TWI533466B - Light-emitting element and method for manufacturing the same - Google Patents

Light-emitting element and method for manufacturing the same Download PDF

Info

Publication number
TWI533466B
TWI533466B TW102106357A TW102106357A TWI533466B TW I533466 B TWI533466 B TW I533466B TW 102106357 A TW102106357 A TW 102106357A TW 102106357 A TW102106357 A TW 102106357A TW I533466 B TWI533466 B TW I533466B
Authority
TW
Taiwan
Prior art keywords
layer
gan
gallium nitride
electrode
type gallium
Prior art date
Application number
TW102106357A
Other languages
Chinese (zh)
Other versions
TW201434175A (en
Inventor
林立宸
Original Assignee
雲川科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 雲川科技有限公司 filed Critical 雲川科技有限公司
Priority to TW102106357A priority Critical patent/TWI533466B/en
Publication of TW201434175A publication Critical patent/TW201434175A/en
Application granted granted Critical
Publication of TWI533466B publication Critical patent/TWI533466B/en

Links

Landscapes

  • Led Devices (AREA)

Description

發光元件及其製作方法 Light-emitting element and manufacturing method thereof

本發明是提供一種發光元件及其製作方法,主要是對用在發光元件組體中,將絕緣層從透明導電層及反射層延伸至少到達N形氮化鎵層,以確保點膠過程中,避免銀膠連通P-N,減少短路的危機,並可藉其間的N電極與P電極為呈同側排列,以簡化發光元件在製作上的相關部件結合實施、及覆晶封裝,且對發光元件的有效透光區域能確實提升,及藉其間N型氮化鎵層的非等向蝕刻以增加絕緣層的附著度、而達所須厚度,以防止短路的發生,使得發光二極體(Light Emitting Diode,LED)的良率提高。 The invention provides a light-emitting element and a manufacturing method thereof, which are mainly used in a light-emitting element group, and an insulating layer extends from a transparent conductive layer and a reflective layer to at least an N-type gallium nitride layer to ensure a dispensing process. Avoiding the connection of silver glue to PN, reducing the crisis of short circuit, and arranging the N electrode and the P electrode in the same side to be arranged on the same side, so as to simplify the implementation of the related components of the light emitting element in the fabrication, and the flip chip package, and the light emitting element The effective light-transmissive region can be surely lifted, and the non-isotropic etching of the N-type gallium nitride layer therebetween increases the adhesion of the insulating layer to the required thickness to prevent the occurrence of a short circuit, so that the light emitting diode (Light Emitting) Diode, LED) yield improvement.

依既有形態的氮化鎵(GaN)發光二極體(Light Emit-ting Diode,LED)組成〔如第一圖〕,該發光二極體60是含括在:一基板10上結合一N型氮化鎵層(N-GaN)20,及在N型氮化鎵層(N-GaN)20上結合以多層量子井(MQWS)30,繼在最上層的量子井(MQWS)30上結合一P型氮化鎵層(P-GaN)40,之後,在該P型氮化鎵層(P-GaN)40上結合一透明發光層50,而其中的N型氮化鎵層(N-GaN)20與P型氮化鎵層(P-GaN)40是為藉蝕刻取掉部分,以致暴露部分的N型氮化鎵層(N-GaN)20,在該暴露的N型氮化鎵層(N-GaN)20上是設以負電極201,另在P型氮化鎵層(P-GaN)40及透明導電層50之間則設以正電極401,而該正電極401和透明導電層50之間、與N型氮化鎵層(N-GaN)20和負電極201之間是各結合一保護層 402、202。 According to the existing form of a gallium nitride (GaN) light-emitting diode (LED) composition (as shown in the first figure), the light-emitting diode 60 is included on a substrate 10 combined with a N a gallium nitride layer (N-GaN) 20, and a multi-layer quantum well (MQWS) 30 bonded to an N-type gallium nitride layer (N-GaN) 20, followed by bonding on the uppermost quantum well (MQWS) 30 a P-type gallium nitride layer (P-GaN) 40, after which a transparent light-emitting layer 50 is bonded to the P-type gallium nitride layer (P-GaN) 40, and an N-type gallium nitride layer (N- GaN) 20 and P-type gallium nitride layer (P-GaN) 40 are removed by etching so that a portion of the exposed N-type gallium nitride layer (N-GaN) 20 is exposed in the N-type gallium nitride. The layer (N-GaN) 20 is provided with a negative electrode 201, and between the P-type gallium nitride layer (P-GaN) 40 and the transparent conductive layer 50, a positive electrode 401 is provided, and the positive electrode 401 and the transparent electrode are provided. Between the conductive layers 50 and between the N-type gallium nitride layer (N-GaN) 20 and the negative electrode 201, a protective layer is bonded 402, 202.

對上述組成的發光二極體60其間的基板10是為藉藍寶石(Sapphire)製成,以致無法導電,因此正、負電極401、201必須設在發光二極體(Light Emitting Di-ode,LED)60的作用正面〔即正電極401設在P型氮化鎵層(P-GaN)40的正面,負電極201設在N型氮化鎵層(N-GaN)20的正面〕;該種形態的組成,使得發光二極體(Light Emitting Diode,LED)60其間該P型氮化鎵層(P-GaN)40的表面是藉以蝕刻至N型氮化鎵層(N-GaN)20,且該透過蝕刻的溝槽必須要有足夠的寬度,才能藉打線方式在N型氮化鎵層(N-GaN)20的表面設以負電極201。因此,造成其間的多層量子井(MQWS)30預設的發光區域部分被蝕刻掉,以致影響到發光二極體60的發光區域。另對藍寶石製成的基板10因導熱性差,因此亦降低發光二極體(Light Emitting Diode,LED)60的性能。 The substrate 10 in the above-mentioned light-emitting diode 60 is made of sapphire so as to be incapable of conducting electricity, so the positive and negative electrodes 401 and 201 must be disposed in a light emitting diode (LED). The action of 60 is positive (ie, the positive electrode 401 is disposed on the front surface of the P-type gallium nitride layer (P-GaN) 40, and the negative electrode 201 is disposed on the front surface of the N-GaN layer 20]; The morphological composition is such that the surface of the P-GaN 40 is etched to the N-GaN layer 20 during the Light Emitting Diode (LED) 60. The etched trench must have a sufficient width to provide a negative electrode 201 on the surface of the N-GaN layer 20 by wire bonding. Therefore, the portion of the light-emitting region that is preliminarily caused by the multilayer quantum well (MQWS) 30 is etched away so as to affect the light-emitting region of the light-emitting diode 60. Further, since the substrate 10 made of sapphire has poor thermal conductivity, the performance of the Light Emitting Diode (LED) 60 is also lowered.

本發明即是依既有的發光二極體在使用上所存有的缺失來作具體改善,以期使該發光元件組體中將絕緣層從透明導電層及反射層延伸至少到達N形氮化鎵層,以確保點膠過程中,避免銀(Ag)膠連通P-N,減少短路的危機,並可藉其間的N電極與P電極是呈同側排列,以簡化發光元件在製作上的相關部件結合實施、及覆晶封裝,且對發光元件的有效發光區域能確實提升,及藉其間N型氮化鎵層的非等向蝕刻以增加絕緣層的附著度、而達所須厚度 ,以防止短路的發生,使得發光二極體(Light Emit-ting Diode,LED)的良率提高“ The invention is specifically improved according to the existing loss of the existing light-emitting diode, so as to extend the insulating layer from the transparent conductive layer and the reflective layer to at least the N-type gallium nitride in the light-emitting element group. Layer to ensure that the silver (Ag) glue is connected to the PN during the dispensing process, reducing the risk of short circuit, and the N electrode and the P electrode are arranged on the same side to simplify the assembly of related components of the light emitting element in the fabrication. Implementation, and flip chip packaging, and the effective light-emitting area of the light-emitting element can be surely improved, and the non-isotropic etching of the N-type gallium nitride layer therebetween increases the adhesion of the insulating layer to the required thickness In order to prevent the occurrence of a short circuit, the yield of the light-emitting diode (LED) is improved.

本發明之主要目的,是對發光元件組體中為含括:在一基板上結合以兩旁呈傾斜而上的U型氮化鎵層(U-GaN)及N型氮化鎵層(N-GaN),並在N型氮化鎵層(N-GaN)的預設段落結合以多層量子井(MQWS),在該多層量子井(MQWS)上方另結合一P型氮化鎵層(P-GaN),而在P型氮化鎵層(P-GaN)上為結合以透明導電層及反射層,在藉一預設厚度的絕緣層覆設在透明導電層及反射層、並至少延伸至N型氮化鎵層(N-GaN),或者延伸至U型氮化鎵層(U-GaN)與基板的交界處更佳,而將P型氮化鎵層(P-GaN)及多層量子井(MQWS)與N型氮化鎵層(N-GaN)作包覆絕緣,以確保點膠過程中,避免銀膠(Ag)連通P-N,減少短路的危機,另在該絕緣層的兩旁預設部位是各形成複數透孔,可使用鉻(Cr)、鋁(Al)等材料以導通絕緣層上方的N電極和P電極、做為後續加工點膠、支架用;及N電極在經相應透孔以和N型氮化鎵層(N-GaN)形成一N接觸電極,而P電極在經相應透孔以透明導電層及反射層、P型氮化鎵層(P-GaN)形成一P接觸電極,而藉N型氮化鎵層(N-GaN)與P型氮化鎵層(P-GaN)在和多層量子井(MQWS)的接觸電導通後,以將多層量子井(MQWS)產生的光經由反射層之反射,藉由折射原理透過四面八方由各處發射而出。 The main object of the present invention is to include a U-GaN layer and an N-type gallium nitride layer (N-) which are slanted on both sides of a substrate. GaN), and in a pre-set paragraph of an N-GaN layer combined with a multilayer quantum well (MQWS), a P-type gallium nitride layer is additionally bonded over the multilayer quantum well (MQWS) (P- GaN), and a transparent conductive layer and a reflective layer are bonded on the P-type gallium nitride layer (P-GaN), and the transparent conductive layer and the reflective layer are overlaid on the insulating layer by a predetermined thickness and extended to at least N-type gallium nitride layer (N-GaN), or extended to the junction of U-GaN layer (U-GaN) and substrate, and P-type gallium nitride layer (P-GaN) and multilayer quantum The well (MQWS) is coated and insulated with an N-type gallium nitride layer (N-GaN) to ensure that the silver paste (Ag) is connected to the PN during the dispensing process, thereby reducing the risk of short circuit, and further on both sides of the insulating layer. The device is formed with a plurality of through holes, and materials such as chromium (Cr) and aluminum (Al) may be used to conduct the N electrode and the P electrode above the insulating layer for subsequent processing of the dispensing and the support; and the N electrode is correspondingly The through hole is formed with an N-type gallium nitride layer (N-GaN) N contacts the electrode, and the P electrode forms a P contact electrode through the corresponding transparent hole with a transparent conductive layer and a reflective layer, a P-type gallium nitride layer (P-GaN), and an N-type gallium nitride layer (N-GaN) After the P-GaN layer is electrically connected to the multilayer quantum well (MQWS), the light generated by the multilayer quantum well (MQWS) is reflected by the reflective layer, and the refractive principle is transmitted through all directions. Launched everywhere.

本發明之第二目的,是對發光元件其製作方法是採在:位於基板上方結合的U型氮化鎵層(U-GaN)與N型氮化鎵 層(N-GaN)是為藉非等向蝕刻方式以形成一傾斜而上的兩旁層面,並在N型氮化鎵層(N-GaN)的預設段落依序結合以略傾斜而上的多層量子井(MQWS)、P型氮化鎵層(P-GaN)、與透明導電層及反射層,之後,在沿著透明導電層及反射層的作用層面、和P型氮化鎵層(P-GaN)與多層量子井(MQWS)的兩旁並至少延伸至N型氮化鎵層(N-GaN),或延伸至U型氮化鎵層(U-GaN)與基板的交界處更佳為覆設一預設厚度的絕緣層,使該絕緣層能藉N型氮化鎵層(N-GaN)形成的兩旁傾斜而上該層面而獲以覆設力足夠、易達到所須的厚度。 A second object of the present invention is to fabricate a light-emitting device by using a U-GaN layer and a N-type gallium nitride bonded over a substrate. The layer (N-GaN) is formed by an anisotropic etching method to form a slanted upper side layer, and is sequentially connected in a predetermined step of the N-GaN layer to be slightly inclined. Multilayer quantum wells (MQWS), P-type gallium nitride layers (P-GaN), and transparent conductive layers and reflective layers, followed by layers along the transparent conductive and reflective layers, and P-type gallium nitride layers ( P-GaN) and both sides of the multilayer quantum well (MQWS) extend at least to the N-type gallium nitride layer (N-GaN), or extend to the junction of the U-GaN layer and the substrate. In order to cover a predetermined thickness of the insulating layer, the insulating layer can be tilted on both sides of the N-GaN layer to obtain the sufficient thickness and easy to reach the required thickness. .

本發明之第三目的,是對發光元件的絕緣層上方之N電極和P電極,可藉其間的N電極與P電極是呈同側排列,以簡化發光元件在製作上的相關部件結合實施、及覆晶封裝,使得發光二極體(Light Emitting Diode,LED)的良率提高,另N電極與P電極之面積延伸而有利於固晶封裝之黏著度。 A third object of the present invention is to provide an N-electrode and a P-electrode above the insulating layer of the light-emitting element, and the N-electrode and the P-electrode are arranged on the same side, thereby simplifying the implementation of the related components of the light-emitting element in the fabrication. And the flip chip package, the brightness of the light emitting diode (LED) is improved, and the area of the other N electrode and the P electrode is extended to facilitate the adhesion of the solid crystal package.

本發明設計的發光元件及其製作方法〔如第二~六圖〕,是對發光元件9為含括:在一基板1上結合以兩旁呈傾斜而上的U型氮化鎵層(U-GaN)21與N型氮化鎵層(N-GaN)2,並在N型氮化鎵層(N-GaN)2的預設段落結合以多層量子井(MQWS)3,在該多層量子井(MQWS)3上方另結合一P型氮化鎵層(P-GaN)4,而在P型氮化鎵層(P-GaN)4上為結合以透明導電層〔所使用的材料如:ITO、GZO等〕及反射層5〔所使用的材料如:Al、Ag、DBR等〕,在藉一 預設厚度的絕緣層6〔所使用的材料如:二氣化矽等〕覆設在透明導電層及反射層5、並至少延伸至N型氮化鎵層(N-GaN)2〔如第三圖〕,或延伸至U型氮化鎵層(U-GaN)與基板的交界處更佳〔如第五圖〕,而將P型氮化鎵層(P-GaN)4及多層量子井(MQWS)3作包覆,在該絕緣層6的兩旁預設部位是各形成複數透孔61、62,而在絕緣層6的上方兩旁則各結合以N電極7和P電極8、並將相應部位的複數透孔61、62利用鉻(Cr)、鋁(Al)等材料導通N電極7和P電極8,作為N電極7在經相應透孔61以和N型氮化鎵層(N-GaN)2形成一N接觸電極71,而P電極8在經相應透孔62以和透明導電層及反射層5、P型氮化鎵層(P-GaN)4形成一P接觸電極81,而藉N型氮化鎵層(N-GaN)2與P型氮化鎵層(P-GaN)4在和多層量子井(MQWS)3的接觸電導通後,以將多層量子井(MQWS)3產生的光經由反射層之反射,藉由折射原理透過四面八方由各處發射而出〔大多是由基板方向射出〕。 The illuminating element designed by the present invention and the manufacturing method thereof (such as the second to sixth figures) are included in the illuminating element 9: a U-shaped gallium nitride layer (U- slanted on both sides of the substrate 1) GaN) 21 and N-type gallium nitride layer (N-GaN) 2, and in a pre-set paragraph of N-GaN layer 2 combined with a multilayer quantum well (MQWS) 3, in the multilayer quantum well (MQWS) 3 is additionally combined with a P-type gallium nitride layer (P-GaN) 4, and a P-type gallium nitride layer (P-GaN) 4 is bonded with a transparent conductive layer [material used such as: ITO , GZO, etc. and the reflective layer 5 [materials used such as: Al, Ag, DBR, etc.] The insulating layer 6 of a predetermined thickness [the material used, such as: bismuth telluride, etc.] is overlaid on the transparent conductive layer and the reflective layer 5, and extends at least to the N-GaN layer 2 (eg, Three diagrams], or extending to the junction of the U-GaN layer (U-GaN) and the substrate (as shown in the fifth figure), and the P-type gallium nitride layer (P-GaN) 4 and the multilayer quantum well (MQWS) 3 is coated, and a plurality of through holes 61 and 62 are formed at predetermined positions on both sides of the insulating layer 6, and N electrodes 7 and P electrodes 8 are respectively combined on both sides of the insulating layer 6 and The plurality of through holes 61, 62 of the corresponding portions are electrically connected to the N electrode 7 and the P electrode 8 by using a material such as chromium (Cr) or aluminum (Al), and the N electrode 7 is passed through the corresponding through hole 61 and the N-type gallium nitride layer (N). -GaN) 2 forms an N contact electrode 71, and the P electrode 8 forms a P contact electrode 81 through the corresponding through hole 62 to form a P contact contact with the transparent conductive layer and the reflective layer 5, the P-type gallium nitride layer (P-GaN) 4. The N-type GaN layer (N-GaN) 2 and the P-type gallium nitride layer (P-GaN) 4 are electrically connected to the multilayer quantum well (MQWS) 3 to conduct a multilayer quantum well (MQWS). 3 The generated light is reflected by the reflective layer and is emitted from all sides by the principle of refraction in all directions. [Mostly an emission direction of the substrate].

而對本發明設計的發光元件9〔如第二、三、五、六圖〕其製作方法是採在:位於基板1上方結合的U型氮化鎵層(U-GaN)21與N型氮化鎵層(N-GaN)2是為藉蝕刻方式以形成一傾斜而上的兩旁層面,並在N型氮化鎵層(N-GaN)2的預設段落依序結合以略傾斜而上的多層量子井(MQWS)3、P型氮化鎵層(P-GaN)4、與一透明導電層及反射層5,之後,在沿著透明導電層及反射層5的作用層面、和P型氮化鎵層(P-GaN)4與多層量子井(MQWS)3的兩旁並至少延伸至N型氮化鎵層(N-GaN)2〔如第三圖 〕,或延伸至U型氮化鎵層(U-GaN)與基板的交界處更佳〔如第五圖〕,為覆設一預設厚度的絕緣層6,使該絕緣層6能藉N型氮化鎵層(N-GaN)2形成的兩旁傾斜而上該層面而獲以覆設力足夠、易達到所須的厚度,在該絕緣層6的兩旁預設部位為各預留複數透孔61、62利用鉻(Cr)、鋁(Al)等材料導通N電極7和P電極8,且該N電極7和P電極8之間必須保持一段非接觸區域91,而達到預設厚度的絕緣層6是可避免N型氮化鎵層(N-GaN)2與P型氮化鎵層(P-GaN)4發生接觸,及因點膠過程中的銀(Ag)膠導通,導致短路,因而將低生產的良率。 The light-emitting element 9 (such as the second, third, fifth, and sixth figures) designed in the present invention is produced by: U-type gallium nitride layer (U-GaN) 21 and N-type nitride which are bonded above the substrate 1. The gallium layer (N-GaN) 2 is formed by etching to form a slanted upper side layer, and is sequentially connected in a predetermined step of the N-GaN layer 2 to be slightly inclined. Multilayer quantum well (MQWS) 3, P-type gallium nitride layer (P-GaN) 4, and a transparent conductive layer and reflective layer 5, and then along the action layer of the transparent conductive layer and the reflective layer 5, and P-type a gallium nitride layer (P-GaN) 4 and a plurality of quantum wells (MQWS) 3 are extended to at least an N-type gallium nitride layer (N-GaN) 2 [as shown in the third figure Or extending to the junction of the U-GaN layer (U-GaN) and the substrate (as shown in the fifth figure), is to cover a predetermined thickness of the insulating layer 6, so that the insulating layer 6 can borrow N The two sides formed by the type of gallium nitride layer (N-GaN) 2 are inclined to the upper layer to obtain sufficient thickness to easily reach the required thickness, and the preset portions on both sides of the insulating layer 6 are reserved for each of the plurality of layers. The holes 61, 62 are electrically connected to the N electrode 7 and the P electrode 8 by using a material such as chromium (Cr) or aluminum (Al), and a non-contact region 91 must be maintained between the N electrode 7 and the P electrode 8 to reach a predetermined thickness. The insulating layer 6 prevents the N-type gallium nitride layer (N-GaN) 2 from coming into contact with the P-type gallium nitride layer (P-GaN) 4, and the silver (Ag) gel in the dispensing process leads to the short circuit. And thus will yield low yields.

對上述組成的發光元件在實施上是存有如下優點: The light-emitting element of the above composition has the following advantages in implementation:

1.發光元件是採長條形態延伸,以利能將N電極和P電極設在絕緣層的兩旁,易形成一段非接觸區域。 1. The light-emitting element is extended in the form of a strip, so that the N-electrode and the P-electrode are disposed on both sides of the insulating layer, and a non-contact area is easily formed.

2.發光元件其間的N型氮化鎵層(N-GaN)及P型氮化鎵層(P-GaN)是保持在一受到絕緣層確切區隔的空間以避免因點膠過程中的銀(Ag)膠同時接觸,造成低良率。 2. The N-type gallium nitride layer (N-GaN) and the P-type gallium nitride layer (P-GaN) between the light-emitting elements are kept in a space that is completely separated by the insulating layer to avoid silver during the dispensing process. (Ag) glue is in contact at the same time, resulting in low yield.

3.發光元件組體可藉其間的N電極與P電極是呈同側排列,以簡化發光元件在製作上的相關部件結合實施、及覆晶封裝。 3. The light-emitting element group can be arranged on the same side as the N-electrode and the P-electrode, so as to simplify the implementation of the related components of the light-emitting element in the fabrication and the flip-chip package.

4.發光元件組體可藉預留的複數透孔利用鉻(Cr)、鋁(Al)等材料導通N電極和P電極,及藉透孔數量的多寡以用來調整電流。 4. The light-emitting element group can use the materials of chromium (Cr), aluminum (Al) and the like to conduct the N-electrode and the P-electrode by using a plurality of through-holes reserved, and the amount of the through-holes can be used to adjust the current.

5.發光元件組體可藉N電極和P電極延伸長度的面積有利於固晶時黏著度之導通,以增加支架的固定度有助於 LED的導熱亮度及良率的提升。 5. The area of the light-emitting element group can extend the length of the adhesion by the N electrode and the P electrode to facilitate the adhesion of the adhesion during the solid crystal, so as to increase the fixation degree of the support. The thermal conductivity and yield of the LED are improved.

〔習知〕 [study]

10‧‧‧基板 10‧‧‧Substrate

20‧‧‧N型氮化鎵層 20‧‧‧N-type gallium nitride layer

201‧‧‧負電極 201‧‧‧Negative electrode

202、402‧‧‧保護層 202, 402‧‧‧ protective layer

30‧‧‧量子井 30‧‧‧Quantum Well

40‧‧‧P型氮化鎵層 40‧‧‧P-type gallium nitride layer

401‧‧‧正電極 401‧‧‧ positive electrode

50‧‧‧氧化鈿錫層 50‧‧‧ tin oxide layer

60‧‧‧發光二極體 60‧‧‧Lighting diode

〔本發明〕 〔this invention〕

1‧‧‧基板 1‧‧‧Substrate

2‧‧‧N型氮化鎵層 2‧‧‧N-type gallium nitride layer

21‧‧‧U型氮化鎵層 21‧‧‧U-type gallium nitride layer

3‧‧‧量子井 3‧‧‧Quantum Well

4‧‧‧P型氮化鎵層 4‧‧‧P-type gallium nitride layer

5‧‧‧透明導電層及反射層 5‧‧‧Transparent conductive and reflective layers

6‧‧‧絕緣層 6‧‧‧Insulation

61、62‧‧‧透孔 61, 62‧‧‧ through holes

7‧‧‧N電極 7‧‧‧N electrode

71‧‧‧N接觸電極 71‧‧‧N contact electrode

8‧‧‧P電極 8‧‧‧P electrode

81‧‧‧P接觸電極 81‧‧‧P contact electrode

9‧‧‧發光元件 9‧‧‧Lighting elements

91‧‧‧非接觸區域 91‧‧‧ Non-contact areas

第一圖:既有發光元件的截面示意圖。 First figure: A schematic cross-sectional view of a light-emitting element.

第二圖:本發明發光元件的俯視示意圖。 Second drawing: a schematic top view of a light-emitting element of the invention.

第三圖:第二圖的A-A截面示意圖(絕緣層達N-GAN層,N電極與P電極延伸至N-GAN層)。 Third figure: A-A cross-sectional view of the second figure (the insulating layer reaches the N-GAN layer, and the N electrode and the P electrode extend to the N-GAN layer).

第四圖:本發明發光元件未結合以N電極和P電極的俯視示意圖。 Fourth: A schematic plan view of the light-emitting element of the present invention without the N electrode and the P electrode.

第五圖:本發明發光元件的另一較佳實施截面圖(絕緣層延伸達U-GAN層)。 Fig. 5 is a cross-sectional view showing another preferred embodiment of the light-emitting element of the present invention (the insulating layer extends up to the U-GAN layer).

第六圖(a):本發明發光元件的N電極與P電極的實施狀態(一)。 Fig. 6(a) is a view showing an implementation state (1) of the N electrode and the P electrode of the light-emitting element of the present invention.

第六圖(b):本發明發光元件的N電極與P電極的實施狀態(二)。 Fig. 6(b) is a view showing an implementation state of the N electrode and the P electrode of the light-emitting element of the present invention (2).

第六圖(c):本發明發光元件的N電極與P電極的實施狀態(三)。 Fig. 6(c) is a view showing an implementation state (3) of the N electrode and the P electrode of the light-emitting element of the present invention.

1‧‧‧基板 1‧‧‧Substrate

2‧‧‧N型氮化鎵層 2‧‧‧N-type gallium nitride layer

21‧‧‧U型氮化鎵層 21‧‧‧U-type gallium nitride layer

3‧‧‧量子井 3‧‧‧Quantum Well

4‧‧‧P型氮化鎵層 4‧‧‧P-type gallium nitride layer

5‧‧‧透明導電層及反射層 5‧‧‧Transparent conductive and reflective layers

6‧‧‧絕緣層 6‧‧‧Insulation

61、62‧‧‧透孔 61, 62‧‧‧ through holes

7‧‧‧N電極 7‧‧‧N electrode

71‧‧‧N接觸電極 71‧‧‧N contact electrode

8‧‧‧P電極 8‧‧‧P electrode

81‧‧‧P接觸電極 81‧‧‧P contact electrode

9‧‧‧發光元件 9‧‧‧Lighting elements

91‧‧‧非接觸區域 91‧‧‧ Non-contact areas

Claims (1)

一種發光元件其製作方法,是採在:位於基板上方結合的N型氮化鎵層(N-GaN)是為藉蝕刻方式以形成一傾斜而上的兩旁層面,並在N型氮化鎵層(N-GaN)的預設段落依序結合以略傾斜而上的U型氮化鎵層、多層量子井(MQWS)、P型氮化鎵層(P-GaN)、與透明導電層及反射層,之後,在沿著透明導電層及反射層的作用層面、和P型氮化鎵層(P-GaN)與多層量子井(MQWS)的兩旁並延伸至N型氮化鎵層(N-GaN)與基板的交界處為覆設一預設厚度的絕緣層,使該絕緣層能藉N型氮化鎵層(N-GaN)形成的兩旁傾斜而上該層面而獲以覆設力足夠、易達到所須的厚度,在該絕緣層的兩旁預設部位為各預留複數透孔,及利用鉻(Cr)、鋁(Al)等材料導通N電極和P電極,其中該N電極與該P電極為同一層且同側排列,而透孔數量的多寡以用來調整電流;做為復續加工點膠、支架用,及N電極在經相應透孔以和N型氮化鎵層(N-GaN)形成一N接觸電極,而P電極在經相應透孔以透明導電層及反射層、P型氮化鎵層(P-GaN)形成一P接觸電極,而藉N型氮化鎵層(N-GaN)與P型氮化鎵層(P-GaN)在和多層量子井(MQWS)的接觸電導通後,以將多層量子井(MQWS)產生的光經由反射層之反射,藉由折射原理透過四面八方由各處發射而出。 A light-emitting device is produced by: an N-type gallium nitride layer (N-GaN) bonded on a substrate is formed by etching to form a sloped upper side layer and in an N-type gallium nitride layer. The pre-set paragraph of (N-GaN) is sequentially combined with a slightly slanted U-shaped gallium nitride layer, a multilayer quantum well (MQWS), a P-type gallium nitride layer (P-GaN), a transparent conductive layer, and a reflection. a layer, then, along the active layer of the transparent conductive layer and the reflective layer, and both the P-type gallium nitride layer (P-GaN) and the multilayer quantum well (MQWS) and extend to the N-type gallium nitride layer (N- The interface between the GaN and the substrate is covered with a predetermined thickness of the insulating layer, so that the insulating layer can be tilted on both sides of the N-GaN layer to obtain the covering force. Easy to achieve the required thickness, the predetermined portions on both sides of the insulating layer are reserved for a plurality of through holes, and the N electrode and the P electrode are turned on by using materials such as chromium (Cr) or aluminum (Al), wherein the N electrode and the N electrode are The P electrodes are in the same layer and arranged on the same side, and the number of through holes is used to adjust the current; as a reworking of dispensing, for the stent, and the N electrode is in the corresponding through hole and the N type The gallium layer (N-GaN) forms an N contact electrode, and the P electrode forms a P contact electrode through the corresponding transparent via transparent conductive layer and reflective layer, P-type gallium nitride layer (P-GaN), and borrows N The gallium nitride layer (N-GaN) and the P-type gallium nitride layer (P-GaN) are electrically connected to the multilayer quantum well (MQWS) to pass light generated by the multilayer quantum well (MQWS) through the reflective layer. The reflection is emitted from all sides by the principle of refraction in all directions.
TW102106357A 2013-02-22 2013-02-22 Light-emitting element and method for manufacturing the same TWI533466B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102106357A TWI533466B (en) 2013-02-22 2013-02-22 Light-emitting element and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102106357A TWI533466B (en) 2013-02-22 2013-02-22 Light-emitting element and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW201434175A TW201434175A (en) 2014-09-01
TWI533466B true TWI533466B (en) 2016-05-11

Family

ID=51943021

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102106357A TWI533466B (en) 2013-02-22 2013-02-22 Light-emitting element and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI533466B (en)

Also Published As

Publication number Publication date
TW201434175A (en) 2014-09-01

Similar Documents

Publication Publication Date Title
JP6870695B2 (en) Semiconductor light emitting device
TWI422065B (en) Light emitting diode chip, package structure of the same, and fabricating method thereof
JP6118575B2 (en) Light emitting device
US8896012B2 (en) Light emitting diode
US9425359B2 (en) Light emitting diode
KR102075655B1 (en) Light emitting device and light emitting device package
WO2016090839A1 (en) Inverted high-voltage light emitting device and manufacturing method therefor
TW201810737A (en) Compact light emitting diode chip
JP6580299B2 (en) Light emitting device
CN103855149A (en) Inverted high-voltage light-emitting diode and manufacturing method thereof
JP2012146926A (en) Light-emitting element, light-emitting element unit and light-emitting element package
TW201426969A (en) High voltage flip chip LED structure and manufacturing method thereof
US9305904B2 (en) Light-emitting diode device
US9548424B2 (en) Light emitting diode
CN104037296A (en) Light-emitting element and manufacturing method thereof
KR20160001259A (en) Light emitting device
TWM460409U (en) Light emitting element
TWI533466B (en) Light-emitting element and method for manufacturing the same
KR20150069228A (en) Light emitting diode with wavelength conversion layer and method of fabricating the same
CN103489980A (en) Light-emitting component and manufacturing method thereof
CN203386789U (en) Light-emitting element
CN102867898A (en) Light-emitting diode chip structure
TWI420713B (en) Led package and method of manufacturing the same
TWI456800B (en) Electrode coplanar light-emitting diode component, flip-chip light-emitting diode package structure and light-reflecting structure
KR101582333B1 (en) Light emitting diode, Flip-chip package and Method for manufacturing for the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees