JP6032404B2 - X-ray crystal analysis method - Google Patents

X-ray crystal analysis method Download PDF

Info

Publication number
JP6032404B2
JP6032404B2 JP2012195465A JP2012195465A JP6032404B2 JP 6032404 B2 JP6032404 B2 JP 6032404B2 JP 2012195465 A JP2012195465 A JP 2012195465A JP 2012195465 A JP2012195465 A JP 2012195465A JP 6032404 B2 JP6032404 B2 JP 6032404B2
Authority
JP
Japan
Prior art keywords
ray
sample
crystal
distribution
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012195465A
Other languages
Japanese (ja)
Other versions
JP2014052223A (en
Inventor
修一 土井
修一 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2012195465A priority Critical patent/JP6032404B2/en
Publication of JP2014052223A publication Critical patent/JP2014052223A/en
Application granted granted Critical
Publication of JP6032404B2 publication Critical patent/JP6032404B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、X線結晶分析方法に関する。   The present invention relates to an X-ray crystal analysis method.

現在の先端デバイスにおいては、シリコンや窒化ガリウムなどに代表される無機物半導体だけでなく、機能高分子・有機金属錯体などの有機物も使用されている。   In current advanced devices, not only inorganic semiconductors such as silicon and gallium nitride, but also organic substances such as functional polymers and organometallic complexes are used.

一般に、前者は単結晶に近い材料であり、薄膜として形成した場合でもエピタキシャルに近い状態で結晶が成長でき、非常に結晶性が良い。一方、後者は、結晶性が低い。このような材料を用いたデバイス開発では、材料の結晶性や結晶配向性だけでなく、結晶の量及び結晶の深さ方向の分布がデバイスの電気特性や応力特性に大きな影響を与える。材料の結晶を評価する代表的な手法はX線回折法である。   In general, the former is a material close to a single crystal, and even when formed as a thin film, the crystal can be grown in an epitaxial state, and the crystallinity is very good. On the other hand, the latter has low crystallinity. In device development using such materials, not only the crystallinity and crystal orientation of the material, but also the amount of crystals and the distribution in the depth direction of the crystals have a great influence on the electrical characteristics and stress characteristics of the device. A typical method for evaluating a crystal of a material is an X-ray diffraction method.

X線回折法を用いる結晶分析法において、試料の表面近傍及び試料の表面から深さ方向の構造を評価する手法として、微小角入射X線回折法がある。微小角入射X線回折法は、X線を試料に対して浅い角度で入射し、試料に対するX線の侵入深さを小さく抑えることにより薄膜からの回折X線を敏感に測定する手法である。   In the crystal analysis method using the X-ray diffraction method, there is a small angle incident X-ray diffraction method as a method for evaluating the structure near the surface of the sample and in the depth direction from the surface of the sample. The small-angle incident X-ray diffraction method is a method for sensitively measuring diffracted X-rays from a thin film by making X-rays incident on a sample at a shallow angle and suppressing the penetration depth of the X-rays into the sample.

X線の入射角が試料の全反射臨界角よりも小さい場合、X線の侵入深さは数nmのオーダーである。全反射臨界角を超えてX線の入射角を大きくすることにより、X線の侵入深さを100nm〜数μmの深さに変化させることができる。従来は、この現象を利用し、全反射臨界角度近傍にX線の入射角を制御することにより、X線の侵入深さに対応した試料領域からのX線回折を取得し、薄膜及び表面近傍の結晶に関する情報を得ていた。   When the X-ray incident angle is smaller than the total reflection critical angle of the sample, the X-ray penetration depth is on the order of several nm. By increasing the incident angle of X-rays beyond the total reflection critical angle, the penetration depth of X-rays can be changed from 100 nm to several μm. Conventionally, by utilizing this phenomenon and controlling the X-ray incident angle near the total reflection critical angle, X-ray diffraction from the sample region corresponding to the penetration depth of the X-ray is obtained, and the thin film and the surface vicinity. I got information about the crystals.

Zeit fur Kristallography Vol.213 (1998) pp. 319-336Zeit fur Kristallography Vol.213 (1998) pp. 319-336

反射臨界角度近傍にX線の入射角を制御する上記の方法では、X線の侵入深さに対応した領域の結晶の有無を検出することができる。しかし、全反射臨界角近傍では角度を少し高くしてもX線の侵入深さが2桁程度急激に変化するため、深さ方向の結晶分布を高い精度で決めることが困難であった。 In the above method of controlling the incident angle of X-rays near the total reflection critical angle, it is possible to detect the presence or absence of crystals in a region corresponding to the penetration depth of X-rays. However, even if the angle is slightly increased near the total reflection critical angle, the X-ray penetration depth changes abruptly by about two orders of magnitude, making it difficult to determine the crystal distribution in the depth direction with high accuracy.

本発明の目的は、結晶及び構造秩序を持つ試料の表面から深さ方向の結晶の分布を従来よりも高い精度で測定するためのX線結晶分析方法を提供することにある。   An object of the present invention is to provide an X-ray crystal analysis method for measuring the crystal distribution in the depth direction from the surface of a sample having a crystal and a structural order with higher accuracy than before.

本実施形態の1つの観点によれば、結晶及び構造秩序を持つ試料の表面の設定箇所に対し、全反射臨界角を基準にした設定範囲の入射角でX線を入射し、前記試料からの所望の回折角度で回折する回折X線の強度を測定し、前記入射角に対する前記回折X線の強度の変化を示す測定X線回折強度プロファイルを取得し、前記試料の前記設定箇所において前記入射角の前記設定範囲で全面反射した前記X線の反射強度を測定し、前記入射角とX線反射強度の関係を示すX線反射強度プロファイルを取得し、前記X線反射強度プロファイルを解析することにより前記試料中の深さ方向の密度分布を決定し、前記試料中の前記X線に対する屈折率を求め、前記試料中に形成される前記X線による電場強度と前記入射角の関係を示す電場強度分布を計算し、前記試料中の結晶量の深さ分布を仮定し、前記結晶量の深さ分布を重み因子として前記電場強度分布に乗算して求められた乗算結果を前記試料の深さに対して厚みの積分を実行することにより、前記設定範囲の前記入射角とX線回折強度の関係を計算して計算X線回折強度プロファイルを取得し、前期計算X線回折強度プロファイルが前記測定X線回折強度プロファイルに一致するように、前記結晶量の深さ分布を変化させてパラメータフィッティングを実施し、前期計算X線回折強度プロファイルが前記測定X線回折強度プロファイルに一致させる前記結晶の深さ分布を前記試料の深さ方向の最終結晶量分布として決定する処理を含むX線結晶分析方法が提供される。
発明の目的および利点は、請求の範囲に具体的に記載された構成要素および組み合わせによって実現され達成される。前述の一般的な説明および以下の詳細な説明は、典型例および説明のためのものであって、本発明を限定するためのものではない、と理解されるものである。
According to one aspect of the present embodiment, X-rays are incident on a set point on the surface of a sample having a crystal and a structural order at an incident angle in a set range with reference to the total reflection critical angle, and from the sample. The intensity of the diffracted X-ray diffracted at a desired diffraction angle is measured, a measured X-ray diffraction intensity profile indicating a change in the intensity of the diffracted X-ray with respect to the incident angle is obtained, and the incident angle at the set location of the sample By measuring the reflection intensity of the X-rays that are totally reflected in the set range, obtaining an X-ray reflection intensity profile indicating the relationship between the incident angle and the X-ray reflection intensity, and analyzing the X-ray reflection intensity profile The density distribution in the depth direction in the sample is determined, the refractive index for the X-ray in the sample is obtained, and the electric field strength showing the relationship between the electric field intensity due to the X-ray formed in the sample and the incident angle Total distribution Assuming a depth distribution of the amount of crystals in the sample, the multiplication result obtained by multiplying the electric field intensity distribution by using the depth distribution of the amount of crystals as a weighting factor is a thickness with respect to the depth of the sample. To obtain a calculated X-ray diffraction intensity profile by calculating the relationship between the incident angle and the X-ray diffraction intensity of the set range, and the previously calculated X-ray diffraction intensity profile is the measured X-ray diffraction intensity. The depth distribution of the crystal amount is changed so as to match the profile, parameter fitting is performed, and the depth distribution of the crystal that the X-ray diffraction intensity profile calculated earlier matches the measured X-ray diffraction intensity profile is changed. An X-ray crystal analysis method is provided that includes a process for determining a final crystal content distribution in the depth direction of a sample.
The objects and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention.

本実施形態によれば、X線照射による得られるデータを用いることにより、有機物の表面から深さ方向の結晶の分布を決定することができる。また、互いに異なる結晶配向を持つ結晶の深さ分布を決定することができる。   According to the present embodiment, the distribution of crystals in the depth direction from the surface of the organic substance can be determined by using data obtained by X-ray irradiation. It is also possible to determine the depth distribution of crystals having different crystal orientations.

図1は、実施形態に係るX線結晶分析方法を実施する試験装置の一例を示す斜視図である。FIG. 1 is a perspective view showing an example of a test apparatus for performing the X-ray crystal analysis method according to the embodiment. 図2は、実施形態に係るX線結晶分析方法による分析対象となる試料の層構造の一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of a layer structure of a sample to be analyzed by the X-ray crystal analysis method according to the embodiment. 図3は、実施形態に係るX線結晶分析方法の一例を示すフローチャートである。FIG. 3 is a flowchart showing an example of the X-ray crystal analysis method according to the embodiment. 図4は、実施形態に係るX線結晶分析方法において試料の設定箇所について測定したX線回折強度プロファイルの一例を示す図である。FIG. 4 is a diagram illustrating an example of an X-ray diffraction intensity profile measured for a set position of a sample in the X-ray crystal analysis method according to the embodiment. 図5は、実施形態に係るX線結晶分析方法において試料の設定箇所についてのX線反射強度のX線入射角の依存性を例示する特性図である。FIG. 5 is a characteristic diagram illustrating the dependency of the X-ray reflection intensity on the X-ray incident angle of the set portion of the sample in the X-ray crystal analysis method according to the embodiment. 図6は、実施形態に係るX線結晶分析方法における試料の設定箇所における深さ方向の試料密度分布を例示する図である。FIG. 6 is a diagram illustrating a sample density distribution in the depth direction at a sample setting position in the X-ray crystal analysis method according to the embodiment. 図7(a)、(b)、(c)は、実施形態に係るX線結晶分析方法における試料の設定した箇所におけるX線入射角と電場強度の関係を例示する電界強度分布図である。FIGS. 7A, 7 </ b> B, and 7 </ b> C are electric field intensity distribution diagrams illustrating the relationship between the X-ray incident angle and the electric field intensity at a set position of the sample in the X-ray crystal analysis method according to the embodiment. 図8は、実施形態に係るX線結晶分析方法における試料の設定した箇所における深さ方向で仮定した結晶量分布の一例を示す図である。FIG. 8 is a diagram illustrating an example of a crystal amount distribution assumed in the depth direction at a set position of a sample in the X-ray crystal analysis method according to the embodiment. 図9は、実施形態に係るX線結晶分析方法における試料の設定した箇所におけるX線回折強度と入射角の関係を計算により求めたX線回折強度プロファイルである。FIG. 9 is an X-ray diffraction intensity profile obtained by calculation of the relationship between the X-ray diffraction intensity and the incident angle at a set position of the sample in the X-ray crystal analysis method according to the embodiment. 図10は、図8に示したX線回折強度プロファイルを図3に示したX線回折強度プロファイルにフィッティングさせた例を示すX線回折強度プロファイルである。FIG. 10 is an X-ray diffraction intensity profile showing an example of fitting the X-ray diffraction intensity profile shown in FIG. 8 to the X-ray diffraction intensity profile shown in FIG. 図11は、実施形態に係るX線結晶分析方法において試料の選択箇所における結晶量分布の試験結果の一例を示す図である。FIG. 11 is a diagram illustrating an example of a test result of a crystal amount distribution at a selected portion of a sample in the X-ray crystal analysis method according to the embodiment.

以下に、図面を参照して実施形態を説明する。図面において、同様の構成要素には同じ参照番号が付されている。図1は、実施形態に係るX線結晶分析方法を実施する試験装置の一例を示す斜視図である。   Embodiments will be described below with reference to the drawings. In the drawings, similar components are given the same reference numerals. FIG. 1 is a perspective view showing an example of a test apparatus for performing the X-ray crystal analysis method according to the embodiment.

図1において、X線源1は、その前方に置かれた試料10の表面にX線をビーム状に出射し、その表面に対する出射角θを調整できる構造を有している。試料10に対してX線源1と反対側には、CCDアレイのようなX線検出素子アレイを含むX線検出器3が試料10から反射されたX線を受光する向きに配置されている。また、X線光源1の出射角θとX線検出器3の検出値に基づいて、試料10内の結晶分布を求める演算部4がX線源1とX線検出器3に接続されている。なお、図1において、X線検出器3に示す一点鎖線の横線は試料10上面の延長上にある面内の位置を示し、それより上の領域はその面外の領域を示している。   In FIG. 1, an X-ray source 1 has a structure in which X-rays are emitted in the form of a beam onto the surface of a sample 10 placed in front of the X-ray source 1 and the emission angle θ relative to the surface can be adjusted. On the side opposite to the X-ray source 1 with respect to the sample 10, an X-ray detector 3 including an X-ray detection element array such as a CCD array is arranged in a direction to receive X-rays reflected from the sample 10. . A calculation unit 4 for obtaining a crystal distribution in the sample 10 based on the emission angle θ of the X-ray light source 1 and the detection value of the X-ray detector 3 is connected to the X-ray source 1 and the X-ray detector 3. . In FIG. 1, the horizontal line of the alternate long and short dash line shown in the X-ray detector 3 indicates the position in the plane on the extension of the upper surface of the sample 10, and the area above it indicates the area outside the plane.

試料10の中に複数の微結晶が存在する場合には、試料10に照射されたX線の一部は回折X線となって試料10の外に放出される。試料10におけるX線の入射角θが、試料10の表面における全反射臨界角に近い場合、試料10からは回折X線の他に、試料10表面で鏡面反射する成分Xが存在する。鏡面反射は、図1に示したX線検出器3の一転鎖線に示す位置に照射される。また、X線の照射角θを0°から大きくしてゆくほど試料10内でのX線の入射深さが深くなる。 When there are a plurality of microcrystals in the sample 10, a part of the X-rays irradiated to the sample 10 is emitted to the outside of the sample 10 as diffracted X-rays. Angle of incidence of X-rays in the sample 10 theta is the case close to the total reflection critical angle at the surface of the sample 10, from the sample 10 in addition to the diffracted X-rays, there is component X 0 specularly reflected by the sample 10 surface. The specular reflection is applied to a position indicated by a chain line of the X-ray detector 3 shown in FIG. Further, as the X-ray irradiation angle θ is increased from 0 °, the X-ray incident depth in the sample 10 becomes deeper.

試料10として、図2に例示されるような構造、即ち、ガラス基板11上に酸化インジウム・スズ(ITO)透明導電層12、酸化モリブデン(MoO)層13、有機物層14が順に形成された積層構造を使用する。この積層構造は、例えば有機薄膜太陽電池に利用される。有機物層14として、結晶及び構造秩序を持つ層、例えば、ポリカルバゾール共役系高分子であるPCDTBT、或いは、フラーレン誘導体であるPCBMが形成される。 As a sample 10, a structure as illustrated in FIG. 2, that is, an indium tin oxide (ITO) transparent conductive layer 12, a molybdenum oxide (MoO 3 ) layer 13, and an organic material layer 14 are formed in this order on a glass substrate 11. Use a laminated structure. This laminated structure is used for an organic thin film solar cell, for example. As the organic material layer 14, a layer having crystal and structural order, for example, PCDTBT that is a polycarbazole conjugated polymer or PCBM that is a fullerene derivative is formed.

次に、X線結晶分析方法を図3に示すフローチャートに従って説明する。そのフローは、図1に示す演算部4により実行されてもよい。例えば、図3に示すフローを実行するためのプログラムをコンピュータの記憶部に格納し、CPU等により実行してもよい。   Next, the X-ray crystal analysis method will be described according to the flowchart shown in FIG. The flow may be executed by the calculation unit 4 shown in FIG. For example, a program for executing the flow shown in FIG. 3 may be stored in a storage unit of a computer and executed by a CPU or the like.

上記の構造を有する試料10の設定箇所に、波長0.14nmのX線ビームを全反射臨界角θc付近の入射角θで照射する(図3のS1、S2)。そして、図1のX線検出器3の破線の半円で示す回折角度17°に出現する試料10内の結晶からの回折X線の強度と出射角θの関係を測定し、図4に示すX線回折強度プロファイルを取得する(図3のS3)。図4では、入射角θは、全反射臨界角θcを基準としてその近傍の範囲、例えば約0.04°〜0.30°の範囲が設定される。この場合の全反射臨界角θcは、0.16°である。なお、試料10上でのX線の試料10表面に対する入射角の大きさは、X線源1からの出射角の大きさと同じ角度とする。   An X-ray beam having a wavelength of 0.14 nm is irradiated at an incident angle θ in the vicinity of the total reflection critical angle θc (S1 and S2 in FIG. 3) on a set portion of the sample 10 having the above structure. Then, the relationship between the intensity of the diffracted X-rays from the crystal in the sample 10 appearing at a diffraction angle of 17 ° indicated by the dashed semicircle of the X-ray detector 3 in FIG. 1 and the emission angle θ is measured, and is shown in FIG. An X-ray diffraction intensity profile is acquired (S3 in FIG. 3). In FIG. 4, the incident angle θ is set in the vicinity of the total reflection critical angle θc as a reference, for example, a range of about 0.04 ° to 0.30 °. In this case, the total reflection critical angle θc is 0.16 °. The incident angle of the X-ray on the sample 10 with respect to the surface of the sample 10 is the same as the emission angle from the X-ray source 1.

図4の横軸は、試料10の表面に対するX線の入射角θの大きさを示し、縦軸は標準化された回折X線の強度を示している。入射角θが0.00°〜約0.14°までの範囲では、回折角度17°での回折X線の強度はほぼゼロである。さらに、入射角θが約0.15°から約0.18°の間で下方の透明導電層12に依存するピークを有し、約0.18°から約0.25°まで回折X線強度が振動しながら減少している。さらに、約0.25°以上では一定強度をほぼ維持している。振動を有する回折X強度プロファイルは、試料10の深さ方向に結晶分布が存在することを反映しているが、このままでは深さ方向(厚み方向)の結晶量の分布については不明である。   The horizontal axis of FIG. 4 indicates the magnitude of the incident angle θ of the X-ray with respect to the surface of the sample 10, and the vertical axis indicates the intensity of the standardized diffraction X-ray. When the incident angle θ is in the range from 0.00 ° to about 0.14 °, the intensity of the diffracted X-ray at the diffraction angle of 17 ° is almost zero. Further, the incident angle θ has a peak depending on the transparent conductive layer 12 below from about 0.15 ° to about 0.18 °, and the diffracted X-ray intensity from about 0.18 ° to about 0.25 °. Decreases while vibrating. Further, the constant strength is substantially maintained at about 0.25 ° or more. The diffraction X intensity profile having vibration reflects the existence of a crystal distribution in the depth direction of the sample 10, but the distribution of the crystal amount in the depth direction (thickness direction) is unknown as it is.

次に、試料10において図4に示した測定時に照射された箇所にX線を照射し、入射角θを変えて試料表面で鏡面反射するX線強度を測定すると、図5に示すようなプロファイルが得られる(図3のS4)。図5において、縦軸のX線の鏡面反射強度は対数目盛で示され、入射角θが約0.16°より大きくなると、試料10の積層構造に応じて振動するプロファイルを持ち、さらに大きくなると速やかに減衰する。反射率のプロファイルは、物質の厚さ、密度、界面のラフネスに応じて特有の振動構造を有する。なお、約0.02°〜約0.16°までは入射角θが小さすぎるので、X線照反射度が正確に測定できず、論理的には約0.16°の場合と同じ強度となる。   Next, when X-rays are irradiated to the portion irradiated in the measurement shown in FIG. 4 in the sample 10 and the X-ray intensity reflected specularly on the sample surface is changed by changing the incident angle θ, a profile as shown in FIG. 5 is obtained. Is obtained (S4 in FIG. 3). In FIG. 5, the specular reflection intensity of the X-ray on the vertical axis is shown on a logarithmic scale, and when the incident angle θ is larger than about 0.16 °, it has a profile that vibrates according to the laminated structure of the sample 10 and becomes larger. Decays quickly. The reflectance profile has a specific vibration structure depending on the thickness, density, and interface roughness of the material. In addition, since the incident angle θ is too small from about 0.02 ° to about 0.16 °, the X-ray reflection reflectivity cannot be measured accurately, and logically the same intensity as in the case of about 0.16 °. Become.

そこで、図5に示したX線反射強度プロファイルが現れるような試料10の深さ方向の密度分布、厚さをフィッティングにより求めると、図6のような分布となる(図3のS5)。図6に示す横軸では、試料10のガラス基板1の上面を厚さの基準0として示し、後述する図7、図8、図11でも同様である。   Therefore, when the density distribution and thickness in the depth direction of the sample 10 in which the X-ray reflection intensity profile shown in FIG. 5 appears are obtained by fitting, the distribution shown in FIG. 6 is obtained (S5 in FIG. 3). In the horizontal axis shown in FIG. 6, the upper surface of the glass substrate 1 of the sample 10 is shown as thickness reference 0, and the same applies to FIGS. 7, 8, and 11 described later.

図6によれば、試料10においてITO透明導電膜12の密度が一番高く、その上のMoO層13と有機物層14の密度は深さ方向に変化している。X線反射強度プロファイルから試料の密度を決定する方法は公知の分析技術であり、例えばX線反射率法がある。X線反射率法は、試料10表面に極浅い角度でX線を入射し、その入射角対鏡面方向に反射したX線の強度に基づいて図5に示すようなX線強度プロファイルを測定した後に、そのプロファイルをシミュレーション結果と比較し、シミュレーションパラメータを最適化することによって、試料の膜厚・密度を決定する手法である。この場合、試料10の有機物層14における密度の分析結果から深さ方向の結晶量分布を直接的には導きだせない。 According to FIG. 6, the density of the ITO transparent conductive film 12 is the highest in the sample 10, and the densities of the MoO 3 layer 13 and the organic layer 14 on the ITO transparent conductive film 12 change in the depth direction. A method for determining the density of a sample from an X-ray reflection intensity profile is a known analysis technique, for example, an X-ray reflectivity method. In the X-ray reflectivity method, an X-ray was incident on the surface of the sample 10 at an extremely shallow angle, and an X-ray intensity profile as shown in FIG. 5 was measured based on the intensity of the X-ray reflected in the mirror surface direction with respect to the incident angle. This is a method of determining the film thickness and density of the sample by comparing the profile with the simulation result and optimizing the simulation parameters later. In this case, the crystal content distribution in the depth direction cannot be directly derived from the density analysis result in the organic layer 14 of the sample 10.

なお、図6の密度分布に基づいて計算によりX線反射強度プロファイルを求めると、図5で白線に示すように全反射臨界角θc以上では実測値と一致することが確認される。なお、X線反射強度プロファイルにおいて、上記のように全反射臨界角θcより低い角度では実測値の誤差が大きいので、計算によるX線反射強度プロファイルを以下の演算等に用いる。   When an X-ray reflection intensity profile is obtained by calculation based on the density distribution in FIG. 6, it is confirmed that the measured value is equal to or greater than the total reflection critical angle θc as shown by the white line in FIG. In the X-ray reflection intensity profile, since the error of the actual measurement value is large at an angle lower than the total reflection critical angle θc as described above, the calculated X-ray reflection intensity profile is used for the following calculation and the like.

次に、図6に示した試料10内の密度分布に基づいて試料10中のX線に対する屈折率分布を計算し、入射角θの条件を定めて試料10中のX線による電場強度分布E(Z,θ)を計算する(図3のS6)。そのような電場強度分布は例えば入射角0°から0.3°までの範囲で求められ、その一例を図7(a)、(b)、(c)に示す。図7(a)、(b)、(c)では、全反射臨界角θcより大きい0.165°、0.170°、0.175°の場合を示し、試料10表面の上にも電場が現れている。   Next, a refractive index distribution for X-rays in the sample 10 is calculated based on the density distribution in the sample 10 shown in FIG. 6, and the electric field intensity distribution E by X-rays in the sample 10 is determined by defining the condition of the incident angle θ. (Z, θ) is calculated (S6 in FIG. 3). Such an electric field intensity distribution is obtained, for example, in a range from an incident angle of 0 ° to 0.3 °, and an example thereof is shown in FIGS. 7 (a), (b), and (c). 7A, 7B, and 7C show cases of 0.165 °, 0.170 °, and 0.175 ° that are larger than the total reflection critical angle θc, and an electric field is also generated on the surface of the sample 10. Appears.

電場強度分布E(Z、θ)は、歪曲波ボルン近似(DWBA:Distorted Wave Born Approximation)法により計算される。DWBA法は、公知の手法であり、例えばZeit fur Kristallography Vol.213 (1998) pp.319-336に記載されている。   The electric field intensity distribution E (Z, θ) is calculated by a distorted wave Born approximation (DWBA) method. The DWBA method is a known method and is described, for example, in Zeit fur Kristallography Vol. 213 (1998) pp. 319-336.

次に、試料10の表面から有機物層14を含む90nmの深さまでの結晶量の深さ分布D(Z)を図8に示すように仮定する(図3のS7)。図8は、マルチスライス法を用いて、有機物層14を上層、中層、下層の三層に分割した例を示している。   Next, the depth distribution D (Z) of the crystal amount from the surface of the sample 10 to the depth of 90 nm including the organic layer 14 is assumed as shown in FIG. 8 (S7 in FIG. 3). FIG. 8 shows an example in which the organic material layer 14 is divided into an upper layer, a middle layer, and a lower layer using a multi-slice method.

マルチスライス法は、結晶に電子線が入射したとき結晶下での透過波および回折波の強度を計算する手法の一つである。そして、結晶を含む層を表面に平行で深さ方向にある程度の幅を持った短冊状の連なりとみなし、この結晶に入射した電子は最初のスライスで散乱され位相変化を受け、次のスライスまで伝播し、次々のスライスで散乱と伝播を繰り返して電子線が結晶の下面に到達するものとして、結晶下面での回折振幅(強度)が計算される。図8では、上層、中層、下層に全て同じ結晶量が分布していると仮定しているが、異なるように仮定してもよい。   The multi-slice method is one method for calculating the intensity of transmitted waves and diffracted waves under a crystal when an electron beam is incident on the crystal. The layer containing the crystal is regarded as a series of strips parallel to the surface and having a certain width in the depth direction, and electrons incident on this crystal are scattered by the first slice and undergo phase change until the next slice. The diffraction amplitude (intensity) on the lower surface of the crystal is calculated on the assumption that the electron beam reaches the lower surface of the crystal by propagating and repeating scattering and propagation in successive slices. In FIG. 8, it is assumed that the same crystal amount is distributed in the upper layer, the middle layer, and the lower layer, but they may be assumed to be different.

図8に示した結晶量の深さ分布関数D(Z)を重み因子として使用して電場強度分布E(Z、θ)に乗算し、乗算結果を試料10の深さに対して試料厚みの積分を計算する。この計算により、上記の上層、中層、下層については、図9の破線、二点鎖線、一点鎖線で示すように、入射角θに対する計算X線回折強度プロファイルが得られる(図3のS8)。この場合の試料10の上層、中層、下層のそれぞれの計算X線回折強度プロファイルの和を図9の実線で示す。   The depth distribution function D (Z) of the crystal amount shown in FIG. 8 is used as a weighting factor to multiply the electric field intensity distribution E (Z, θ). Calculate the integral. By this calculation, as shown by the broken line, the two-dot chain line, and the one-dot chain line in FIG. 9, the calculated X-ray diffraction intensity profile for the incident angle θ is obtained for the upper layer, the middle layer, and the lower layer (S8 in FIG. 3). The sum of the calculated X-ray diffraction intensity profiles of the upper layer, middle layer, and lower layer of the sample 10 in this case is shown by the solid line in FIG.

次に、図9の実線で示した和の計算X線回折強度プロファイルが、図4に示した測定結果のX線回折強度プロファイルに一致するように、結晶量の深さ分布D(Z)を調整してパラメータフィッティングを実施する。即ち、図10の実線とドットに示すように、測定によるX線回折強度プロファイルに計算によるX線回折強度プロファイルを一致させる。そのような調整した結晶量の深さ分布D(Z)を使用する上層、中層、下層の計算X線回折強度プロファイルの再度の計算によれば、図10の破線、二点鎖線、一点鎖線に示すようなX線回折強度プロファイルが求められる。   Next, the depth distribution D (Z) of the crystal amount is set so that the calculated X-ray diffraction intensity profile of the sum shown by the solid line in FIG. 9 matches the X-ray diffraction intensity profile of the measurement result shown in FIG. Adjust and perform parameter fitting. That is, as shown by the solid line and the dot in FIG. 10, the calculated X-ray diffraction intensity profile is matched with the measured X-ray diffraction intensity profile. According to the recalculation of the calculated X-ray diffraction intensity profiles of the upper layer, middle layer, and lower layer using the adjusted crystal depth distribution D (Z), the broken line, the two-dot chain line, and the one-dot chain line in FIG. An X-ray diffraction intensity profile as shown is determined.

次に、図10に示すX線回折強度プロファイルを得るために変更調整された結晶量の深さ分布D(Z)は、例えば図11に示すようになる。図11によれば、図4に示した実測によるX線回折強度プロファイルとなる試料10の結晶の量の分布は、上層が約0.20、中層が約0.35、下層が約1.3となり、結晶量が下の層になるほど多くなるように分布していることがわかる(図3のS9)。なお、マルチスライス法を用いる際には三層に限るものではなく層を増やすほど結晶分布の詳細が明らかになる。   Next, the depth distribution D (Z) of the crystal amount modified and adjusted to obtain the X-ray diffraction intensity profile shown in FIG. 10 is as shown in FIG. 11, for example. According to FIG. 11, the distribution of the amount of crystal of the sample 10 that becomes the X-ray diffraction intensity profile by actual measurement shown in FIG. 4 is about 0.20 for the upper layer, about 0.35 for the middle layer, and about 1.3 for the lower layer. Thus, it can be seen that the distribution is such that the lower the layer, the greater the amount of crystals (S9 in FIG. 3). Note that when using the multi-slice method, the number of layers is not limited to three, and the details of the crystal distribution become clear as the number of layers increases.

以上の説明では、まず、試料10に対するX線の入射角θを変化させることにより得られるピーク構造及び振動構造などの微細構造を含んだX線回折強度の変化のプロファイル(図4)を取得している。さらに、X線反射強度(図5)により決定される密度(図6)、屈折率を利用して試料10中のX線電場強度(図7)を算出し、併せて、試料10中の深さ方向の結晶量の分布(図8)を仮定する。そして、その結晶量分布を重み因子に使用して電場強度に乗算し、その結果を深さ方向に対して試料10の有機物の厚みの積分を計算し、入射角θに対する計算X線回折強度プロファイル(図9)を求める。さらに、計算X線回折強度プロファイルを実測X線回折強度プロファイルにフィッティングするように試料10中の結晶量の深さ方向の分布を変更し(図10)、その変更後のデータを深さ方向の最終の結晶量分布(図11)として決定する。   In the above description, first, a profile (FIG. 4) of an X-ray diffraction intensity change including a fine structure such as a peak structure and a vibration structure obtained by changing the incident angle θ of the X-ray with respect to the sample 10 is obtained. ing. Further, the density (FIG. 6) determined by the X-ray reflection intensity (FIG. 5) and the refractive index are used to calculate the X-ray electric field strength (FIG. 7) in the sample 10, and the depth in the sample 10 is also calculated. A distribution of the amount of crystals in the vertical direction (FIG. 8) is assumed. Then, the electric field intensity is multiplied by using the distribution of the crystal amount as a weighting factor, and the result is used to calculate the integral of the thickness of the organic material of the sample 10 in the depth direction, and the calculated X-ray diffraction intensity profile with respect to the incident angle θ. (FIG. 9) is obtained. Further, the distribution in the depth direction of the crystal amount in the sample 10 is changed so as to fit the calculated X-ray diffraction intensity profile to the actually measured X-ray diffraction intensity profile (FIG. 10), and the data after the change is changed to the depth direction. It is determined as the final crystal amount distribution (FIG. 11).

これにより、有機物に代表される結晶性が低い、もしくは結晶が材料中に点在している系での結晶の深さ分布を決定することが可能となった。特に、分析対象が有機薄膜である場合、薄膜中の電場強度の深さ分布は下地層に大きく依存するので、有機薄膜よりも大きい密度を持つ物質を下地層、例えばITO透明導電層にすると、分析効果が大きい。   This makes it possible to determine the depth distribution of crystals in a system with low crystallinity typified by organic matter or crystals scattered in the material. In particular, when the analysis target is an organic thin film, the depth distribution of the electric field strength in the thin film largely depends on the underlying layer, so when a substance having a density higher than that of the organic thin film is used as the underlying layer, for example, an ITO transparent conductive layer, The analysis effect is great.

ところで、上記の実施形態では、結晶量の深さの分布は、上記のマルチスライス法の代わりにガウス関数、ローレンツ関数、擬フォークトなどのピーク関数を用いて仮定してもよい。この場合は、複数のピーク関数を用いて、ピーク関数のパラメータ、位置、幅、面積をフィッティングにより決定する。   By the way, in the above-described embodiment, the distribution of the depth of the crystal amount may be assumed using a peak function such as a Gaussian function, a Lorentz function, or a pseudo-Fork instead of the multi-slice method. In this case, parameters, positions, widths, and areas of the peak function are determined by fitting using a plurality of peak functions.

また、複数箇所にX線を照射して同一回折指数、例えば17°の互いに方位の異なる回折X線の強度を測定して複数の測定X線回折強度プロファイルとX線反射強度の入射角依存性を取得し、さらに上記の演算を実施して複数箇所で最終結晶量分布を決定してもよい。これにより、同じ試料について面方向の最終の結晶量分布を取得することができ、同一面での厚さ方向の結晶量分布のバラツキを検出することができる。   In addition, X-rays are irradiated to a plurality of locations to measure the intensity of diffracted X-rays having the same diffraction index, for example, 17 °, and different orientations, and the incident angle dependence of a plurality of measured X-ray diffraction intensity profiles and X-ray reflection intensity And the above calculation may be further performed to determine the final crystal content distribution at a plurality of locations. Thereby, the final crystal quantity distribution in the plane direction can be acquired for the same sample, and the variation in the crystal quantity distribution in the thickness direction on the same plane can be detected.

なお、上記の図4〜図11までの縦軸と横軸の各目盛は、特定する場合を除いて比例目盛とする。   The scales on the vertical axis and the horizontal axis in FIGS. 4 to 11 are proportional scales unless otherwise specified.

ここで挙げた全ての例および条件的表現は、発明者が技術促進に貢献した発明および概念を読者が理解するのを助けるためのものであり、ここで具体的に挙げたそのような例および条件に限定することなく解釈すべきであり、また、明細書におけるそのような例の編成は本発明の優劣を示すこととは関係ない。本発明の実施形態を詳細に説明したが、本発明の精神および範囲から逸脱することなく、それに対して種々の変更、置換および変形を施すことができると理解すべきである。   All examples and conditional expressions given here are intended to help the reader understand the inventions and concepts that have contributed to the promotion of technology, such examples and It should be construed without being limited to the conditions, and the organization of such examples in the specification is not related to showing the superiority or inferiority of the present invention. Although embodiments of the present invention have been described in detail, it should be understood that various changes, substitutions and variations can be made thereto without departing from the spirit and scope of the present invention.

1 X線源
3 X線検知器
4 演算部
10 試料
11 ガラス基板
12 透明導電層
13 MoO
14 有機物層
DESCRIPTION OF SYMBOLS 1 X-ray source 3 X-ray detector 4 Calculation part 10 Sample 11 Glass substrate 12 Transparent conductive layer 13 MoO 3 layer 14 Organic substance layer

Claims (4)

結晶及び構造秩序を持つ試料の表面の設定箇所に対し、全反射臨界角を基準にした設定範囲の入射角でX線を入射し、前記試料からの所望の回折角度で回折する回折X線の強度を測定し、前記入射角に対する前記回折X線の強度の変化を示す測定X線回折強度プロファイルを取得し、
前記試料の前記設定箇所において前記入射角の前記設定範囲で全面反射した前記X線の反射強度を測定し、前記入射角とX線反射強度の関係を示すX線反射強度プロファイルを取得し、
前記X線反射強度プロファイルを解析することにより前記試料中の深さ方向の密度分布を決定し、前記試料中の前記X線に対する屈折率を求め、前記試料中に形成される前記X線による電場強度と前記入射角の関係を示す電場強度分布を計算し、
前記試料中の結晶量の深さ分布を仮定し、
前記結晶量の深さ分布を重み因子として前記電場強度分布に乗算して求められた乗算結果を前記試料の深さに対して厚みの積分を実行することにより、前記設定範囲の前記入射角とX線回折強度の関係を計算して計算X線回折強度プロファイルを取得し、
前期計算X線回折強度プロファイルが前記測定X線回折強度プロファイルに一致するように、前記結晶量の深さ分布を変化させてパラメータフィッティングを実施し、前期計算X線回折強度プロファイルが前記測定X線回折強度プロファイルに一致させる前記結晶の深さ分布を前記試料の深さ方向の最終結晶量分布として決定する
処理を含むX線結晶分析方法
X-rays are incident on a set point on the surface of a sample having a crystal and structural order at an incident angle within a set range based on the total reflection critical angle, and diffracted X-rays diffracted at a desired diffraction angle from the sample. Measuring an intensity, obtaining a measured X-ray diffraction intensity profile showing a change in intensity of the diffracted X-ray with respect to the incident angle;
Measuring the reflection intensity of the X-rays that are totally reflected in the setting range of the incident angle at the setting location of the sample, obtaining an X-ray reflection intensity profile indicating the relationship between the incident angle and the X-ray reflection intensity;
By analyzing the X-ray reflection intensity profile, the density distribution in the depth direction in the sample is determined, the refractive index for the X-ray in the sample is obtained, and the electric field by the X-ray formed in the sample Calculate the electric field intensity distribution indicating the relationship between the intensity and the incident angle,
Assuming a depth distribution of the amount of crystals in the sample,
The multiplication result obtained by multiplying the electric field intensity distribution by using the depth distribution of the crystal amount as a weighting factor is executed to integrate the thickness with respect to the depth of the sample. Obtain the calculated X-ray diffraction intensity profile by calculating the relationship of X-ray diffraction intensity,
Parameter fitting is performed by changing the depth distribution of the amount of crystal so that the first-calculated X-ray diffraction intensity profile matches the measured X-ray diffraction intensity profile. An X-ray crystal analysis method including a process of determining a depth distribution of the crystal to be matched with a diffraction intensity profile as a final crystal amount distribution in a depth direction of the sample .
前記試料において、前記最終結晶量分布が決定される対象となる前記結晶及び構造秩序を持つ薄膜の下には、前記薄膜よりも密度の高い材料から形成される高密度層が形成されていることを特徴とする請求項1に記載のX線結晶分析方法 In the sample, a high-density layer formed of a material having a higher density than the thin film is formed below the thin film having the crystal and structural order for which the final crystal amount distribution is to be determined. The X-ray crystal analysis method according to claim 1 . 前記試料において、前記最終結晶量分布が決定される対象となる前記結晶及び構造秩序を持つ薄膜は有機物から形成されることを特徴とする請求項1又は請求項2に記載のX線結晶分析方法 3. The X-ray crystal analysis method according to claim 1, wherein, in the sample, the crystal and the thin film having a structural order on which the final crystal amount distribution is determined are formed of an organic substance. . 同一回折指数の互いに方位の異なる回折X線を2つ以上の前記測定X線回折強度プロファイルを取得し、それぞれの前記測定X回折強度プロファイルを取得するために前記X線を照射したと同じ箇所について前記計算X線回折強度プロファイルを取得して前記最終結晶量分布を決定することを特徴とする請求項1乃至請求項3のいずれか1項に記載のX線結晶分析方法。
Two or more diffracted X-ray diffracted X-rays having the same diffraction index and different orientations are acquired, and the same portion where the X-rays are irradiated to acquire the respective measured X-ray diffracted intensity profiles is obtained. The X-ray crystal analysis method according to claim 1, wherein the calculated X-ray diffraction intensity profile is acquired to determine the final crystal content distribution.
JP2012195465A 2012-09-05 2012-09-05 X-ray crystal analysis method Expired - Fee Related JP6032404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012195465A JP6032404B2 (en) 2012-09-05 2012-09-05 X-ray crystal analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012195465A JP6032404B2 (en) 2012-09-05 2012-09-05 X-ray crystal analysis method

Publications (2)

Publication Number Publication Date
JP2014052223A JP2014052223A (en) 2014-03-20
JP6032404B2 true JP6032404B2 (en) 2016-11-30

Family

ID=50610828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012195465A Expired - Fee Related JP6032404B2 (en) 2012-09-05 2012-09-05 X-ray crystal analysis method

Country Status (1)

Country Link
JP (1) JP6032404B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110793988B (en) * 2019-11-21 2022-03-15 山东建筑大学 Method for representing amorphous-crystal transformation dynamic characteristics by high-energy X-ray
TW202303131A (en) * 2021-05-10 2023-01-16 日商大金工業股份有限公司 Polymer measuring method using x-ray diffraction
WO2023135712A1 (en) * 2022-01-13 2023-07-20 株式会社日立製作所 Particle beam analysis device and particle beam analysis method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3994543B2 (en) * 1998-09-10 2007-10-24 ソニー株式会社 Thin film measuring method and thin film measuring apparatus
JP3764407B2 (en) * 2001-10-26 2006-04-05 株式会社リガク Density non-uniform multilayer analysis method and apparatus and system thereof
US7103142B1 (en) * 2005-02-24 2006-09-05 Jordan Valley Applied Radiation Ltd. Material analysis using multiple X-ray reflectometry models
JP4948009B2 (en) * 2006-03-22 2012-06-06 シャープ株式会社 Semiconductor device manufacturing method and semiconductor device film forming apparatus
JP2008070331A (en) * 2006-09-15 2008-03-27 Mazda Motor Corp Method and device for analyzing sample having a plurality of crystalline phases

Also Published As

Publication number Publication date
JP2014052223A (en) 2014-03-20

Similar Documents

Publication Publication Date Title
US9448184B1 (en) Method and system for determining one or more optical characteristics of structure of a semiconductor wafer
US9551677B2 (en) Angle calibration for grazing-incidence X-ray fluorescence (GIXRF)
US20080049214A1 (en) Measuring Diffractive Structures By Parameterizing Spectral Features
US10060865B2 (en) Measurement of critical dimensions of nanostructures using X-ray grazing incidence in-plane diffraction
KR20170063317A (en) Ellipsometer and method of inspecting pattern asymmetry using the same
US20120087473A1 (en) Surface microstructure measurement method, surface microstructure measurement data analysis method and x-ray scattering measurement device
US20060256916A1 (en) Combined ultra-fast x-ray and optical system for thin film measurements
JP6032404B2 (en) X-ray crystal analysis method
WO2013119324A1 (en) Numerical aperture integration in raleigh wavelengths for optical critical dimension (ocd) metrology
CN114543690B (en) Modeling method of optical characteristics, photoacoustic measurement method and photoacoustic measurement device
US20170199027A1 (en) Optical system and methods for the determination of stress in a substrate
JP2016502119A (en) Apparatus and method for surface mapping using in-plane oblique incidence diffraction
KR101942061B1 (en) Method and system for use in measureing in comprex patterned structures
JPH10223715A (en) Measuring method for epitaxial film thickness of multilayer epitaxial wafer
JP2006513418A (en) Film thickness measuring apparatus and method using improved high-speed Fourier transform
CN107917665A (en) Method and apparatus for determining facula position
CN113348358B (en) Loosely coupled inspection and metrology system for mass production process monitoring
JP6533187B2 (en) Dielectric constant evaluation method
Antos et al. Convergence properties of critical dimension measurements by spectroscopic ellipsometry on gratings made of various materials
WO2007044934A2 (en) Methods for characterizing semiconductor material using optical metrology
US7738106B2 (en) Method and system for estimating surface plasmon resonance shift
JP6532037B2 (en) Two-dimensional information evaluation method and evaluation program of surface roughness and interface roughness by X-ray reflectivity method
JP4977498B2 (en) Thin film laminate inspection method
US11988641B2 (en) Characterization of patterned structures using acoustic metrology
KR100969213B1 (en) Method for analyzing membrane structure and apparatus therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161011

R150 Certificate of patent or registration of utility model

Ref document number: 6032404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees