參數D為該雷射光束在該待測物體的表面形成之路徑的長度。 The measuring method of claim 9, wherein the step (C) comprises: (C1) receiving, by the operating unit, the first and second currents and performing current-to-voltage conversion to generate a first voltage, and a second voltage; (C2) receiving, by the arithmetic unit, the first and second voltages and performing signal addition to output the addition signal; (C3) receiving, by the operation unit, the first and second voltages and performing signal phase Subtracting and outputting the subtraction signal; and (C4) receiving, by the operation unit, the addition signal and the subtraction signal, and substituting the subtraction signal and its corresponding addition signal into a curvature formula to obtain a surface of the object to be tested The curvature, the curvature formula is as follows: C=W(Diff/Sum)/HD, where the parameter C is the curvature of the object to be tested, and the parameter W is one-half of the side length of the position detector parallel to the first direction, and the parameter Diff is the subtraction signal. The parameter Sum is the addition signal, the parameter H is the height of the position detector to the object to be tested, and the parameter D is the length of the path formed by the laser beam on the surface of the object to be tested. 如請求項9所述的量測方法,其中,該步驟(A)之前還包含:(A01)利用一平台來承載該待測物體;及(A02)利用一馬達驅動該平台移動,使該待測物體在該平台上可讓該光學單元產生該待測物體整體表面的反射光。 The measuring method according to claim 9, wherein the step (A) further comprises: (A01) using a platform to carry the object to be tested; and (A02) driving the platform to move by using a motor to make the waiting The measuring object on the platform allows the optical unit to generate reflected light of the entire surface of the object to be tested. 如請求項11所述的量測方法,其中,在該步驟(A02)中,該平台包括複數分別用以盛放該等待測物體的載盤,該馬達驅動該平台公轉及該等載盤分別自轉。 The measuring method of claim 11, wherein in the step (A02), the platform comprises a plurality of carriers for holding the object to be measured, the motor driving the platform to revolve and the carriers respectively rotation. 如請求項10所述的量測方法,其中,在該步驟(C4)中,該運算單元將每一減法信號與其對應的加法信號相除得到一除法信號,再將該等除法信號取一中間值代入該曲率公式,以得到該待測物體的曲率。 The measuring method according to claim 10, wherein in the step (C4), the arithmetic unit divides each subtraction signal by a corresponding addition signal to obtain a division signal, and then takes the division signal into a middle The value is substituted into the curvature formula to obtain the curvature of the object to be tested. 如請求項10所述的量測方法,其中,該步驟(C)還包括:(C5)利用該運算單元根據該等減法信號隨時間的變化來判斷該待測物體的表面由該雷射光束形成之路徑的形貌。 The measuring method of claim 10, wherein the step (C) further comprises: (C5) determining, by the operating unit, the surface of the object to be tested from the laser beam according to the change of the subtraction signal over time The shape of the path formed. 如請求項14所述的量測方法,其中,在該步驟(C5)中, 當該待測物體的表面為凹形,該入射點的位置變化為:先靠近該第一、第二電極的其中之一、至該第一、二電極的中點、再靠近另一該第一、第二電極,則該減法信號隨時間的變化為從負值到正值或是從正值到負值,相關於該入射點的移動方向;當該待測物體的表面為水平時,該入射點的位置會一直在該第一、二電極的中點,則該減法信號隨時間的變化一直維持零;當該待測物體的表面為凸形,該減法信號隨時間的變化相反於該待測物體的表面為凹形時。 The measuring method according to claim 14, wherein in the step (C5), When the surface of the object to be tested is concave, the position of the incident point changes: first one of the first and second electrodes, to the midpoint of the first and second electrodes, and then to the other 1. The second electrode, the change of the subtraction signal with time is from a negative value to a positive value or a positive value to a negative value, which is related to the moving direction of the incident point; when the surface of the object to be tested is horizontal, The position of the incident point will always be at the midpoint of the first and second electrodes, and the subtraction signal maintains zero with time; when the surface of the object to be tested is convex, the subtraction signal changes with time is opposite to When the surface of the object to be tested is concave. 如請求項10所述的量測方法,其中,該步驟(C)還包括:(C6)當該待測物體為一薄膜沉積的晶片,利用該運算單元對該等減法信號值為零時所對應的加法信號進行取樣以得到多個加法取樣點,並將該等加法取樣點轉換成複數個隨時間變化的弦波,則開始沉積至結束的晶片的厚度為: 其中,參數d為該晶片的厚度,參數λ為該雷射光束的波長,參數n為形成該晶片的材料的折射係數,m為複數個隨時間變化的弦波數目。 The measuring method of claim 10, wherein the step (C) further comprises: (C6) when the object to be tested is a thin film deposited wafer, and the arithmetic unit uses the subtraction signal value to be zero. The corresponding addition signal is sampled to obtain a plurality of additive sampling points, and the additive sampling points are converted into a plurality of time-varying sine waves, and the thickness of the wafer starting to be deposited to the end is: Wherein, the parameter d is the thickness of the wafer, the parameter λ is the wavelength of the laser beam, the parameter n is the refractive index of the material forming the wafer, and m is the number of sine waves varying with time.
TW103116601A 2014-05-09 2014-05-09 Measuring device and measuring method TWI539137B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103116601A TWI539137B (en) 2014-05-09 2014-05-09 Measuring device and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103116601A TWI539137B (en) 2014-05-09 2014-05-09 Measuring device and measuring method

Publications (2)

Publication Number Publication Date
TW201543000A TW201543000A (en) 2015-11-16
TWI539137B true TWI539137B (en) 2016-06-21

Family

ID=55220894

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103116601A TWI539137B (en) 2014-05-09 2014-05-09 Measuring device and measuring method

Country Status (1)

Country Link
TW (1) TWI539137B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI610062B (en) * 2016-10-27 2018-01-01 財團法人工業技術研究院 Flatness measurement device

Also Published As

Publication number Publication date
TW201543000A (en) 2015-11-16

Similar Documents

Publication Publication Date Title
TWI468677B (en) Three-dimensional hot spot localization
Cui et al. Linearity indices and linearity improvement of 2-D tetralateral position-sensitive detector
JP5804362B2 (en) Inspection apparatus and inspection method
JP6604629B2 (en) Inspection apparatus and inspection method
TW201505357A (en) Method for inspecting defects of solar cells and system thereof
JP2001201448A (en) Method and apparatus for measuring microroughness of surface of substrate
CN102692524B (en) A kind of nano thermoelectric seebeck coefficient in-situ quantitative characterization device based on atomic force microscope
JP2010169527A (en) Method and apparatus for measuring frequency characteristic of internal impedance of fuel cell
CN104641224A (en) Method for analysing the crystal structure of a polycrystalline semiconductor
KR20160071453A (en) Method and apparatus for non-contact measurement of sheet resistance and shunt resistance of p-n junctions
JPWO2013008850A1 (en) Exothermic point detection method and exothermic point detector
TWI539137B (en) Measuring device and measuring method
Kumar et al. Innovative and precise MPP estimation using P–V curve geometry for photovoltaics
US6917209B2 (en) Non- contacting capacitive diagnostic device
Van der Heide et al. Error diagnosis and optimisation of c-Si solar cell processing using contact resistances determined with the Corescanner
JP6489421B2 (en) Light intensity setting method, inspection method, and inspection apparatus
CN111521857B (en) Multi-conductor current measuring system based on TMR tunnel magnetic resistance
CN210198964U (en) Confocal Raman-photocurrent testing system
US9482519B2 (en) Measuring semiconductor device features using stepwise optical metrology
JPS62195504A (en) Surface position detecting device
JP6032404B2 (en) X-ray crystal analysis method
JP2013131679A (en) Solar cell panel inspection method
JPWO2011024750A1 (en) Solar cell evaluation method and evaluation apparatus
US20140195175A1 (en) Measuring dielectric breakdown in a dynamic mode
JP4130901B2 (en) Standard wafer for semiconductor inspection, semiconductor inspection method and semiconductor inspection apparatus

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees