TWI533295B - 包括氮化物材料之近場換能器 - Google Patents

包括氮化物材料之近場換能器 Download PDF

Info

Publication number
TWI533295B
TWI533295B TW102111504A TW102111504A TWI533295B TW I533295 B TWI533295 B TW I533295B TW 102111504 A TW102111504 A TW 102111504A TW 102111504 A TW102111504 A TW 102111504A TW I533295 B TWI533295 B TW I533295B
Authority
TW
Taiwan
Prior art keywords
nitride
near field
field transducer
nft
conductive
Prior art date
Application number
TW102111504A
Other languages
English (en)
Other versions
TW201403592A (zh
Inventor
趙通
薩巴斯瓦 薩荷
麥可 寇斯基
艾密特 伊塔吉
Original Assignee
希捷科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 希捷科技有限公司 filed Critical 希捷科技有限公司
Publication of TW201403592A publication Critical patent/TW201403592A/zh
Application granted granted Critical
Publication of TWI533295B publication Critical patent/TWI533295B/zh

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B13/00Recording simultaneously or selectively by methods covered by different main groups among G11B3/00, G11B5/00, G11B7/00 and G11B9/00; Record carriers therefor not otherwise provided for; Reproducing therefrom not otherwise provided for
    • G11B13/08Recording simultaneously or selectively by methods covered by different main groups among G11B3/00, G11B5/00, G11B7/00 and G11B9/00; Record carriers therefor not otherwise provided for; Reproducing therefrom not otherwise provided for using near-field interactions or transducing means and at least one other method or means for recording or reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B13/00Recording simultaneously or selectively by methods covered by different main groups among G11B3/00, G11B5/00, G11B7/00 and G11B9/00; Record carriers therefor not otherwise provided for; Reproducing therefrom not otherwise provided for
    • G11B13/04Recording simultaneously or selectively by methods covered by different main groups among G11B3/00, G11B5/00, G11B7/00 and G11B9/00; Record carriers therefor not otherwise provided for; Reproducing therefrom not otherwise provided for magnetically or by magnetisation and optically or by radiation, for changing or sensing optical properties
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3103Structure or manufacture of integrated heads or heads mechanically assembled and electrically connected to a support or housing
    • G11B5/3106Structure or manufacture of integrated heads or heads mechanically assembled and electrically connected to a support or housing where the integrated or assembled structure comprises means for conditioning against physical detrimental influence, e.g. wear, contamination
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3133Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure
    • G11B5/314Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure where the layers are extra layers normally not provided in the transducing structure, e.g. optical layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/4806Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed specially adapted for disk drive assemblies, e.g. assembly prior to operation, hard or flexible disk drives
    • G11B5/4866Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed specially adapted for disk drive assemblies, e.g. assembly prior to operation, hard or flexible disk drives the arm comprising an optical waveguide, e.g. for thermally-assisted recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/60Fluid-dynamic spacing of heads from record-carriers
    • G11B5/6005Specially adapted for spacing from a rotating disc using a fluid cushion
    • G11B5/6088Optical waveguide in or on flying head
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/0021Thermally assisted recording using an auxiliary energy source for heating the recording layer locally to assist the magnetization reversal

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)
  • Magnetic Heads (AREA)

Description

包括氮化物材料之近場換能器 [優先權]
本申請案申請美國暫時性申請號61/637,696的優先權,標題為〝包括氮化物之近場換能器(NFT)〞,其係具有2012年4月24日提出申請的案件編號430.17123000,本發明在此以引用的方式併入本文。
本發明是關於一種包括氮化物材料之近場換能器。
在熱輔助磁錄中,資訊位元會以提高溫度而被記錄在資料儲存媒體上,且該資料位元維度可由該儲存媒體中之加熱區域的維度或者受到磁場之儲存媒體區域的維度所決定。在一種研究途徑中,光束會被濃縮到儲存媒體上的小光點以加熱一部份的媒體並且減少該加熱部分的磁矯頑力。資料隨後可被寫入到該減少矯頑力的區域。
使用於熱輔助磁錄之記錄磁頭的一種實例包括近場換能器(NFT),其係能夠將光線聚焦到尺寸小於繞射極限 的光點。NFT係被設計以達到在設計光波長上的局部表面電漿子共振。在共振時,由於在金屬中電子的集體振盪,圍繞NFT的高電場會出現。一部份的電場將隧穿入儲存媒體內並且被吸收,以提高局部用來記錄的媒體溫度。
在電漿子共振上,NFT溫度明顯增加。此外,一部份的NFT可被暴露在該記錄磁頭的氣體軸承表面上,並且因此受到機械磨損。在HAMR(熱輔助磁錄)操作期間內,NFT性能可大幅受到熱與機械應力的影響。由於其優質的光學特性,金(Au)目前被使用當作主要的NFT材料。不過,金具有相當低的機械強度,且在提高溫度上,金NFT可體驗到回流,以造成NFT形狀的修整。形狀的變形可減少耦合效率並且減少被傳送到儲存媒體的光能數量。因此,仍餘留有由除了金以外之材料所製成之NFT的需求。
在此揭露一種包括近場換能器的設備,該近場換能器包括導電氮化物。
也揭露一種包括光源、波導與近場換能器的設備,該近場換能器包括導電氮化物,其中該光源、波導與近場換能器可被架構以將光線從光源傳送到波導,且最後到近場換能器。
也揭露一種碟片驅動,其包括具有一彎曲的至少一致動器臂;至少一磁頭,其中每一彎曲具有一磁頭於其遠端 且其中每一磁頭包括:一光源;一近場換能器,該近場換能器包括導電氮化物;一磁讀取器;與一磁寫入器,其中該光源與該近場換能器係被架構以將光線從該光源傳送到近場換能器,以便能夠用寫入來協助該磁寫入器。
本發明的以上內容不打算說明本發明的每一揭露實施例或每一實施過程。接著的說明會更特別地作為顯示性實施例的例子。在整個應用的許多地方中,可經由實例清單來提供引導,此些實例可被使用於種種組合中。在每一情況中,所詳述的清單僅僅當作一代表性群組,且不應該被詮釋為唯一清單。
10‧‧‧碟片驅動
12‧‧‧外殼
14‧‧‧轉軸馬達
16‧‧‧磁儲存媒體
18‧‧‧臂
20‧‧‧第一端
22‧‧‧記錄磁頭或滑動器
24‧‧‧第二端
26‧‧‧軸承
27‧‧‧磁軌
28‧‧‧致動器馬達
30‧‧‧記錄磁頭
32‧‧‧基板
34‧‧‧基底塗料
36‧‧‧底桿
38‧‧‧頂桿
40‧‧‧軛鐵或托架
42‧‧‧波導
44‧‧‧核心層
46‧‧‧包覆層
48‧‧‧包覆層
50‧‧‧鏡子
52‧‧‧桿體
54‧‧‧第一端
56‧‧‧空氣軸承表面
58‧‧‧斜桿片
60‧‧‧平面線圈
62‧‧‧絕緣材料
63‧‧‧絕緣材料
64‧‧‧散熱片
68‧‧‧基板
70‧‧‧散熱片層
72‧‧‧磁性記錄層
74‧‧‧保護層
76‧‧‧位元
78‧‧‧能量源
80‧‧‧光束
82‧‧‧箭頭
84‧‧‧近場換能器
90‧‧‧硬糖近場換能器
92‧‧‧散熱片
94‧‧‧碟形部分
96‧‧‧栓釘
100‧‧‧耦合奈米柱近場換能器
102‧‧‧奈米柱
104‧‧‧奈米柱
106‧‧‧間隙
108‧‧‧第一部份
110‧‧‧第二部份
112‧‧‧第一部份
114‧‧‧第二部份
116‧‧‧端
118‧‧‧端
500‧‧‧近場換能器
510a‧‧‧氮化物基層
510b‧‧‧氮化物基層
515a‧‧‧非氮化物核心
515b‧‧‧非氮化物核心
520‧‧‧底部
525‧‧‧頂部
600‧‧‧近場換能器
610a‧‧‧氮化物核心
610b‧‧‧氮化物核心
615a‧‧‧非氮化物基層
615b‧‧‧非氮化物基層
620‧‧‧底部
625‧‧‧頂部
700‧‧‧近場換能器
705a‧‧‧氮化物層
710a‧‧‧非氮化物層
720‧‧‧底部
725‧‧‧頂部
圖1係為呈碟片驅動形式之資料儲存裝置的圖形代表,其係包括根據本發明態樣來架構的記錄磁頭。
圖2係為根據本發明態樣來架構之記錄磁頭的側視圖。
圖3係為近場換能器的概略性代表。
圖4係為另一近場換能器的概略性代表。
圖5A描寫所揭露NFT的概略性截面。
圖5B與5C係為顯示角圓化之先前使用NFT的原子力顯微鏡(AFM)影像與穿透式電子顯微鏡(TEM)影像。
圖6描述另一揭露NFT的概略截面。
圖7A與7B係為另一揭露近場換能器之截面的概略 性代表。
圖8顯示所揭露示範性裝置的由上而下圖。
圖9顯示在使用所揭露裝置之媒體記錄層中的光強度。
該些圖不一定按比率繪製。在該些圖式中所使用的相同數字意指相同元件。不過,將理解的是,意指在已知圖式中元件之號碼的使用不打算限制在標以相同數目之另一圖式中的元件。
在以下的說明中,可參考伴隨的圖組,其係形成其一部份,且其係藉由說明數種具體實施例來顯示。要理解的是,在不背離本發明的範圍或精神之下,其他實施例可被考慮並且可被進行。以下詳細說明因此無法以限制性意義來產生。
除非另外被指示,在該說明書與申請專利範圍中所使用之表達特徵尺寸、數量與物理特性的全部數目,其係在全部情形中,可被理解為藉由術語〝大約〞來修改。於是,除非相反地指示,在以上說明書與附圖中所陳述的數值參數係為近似值,其係可依據由那些熟諳該技藝者當使用在此所揭露教理時所試圖得到的特性來改變。
端點之數值範圍的複述包括包含在那範圍內的全部數目(例如,1至5包括1、1.5、2、2.75、3、3.80、4與5)以及在那範圍內的任一範圍。
如在本說明書與附加申請專利範圍中所使用的,單數形式〝一個(a、an)〞與〝該(the)〞包含具有複數個參考對象的實施例,除非該內容明顯有不同的指示。如在本說明書與附加申請專範圍中所使用地,術語〝或〞通常可被使用於其包括〝與/或〞的意義中,除非該內容明顯有不同的指示。
〝包括(include、including)〞或類似術語意味著包含但不限於,也就是,包括且並非唯一。應該注意的是,〝頂部〞與〝底部〞(或者像〝上〞與〝下〞的其他術語)可被完全使用於相關說明,其係並沒有意味著所說明元件所放置之物品的任一全部定向。
在一種態樣中,本發明提供可被使用於HAMR記錄磁頭中的近場換能器(NFT)。所揭露的NFT包括可顯示有利機械特性以及與相鄰材料之熱失配降低的材料,同時仍可處理可令人接受的光學特性。在多種實例中,此些材料包括氮化物。
在此所揭露的係為NFT以及包括此些NFT的裝置。圖1係為呈使用所揭露NFT之碟片驅動10形式之資料儲存裝置的圖形代表。碟片驅動10包括外殼12(在此圖式中,上部分可被移除且下部分可見),其尺寸與架構可包含該碟片驅動的種種元件。碟片驅動10包括用來在該外殼內轉動至少一磁儲存媒體16的轉軸馬達14。至少一臂18被包含在該外殼12內,每一臂18擁有具有記錄磁頭或滑動器22的第一端20以及藉由軸承26而被樞軸地安 裝在一軸上的第二端24。致動器馬達28係被放置在用於樞軸該臂18之該臂的第二端24,以將記錄磁頭22放置在該碟片16的希望區段或磁軌27。該致動器馬達28係由控制器所調整,其係在本圖式中並沒有顯示且在該技術中眾所皆知。該儲存媒體例如包括連續媒體或位元圖案化媒體。
就熱輔助磁錄(HAMR)而言,電磁輻射,例如可見、紅外或紫外光可被引導至該資料儲存媒體的表面上,以提高該媒體之局部化區域的溫度,以促進該區域磁化的切換。HAMR記錄磁頭的記錄設計包括在滑動器上的薄膜波導以引導光線朝向該儲存媒體,以及近場換能器以將光線聚焦在尺寸小於繞射極限的光點。當圖1顯示一碟片驅動時,所揭露的NFT可被使用於包括近場換能器的其他裝置中。
圖2係為包括所揭露NFT之記錄磁頭的側視圖;該記錄磁頭的位置靠近儲存媒體。該記錄磁頭30包括基板32、基板上的基底塗料34、基底塗料上的底桿36、以及經由軛鐵或托架40被磁耦合到底桿的頂桿38。波導42係被放置在頂與底桿之間。波導包括核心層44以及在核心層相反側上的包覆層46與48。鏡子50的位置係相鄰其中一包覆層。頂桿係為兩片桿,其係包括第一部份或桿體52,具有與空氣軸承表面56隔開的第一端54、以及從第一部份延伸並且在朝向底桿之方向傾斜的第二部份或斜桿片58。第二部份的結構包括與該記錄磁頭之空氣軸承 表面56相鄰的一端,該端比起頂桿的第一部份更接近波導。平面線圈60也延伸在頂與底桿之間與托架四週。在本實例中,頂桿當作寫入桿且底桿當作回復桿。
絕緣材料62隔開該線圈匝。在一個實例中,該基板係為鋁鈦碳(AlTiC),該核心層係為氧化鉭(Ta2O5),且該包覆層(與其他絕緣層)係為氧化鋁(Al2O3)。絕緣材料63的頂部層可被形成在頂桿上。散熱片64係相鄰斜桿片58放置。散熱片包含非磁性材料,譬如例如金。
如圖2所示,記錄磁頭30包括將與寫入桿58施加磁性寫入場H至儲存媒體16之處緊鄰的磁儲存媒體16加熱用之結構。在本實例中,媒體16包括基板68、散熱片層70、磁性記錄層72、與保護層74。不過,其他型態的媒體則可被使用,譬如位元圖案化媒體。由線圈60中之電流所產生的磁場H可被使用來控制在媒體之記錄層中位元76的磁化方向。
儲存媒體16的位置相鄰或在該記錄磁頭30以下。該波導42引導來自電磁輻射之能量源78的光線,其係例如是紫外線、紅外線或可見光。該來源例如是雷射二極體或者引導光束80朝向波導42的其他適當雷射光源。特定示範性型態的能量源78包括例如雷射二極體、發光二極體(LED)、邊緣發光雷射二極體(EEL)、垂直腔室表面發光雷射(VCSEL)、與表面發光二極體。在一些實施例中,該能量源可產生具有波長從300nm至2000nm的能量。在一些實施例中,該能量源例如可產生具有波長830nm 的能量。已知用於耦合光束80到波導42內的種種技術可被使用。一旦光束80被耦合到波導42內,該光可傳播經過波導42,朝向相鄰記錄磁頭30之空氣軸承表面(ABS)而形成之波導42的截斷端。光線離開波導端並且將一部份媒體加熱,而如箭頭82所示,媒體相對於記錄磁頭移動。近場換能器(NFT)84的位置在該波導中或者相鄰,以及在該空氣軸承表面上或附近。該散熱片材料可被選擇,以致於它無法與NFT的共振干擾。
雖然圖2的實例顯示一垂直磁記錄磁頭與一垂直磁儲存媒體,但是將理解的是,該發明也可結合其他型態的記錄磁頭與/或儲存媒體來使用,在此,將光線集中到一小點是令人希望的。
圖3係為結合散熱片92之硬糖狀近場換能器90的概略圖。NFT包括碟形部分94以及從該碟形部分延伸的栓釘96。該散熱片92可被放置在該碟形部分與圖2之頂桿的斜部分之間。當被安裝在記錄磁頭時,栓釘可被暴露在ABS並因此可受到機械磨損。
圖4係為耦合奈米柱(CNR)近場換能器100的概略圖。此NFT包括由間隙106所分開的奈米柱102與104兩者。奈米柱102包括第一部份108與第二部份110。奈米柱104包括第一部份112與第二部份114。當被安裝在記錄磁頭時,奈米柱的端116與118可被暴露在ABS並且因此受到機械磨損。
圖3與4顯示實例NFT。不過,本發明不限於任何特 定型態的NFT。以下所說明的材料可被使用於種種NFT架構中。當被使用於記錄磁頭時,NFT可具有位置在該空氣軸承表面上或附近的一端。
欲被使用於所揭露NFT中的材料一般係為電漿子材料。材料的電漿子特性可依據折射率(n)與消光係數(k)被估計。表I顯示多種材料的光學特性(n與k)、導熱性與熱擴散係數(CTE)。表I也提供用於表面電漿子產生((n2-k2)/2nk)的優值(FOM)。
如從表I所見,氮化鋯與氮化鈦目前所測量出的特性 僅僅低於銀、金與銅的那些者,在所考慮的全部替代性電漿子材料之中,其係並且因此是有利的候選者。更者,氮化鋯與氮化鈦的沈積過程可被影響,以便改善光學特性。以下表Ⅱ顯示多種材料的奈米壓痕硬度與熱擴散係數(CTE)。
如從表Ⅱ所見,氮化鋯的奈米壓痕硬度係為20-40季帕(GPa)且氮化鈦的奈米壓痕硬度係為18-21季帕(GPa)。這些數值係為比金(大約2季帕(GPa))更高的數量級。更者,氮化鋯(9.4×10-6/K)與氮化鈦(9.35×10-6/K)的CTE係大約比金更低40%並且更靠近圍繞NFT的氧化物波導材料。這導致在HAMR操作期間內更少的熱應力。
在此揭露包括導電氮化物材料的NFT。示範性導電氮化物材料例如包括氮化鋯、氮化鈦、氮化鉭、氮化鉿、或其組合。在一些實施例中,NFT包括氮化鋯、氮化鈦或其組合。
在一些實施例中,整個NFT係由氮化物材料所製成。在一些實施例中,整個NFT係由氮化鋯、氮化鈦或其一些組合所製成。在一些實施例中,NFT係為硬糖型設計、奈米柱型設計、或任何其他型態的NFT設計。在一些實施例中,硬糖型NFT整個由氮化物材料所製成。在一些實施例中,奈米柱型NFT整個由氮化物材料所製成。
在一些實施例中,只有一部份的NFT係由氮化物材料所製成。在一些實施例中,此NFT係為硬糖型設計、奈米柱型設計、或任何其他型態的NFT設計。在一些實施例中,只有NFT的栓釘(見圖3的栓釘96)係由氮化物材料製成且剩餘的NFT(亦即,圖3中的碟形部分94)係由不同材料所製成,例如金、銀、銅或其合金。由於氮化物材料超過金的優質熱機特性,此一實施例可改善在ABS上之NFT的可靠性。雖然可能會有一些耦合效率損耗,但是由於大碟形表面面積或體積仍是金,該損耗低並且在可接受範圍內。
在一些實施例中,只有一或多部分的NFT係由氮化物材料製成。具有由氮化物材料製成之一或多部分之NFT的實例,包括譬如在圖5A中所描述的實施例。在圖5A中的近場換能器(NFT)500係為奈米柱型近場換能器,在此,每一柱包括氮化物基層510a與510b於NFT之個別柱的底部520上(相反NFT的頂部525)以及非氮化物核心515a與515b。在一些實施例中,非氮化物核心515a與515b例如係為金、銀、銅或其合金。在一些實施例中 ,氮化物基層510a與510b具有至少5埃的厚度。在一些實施例中,氮化物基層510a與510b具有從1埃至20埃的厚度。
包括此氮化物基層的NFT可促進NFT的機械特性而不會明顯犧牲耦合效率。在一些實施例中,此氮化物基層的功能係為減少、最小化或排除在(例如)金奈米柱型NFT中已經看見的角圓化問題。圖5B與5C顯示顯示角圓化之金奈米柱型NFT的原子力顯微鏡(AFM)與穿透式電子顯微鏡(TEM)影像。角圓化的位置似乎與在該柱之角落上(金/介質界面)之最高應力點的位置互相有關係,如熱機模製成型所預料。譬如在圖5A中所描述的實施例可緩和角圓化的問題,並且應該減少起因於存在於整個NFT之相當小數量氮化物材料的耦合效率損耗。
具有由氮化物材料製成之一或多部分之NFT的另一實例包括譬如在圖6中所描述的實施例。在圖6中的近場換能器(NFT)600係為奈米柱型近場換能器,在此,每一柱包括非氮化物基層615a與615b於NFT之個別柱的底部620上(相反NFT的頂部625)以及氮化物核心610a與610b。在一些實施例中,非氮化物基層615a與615b例如為金、銀、銅或其合金。在一些實施例中,非氮化物基層615a與615b具有至少50nm的厚度。在一些實施例中,非氮化物基層615a與615b具有從1埃至100埃的厚度。一實施例可提供優點,因為NFT柱的底部被認為是NFT的電漿子活性部分,其係並且因此使由相當 更有效率之電漿子材料(金、銀、銅、或其合金)製成的區域提供具有非常高耦合效率的NFT。以氮化物材料來填充該柱(亦即,氮化物核心610a與610b),其具有低CTE與低模量,可提供熱機優點。此一實施例可提供更高耦合效率與較佳熱機特性兩者。
具有由氮化物材料製成之一或多部分之NFT的另一實例包括譬如在圖7A與7B中所描述的實施例。在圖7A中所描述的近場換能器(NFT)700係為奈米柱型近場換能器,在此,每一柱包括交替氮化物與非氮化物層的多層結構。在圖7A中所描述的實施例包括氮化物層705a與非氮化物層710a的交替層。在本實施例中,氮化物層係為在NFT個別柱之底部720上(相反NFT的頂部725)的第一層。在圖7B中所描述的實施例也包括非氮化物層710a與氮化物層705a的交替層。在本實施例中,非氮化物層係為在NFT個別柱之底部720上的第一層。在圖7A與7B所描述的任一實施例中,非氮化物層710a例如是金、銀、銅或其合金。在一些實施例中,會有從1至3000組氮化物與非氮化物材料的交替層。在一些實施例中,會有從1至1000組氮化物與非氮化物材料的交替層。在NFT中的個別層可、但不需要具有相同厚度。更者,任一個別層在不同點會具有不同厚度,例如,沿著層底部之區域的厚度與沿著NFT之一側或諸側的區域不同。在一些實施例中,個別層具有從1埃至1000埃的厚度。在一些實施例中,個別層具有從1埃至100埃的厚度。此些實施 例可提供一種將耦合效率與熱機特性最大化的方式。
在一些實施例中,NFT包括在基底材料中的散佈材料。例如,氮化物材料可被散佈在遍佈至少一部份NFT的非氮化物材料(基底材料)中。或者,例如,NFT包括散佈在遍佈至少一部份NFT之氮化物材料(基底材料)中的非氮化物材料。在一些實施例中,材料可被散佈在整個NFT或僅僅NFT一些部分中的基底材料中。此等實施例係以任一型態的NFT被利用,例如包括奈米柱型NFT與硬糖型NFT。散佈在基底材料中的材料(氮化物或非氮化物)可例如被摻雜入基底材料。同樣地,被散佈在基底材料中的材料可呈奈米顆粒形式。在一些實施例中,奈米顆粒具有例如從1nm至100nm的平均直徑。散佈材料可個別形成並且隨後被散佈在基底材料中,或者該散佈材料與基底材料可同時形成(例如,共濺鍍)。在一些實施例中,非氮化物基底材料例如包括金、銀、銅、或其合金。
實例
整體由氮化鈦製成的奈米柱型NFT可被模製成型。NFT的尺寸(跨磁軌寬度與z高度)係以氮化鈦的特性而在心中被選擇。圖8顯示此一裝置的頂部圖,兩個半圓係為NFT區域。在媒體記錄層中的光學強度係被顯示於圖9中。模製成型顯示此設計的耦合效率大約是金奈米柱型NFT的30%(金的CE=3.85%且氮化鈦的CE=1.10%)。不過,NFT設計的接受度不完全依據耦合效率;氮化鈦奈 米柱型NFT的優質熱機特性非常有益。就氮化鋯奈米柱型NFT而言,類似的結果將令人期待。
化學計量、晶狀與低電阻金屬氮化鈦或氮化鋯的生長在過去需要高溫處理,例如使用物理蒸汽沈積(PVD)方法(譬如直流(DC)或反應性磁控管濺射)達到大約800℃。藉由高度離子化濺射沈積技術(譬如高功率脈衝磁控管濺射(HiPIMS)電源),低電阻氮化鈦薄膜已經在低到大約200℃的溫度上被生產。具有低到41.9微歐姆-公分(μΩ-cm)之電阻的氮化鈦薄膜已經被得到。雷射剝融沈積技術也被使用來在從大約100℃至大約600℃的溫度範圍生產氮化鈦與氮化鋯薄膜。
因此,包括氮化物材料之近場換能器的實施例可被揭露。以上所說明的實施過程與其他實施過程係在以下申請專利範圍的範圍內。熟諳該技藝者將理解到,本發明可用除了那些所揭露以外的實施例來實施。所揭露的實施例係為了顯示而非限制之目的來呈現。
10‧‧‧磁碟機
12‧‧‧外殼
14‧‧‧轉軸馬達
16‧‧‧磁儲存媒體
18‧‧‧臂
20‧‧‧第一端
22‧‧‧記錄磁頭或滑動器
24‧‧‧第二端
26‧‧‧軸承
27‧‧‧磁軌
28‧‧‧致動器馬達

Claims (20)

  1. 一種包括近場換能器的設備,包含:一近場換能器,該近場換能器包含一導電氮化物。
  2. 如申請專利範圍第1項之設備,其中該近場換能器包含氮化鈦、氮化鋯、氮化鉭、氮化鉿或其組合。
  3. 如申請專利範圍第1項之設備,其中該整個近場換能器包含導電氮化物。
  4. 如申請專利範圍第3項之設備,其中該近場換能器僅僅包括一導電氮化物。
  5. 如申請專利範圍第1項之設備,其中該近場換能器具有一栓釘與碟片結構,且僅僅該栓釘包含導電氮化物。
  6. 如申請專利範圍第5項之設備,其中該近場換能器的碟片包含金。
  7. 如申請專利範圍第1項之設備,其中該整個近場換能器實質由氮化鈦、氮化鋯、氮化鉭、氮化鉿或其組合所組成。
  8. 如申請專利範圍第1項之設備,進一步包含一能量源,該能量源產生具有從大約300nm至大約2000nm之波長的能量。
  9. 如申請專利範圍第5項之設備,其中只有部分的近場換能器包含導電氮化物。
  10. 如申請專利範圍第9項之設備,其中該近場換能器包含至少一層導電氮化物材料。
  11. 如申請專利範圍第10項之設備,其中該至少一層係在該近場換能器的底部上。
  12. 如申請專利範圍第10項之設備,其中該近場換能器包含導電氮化物與另一電漿子、非氮化物材料的一多層結構。
  13. 如申請專利範圍第1項之設備,其中該導電氮化物散布於整個近場換能器。
  14. 如申請專利範圍第13項之設備,其中該導電氮化物係為在另一電漿子、非氮化物材料中的摻雜物。
  15. 如申請專利範圍第13項之設備,其中另一電漿子、非氮化物材料係為在該導電氮化物材料中的摻雜物。
  16. 一種包括近場換能器的設備,包含:一能量源;一波導;以及一近場換能器,該近場換能器包含一導電氮化物,其中該能量源、波導與近場換能器係被架構以將光線從該能量源傳送到波導且最後到該近場換能器。
  17. 如申請專利範圍第16項之設備,其中該近場換能器包含氮化鈦、氮化鋯、氮化鉭、氮化鉿或其組合。
  18. 如申請專利範圍第16項之設備,其中該近場換能器包含氮化鈦、氮化鋯、氮化鉭、氮化鉿或其組合;以及選自金、銀、銅或其合金選出的非氮化物材料。
  19. 一種磁碟機,包含:至少一致動器臂,具有一第一端與一第二端; 至少一磁頭,其中每一臂在其第一端上具有一磁頭且其中每一磁頭包含:一能量源;一近場換能器,該近場換能器包含一導電氮化物;一磁性讀取器;以及一磁性寫入器,其中該能量源與該近場換能器係被架構以將光線從該能量源傳送到該近場換能器,以便以寫入來協助該磁性寫入器寫入。
  20. 如申請專利範圍第19項之磁碟機,其中該近場換能器包含氮化鈦、氮化鋯、氮化鉭、氮化鉿或其組合;以及選自金、銀、銅或其合金選出的非氮化物材料。
TW102111504A 2012-04-24 2013-03-29 包括氮化物材料之近場換能器 TWI533295B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201261637696P 2012-04-24 2012-04-24

Publications (2)

Publication Number Publication Date
TW201403592A TW201403592A (zh) 2014-01-16
TWI533295B true TWI533295B (zh) 2016-05-11

Family

ID=49380026

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102111504A TWI533295B (zh) 2012-04-24 2013-03-29 包括氮化物材料之近場換能器

Country Status (5)

Country Link
US (1) US9224416B2 (zh)
JP (1) JP5805698B2 (zh)
KR (1) KR101563210B1 (zh)
CN (1) CN103514888B (zh)
TW (1) TWI533295B (zh)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9224416B2 (en) 2012-04-24 2015-12-29 Seagate Technology Llc Near field transducers including nitride materials
US9251837B2 (en) 2012-04-25 2016-02-02 Seagate Technology Llc HAMR NFT materials with improved thermal stability
US8427925B2 (en) 2010-02-23 2013-04-23 Seagate Technology Llc HAMR NFT materials with improved thermal stability
KR101738552B1 (ko) 2012-04-25 2017-05-22 시게이트 테크놀로지 엘엘씨 니어 필드 트랜스듀서 및 접착 층을 포함하는 디바이스들
US8861138B2 (en) 2013-03-18 2014-10-14 Headway Technologies, Inc. Multilayer plasmon generator
US8830799B1 (en) * 2013-03-18 2014-09-09 Headway Technologies, Inc. Near-field light generator and thermally-assisted magnetic recording head
WO2014197190A1 (en) * 2013-06-07 2014-12-11 Purdue Research Foundation Near field transducer for heat-assisted magnetic recording
US8830800B1 (en) * 2013-06-21 2014-09-09 Seagate Technology Llc Magnetic devices including film structures
KR101741617B1 (ko) * 2013-06-24 2017-05-30 시게이트 테크놀로지 엘엘씨 적어도 하나의 접착층을 포함하는 디바이스들 및 접착층들을 형성하는 방법
US9245573B2 (en) 2013-06-24 2016-01-26 Seagate Technology Llc Methods of forming materials for at least a portion of a NFT and NFTs formed using the same
US9099117B2 (en) 2013-06-24 2015-08-04 Seagate Technology Llc Near-field transducer peg encapsulation
US20140376340A1 (en) * 2013-06-24 2014-12-25 Seagate Technology Llc Peg only near-field transducer
US9286931B2 (en) 2013-06-24 2016-03-15 Seagate Technology Llc Materials for near field transducers and near field transducers containing same
US9058824B2 (en) * 2013-06-24 2015-06-16 Seagate Technology Llc Devices including a gas barrier layer
US9275659B2 (en) 2013-06-24 2016-03-01 Seagate Technology Llc Peg only near-field transducer
US8867170B1 (en) 2013-07-15 2014-10-21 Headway Technologies, Inc. Multilayer plasmon generator
US9548076B2 (en) 2013-11-08 2017-01-17 Seagate Technology Llc Magnetic devices with overcoats
US9691423B2 (en) 2013-11-08 2017-06-27 Seagate Technology Llc Devices including at least one adhesion layer and methods of forming adhesion layers
US9263074B2 (en) 2013-11-08 2016-02-16 Seagate Technology Llc Devices including at least one adhesion layer
US9570098B2 (en) 2013-12-06 2017-02-14 Seagate Technology Llc Methods of forming near field transducers and near field transducers formed thereby
US9697856B2 (en) 2013-12-06 2017-07-04 Seagate Techology LLC Methods of forming near field transducers and near field transducers formed thereby
US20150248901A1 (en) * 2014-02-28 2015-09-03 Seagate Technology Llc Devices including near field transducers
US9019803B1 (en) * 2014-05-02 2015-04-28 Headway Technologies, Inc. Laminated plasmon generator with cavity process
US9666220B2 (en) 2014-05-25 2017-05-30 Seagate Technology Llc Devices including a near field transducer and at least one associated adhesion layer
US9822444B2 (en) 2014-11-11 2017-11-21 Seagate Technology Llc Near-field transducer having secondary atom higher concentration at bottom of the peg
US10163456B2 (en) 2014-11-11 2018-12-25 Seagate Technology Llc Near-field transducer with recessed region
US10510364B2 (en) 2014-11-12 2019-12-17 Seagate Technology Llc Devices including a near field transducer (NFT) with nanoparticles
US9881638B1 (en) * 2014-12-17 2018-01-30 Western Digital (Fremont), Llc Method for providing a near-field transducer (NFT) for a heat assisted magnetic recording (HAMR) device
US9202481B1 (en) 2015-03-04 2015-12-01 HGST Netherlands B.V. Near-field transducer with compositionally graded material for heat assisted magnetic recording
US9792931B2 (en) * 2015-03-22 2017-10-17 Seagate Technology Llc Devices including a difussion barrier layer
US10102872B2 (en) 2015-03-24 2018-10-16 Seagate Technology Llc Devices including at least one multilayer adhesion layer
US10403315B2 (en) * 2015-05-06 2019-09-03 Western Digital Technologies, Inc. Near-field transducer for heat assisted magnetic recording comprising of thermally stable material layer
WO2016191414A1 (en) * 2015-05-27 2016-12-01 Seagate Technology Llc Thermally robust near-field transducer peg
US9741381B1 (en) * 2015-05-28 2017-08-22 Seagate Technology Llc Near field transducers (NFTs) including a protective layer and methods of forming
US9620152B2 (en) 2015-05-28 2017-04-11 Seagate Technology Llc Near field transducers (NFTS) and methods of making
WO2016191666A1 (en) 2015-05-28 2016-12-01 Seagate Technology Llc Near field transducers (nfts) including barrier layer and methods of forming
US9928859B2 (en) 2015-05-28 2018-03-27 Seagate Technology Llc Near field transducers (NFTS) and methods of making
CN107924688B (zh) * 2015-05-28 2021-05-11 希捷科技有限公司 包含由不同材料制成的销钉和盘的近场换能器(nft)的设备
US9672848B2 (en) 2015-05-28 2017-06-06 Seagate Technology Llc Multipiece near field transducers (NFTS)
US9269380B1 (en) 2015-07-10 2016-02-23 Seagate Technology Llc Devices including a near field transducer (NFT), at least one cladding layer and interlayer there between
US9852748B1 (en) 2015-12-08 2017-12-26 Seagate Technology Llc Devices including a NFT having at least one amorphous alloy layer
US9972346B2 (en) 2016-02-27 2018-05-15 Seagate Technology Llc NFT with mechanically robust materials
US10490214B1 (en) 2017-08-04 2019-11-26 Seagate Technology Llc Near-field transducer having dielectric wrap for reducing heat
US11440133B2 (en) * 2018-05-04 2022-09-13 Mazak Corporation Low-cost friction stir processing tool
US20210027808A1 (en) 2019-07-23 2021-01-28 Western Digital Technologies, Inc. Heat-assisted magnetic recording (hamr) head with tapered main pole and heat sink material adjacent the pole

Family Cites Families (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1980001692A1 (en) 1979-02-12 1980-08-21 Exxon Research Engineering Co Tetraalkyl phosphonium substituted transition metal complexes
GB2086651B (en) 1980-04-25 1984-02-01 Dmitriev Stanislav P Device for irradiating with electron beams
US5482611A (en) 1991-09-30 1996-01-09 Helmer; John C. Physical vapor deposition employing ion extraction from a plasma
DE4200235C1 (zh) 1992-01-08 1993-05-06 Hoffmeister, Helmut, Dr., 4400 Muenster, De
US5326429A (en) 1992-07-21 1994-07-05 Seagate Technology, Inc. Process for making studless thin film magnetic head
US5624868A (en) 1994-04-15 1997-04-29 Micron Technology, Inc. Techniques for improving adhesion of silicon dioxide to titanium
JP3407548B2 (ja) 1996-03-29 2003-05-19 株式会社日立製作所 イオン打込み装置及びこれを用いた半導体製造方法
EP0906636B1 (en) 1996-05-31 2005-05-25 Akashic Memories Corporation Highly tetrahedral amorphous carbon films and methods and ion-beam source for their production
US6312766B1 (en) 1998-03-12 2001-11-06 Agere Systems Guardian Corp. Article comprising fluorinated diamond-like carbon and method for fabricating article
US6130436A (en) 1998-06-02 2000-10-10 Varian Semiconductor Equipment Associates, Inc. Acceleration and analysis architecture for ion implanter
EP1069809A1 (en) 1999-07-13 2001-01-17 Ion Beam Applications S.A. Isochronous cyclotron and method of extraction of charged particles from such cyclotron
US7032427B2 (en) 2000-06-09 2006-04-25 Seiko Instruments Inc. Method for forming optical aperture, near-field optical head, method for fabricating near-field optical head, and information recording/reading apparatus
US6632483B1 (en) 2000-06-30 2003-10-14 International Business Machines Corporation Ion gun deposition and alignment for liquid-crystal applications
US6589676B1 (en) 2000-07-25 2003-07-08 Seagate Technology Llc Corrosion resistant magnetic thin film media
US6641932B1 (en) 2000-09-05 2003-11-04 Seagate Technology, Llc Magnetic thin film media with chromium capping layer
US6902773B1 (en) 2000-11-21 2005-06-07 Hitachi Global Storage Technologies Netherlands, B.V. Energy gradient ion beam deposition of carbon overcoats on rigid disk media for magnetic recordings
US7064491B2 (en) 2000-11-30 2006-06-20 Semequip, Inc. Ion implantation system and control method
JP4184668B2 (ja) 2002-01-10 2008-11-19 富士通株式会社 Cpp構造磁気抵抗効果素子
AU2003218265A1 (en) 2002-06-28 2004-01-19 Seagate Technology Llc Apparatus and method for producing a small spot of optical energy
US6999384B2 (en) 2002-09-27 2006-02-14 Carnegie Mellon University Device with waveguide defined by dielectric in aperture of cross-track portion of electrical conductor for writing data to a recording medium
US7002228B2 (en) 2003-02-18 2006-02-21 Micron Technology, Inc. Diffusion barrier for improving the thermal stability of MRAM devices
JP4560712B2 (ja) 2003-07-18 2010-10-13 イーエムエス ナノファブリカツィオン アーゲー 超高および超低運動イオン・エネルギーによるターゲットのイオン照射
US7330404B2 (en) 2003-10-10 2008-02-12 Seagate Technology Llc Near-field optical transducers for thermal assisted magnetic and optical data storage
US7262936B2 (en) 2004-03-01 2007-08-28 Hitachi Global Storage Technologies Netherlands, B.V. Heating device and magnetic recording head for thermally-assisted recording
US7272079B2 (en) 2004-06-23 2007-09-18 Seagate Technology Llc Transducer for heat assisted magnetic recording
US7489597B2 (en) 2004-09-27 2009-02-10 Sharp Kabushiki Kaisha Electromagnetic field generating element, information recording/reproducing head, and information recording/reproducing apparatus
CN101194310B (zh) 2005-06-07 2011-03-02 松下电器产业株式会社 信息记录介质及其制造方法
US20070069383A1 (en) 2005-09-28 2007-03-29 Tokyo Electron Limited Semiconductor device containing a ruthenium diffusion barrier and method of forming
US7731377B2 (en) 2006-03-21 2010-06-08 Semiconductor Energy Laboratory Co., Ltd. Backlight device and display device
US7791839B2 (en) 2006-09-14 2010-09-07 Hitachi Global Storage Technologies Netherlands B.V. Thermally-assisted perpendicular magnetic recording system with write pole surrounding an optical channel and having recessed pole tip
US7476855B2 (en) 2006-09-19 2009-01-13 Axcelis Technologies, Inc. Beam tuning with automatic magnet pole rotation for ion implanters
JP2008146798A (ja) 2006-12-13 2008-06-26 Hitachi Global Storage Technologies Netherlands Bv 磁気ヘッドスライダ
DK2106678T3 (da) 2006-12-28 2010-09-20 Fond Per Adroterapia Oncologic Ionaccelerationssystem til medicinske og/eller andre anvendelser
JP4364912B2 (ja) * 2007-02-26 2009-11-18 Tdk株式会社 熱アシスト磁気ヘッド、ヘッドジンバルアセンブリ及びハードディスク装置
US7544958B2 (en) 2007-03-23 2009-06-09 Varian Semiconductor Equipment Associates, Inc. Contamination reduction during ion implantation
JP2009054205A (ja) 2007-08-23 2009-03-12 Tdk Corp 熱アシスト磁気ヘッド、ヘッドジンバルアセンブリ及びハードディスク装置
US8289650B2 (en) 2007-09-19 2012-10-16 Seagate Technology Llc HAMR recording head having a sloped wall pole
JP4462346B2 (ja) 2007-12-28 2010-05-12 Tdk株式会社 熱アシスト磁気ヘッド
JP4836966B2 (ja) 2008-01-18 2011-12-14 株式会社日立製作所 ヘッドジンバルアセンブリ及び情報記録装置
US7986592B2 (en) 2008-03-10 2011-07-26 Hitachi Global Storage Technologies, Netherlands B.V. Components and assembly procedure for thermal assisted recording
US8000178B2 (en) 2008-10-29 2011-08-16 Tdk Corporation Near-field light generating element utilizing surface plasmon
US8248891B2 (en) 2008-11-18 2012-08-21 Seagate Technology Llc Near-field transducers for focusing light
US7965464B2 (en) 2008-11-20 2011-06-21 Seagate Technology Llc Heat-assisted magnetic recording with shaped magnetic and thermal fields
US8331205B2 (en) 2008-11-25 2012-12-11 Seagate Technology Llc Sloped pole for recording head with waveguide
US8107325B2 (en) 2008-12-16 2012-01-31 Tdk Corporation Near-field light generating element comprising surface plasmon antenna with surface or edge opposed to waveguide
JP2010146663A (ja) 2008-12-19 2010-07-01 Sony Corp 記録再生装置及び記録再生システム
US20100190036A1 (en) 2009-01-27 2010-07-29 Kyriakos Komvopoulos Systems and Methods for Surface Modification by Filtered Cathodic Vacuum Arc
US7961417B2 (en) 2009-02-17 2011-06-14 Seagate Technology Llc Heat assisted magnetic recording apparatus having a plurality of near-field transducers in a recording media
US8451555B2 (en) 2009-02-24 2013-05-28 Seagate Technology Llc Recording head for heat assisted magnetic recording
US8810962B2 (en) 2009-06-05 2014-08-19 Headway Technologies, Inc. Insertion under read shield for improved read gap actuation in dynamic flying height
US8213272B2 (en) 2009-06-11 2012-07-03 Tdk Corporation Multilayered waveguide having protruded light-emitting end
US8040761B2 (en) 2009-06-24 2011-10-18 Tdk Corporation Near-field light generating device including near-field light generating element disposed over waveguide with buffer layer and adhesion layer therebetween
DE102009032275A1 (de) 2009-07-08 2011-01-13 Siemens Aktiengesellschaft Beschleunigeranlage und Verfahren zur Einstellung einer Partikelenergie
US7998607B2 (en) 2009-07-31 2011-08-16 Hitachi Global Storage Technologies Netherlands, B.V. Partially-oxidized cap layer for hard disk drive magnetic media
US8169731B2 (en) 2009-08-13 2012-05-01 Tdk Corporation Near-field light transducer comprising propagation edge with predetermined curvature radius
US8325567B2 (en) 2009-09-10 2012-12-04 Tdk Corporation Thermally-assisted magnetic recording head comprising near-field light generator
US8031561B2 (en) 2009-10-28 2011-10-04 Hitachi Global Storage Technologies Netherlands B.V. Joint design of thermally-assisted magnetic recording head and patterned media for high optical efficiency
JP5322898B2 (ja) 2009-11-25 2013-10-23 株式会社日立製作所 熱アシスト磁気ヘッドスライダ及びヘッドジンバルアセンブリ
US8934198B2 (en) 2010-02-23 2015-01-13 Seagate Technology Llc Recording head including NFT and heatsink
US8339740B2 (en) 2010-02-23 2012-12-25 Seagate Technology Llc Recording head for heat assisted magnetic recording with diffusion barrier surrounding a near field transducer
US8842391B2 (en) * 2010-02-23 2014-09-23 Seagate Technology Llc Recording head including a near field transducer
US9251837B2 (en) * 2012-04-25 2016-02-02 Seagate Technology Llc HAMR NFT materials with improved thermal stability
US8427925B2 (en) * 2010-02-23 2013-04-23 Seagate Technology Llc HAMR NFT materials with improved thermal stability
US9224416B2 (en) 2012-04-24 2015-12-29 Seagate Technology Llc Near field transducers including nitride materials
US8149657B2 (en) 2010-02-23 2012-04-03 Seagate Technology Llc Optical waveguide clad material
US8194510B2 (en) 2010-03-19 2012-06-05 Headway Technologies, Inc. Heat-assisted magnetic recording head with near-field light generating element
US8194511B2 (en) * 2010-03-19 2012-06-05 Headway Technologies, Inc. Heat-assisted magnetic recording head with near-field light generating element
US8385159B2 (en) 2010-05-21 2013-02-26 Seagate Technology Llc Near field transducer with shaped energy radiating end
US8223597B2 (en) 2010-06-22 2012-07-17 Tdk Corporation Thermally assisted head having reflection mirror for propagating light
US8351151B2 (en) 2010-11-02 2013-01-08 Hitachi Global Storage Technologies Netherlands B.V. Thermally assisted magnetic write head employing a near field transducer (NFT) having a diffusion barrier layer between the near field transducer and a magnetic lip
US8553505B2 (en) 2010-11-24 2013-10-08 HGST Netherlands B.V. Thermally assisted magnetic write head employing a plasmonic antenna comprising an alloyed film to improve the hardness and manufacturability of the antenna
US9053737B2 (en) 2010-12-22 2015-06-09 Seagate Technology Llc Heat assisted magnetic recording devices
US8437230B2 (en) 2011-02-18 2013-05-07 Tdk Corporation Heat-assisted magnetic write head, head gimbals assembly, head arm assembly, and magnetic disk device
US20130161505A1 (en) 2011-04-07 2013-06-27 Seagate Technology Llc Methods of forming layers
US8320220B1 (en) * 2011-10-13 2012-11-27 Western Digital (Fremont), Llc Method and system for providing an energy assisted magnetic recording disk drive having a non-conformal heat spreader
US8286329B1 (en) 2011-11-10 2012-10-16 Seagate Technology Llc Optical transducers and methods of making the same
WO2013163195A1 (en) 2012-04-24 2013-10-31 Seagate Technology Llc Near field transducer with core and plasmonic outer layer
US8514673B1 (en) * 2012-04-24 2013-08-20 Seagate Technology Llc Layered near-field transducer
KR101738552B1 (ko) 2012-04-25 2017-05-22 시게이트 테크놀로지 엘엘씨 니어 필드 트랜스듀서 및 접착 층을 포함하는 디바이스들
US8902719B2 (en) * 2012-04-25 2014-12-02 Seagate Technology Llc Heat assisted magnetic recording heads having bilayer heat sinks
US9190100B2 (en) 2012-04-25 2015-11-17 Seagate Technology Determining at least one of alignment and bond line thickness between an optical component and a mounting surface
US8945731B2 (en) 2012-06-29 2015-02-03 Seagate Technology Llc Interlayer for device including NFT and cladding layers
US8964514B2 (en) 2012-08-07 2015-02-24 Tdk Corporation Plasmon generator and thermally-assisted magnetic recording head having the same
CN105009211B (zh) 2012-10-18 2019-11-19 希捷科技有限公司 包括中间层的物品以及形成的方法
US8830800B1 (en) 2013-06-21 2014-09-09 Seagate Technology Llc Magnetic devices including film structures
KR101741617B1 (ko) * 2013-06-24 2017-05-30 시게이트 테크놀로지 엘엘씨 적어도 하나의 접착층을 포함하는 디바이스들 및 접착층들을 형성하는 방법
US20150132503A1 (en) 2013-11-13 2015-05-14 Seagate Technology Llc Methods of forming near field transducers

Also Published As

Publication number Publication date
CN103514888A (zh) 2014-01-15
US9224416B2 (en) 2015-12-29
US20130279315A1 (en) 2013-10-24
CN103514888B (zh) 2018-02-23
TW201403592A (zh) 2014-01-16
JP2013229094A (ja) 2013-11-07
KR20130119886A (ko) 2013-11-01
JP5805698B2 (ja) 2015-11-04
KR101563210B1 (ko) 2015-10-26

Similar Documents

Publication Publication Date Title
TWI533295B (zh) 包括氮化物材料之近場換能器
US8842391B2 (en) Recording head including a near field transducer
US8670215B2 (en) Recording head for heat assisted magnetic recording with diffusion barrier surrounding a near field transducer
US9053737B2 (en) Heat assisted magnetic recording devices
US10014011B2 (en) Methods of forming materials for at least a portion of a NFT and NFTs formed using the same
US9251837B2 (en) HAMR NFT materials with improved thermal stability
US9666220B2 (en) Devices including a near field transducer and at least one associated adhesion layer
US10190210B2 (en) Near-field transducer having at least one secondary atom
US9805757B2 (en) HAMR NFT materials with improved thermal stability
US10580440B2 (en) Devices including a diffusion barrier layer
US10916262B1 (en) Near field transducers including copper based alloys
US9025281B2 (en) Magnetic device including a near field transducer
US20150037613A1 (en) Magnetic devices with overcoats
EP2657935B1 (en) Near field transducers including nitride materials

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees