CN103514888A - 包含氮化物材料的近场换能器 - Google Patents

包含氮化物材料的近场换能器 Download PDF

Info

Publication number
CN103514888A
CN103514888A CN201310145227.0A CN201310145227A CN103514888A CN 103514888 A CN103514888 A CN 103514888A CN 201310145227 A CN201310145227 A CN 201310145227A CN 103514888 A CN103514888 A CN 103514888A
Authority
CN
China
Prior art keywords
near field
field transducer
nft
nitride
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310145227.0A
Other languages
English (en)
Other versions
CN103514888B (zh
Inventor
T·赵
S·萨胡
M·C·考茨基
A·V·伊塔基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seagate Technology LLC
Original Assignee
Seagate Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seagate Technology LLC filed Critical Seagate Technology LLC
Publication of CN103514888A publication Critical patent/CN103514888A/zh
Application granted granted Critical
Publication of CN103514888B publication Critical patent/CN103514888B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B13/00Recording simultaneously or selectively by methods covered by different main groups among G11B3/00, G11B5/00, G11B7/00 and G11B9/00; Record carriers therefor not otherwise provided for; Reproducing therefrom not otherwise provided for
    • G11B13/08Recording simultaneously or selectively by methods covered by different main groups among G11B3/00, G11B5/00, G11B7/00 and G11B9/00; Record carriers therefor not otherwise provided for; Reproducing therefrom not otherwise provided for using near-field interactions or transducing means and at least one other method or means for recording or reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B13/00Recording simultaneously or selectively by methods covered by different main groups among G11B3/00, G11B5/00, G11B7/00 and G11B9/00; Record carriers therefor not otherwise provided for; Reproducing therefrom not otherwise provided for
    • G11B13/04Recording simultaneously or selectively by methods covered by different main groups among G11B3/00, G11B5/00, G11B7/00 and G11B9/00; Record carriers therefor not otherwise provided for; Reproducing therefrom not otherwise provided for magnetically or by magnetisation and optically or by radiation, for changing or sensing optical properties
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3103Structure or manufacture of integrated heads or heads mechanically assembled and electrically connected to a support or housing
    • G11B5/3106Structure or manufacture of integrated heads or heads mechanically assembled and electrically connected to a support or housing where the integrated or assembled structure comprises means for conditioning against physical detrimental influence, e.g. wear, contamination
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3133Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure
    • G11B5/314Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure where the layers are extra layers normally not provided in the transducing structure, e.g. optical layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/4806Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed specially adapted for disk drive assemblies, e.g. assembly prior to operation, hard or flexible disk drives
    • G11B5/4866Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed specially adapted for disk drive assemblies, e.g. assembly prior to operation, hard or flexible disk drives the arm comprising an optical waveguide, e.g. for thermally-assisted recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/60Fluid-dynamic spacing of heads from record-carriers
    • G11B5/6005Specially adapted for spacing from a rotating disc using a fluid cushion
    • G11B5/6088Optical waveguide in or on flying head
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/0021Thermally assisted recording using an auxiliary energy source for heating the recording layer locally to assist the magnetization reversal

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)
  • Magnetic Heads (AREA)

Abstract

一种包括近场换能器的装置,该近场换能器包括导电的氮化物。

Description

包含氮化物材料的近场换能器
优先权要求
本申请要求2012年4月24日提交的案号为430.17123000的题为“NEARFIELD TRANSUCERS(NFTs)INCLUDING NITRIDES(包括氮化物的近场换能器(NFT))”的美国临时申请No.61/637,696的优先权,其公开内容通过援引包含于此。
背景
在热辅助的磁记录中,信息位在升高的温度下被记录在数据存储介质上,并且数据位尺寸可由存储介质中被加热面积的尺寸或者存储介质中受磁场影响的面积的尺寸来决定。在一种方法中,光束在存储介质上汇聚成小光斑以加热该介质的一部分并减小被加热部分的磁矫顽力。然后数据被写到矫顽力减小的区域。
用于热辅助磁记录的记录头的一个例子包括能将光聚集在比衍射极限更小的光斑尺寸的近场换能器(NFT)。NFT被设计成在所设计的光波长下达到局部表面等离子体(plasmon)谐振。在谐振时,由于金属中的电子的集体振荡,在NFT的周围出现高电场。该场的一部分将隧穿入存储介质并被吸收,这局部地提高了该介质的温度以供记录。
NFT的温度在等离子激元(plasmonic)谐振下显著升高。另外,一部分NFT可能暴露在记录头的空气承载表面下,并因此受到机械磨损。NFT性能在HAMR操作期间很大程度地受热应力和机械应力的影响。由于金(Au)的优越的光学性质,当前使用金(Au)作为原始NFT材料。然而,金具有相对低的机械强度并且金制的NFT可能在升高的温度下经历重熔,这导致NFT形状的圆形化。形状的变形可降低耦合效率并减少被传递至存储介质的光能的量。因此,仍然需要由除金以外的其它材料制成的NFT。
发明内容
本文公开一种包括近场换能器的装置,该近场换能器包括导电的氮化物。
另外披露的是包括光源、波导和近场换能器的装置,该近场换能器包括导电的氮化物,其中光源、波导和近场换能器被配置成将光从光源传至波导并最终至近场换能器。
另外披露一种盘驱动器,该盘驱动器包括:具有弯曲部的至少一个致动器臂;至少一个头,其中每个弯曲部在其远端处具有头并且每个头包括:光源;近场换能器,该近场换能器包括导电的氮化物;磁读取器;以及磁写入器,其中光源和近场换能器被配置成将光从光源传送至近场换能器以帮助磁写入器进行写入。
本公开的上述概述并不旨在描述本公开的各公开实施例或每种实现。下面的描述更具体地例示出示例性实施例。在本申请中的若干位置处,通过范例列表来提供指导,这些范例可以多种组合来使用。在各例中,引述的列表仅作为代表性组并且不应当被解释成排他性列表。
附图简述
图1是对可包括根据本公开的一个方面构造的记录头的盘驱动器形式的数据存储设备的图示。
图2是根据本发明的一个方面构造的记录头的侧立面图。
图3是近场换能器的示意图。
图4是另一近场换能器的示意图。
图5A示出所公开的NFT的横截面的示意图。
图5B和5C是表现出角部圆角的之前利用的NFT的原子力显微术(AFM)图像和隧穿电子显微镜(TEM)图像。
图6示出另一公开的NFT的横截面图。
图7A和7B是另一公开的近场换能器的横截面的示意图。
图8示出所公开的示例性设备的自顶向下图。
图9示出使用所公开设备的介质记录层中的光学强度。
这些附图不一定按比例示出。附图中所使用的相同数字表示相同组件。然而,应当理解,在给定附图中使用数字表示组件并不旨在限制在另一附图中用相同数字标记该组件。
具体实施方式
在以下描述中,参照构成本说明书一部分的一组附图,其中通过解说示出了若干具体实施例。应当理解,可构想并作出其他实施例而不背离本公开的范围或精神。因此,以下详细描述不具有限制性含义。
除非另有规定,否则在说明书和权利要求书中使用的表示特征大小、量和物理性质的所有数字应当理解为在任何情况下均由术语“大约”修饰。因此,除非相反地指出,否则在上述说明书和所附权利要求中阐述的数值参数是近似值,这些近似值可利用本文中公开的教示根据本领域技术人员所寻求获得的期望性质而变化。
借由端点对数值范围的陈述包括归入该范围内的所有数字(例如,1至5包括1、1.5、2、2.75、3、3.80、4和5)以及该范围内的任何范围。
如本说明书和所附权利要求书中所使用的,单数形式“一”、“一个”和“该”涵盖具有复数引用物的实施例,除非该内容另外明确地指出。如本说明书和所附权利要求书中所使用的,术语“或”一般以包括“和/或”的含义来使用,除非该内容另外明确地指出。
“包括”、“包含”或类似术语表示涵盖但不受限于,即表示包括但不是排他的。应该注意到,“顶部”和“底部”(或类似“上”和“下”的其它术语)被严格地用于相对的描述,而并不暗示所描述的要素所处的物件的任何总体取向。
在一个方面,本公开提供一种近场换能器(NFT),该NFT可用于HAMR记录头。所披露的NFT包括可表现出优势的机械特性以及与毗邻材料具有减少的热失配但同时仍然拥有可接受的光学特性的材料。在若干示例中,这类材料包括氮化物。
本文公开的是NFT以及包括这类NFT的设备。图1是可利用所公开的NFT的盘驱动器10的形式的数据存储设备的图示。该盘驱动器10包括外壳12(在该视图中其上部被移去,而下部是可见的),该外壳12被进行大小调节并配置成容纳盘驱动器的各个组件。盘驱动器10包括用于在外壳内使至少一个磁存储介质16旋转的主轴电机14。至少一个臂18被包含在外壳12内,其中每个臂18具有带记录头或滑块22的第一末端20以及通过轴承26可枢转地安装在轴上的第二末端24。致动器电机28位于臂的第二末端24处,以用于使臂18枢转以便将记录头22定位于盘16的所需扇区或轨道27上。致动器电机28由控制器调整,该控制器在本图中未示出并且是业内公知的。存储介质可包括例如连续介质或位图案化介质。
为了进行热辅助磁记录(HAMR),例如可见光、红外光或紫外光之类的电磁辐射被引导至数据存储介质的表面上以升高介质的局部区域的温度,从而促使该区域的磁化的切换。HAMR记录头的最近设计包括在滑块上的薄膜波导以引导光朝向存储介质和近场换能器,从而将光聚焦在比衍射极限更小的光斑尺寸。尽管图1示出盘驱动器,然而所公开的NFT可被用于包括近场换能器的其它设备。
图2是可包括所公开的NFT的记录头的侧立面图;该记录头被定位在存储介质附近。记录头30包括衬底32、衬底上的底涂层34、底涂层上的底部极36、以及通过轭架或基架40磁耦合至底部极的顶部极38。波导42位于顶部极与底部极之间。波导包括芯层44以及在芯层的相对侧上的包覆层46、48。镜50与包覆层之一毗邻地定位。顶部极是两件式的极,其包括具有与空气轴承表面56间隔开的第一末端54的第一部分,或极体52,以及从第一部分延伸并在朝向底部极的方向上倾斜的第二部分,或倾斜极件58。第二部分被结构化成包括毗邻记录头的空气轴承表面56的末端,其中该末端比顶部极的第一部分更靠近波导。平面线圈60也在顶部极与底部极之间并围绕基架延伸。在该示例中,顶部极充当写入极而底部极充当返回极。
绝缘材料62将线圈匝分隔开。在一个示例中,衬底可以是AlTiC,芯层可以是Ta2O5,而包覆层(和其他绝缘层)可以是Al2O3。绝缘材料63的顶层可在顶部极上形成。热宿64毗邻倾斜极件58地设置。该热宿可包括非磁性材料,诸如举例而言金(Au)。
如图2中示出的,记录头30包括用于在写入极58向存储介质16施加磁写入场H之处附近加热磁存储介质16的结构。在该例中,介质16包括衬底68、热宿层70、磁记录层72和保护层74。然而,可使用其它类型的介质,例如位图案化介质。由线圈60中的电流产生的磁场H被用来控制介质的记录层中的位76的磁化方向。
存储介质16毗邻记录头30地设置或位于记录头30之下。波导42传导来自可以例如是紫外光、红外光或可见光的电磁辐射的能源78的光。该源可以例如是用于将光束80引向波导42的激光二极管、或其他合适的激光源。具体示例类型的能源78可包括例如激光二极管、发光二极管(LED)、边缘发射的激光二极管(EEL)、垂直腔表面发射激光器(VCSEL)以及表面发射二极管。在一些实施例中,能源可产生具有从300nm至2000nm波长的能量。在一些实施例中,能源可产生例如具有830nm波长的能量。可使用已知用于将光束80耦合到波导42中的各种技术。一旦光束80被耦合到波导42中,光就通过波导42朝向波导42的毗邻记录头30的空气轴承表面(ABS)处形成的截断端传播。当介质如箭头82所示的那样相对于记录头移动时,光离开波导的末端并加热介质的一部分。近场换能器(NFT)84位于波导中或毗邻于波导,以及位于空气承载表面处或在其附近。热宿材料可被选择成使得该热宿材料不会干扰NFT的谐振。
尽管图2的示例示出了垂直的磁记录头和垂直的磁存储介质,但是应当领会,本公开还可结合在其中可能期望将光聚集到小光斑的其他类型的记录头和/或存储介质来使用。
图3是与热宿92结合的棒糖式NFT的示意图。NFT包括盘形部分94和从盘形部分延伸出的桩96。热宿92可位于盘形部分和图2的顶部极的倾斜部分之间。当被安装在记录头时,桩可露出于ABS并因此可能受到机械磨损。
图4是所耦合的纳米杆(CNR)NFT100的示意图。该NFT包括由间隙106隔开的两个纳米杆102、104。纳米杆102包括第一部分108和第二部分110。纳米杆104包括第一部分112和第二部分114。当被安装在记录头中时,纳米杆的末端116、118可露出于ABS并因此可能受到机械磨损。
图3和图4示出示例性NFT。然而,本公开不仅限于任何特定类型的NFT。下面描述的材料可用于多种NFT配置。当被用于记录头时,NFT可具有位于空气承载表面处或附近的末端。
在公开的NFT中使用的材料一般是等离子激元材料。可基于折射率(n)和消光系数(k)来估算材料的等离子激元性质。表I示出各种材料的光学特性(n和k)、导热性和热膨胀系数(CTE)。表I也给出表面等离子发生((n2-k2)/2nk)的量度图(FOM)。
表I:各种材料的光学特性
Figure BDA00003098598500061
Figure BDA00003098598500071
如从表1可以看出的那样,对ZrN和TiN当前测得的特性仅低于Ag、Au和Cu的那些特性,并因此是所有所考虑的可选等离子激元材料中的良好候选。此外,ZrN和TiN的沉积工艺可受到影响以改善光学特性。下面的表II示出各种材料的纳米压痕硬度和热膨胀系数(CTE)。
表格II:各种材料的硬度和CTE
Figure BDA00003098598500072
如从表II看出的那样,ZrN的纳米压痕硬度是20-40GPa而TiN的纳米压痕硬度是18-21GPa。这些值比Au值(2GPa左右)高一个数量级。此外,ZrN的CTE(9.4x10-6/K)和TiN的CTE(9.35x10-6/K)比Au的低大约40%,并且更接近NFT周围的氧化物波导材料。这可能在HAMR操作期间导致较小的热应力。
本文披露NFT,该NFT包括导电氮化物材料。示例性导电氮化物材料可包括例如ZrN、TiN、TaN、HfN或其组合。在一些实施例中,NIF可包括ZrN、TiN或其组合。
在一些实施例中,整个NFT可由氮化物材料制成。在一些实施例中,整个NFT可由ZrN、TiN或其某一组合来制成。在一些实施例中,NFT可以是棒糖式设计、纳米杆式设计或任何其它式样的NFT设计。在一些实施例中,棒糖式NFT可完全由氮化物材料制成。在一些实施例中,纳米杆式NFT可完全由氮化物材料制成。
在一些实施例中,NFT中仅一部分由氮化物材料制成。在一些实施例中,该NFT可以是棒糖式设计、纳米杆式设计或其它式样的NFT设计。在一些实施例中,只有NFT的桩(见图3的桩96)可由氮化物材料制成,而NFT的剩余部分(即图3中的盘形部分94)可由不同材料制成,例如金、银、铜或其合金。由于氮化物材料比金更优越的热机械特性,这一实施例可提高NFT在ABS处的可靠性。尽管存在一定的耦合效率损失,然而这种损失很低并在可接受范围内,因为大盘表面积或体积仍然是金制的。
在一些实施例中,NFT中仅一个或多个部分由氮化物材料制成。其一个或多个部分由氮化物材料制成的NFT的一个示例可包括诸如图5A中描述的实施例。图5A中的NFT500是纳米杆式NFT,其中每个杆包括在NFT的各个杆的底部520(与NFT的顶部525相反)上的氮化物基层510a、510b以及非氮化物芯层515a、515b。在一些实施例中,非氮化物芯层515a、515b可例如为金、银、铜或其合金。在一些实施例中,氮化物基层510a、510b可具有至少
Figure BDA00003098598500081
的厚度。在一些实施例中,氮化物底层510a、510b可具有从
Figure BDA00003098598500082
Figure BDA00003098598500083
的厚度。
包括该氮化物底层的NFT可提高NFT的机械特性而不会显著地牺牲耦合效率。在一些实施例中,该氮化物基层可发挥作用以减少、最小化或消除在金纳米式NFT中已观察到的角部圆角问题。图5B和5C示出金纳米杆式NFT的原子力显微术(AFM)和隧穿电子显微镜(TEM)图像,这些图像表现出角部圆角。角部圆角的位置看上去与杆角部(金/电介质界面)处的最高应力点的位置相关,如热机械建模中预示的那样。例如图5中描述的实施例由于总NFT中存在的相对少量的氮化物材料而可减轻角部圆角问题并应当具有减小的耦合效率惩罚。
其一个或多个部分由氮化物材料制成的NFT的另一示例可包括诸如图6中描述的实施例。图6中的NFT600是纳米杆式NFT,其中每个杆包括在NFT的各个杆的底部620(与NFT的顶部625相反)上的非氮化物底层615a、615b以及氮化物芯层610a、610b。在一些实施例中,非氮化物基层615a、615b可例如为金、银、铜或其合金。在一些实施例中,非氮化物基层615a、615b可具有至少50nm的厚度。在一些实施例中,非氮化物底层615a、615b可具有从
Figure BDA00003098598500084
Figure BDA00003098598500085
的厚度。一实施例可提供优势,因为认为NFT的杆的底部是NFT的等离子激元活化部分,并因此使该区域由相对更高效的等离子激元材料(金、银、铜或其合金)制成可提供具有非常高的耦合效率的NFT。用具有低CTE和低模量的氮化物材料填充杆(即氮化物芯层610a、610b)可提供热机械优势。这一实施例可提供更高的耦合效率和更好的热机械特性。
其一个或多个部分由氮化物材料制成的NFT的另一示例可包括诸如图7A和图7B中描述的实施例。图7A中描述的NFT700是纳米杆式NFT,其中每个杆包括交替的氮化物层和非氮化物层的多层结构。图7A中描述的实施例包括氮化物层705a和非氮化物层710a的交替层。在该实施例中,氮化物层是NFT的各个杆的底部720(与NFT的顶部725相对)上的第一层。图7B中描述的实施例包括非氮化物层710a和氮化物层705a的交替层。在该实施例中,非氮化物层是NFT的各个杆的底部720上的第一层。在图7A和图7B中描述的任一实施例中,非氮化物芯层710a可例如为金、银、铜或其合金。在一些实施例中,存在从1组至3000组的氮化物和非氮化物材料的交替层。在一些实施例中,存在从1组至1000组的氮化物和非氮化物材料的交替层。NFT中的各层可以但不一定具有同一厚度。此外,任何单个层可在不同点具有不同厚度,例如沿层底部的区域可具有与沿NFT的一侧或诸侧的区域不同的厚度。在一些实施例中,各层可具有从
Figure BDA00003098598500091
Figure BDA00003098598500092
的厚度。在一些实施例中,各个层可具有从的厚度。这些实施例可提供最大化耦合效率和热机械特性的方式。
在一些实施例中,NFT可包括在基底材料中散布的材料。例如,氮化物材料可遍及NFT的至少一部分地散布在非氮化物材料(基底材料)中。或者例如,NFT可包括遍及NFT的至少一部分地散布在氮化物材料(基底材料)中的非氮化物材料。在一些实施例中,材料可在整个NFT中或仅在NFT的某一部分中散布在基底材料中。这些实施例可利用任何类型的NFT,包括例如纳米杆式NFT和棒糖式NFT。散布在基底材料中的材料(要么氮化物要么非氮化物)可例如被掺杂在基底材料中。类似地,散布在基底材料中的材料可以是纳米微粒的形式的。在一些实施例中,纳米微粒可具有例如从1nm至100nm的平均直径。散布材料可单独地形成并随后被散布到基底材料中,或者散布材料和基底材料可同时形成(例如共同溅射)。在一些实施例中,非氮化物基底材料可例如为金、银、铜或其合金。
示例
对完全由TiN制成的纳米杆式NFT进行建模。NFT的尺寸(交叉轨道宽度和z高度)是在将TiN的特性考虑在内的情况下选择的。图8示出该设备的顶视图,其中两个半圆是NFT区域。图9示出介质记录层中的光强度。模型示出这种设计的耦合效率是金纳米杆式NFT的耦合效率的大约30%(对Au来说CE=3.85%而对TiN来说CE=1.10%)。然而,NFT设计的可接受性不是完全基于耦合效率的;TiN纳米杆式NFT的优越热机械特性可能是非常有益的。对ZrN纳米杆式NFT可预期具有相同的结果。
化学计量的、结晶的和低电阻率金属性TiN或ZrN的生长在过去需要使用诸如直流(DC)或反应磁控溅射的物理气相沉积(PVD)方法进行例如高达大约800℃的高温处理。低电阻率TiN膜已通过例如高功率脉冲磁控溅射(HiPIMS)功率源之类的高离子化溅射沉积技术在大约200℃那样低的温度下制造。已获得具有41.9μΩ-cm那样低的电阻率的TiN膜。也已使用激光烧蚀沉积技术在从大约100℃至大约600℃范围的温度下制造TiN和ZrN膜。
由此,披露了包括氮化物材料的近场换能器的实施例。上述实现及其他实现落在以下权利要求书的范围内。本领域技术人员应当理解,本公开可用除所披露的实施例以外的实施例来实施。所揭示的实施例被呈现,是为了示出而非为了限制。

Claims (20)

1.一种装置,包括:
近场换能器,所述近场换能器包括导电氮化物。
2.如权利要求1所述的装置,其特征在于,所述近场换能器包括TiN、ZrN、TaN、HfN或其组合物。
3.如权利要求1所述的装置,其特征在于,所述整个近场换能器包括导电氮化物。
4.如权利要求3所述的装置,其特征在于,所述近场换能器仅包括导电氮化物。
5.如权利要求1所述的装置,其特征在于,所述近场换能器具有桩和盘结构,并且只有所述桩包括所述导电氮化物。
6.如权利要求6所述的装置,其特征在于,所述近场换能器的盘包括金。
7.如权利要求1所述的装置,其特征在于,所述整个近场换能器基本包括TiN、ZrN、TaN、HfN或其组合物。
8.如权利要求1所述的装置,其特征在于,还包括能源,所述能源产生具有从大约300nm至大约2000nm波长的能量。
9.如权利要求5所述的装置,其特征在于,只有所述近场换能器的诸部分包括导电氮化物。
10.如权利要求9所述的装置,其特征在于,所述近场换能器包括导电氮化物材料的至少一个层。
11.如权利要求10所述的装置,其特征在于,所述至少一个层在所述近场换能器的底部上。
12.如权利要求10所述的装置,其特征在于,所述近场换能器包括导电氮化物和另一等离子激元非氮化物材料的多层结构。
13.如权利要求1所述的装置,其特征在于,所述导电氮化物遍及所述近场换能器地被散布。
14.如权利要求13所述的装置,其特征在于,所述导电氮化物是另一等离子激元非氮化物材料中的掺杂物。
15.如权利要求13所述的装置,其特征在于,另一等离子激元非氮化物材料是所述导电氮化物材料中的掺杂物。
16.一种装置,包括:
能源;
波导;以及
近场换能器,所述近场换能器包括导电氮化物,其中所述能源、波导和近场换能器被配置成将光从所述能源传送至所述波导并最终至所述近场换能器。
17.如权利要求16所述的装置,其特征在于,所述近场换能器包括TiN、ZrN、TaN、HfN或其组合物。
18.如权利要求16所述的装置,其特征在于,所述近场换能器包括TiN、ZrN、TaN、HfN或其组合物以及从Au、Ag、Cu或其合金中选取的非氮化物材料。
19.一种盘驱动器,包括:
至少一个致动器臂,所述致动器臂具有第一末端和第二末端;
至少一个头,其中每个臂在其第一末端具有头,并且其中每个头包括:
能源;
近场换能器,所述近场换能器包括导电氮化物;
磁读取器;以及
磁写入器,其中所述能源和所述近场换能器被配置成将光从所述能源传送至所述近场换能器以辅助所述磁写入器进行写入。
20.如权利要求19所述的盘驱动器,其特征在于,所述近场换能器包括:TiN、ZrN、TaN、HfN或其组合物;以及从Au、Ag、Cu或其合金中选取的非氮化物材料。
CN201310145227.0A 2012-04-24 2013-04-24 包含氮化物材料的近场换能器 Active CN103514888B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261637696P 2012-04-24 2012-04-24
US61/637,696 2012-04-24

Publications (2)

Publication Number Publication Date
CN103514888A true CN103514888A (zh) 2014-01-15
CN103514888B CN103514888B (zh) 2018-02-23

Family

ID=49380026

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310145227.0A Active CN103514888B (zh) 2012-04-24 2013-04-24 包含氮化物材料的近场换能器

Country Status (5)

Country Link
US (1) US9224416B2 (zh)
JP (1) JP5805698B2 (zh)
KR (1) KR101563210B1 (zh)
CN (1) CN103514888B (zh)
TW (1) TWI533295B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104966519A (zh) * 2014-02-28 2015-10-07 希捷科技有限公司 包括近场换能器的设备
CN106251884A (zh) * 2015-05-06 2016-12-21 Hgst荷兰公司 热辅助磁记录头及硬盘驱动器
CN107851445A (zh) * 2015-05-27 2018-03-27 希捷科技有限公司 热强健的近场换能器销钉
CN107851446A (zh) * 2015-05-28 2018-03-27 希捷科技有限公司 包括不同材料的销钉和盘的近场换能器(nft)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9224416B2 (en) 2012-04-24 2015-12-29 Seagate Technology Llc Near field transducers including nitride materials
US9251837B2 (en) 2012-04-25 2016-02-02 Seagate Technology Llc HAMR NFT materials with improved thermal stability
US8427925B2 (en) 2010-02-23 2013-04-23 Seagate Technology Llc HAMR NFT materials with improved thermal stability
CN104769672B (zh) 2012-04-25 2019-05-14 希捷科技有限公司 包括近场换能器和粘合层的器件
US8861138B2 (en) 2013-03-18 2014-10-14 Headway Technologies, Inc. Multilayer plasmon generator
US8830799B1 (en) * 2013-03-18 2014-09-09 Headway Technologies, Inc. Near-field light generator and thermally-assisted magnetic recording head
US9343088B2 (en) * 2013-06-07 2016-05-17 Purdue Research Foundation Near field transducer for heat-assisted magnetic recording
US8830800B1 (en) * 2013-06-21 2014-09-09 Seagate Technology Llc Magnetic devices including film structures
US9245573B2 (en) 2013-06-24 2016-01-26 Seagate Technology Llc Methods of forming materials for at least a portion of a NFT and NFTs formed using the same
US9099117B2 (en) 2013-06-24 2015-08-04 Seagate Technology Llc Near-field transducer peg encapsulation
US9058824B2 (en) * 2013-06-24 2015-06-16 Seagate Technology Llc Devices including a gas barrier layer
US9275659B2 (en) 2013-06-24 2016-03-01 Seagate Technology Llc Peg only near-field transducer
US20140376340A1 (en) 2013-06-24 2014-12-25 Seagate Technology Llc Peg only near-field transducer
KR101741617B1 (ko) 2013-06-24 2017-05-30 시게이트 테크놀로지 엘엘씨 적어도 하나의 접착층을 포함하는 디바이스들 및 접착층들을 형성하는 방법
US9281002B2 (en) * 2013-06-24 2016-03-08 Seagate Technology Llc Materials for near field transducers and near field transducers containing same
US8867170B1 (en) 2013-07-15 2014-10-21 Headway Technologies, Inc. Multilayer plasmon generator
US9691423B2 (en) 2013-11-08 2017-06-27 Seagate Technology Llc Devices including at least one adhesion layer and methods of forming adhesion layers
US9548076B2 (en) 2013-11-08 2017-01-17 Seagate Technology Llc Magnetic devices with overcoats
US9263074B2 (en) 2013-11-08 2016-02-16 Seagate Technology Llc Devices including at least one adhesion layer
US9697856B2 (en) 2013-12-06 2017-07-04 Seagate Techology LLC Methods of forming near field transducers and near field transducers formed thereby
US9570098B2 (en) 2013-12-06 2017-02-14 Seagate Technology Llc Methods of forming near field transducers and near field transducers formed thereby
US9019803B1 (en) * 2014-05-02 2015-04-28 Headway Technologies, Inc. Laminated plasmon generator with cavity process
US9666220B2 (en) 2014-05-25 2017-05-30 Seagate Technology Llc Devices including a near field transducer and at least one associated adhesion layer
US9822444B2 (en) 2014-11-11 2017-11-21 Seagate Technology Llc Near-field transducer having secondary atom higher concentration at bottom of the peg
US10163456B2 (en) 2014-11-11 2018-12-25 Seagate Technology Llc Near-field transducer with recessed region
US10510364B2 (en) 2014-11-12 2019-12-17 Seagate Technology Llc Devices including a near field transducer (NFT) with nanoparticles
US9881638B1 (en) * 2014-12-17 2018-01-30 Western Digital (Fremont), Llc Method for providing a near-field transducer (NFT) for a heat assisted magnetic recording (HAMR) device
US9202481B1 (en) 2015-03-04 2015-12-01 HGST Netherlands B.V. Near-field transducer with compositionally graded material for heat assisted magnetic recording
US9792931B2 (en) * 2015-03-22 2017-10-17 Seagate Technology Llc Devices including a difussion barrier layer
US10102872B2 (en) 2015-03-24 2018-10-16 Seagate Technology Llc Devices including at least one multilayer adhesion layer
US9741381B1 (en) * 2015-05-28 2017-08-22 Seagate Technology Llc Near field transducers (NFTs) including a protective layer and methods of forming
US9620152B2 (en) 2015-05-28 2017-04-11 Seagate Technology Llc Near field transducers (NFTS) and methods of making
WO2016191666A1 (en) * 2015-05-28 2016-12-01 Seagate Technology Llc Near field transducers (nfts) including barrier layer and methods of forming
US9928859B2 (en) 2015-05-28 2018-03-27 Seagate Technology Llc Near field transducers (NFTS) and methods of making
US9672848B2 (en) 2015-05-28 2017-06-06 Seagate Technology Llc Multipiece near field transducers (NFTS)
US9269380B1 (en) 2015-07-10 2016-02-23 Seagate Technology Llc Devices including a near field transducer (NFT), at least one cladding layer and interlayer there between
US9852748B1 (en) * 2015-12-08 2017-12-26 Seagate Technology Llc Devices including a NFT having at least one amorphous alloy layer
US9972346B2 (en) 2016-02-27 2018-05-15 Seagate Technology Llc NFT with mechanically robust materials
US10490214B1 (en) 2017-08-04 2019-11-26 Seagate Technology Llc Near-field transducer having dielectric wrap for reducing heat
US11440133B2 (en) * 2018-05-04 2022-09-13 Mazak Corporation Low-cost friction stir processing tool
US20210027808A1 (en) 2019-07-23 2021-01-28 Western Digital Technologies, Inc. Heat-assisted magnetic recording (hamr) head with tapered main pole and heat sink material adjacent the pole

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110228417A1 (en) * 2010-03-19 2011-09-22 Headway Technologies, Inc. Heat-assisted magnetic recording head with near-field light generating element

Family Cites Families (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR8006681A (pt) 1979-02-12 1980-12-30 Exxon Research Engineering Co Processo de carbonilacao e novos catalisadores de metal de transicao
US4492873A (en) 1980-04-25 1985-01-08 Dmitriev Stanislav P Apparatus for electron beam irradiation of objects
US5482611A (en) 1991-09-30 1996-01-09 Helmer; John C. Physical vapor deposition employing ion extraction from a plasma
DE4200235C1 (zh) 1992-01-08 1993-05-06 Hoffmeister, Helmut, Dr., 4400 Muenster, De
US5326429A (en) 1992-07-21 1994-07-05 Seagate Technology, Inc. Process for making studless thin film magnetic head
US5624868A (en) 1994-04-15 1997-04-29 Micron Technology, Inc. Techniques for improving adhesion of silicon dioxide to titanium
JP3407548B2 (ja) 1996-03-29 2003-05-19 株式会社日立製作所 イオン打込み装置及びこれを用いた半導体製造方法
WO1997045855A1 (en) 1996-05-31 1997-12-04 Akashic Memories Corporation Highly tetrahedral amorphous carbon films and methods for their production
US6312766B1 (en) 1998-03-12 2001-11-06 Agere Systems Guardian Corp. Article comprising fluorinated diamond-like carbon and method for fabricating article
US6130436A (en) 1998-06-02 2000-10-10 Varian Semiconductor Equipment Associates, Inc. Acceleration and analysis architecture for ion implanter
EP1069809A1 (en) 1999-07-13 2001-01-17 Ion Beam Applications S.A. Isochronous cyclotron and method of extraction of charged particles from such cyclotron
US7032427B2 (en) 2000-06-09 2006-04-25 Seiko Instruments Inc. Method for forming optical aperture, near-field optical head, method for fabricating near-field optical head, and information recording/reading apparatus
US6632483B1 (en) 2000-06-30 2003-10-14 International Business Machines Corporation Ion gun deposition and alignment for liquid-crystal applications
US6589676B1 (en) 2000-07-25 2003-07-08 Seagate Technology Llc Corrosion resistant magnetic thin film media
US6641932B1 (en) 2000-09-05 2003-11-04 Seagate Technology, Llc Magnetic thin film media with chromium capping layer
US6902773B1 (en) 2000-11-21 2005-06-07 Hitachi Global Storage Technologies Netherlands, B.V. Energy gradient ion beam deposition of carbon overcoats on rigid disk media for magnetic recordings
US7064491B2 (en) 2000-11-30 2006-06-20 Semequip, Inc. Ion implantation system and control method
JP4184668B2 (ja) 2002-01-10 2008-11-19 富士通株式会社 Cpp構造磁気抵抗効果素子
US6795630B2 (en) 2002-06-28 2004-09-21 Seagate Technology Llc Apparatus and method for producing a small spot of optical energy
US6999384B2 (en) 2002-09-27 2006-02-14 Carnegie Mellon University Device with waveguide defined by dielectric in aperture of cross-track portion of electrical conductor for writing data to a recording medium
US7002228B2 (en) 2003-02-18 2006-02-21 Micron Technology, Inc. Diffusion barrier for improving the thermal stability of MRAM devices
JP4560712B2 (ja) 2003-07-18 2010-10-13 イーエムエス ナノファブリカツィオン アーゲー 超高および超低運動イオン・エネルギーによるターゲットのイオン照射
US7330404B2 (en) 2003-10-10 2008-02-12 Seagate Technology Llc Near-field optical transducers for thermal assisted magnetic and optical data storage
US7262936B2 (en) 2004-03-01 2007-08-28 Hitachi Global Storage Technologies Netherlands, B.V. Heating device and magnetic recording head for thermally-assisted recording
US7272079B2 (en) 2004-06-23 2007-09-18 Seagate Technology Llc Transducer for heat assisted magnetic recording
US7489597B2 (en) 2004-09-27 2009-02-10 Sharp Kabushiki Kaisha Electromagnetic field generating element, information recording/reproducing head, and information recording/reproducing apparatus
US7829169B2 (en) 2005-06-07 2010-11-09 Panasonic Corporation Information recording medium and method for producing the same
US20070069383A1 (en) 2005-09-28 2007-03-29 Tokyo Electron Limited Semiconductor device containing a ruthenium diffusion barrier and method of forming
US7731377B2 (en) 2006-03-21 2010-06-08 Semiconductor Energy Laboratory Co., Ltd. Backlight device and display device
US7791839B2 (en) 2006-09-14 2010-09-07 Hitachi Global Storage Technologies Netherlands B.V. Thermally-assisted perpendicular magnetic recording system with write pole surrounding an optical channel and having recessed pole tip
US7476855B2 (en) 2006-09-19 2009-01-13 Axcelis Technologies, Inc. Beam tuning with automatic magnet pole rotation for ion implanters
JP2008146798A (ja) 2006-12-13 2008-06-26 Hitachi Global Storage Technologies Netherlands Bv 磁気ヘッドスライダ
EP2106678B1 (en) 2006-12-28 2010-05-19 Fondazione per Adroterapia Oncologica - Tera Ion acceleration system for medical and/or other applications
JP4364912B2 (ja) * 2007-02-26 2009-11-18 Tdk株式会社 熱アシスト磁気ヘッド、ヘッドジンバルアセンブリ及びハードディスク装置
US7544958B2 (en) 2007-03-23 2009-06-09 Varian Semiconductor Equipment Associates, Inc. Contamination reduction during ion implantation
JP2009054205A (ja) 2007-08-23 2009-03-12 Tdk Corp 熱アシスト磁気ヘッド、ヘッドジンバルアセンブリ及びハードディスク装置
US8289650B2 (en) 2007-09-19 2012-10-16 Seagate Technology Llc HAMR recording head having a sloped wall pole
JP4462346B2 (ja) 2007-12-28 2010-05-12 Tdk株式会社 熱アシスト磁気ヘッド
JP4836966B2 (ja) 2008-01-18 2011-12-14 株式会社日立製作所 ヘッドジンバルアセンブリ及び情報記録装置
US7986592B2 (en) 2008-03-10 2011-07-26 Hitachi Global Storage Technologies, Netherlands B.V. Components and assembly procedure for thermal assisted recording
US8000178B2 (en) 2008-10-29 2011-08-16 Tdk Corporation Near-field light generating element utilizing surface plasmon
US8248891B2 (en) 2008-11-18 2012-08-21 Seagate Technology Llc Near-field transducers for focusing light
US7965464B2 (en) 2008-11-20 2011-06-21 Seagate Technology Llc Heat-assisted magnetic recording with shaped magnetic and thermal fields
US8331205B2 (en) 2008-11-25 2012-12-11 Seagate Technology Llc Sloped pole for recording head with waveguide
US8107325B2 (en) 2008-12-16 2012-01-31 Tdk Corporation Near-field light generating element comprising surface plasmon antenna with surface or edge opposed to waveguide
JP2010146663A (ja) 2008-12-19 2010-07-01 Sony Corp 記録再生装置及び記録再生システム
US20100190036A1 (en) 2009-01-27 2010-07-29 Kyriakos Komvopoulos Systems and Methods for Surface Modification by Filtered Cathodic Vacuum Arc
US7961417B2 (en) 2009-02-17 2011-06-14 Seagate Technology Llc Heat assisted magnetic recording apparatus having a plurality of near-field transducers in a recording media
US8451555B2 (en) 2009-02-24 2013-05-28 Seagate Technology Llc Recording head for heat assisted magnetic recording
US8810962B2 (en) 2009-06-05 2014-08-19 Headway Technologies, Inc. Insertion under read shield for improved read gap actuation in dynamic flying height
US8213272B2 (en) 2009-06-11 2012-07-03 Tdk Corporation Multilayered waveguide having protruded light-emitting end
US8040761B2 (en) 2009-06-24 2011-10-18 Tdk Corporation Near-field light generating device including near-field light generating element disposed over waveguide with buffer layer and adhesion layer therebetween
DE102009032275A1 (de) 2009-07-08 2011-01-13 Siemens Aktiengesellschaft Beschleunigeranlage und Verfahren zur Einstellung einer Partikelenergie
US7998607B2 (en) 2009-07-31 2011-08-16 Hitachi Global Storage Technologies Netherlands, B.V. Partially-oxidized cap layer for hard disk drive magnetic media
US8169731B2 (en) 2009-08-13 2012-05-01 Tdk Corporation Near-field light transducer comprising propagation edge with predetermined curvature radius
US8325567B2 (en) 2009-09-10 2012-12-04 Tdk Corporation Thermally-assisted magnetic recording head comprising near-field light generator
US8031561B2 (en) 2009-10-28 2011-10-04 Hitachi Global Storage Technologies Netherlands B.V. Joint design of thermally-assisted magnetic recording head and patterned media for high optical efficiency
JP5322898B2 (ja) 2009-11-25 2013-10-23 株式会社日立製作所 熱アシスト磁気ヘッドスライダ及びヘッドジンバルアセンブリ
US8427925B2 (en) * 2010-02-23 2013-04-23 Seagate Technology Llc HAMR NFT materials with improved thermal stability
US8842391B2 (en) * 2010-02-23 2014-09-23 Seagate Technology Llc Recording head including a near field transducer
US8934198B2 (en) 2010-02-23 2015-01-13 Seagate Technology Llc Recording head including NFT and heatsink
US8339740B2 (en) 2010-02-23 2012-12-25 Seagate Technology Llc Recording head for heat assisted magnetic recording with diffusion barrier surrounding a near field transducer
US8149657B2 (en) 2010-02-23 2012-04-03 Seagate Technology Llc Optical waveguide clad material
US9251837B2 (en) * 2012-04-25 2016-02-02 Seagate Technology Llc HAMR NFT materials with improved thermal stability
US9224416B2 (en) 2012-04-24 2015-12-29 Seagate Technology Llc Near field transducers including nitride materials
US8194511B2 (en) * 2010-03-19 2012-06-05 Headway Technologies, Inc. Heat-assisted magnetic recording head with near-field light generating element
US8385159B2 (en) 2010-05-21 2013-02-26 Seagate Technology Llc Near field transducer with shaped energy radiating end
US8223597B2 (en) 2010-06-22 2012-07-17 Tdk Corporation Thermally assisted head having reflection mirror for propagating light
US8351151B2 (en) 2010-11-02 2013-01-08 Hitachi Global Storage Technologies Netherlands B.V. Thermally assisted magnetic write head employing a near field transducer (NFT) having a diffusion barrier layer between the near field transducer and a magnetic lip
US8553505B2 (en) 2010-11-24 2013-10-08 HGST Netherlands B.V. Thermally assisted magnetic write head employing a plasmonic antenna comprising an alloyed film to improve the hardness and manufacturability of the antenna
US9053737B2 (en) 2010-12-22 2015-06-09 Seagate Technology Llc Heat assisted magnetic recording devices
US8437230B2 (en) 2011-02-18 2013-05-07 Tdk Corporation Heat-assisted magnetic write head, head gimbals assembly, head arm assembly, and magnetic disk device
US20130161505A1 (en) 2011-04-07 2013-06-27 Seagate Technology Llc Methods of forming layers
US8320220B1 (en) * 2011-10-13 2012-11-27 Western Digital (Fremont), Llc Method and system for providing an energy assisted magnetic recording disk drive having a non-conformal heat spreader
US8286329B1 (en) 2011-11-10 2012-10-16 Seagate Technology Llc Optical transducers and methods of making the same
WO2013163195A1 (en) 2012-04-24 2013-10-31 Seagate Technology Llc Near field transducer with core and plasmonic outer layer
US8514673B1 (en) * 2012-04-24 2013-08-20 Seagate Technology Llc Layered near-field transducer
US8902719B2 (en) * 2012-04-25 2014-12-02 Seagate Technology Llc Heat assisted magnetic recording heads having bilayer heat sinks
US9190100B2 (en) 2012-04-25 2015-11-17 Seagate Technology Determining at least one of alignment and bond line thickness between an optical component and a mounting surface
CN104769672B (zh) 2012-04-25 2019-05-14 希捷科技有限公司 包括近场换能器和粘合层的器件
US8945731B2 (en) 2012-06-29 2015-02-03 Seagate Technology Llc Interlayer for device including NFT and cladding layers
US8964514B2 (en) 2012-08-07 2015-02-24 Tdk Corporation Plasmon generator and thermally-assisted magnetic recording head having the same
CN105009211B (zh) 2012-10-18 2019-11-19 希捷科技有限公司 包括中间层的物品以及形成的方法
US8830800B1 (en) 2013-06-21 2014-09-09 Seagate Technology Llc Magnetic devices including film structures
KR101741617B1 (ko) * 2013-06-24 2017-05-30 시게이트 테크놀로지 엘엘씨 적어도 하나의 접착층을 포함하는 디바이스들 및 접착층들을 형성하는 방법
US20150132503A1 (en) 2013-11-13 2015-05-14 Seagate Technology Llc Methods of forming near field transducers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110228417A1 (en) * 2010-03-19 2011-09-22 Headway Technologies, Inc. Heat-assisted magnetic recording head with near-field light generating element

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104966519A (zh) * 2014-02-28 2015-10-07 希捷科技有限公司 包括近场换能器的设备
CN106251884A (zh) * 2015-05-06 2016-12-21 Hgst荷兰公司 热辅助磁记录头及硬盘驱动器
US10403315B2 (en) 2015-05-06 2019-09-03 Western Digital Technologies, Inc. Near-field transducer for heat assisted magnetic recording comprising of thermally stable material layer
US10636442B2 (en) 2015-05-06 2020-04-28 Western Digital Technologies, Inc. Near-field transducer for heat assisted magnetic recording comprising of thermally stable material layer
CN106251884B (zh) * 2015-05-06 2020-05-19 西部数据技术公司 热辅助磁记录头及硬盘驱动器
CN107851445A (zh) * 2015-05-27 2018-03-27 希捷科技有限公司 热强健的近场换能器销钉
CN107851445B (zh) * 2015-05-27 2020-12-04 希捷科技有限公司 热强健的近场换能器销钉
CN107851446A (zh) * 2015-05-28 2018-03-27 希捷科技有限公司 包括不同材料的销钉和盘的近场换能器(nft)
CN107924688A (zh) * 2015-05-28 2018-04-17 希捷科技有限公司 包括包含由不同材料制成的销钉和盘的近场换能器(nft)的设备
US10431244B2 (en) 2015-05-28 2019-10-01 Seagate Technology Llc Devices including a near field transducer (NFT) including peg and disc from different materials
CN107924688B (zh) * 2015-05-28 2021-05-11 希捷科技有限公司 包含由不同材料制成的销钉和盘的近场换能器(nft)的设备

Also Published As

Publication number Publication date
TW201403592A (zh) 2014-01-16
US9224416B2 (en) 2015-12-29
KR101563210B1 (ko) 2015-10-26
TWI533295B (zh) 2016-05-11
US20130279315A1 (en) 2013-10-24
JP2013229094A (ja) 2013-11-07
CN103514888B (zh) 2018-02-23
JP5805698B2 (ja) 2015-11-04
KR20130119886A (ko) 2013-11-01

Similar Documents

Publication Publication Date Title
CN103514888A (zh) 包含氮化物材料的近场换能器
US8842391B2 (en) Recording head including a near field transducer
US8339740B2 (en) Recording head for heat assisted magnetic recording with diffusion barrier surrounding a near field transducer
CN105590634B (zh) 具有凹进区的近场换能器
CN102592608B (zh) 用于近场光学换能器的热沉
US9053737B2 (en) Heat assisted magnetic recording devices
CN101145347B (zh) 热辅助垂直磁记录系统
TWI393130B (zh) 具有傾斜壁極的熱輔助磁性記錄頭
US10580440B2 (en) Devices including a diffusion barrier layer
US9443545B2 (en) Thermally stable Au alloys as a heat diffusion and plasmonic underlayer for heat-assisted magnetic recording (HAMR) media
US20100208378A1 (en) Bit Patterned Media With Embedded Near-Field Transducer
JP6026969B2 (ja) 近接場アンテナと複合極を備えた記録ヘッド
US8248894B2 (en) Thermally-assisted magnetic recording head having heat radiation layer and interposed layer
US20130100783A1 (en) Recording Head for Heat Assisted Magnetic Recording with a Side Lobe Blocker
US8760978B2 (en) Magnetic recording head and system having optical waveguide core and/or cladding of an alloyed oxide material
US10032468B1 (en) Heat-assisted magnetic recording head configured to conduct heat away from slider components to a substrate
US9202481B1 (en) Near-field transducer with compositionally graded material for heat assisted magnetic recording
US9025281B2 (en) Magnetic device including a near field transducer
EP2657935B1 (en) Near field transducers including nitride materials
US20150147592A1 (en) Storage medium with layer(s) for enhanced heating

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant