TWI521888B - Successive approximation register analog-to-digital converter and associate control method - Google Patents

Successive approximation register analog-to-digital converter and associate control method Download PDF

Info

Publication number
TWI521888B
TWI521888B TW102149385A TW102149385A TWI521888B TW I521888 B TWI521888 B TW I521888B TW 102149385 A TW102149385 A TW 102149385A TW 102149385 A TW102149385 A TW 102149385A TW I521888 B TWI521888 B TW I521888B
Authority
TW
Taiwan
Prior art keywords
bit
capacitors
capacitor
capacitor array
capacitance
Prior art date
Application number
TW102149385A
Other languages
Chinese (zh)
Other versions
TW201526552A (en
Inventor
楊軍
Original Assignee
瑞昱半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞昱半導體股份有限公司 filed Critical 瑞昱半導體股份有限公司
Priority to TW102149385A priority Critical patent/TWI521888B/en
Publication of TW201526552A publication Critical patent/TW201526552A/en
Application granted granted Critical
Publication of TWI521888B publication Critical patent/TWI521888B/en

Links

Landscapes

  • Analogue/Digital Conversion (AREA)

Description

連續逼近暫存式類比數位轉換器及其控制方法 Continuous approximation temporary analog analog digital converter and control method thereof

本發明係有關於一種連續逼近暫存式類比數位轉換器(Successive Approximation Register Analog-to-Digital Converter,SAR ADC),尤指一種可以進行背景校準(background calibration)的連續逼近暫存式類比數位轉換器及其控制方法。 The present invention relates to a Continuous Approximation Register Analog-to-Digital Converter (SAR ADC), and more particularly to a continuous approximation temporary analog analog digital conversion that can perform background calibration. And its control method.

在連續逼近暫存式類比數位轉換器中,由於位元電容陣列中的每一個位元電容的電容值可能會因為製程誤差、環境溫度變化或不完全對稱/匹配等原因造成偏離了原本所設計的電容值,因而造成數位輸出會有誤差,進而影響到連續逼近暫存式類比數位轉換器的線性度。為了解決此一問題,通常會需要對位元電容進行校準,然而,目前的一些校準方法都會存在一些問題,例如影響到連續逼近暫存式類比數位轉換器的工作速度,或是需要限制輸入訊號的擺幅以避免超出類比數位轉換器的編碼範圍...等等,因此造成設計者的困擾以及使用操作上的瑕疵。 In the continuous approximation of the temporary analog analog-to-digital converter, the capacitance value of each bit capacitor in the bit capacitor array may be deviated from the original design due to process error, ambient temperature variation or incomplete symmetry/matching. The capacitance value causes an error in the digital output, which in turn affects the linearity of the successive approximation of the temporary analog digital converter. In order to solve this problem, it is usually necessary to calibrate the bit capacitance. However, some current calibration methods have some problems, such as affecting the working speed of the continuous approximation temporary analog digital converter, or the need to limit the input signal. The swing is prevented from exceeding the coding range of the analog digital converter...etc., thus causing confusion for the designer and the operational flaws.

因此,本發明的目的之一在於提供一種連續逼近暫存式類比數位轉換器及其控制方法,其校準位元電容的方式可以是完全的背景校準(background calibration),不會影響到連續逼近暫存式類比數位轉換器的工作速度;此外,也可以不需要限制輸入訊號的擺幅,亦即允許輸入訊號以滿擺 幅輸入,以增加可處理之輸入訊號的電壓範圍。 Therefore, one of the objects of the present invention is to provide a continuous approximation temporary analog digital converter and a control method thereof, wherein the method of calibrating the bit capacitance can be a complete background calibration without affecting the continuous approximation. The operating speed of the analog analog converter; in addition, it is not necessary to limit the swing of the input signal, that is, the input signal is allowed to be full Input to increase the voltage range of the input signal that can be processed.

依據本發明一實施例,一種連續逼近暫存式類比數位轉換器包含有一第一位元電容陣列、一第二位元電容陣列、一比較器以及一處理電路。該第一位元電容陣列用以接收一第一輸入訊號,其中該第一位元電容陣列包含複數個第一位元電容,且該第一位元電容陣列中的至少一高位元電容是由複數個次電容所構成,且每一個次電容藉由對應之開關選擇性地連接於一第一參考訊號、一第二參考訊號或是一共模電壓;該第二位元電容陣列用以接收一第二輸入訊號,其中該第二位元電容陣列包含複數個第二位元電容,該第二位元電容陣列中的至少一高位元電容是由複數個次電容所構成,且每一個次電容藉由對應之開關選擇性地連接於該第一參考訊號、該第二參考訊號或是該共模電壓;該比較器耦接於該第一位元電容陣列與該第二位元電容陣列,且用以比較該第一位元電容陣列與該第二位元電容陣列的輸出以產生一比較訊號;該處理電路耦接於該比較器,且用以控制該第一位元電容陣列與該第二位元電容陣列的電容切換,並產生該連續逼近暫存式類比數位轉換器的一數位輸出。 According to an embodiment of the invention, a continuous approximation temporary analog digital converter includes a first bit capacitor array, a second bit capacitor array, a comparator, and a processing circuit. The first bit capacitor array is configured to receive a first input signal, wherein the first bit capacitor array includes a plurality of first bit capacitors, and at least one high bit capacitor in the first bit capacitor array is The plurality of secondary capacitors are configured, and each of the secondary capacitors is selectively connected to a first reference signal, a second reference signal or a common mode voltage by a corresponding switch; the second bit capacitor array is configured to receive a a second input signal, wherein the second bit capacitor array comprises a plurality of second bit capacitors, and at least one high bit capacitor in the second bit capacitor array is composed of a plurality of sub-capacitors, and each sub-capacitor The comparator is selectively coupled to the first reference signal, the second reference signal, or the common mode voltage; the comparator is coupled to the first bit capacitor array and the second bit capacitor array, And comparing the output of the first bit capacitor array and the second bit capacitor array to generate a comparison signal; the processing circuit is coupled to the comparator, and configured to control the first bit capacitor array and the second Capacitance capacitor array switching element, and generates a digital output scratch pad analog-digital converter of the SAR.

依據本發明另一實施例,揭露一種控制一連續逼近暫存式類比數位轉換器的方法,其中該連續逼近暫存式類比數位轉換器包含有一第一位元電容陣列以及一第二位元電容陣列其中該第一位元電容陣列用以接收一第一輸入訊號,其中該第一位元電容陣列包含複數個第一位元電容,該第一位元電容陣列中的至少一高位元電容是由複數個次電容所構成,且每一個次電容獨立地藉由一開關選擇性地連接於一第一參考訊號、一第二參考訊號或是一共模電壓;該第二位元電容陣列用以接收一第二輸入訊號,其中該第二位元電容陣列包含複數個第二位元電容,該第二位元電容陣列中的至少一高位元電容是由複數個次電容所構成,且每一個次電容獨立地藉由一開關選擇性地 連接於該第一參考訊號、該第二參考訊號或是該共模電壓;此外,該方法包含有:比較該第一位元電容陣列與該第二位元電容陣列的輸出以產生一比較訊號;根據該比較訊號以決定出每一個第一位元電容或是每一個第二位元電容所對應到的權重值,其中該第一位元電容陣列中該至少一高位元電容的電容值所對應的權重值係藉由分別對該複數個次電容進行校準而得到,且該第二位元電容陣列中該至少一高位元電容的電容值所對應的權重值係藉由分別對該複數個次電容進行校準而得到;以及根據該比較訊號與所決定出之複數個權重值以產生該連續逼近暫存式類比數位轉換器的一數位輸出。 In accordance with another embodiment of the present invention, a method of controlling a continuous approximation temporary analog digital converter is disclosed, wherein the continuous approximation temporary analog digital converter includes a first bit capacitor array and a second bit capacitor The first bit capacitor array is configured to receive a first input signal, wherein the first bit capacitor array includes a plurality of first bit capacitors, and at least one high bit capacitor in the first bit capacitor array is The second sub-capacitor is configured to be selectively connected to a first reference signal, a second reference signal or a common mode voltage by a switch; the second bit capacitor array is used for Receiving a second input signal, wherein the second bit capacitor array comprises a plurality of second bit capacitors, and at least one high bit capacitor in the second bit capacitor array is composed of a plurality of sub-capacitors, and each The secondary capacitor is independently selectively switched by a switch Connected to the first reference signal, the second reference signal, or the common mode voltage; in addition, the method includes: comparing the output of the first bit capacitor array and the second bit capacitor array to generate a comparison signal Determining, according to the comparison signal, a weight value corresponding to each of the first bit capacitors or each of the second bit capacitors, wherein a capacitance value of the at least one high-order capacitor in the first bit capacitor array Corresponding weight values are obtained by respectively calibrating the plurality of sub-capacitors, and the weight values corresponding to the capacitance values of the at least one high-order capacitors in the second bit capacitor array are respectively determined by the plurality of The secondary capacitor is calibrated; and based on the comparison signal and the determined plurality of weight values to generate a digital output of the continuous approximation temporary analog digital converter.

依據本發明另一實施例,一種連續逼近暫存式類比數位轉換器包含有一第一位元電容陣列、一第二位元電容陣列、一比較器以及一處理電路。該第一位元電容陣列用以接收一第一輸入訊號,其包含複數個第一位元電容,該第一位元電容陣列中的至少一高位元電容是由複數個次電容所構成;該第二位元電容陣列,用以接收一第二輸入訊號,其包含複數個第二位元電容,該第二位元電容陣列中的至少一高位元電容是由複數個次電容所構成;該比較器用以比較該第一位元電容陣列與該第二位元電容陣列的輸出以產生一比較訊號;以及該處理電路,耦接於該比較器,用以控制該第一位元電容陣列與該第二位元電容陣列的電容切換,並根據該比較訊號產生一N位元數位輸出;其中,在該第一位元電容陣列中,電容值大於一冗餘電容的第一位元電容係由多個次電容所組成,且每一個次電容的電容值小於一冗餘電容,其中該冗餘電容係定義為一單位電容及該第一位元電容陣列中該複數個第一位元電容的電容值總和與最低位元電容之電容值的2(N-1)倍的差值。 In accordance with another embodiment of the present invention, a continuous approximation temporary analog digital converter includes a first bit capacitor array, a second bit capacitor array, a comparator, and a processing circuit. The first bit capacitor array is configured to receive a first input signal, where the first bit capacitor includes a plurality of first bit capacitors, and the at least one high bit capacitor in the first bit capacitor array is formed by a plurality of sub-capacitors; a second bit capacitor array for receiving a second input signal, comprising a plurality of second bit capacitors, wherein at least one high bit capacitor in the second bit capacitor array is composed of a plurality of sub-capacitors; Comparing the output of the first bit capacitor array and the second bit capacitor array to generate a comparison signal; and the processing circuit is coupled to the comparator for controlling the first bit capacitor array and The capacitance of the second bit capacitor array is switched, and an N-bit digital output is generated according to the comparison signal; wherein, in the first bit capacitor array, the capacitance value is greater than a first bit capacitance of a redundant capacitor The capacitor is composed of a plurality of sub-capacitors, and the capacitance of each sub-capacitor is less than a redundant capacitor, wherein the redundant capacitor is defined as a unit capacitor and the plurality of first-bit capacitors in the first-bit capacitor array of The difference between the sum of the capacitance values and the capacitance of the lowest bit capacitance is 2 (N-1) times.

100、400‧‧‧連續逼近暫存式類比數位轉換器 100,400‧‧‧Continuous approximation of temporary analog analog converter

110、410‧‧‧第一位元電容陣列 110, 410‧‧‧ first bit capacitor array

120、420‧‧‧第二位元電容陣列 120, 420‧‧‧ second bit capacitor array

130、430‧‧‧比較器 130, 430‧‧‧ comparator

140、440‧‧‧乘法器 140, 440‧‧‧ multiplier

150、450‧‧‧處理電路 150, 450‧‧‧ processing circuits

CP00、CN00‧‧‧單位電容 CP00, CN00‧‧‧ unit capacitor

CP0~CP13、CN0~CN13‧‧‧位元電容 CP0~CP13, CN0~CN13‧‧‧ bit capacitance

CP13,0~CP13,4、CN13,0~CN13,4‧‧‧次電容 CP 13,0 ~ CP 13,4, CN 13,0 ~ CN 13,4 ‧‧‧ capacitor Ci

CKS‧‧‧開關 CKS‧‧ switch

Dout‧‧‧數位輸出 Dout‧‧‧ digital output

K‧‧‧偽隨機序列 K‧‧‧ pseudo-random sequence

Vc‧‧‧控制訊號 Vc‧‧‧ control signal

Vip‧‧‧第一輸入訊號 Vip‧‧‧first input signal

Vin‧‧‧第二輸入訊號 Vin‧‧‧second input signal

Vrefp‧‧‧第一參考電壓 Vrefp‧‧‧ first reference voltage

Vrefn‧‧‧第二參考電壓 Vrefn‧‧‧second reference voltage

VCM‧‧‧共模電壓 V CM ‧‧‧ Common mode voltage

VCMP、VCMN‧‧‧端點 V CMP , V CMN ‧‧‧ endpoint

700~706‧‧‧步驟 700~706‧‧‧Steps

第1圖為根據本發明一實施例之連續逼近暫存式類比數位轉換器的示意圖。 1 is a schematic diagram of a continuous approximation temporary analog digital converter in accordance with an embodiment of the present invention.

第2圖為第1圖所示之連續逼近暫存式類比數位轉換器在取樣階段時對一次電容進行背景校準的示意圖。 Figure 2 is a schematic diagram of the background calibration of the primary capacitor during the sampling phase of the continuous approximation temporary analog digital converter shown in Figure 1.

第3圖為第1圖所示之連續逼近暫存式類比數位轉換器在保持信號階段時對一次電容進行背景校準的示意圖。 Figure 3 is a schematic diagram of the background calibration of the primary capacitor when the continuous approximation temporary analog digital converter shown in Figure 1 maintains the signal phase.

第4圖為根據本發明另一實施例之連續逼近暫存式類比數位轉換器的示意圖。 4 is a schematic diagram of a continuous approximation temporary analog digital converter in accordance with another embodiment of the present invention.

第5圖為第4圖所示之連續逼近暫存式類比數位轉換器在取樣階段時對一次電容進行背景校準的示意圖。 Figure 5 is a schematic diagram of the background calibration of the primary capacitor during the sampling phase of the continuous approximation temporary analog digital converter shown in Figure 4.

第6圖為第4圖所示之連續逼近暫存式類比數位轉換器在保持信號階段時對一次電容進行背景校準的示意圖。 Figure 6 is a schematic diagram of the background calibration of the primary capacitor when the continuous approximation temporary analog digital converter shown in Figure 4 maintains the signal phase.

第7圖為依據本發明一實施例之控制一連續逼近暫存式類比數位轉換器的方法的流程圖。 7 is a flow chart of a method of controlling a continuous approximation temporary analog analog-to-digital converter in accordance with an embodiment of the present invention.

在連續逼近暫存式類比數位轉換器中,其線性度受限於位元電容的匹配程度(亦即先前技術中所述之位元電容的電容值偏離原本所設計的電容值的程度),因此,傳統在設計上必需選擇足夠大的電容值來保證一定的準確度,因而需要用比較大的面積以及功率來實現。舉例來說,可能須要用四倍的面積來換得高一倍的準確度,因此,若能降低對於位元電容匹配度的要求,每降低兩倍,即可得到四倍的面積下降的好處。因此,為了降低對於位元電容匹配度的要求,連續逼近暫存式類比數位轉換器在設計與運作上便採取了一些校準位元電容的機制,以節省晶片中電容的面積、降低晶片的功率消耗、提升運作速度、以及提升連續逼近暫存式類比數位轉換器的一些品質指標,例如積分非線性(Integral Non-Linearity,INL)、差動非線性(Differential Non-Linearity,DNL)、無寄生動態範圍(Spurious Free Dynamic Range,SFDR)及訊號雜訊失真比(Signal-to-Noize & Distortion Ratio,SNDR)...等等。 In the continuous approximation of the temporary analog analog-to-digital converter, the linearity is limited by the matching degree of the bit capacitance (that is, the degree of capacitance of the bit capacitance described in the prior art deviates from the originally designed capacitance value). Therefore, the conventional design must select a sufficiently large capacitance value to ensure a certain degree of accuracy, and thus needs to be realized with a relatively large area and power. For example, it may be necessary to use four times the area to double the accuracy. Therefore, if you reduce the requirement for bit capacitance matching, you can get four times the area reduction benefit for every two times reduction. . Therefore, in order to reduce the requirement for bit capacitance matching, the continuous approximation of the temporary analog digital converter has adopted some mechanisms for calibrating the bit capacitance to save the area of the capacitor in the wafer and reduce the power of the chip. Consume, increase operating speed, and improve some of the quality metrics of continuous approximation of the temporary analog digital converter, such as Integral Non-Linearity (INL), Differential Non-Linearity (DNL), no parasitic Spurious Free Dynamic Range (SFDR) and Signal-to-Noize & Distortion Ratio (SNDR)...etc.

本發明所提供的連續逼近暫存式類比數位轉換器是採用完全的背景校準(background calibration)方式來對位元電容進行校準,以準確得知每個位元電容的權重值,其中權重值在此指的是位元電容與最低位元電容的比值,且由於在校準過程中不需要中斷數位轉換器的操作,能自動適應環境溫度變化、元件老化等導致電容值改變的因素,因此可以在大幅改善線性度以及動態特性的情形下,同時兼顧連續逼近暫存式類比數位轉換器的工作效率。 The continuous approximation temporary analog analog-to-digital converter provided by the invention calibrates the bit capacitance by using a complete background calibration method to accurately know the weight value of each bit capacitance, wherein the weight value is This refers to the ratio of the bit capacitance to the lowest bit capacitance, and since it does not need to interrupt the operation of the digital converter during the calibration process, it can automatically adapt to factors such as changes in the ambient temperature, component aging, etc., so that the capacitance value can be changed. In the case of greatly improving the linearity and dynamic characteristics, the efficiency of the continuous approximation of the temporary analog digital converter is also considered.

另外,本發明所提供之連續逼近暫存式類比數位轉換器中的位元電容不採用標準的二進制電容值的設計,而採用有冗餘電容的電容值設計,而就N位元連續逼近暫存式類比數位轉換器來說,“冗餘電容”在本發明中可定義為單位電容及位元電容的電容值總和與最低位元電容之電容值的2(N-1)倍的差值,其中較佳地N為正整數。此外,本發明也將連續逼近暫存式類比數位轉換器中部分的高位元電容分拆為多個次電容,且每個次電容的電容值均小於冗餘電容,如此一來,在進行背景校準時也不需要限制輸入訊號的擺幅,亦即輸入訊號可以滿擺幅(full swing)輸入,以增加可處理之輸入訊號的電壓範圍。本發明之連續逼近暫存式類比數位轉換器的實施細節將於以下內容詳述。 In addition, the bit capacitance in the continuous approximation temporary analog digital converter provided by the present invention does not adopt a standard binary capacitance value design, but uses a capacitance value design with a redundant capacitor, and the N-bit continuous approximation is temporarily suspended. In the case of a memory analog converter, the "redundant capacitance" can be defined in the present invention as the difference between the sum of the capacitance values of the unit capacitance and the bit capacitance and the capacitance value of the lowest bit capacitance by 2 (N-1) times. Wherein N is preferably a positive integer. In addition, the present invention also splits the high-order capacitor of the continuous approximation analog-type digital converter into a plurality of sub-capacitors, and the capacitance value of each sub-capacitor is smaller than the redundant capacitor, so that the background is performed. There is also no need to limit the swing of the input signal during calibration, that is, the input signal can be full swing input to increase the voltage range of the input signal that can be processed. Details of the implementation of the continuous approximation temporary analog digital converter of the present invention will be detailed below.

請參考第1圖,第1圖為根據本發明一實施例之連續逼近暫存式類比數位轉換器100的示意圖。如第1圖所示,連續逼近暫存式類比數位轉換器100包含有一第一位元電容陣列110、一第二位元電容陣列120、一比較器130、一乘法器140、一處理電路150、以及兩個單位電容CP00與CN00,其中第一位元電容陣列110包含複數個位元電容CP0~CP13,每一個位元電容CP0~CP13均可藉由一開關來選擇性地連接到一第一參考電壓Vrefp、一第二參考電壓Vrefn及一共模電壓VCM,且在本實施例中位元電容CP10~CP13係分拆為多個次電容(如第1圖所示之位元電容CP13分拆為多個次電容CP13,0、 CP13,1、CP13,2、CP13,3、CP13,4),且每個次電容均可獨立地藉由一開關來選擇性地連接到第一參考電壓Vrefp、第二參考電壓Vrefn及共模電壓VCM;第二位元電容陣列120包含複數個位元電容CN0~CN13,每一個位元電容CN0~CN13均可藉由一開關來選擇性地連接到一第一參考電壓Vrefp、第二參考電壓Vrefn及共模電壓VCM、且在本實施例中位元電容CN10~CN13係分拆為多個次電容(如第1圖所示之位元電容CN13分拆為多個次電容CN13,0、CN13,1、CN13,2、CN13,3、CN13,4),且每個次電容均可獨立地藉由一開關來選擇性地連接到第一參考電壓Vrefp、第二參考電壓Vrefn及共模電壓VCM。其中在一實施例中,第一參考電壓Vrefp為正參考電壓,第二參考電壓Vrefn為負參考電壓,兩者對稱於共模電壓VCM,亦即VCM=0.5(Vrefp+Vrefn)。此外,第1圖所示之所有開關的切換係由處理電路150所產生的多個控制訊號Vc來控制。 Please refer to FIG. 1. FIG. 1 is a schematic diagram of a continuous approximation temporary analog digital converter 100 according to an embodiment of the invention. As shown in FIG. 1 , the continuous approximation analog digital converter 100 includes a first bit capacitor array 110 , a second bit capacitor array 120 , a comparator 130 , a multiplier 140 , and a processing circuit 150 . And two unit capacitors CP00 and CN00, wherein the first bit capacitor array 110 includes a plurality of bit capacitors CP0~CP13, and each of the bit capacitors CP0~CP13 can be selectively connected to the first by a switch a reference voltage Vrefp, a second reference voltage Vrefn, and a common mode voltage V CM , and in this embodiment, the bit capacitances CP10~CP13 are separated into a plurality of sub-capacitors (such as the bit capacitance CP13 shown in FIG. 1) Split into multiple sub-capacitors CP 13,0 , CP 13,1 , CP 13,2 , CP 13,3 , CP 13,4 ), and each sub-capacitor can be independently controlled by a switch Connected to the first reference voltage Vrefp, the second reference voltage Vrefn, and the common mode voltage V CM ; the second bit capacitor array 120 includes a plurality of bit capacitors CN0~CN13, and each bit capacitor CN0~CN13 can be used by one The switch is selectively coupled to a first reference voltage Vrefp, a second reference voltage Vrefn, and a common mode voltage V CM In the embodiment, the bit capacitors CN10~CN13 are separated into a plurality of sub-capacitors (for example, the bit capacitor CN13 shown in FIG. 1 is split into a plurality of sub-capacitors CN13, 0, CN 13 , 1 and CN. 13 , 2, CN 13 , 3 , CN 13 , 4 ), and each sub-capacitor can be independently connected to the first reference voltage Vrefp, the second reference voltage Vrefn, and the common mode voltage V by a switch CM . In one embodiment, the first reference voltage Vrefp is a positive reference voltage, and the second reference voltage Vrefn is a negative reference voltage, which are symmetric with respect to the common mode voltage V CM , that is, V CM =0.5 (Vrefp+Vrefn). In addition, the switching of all the switches shown in FIG. 1 is controlled by a plurality of control signals Vc generated by the processing circuit 150.

在本實施例中,連續逼近暫存式類比數位轉換器100係為12位元的連續逼近暫存式類比數位轉換器,亦即連續逼近暫存式類比數位轉換器100會接收第一輸入訊號Vip與第二輸入訊號Vin以產生12位元的數位輸出Dout,其中在一實施例中,第一輸入訊號Vip為正輸入電壓,第二輸入訊號Vin為負輸出電壓,兩者對稱於一電壓準位。此外,雖然第1圖所示的第一位元電容陣列110與第二位元電容陣列120均包含了14個位元電容,但在設計上第一位元電容陣列110與第二位元電容陣列120中的位元電容數量也可以是12個或是13個等等,這些設計上的變化均應屬於本發明的範疇。 In this embodiment, the continuous approximation temporary analog digital converter 100 is a 12-bit continuous approximation temporary analog digital converter, that is, the continuous approximation temporary analog digital converter 100 receives the first input signal. The Vip and the second input signal Vin are used to generate a 12-bit digital output Dout. In one embodiment, the first input signal Vip is a positive input voltage, and the second input signal Vin is a negative output voltage, and the two are symmetric to a voltage. Level. In addition, although the first bit capacitor array 110 and the second bit capacitor array 120 shown in FIG. 1 each include 14 bit capacitors, the first bit capacitor array 110 and the second bit capacitor are designed. The number of bit capacitors in array 120 can also be 12 or 13, etc., and these design variations are all within the scope of the present invention.

於本實施例,假設連續逼近暫存式類比數位轉換器100為N位元的連續逼近暫存式類比數位轉換器(第1圖的實施例中N為12),第一位元電容陣列110與第二位元電容陣列120中的位元電容數量為P(第1圖的實施例中P為14),其中P需要大於(N-1),每個位元電容標示為C0、C1、C2、...、 C(P-1),其中C0為最低位元電容,其他的所有位元電容(C1~C(P-1))的電容值都是C0的整數倍。此外,本實施例將部分的高位元電容分拆為多個次電容, 例如將位元電容Ci分拆為M個次電容,亦即。另外,本實施例在 較佳的情形下,在電容的設計上需要滿足以下三個條件:(1) ,亦即任一位元電容的電容值不大於所有較低位元電 容的電容值總和;(2),亦即單位電容及位元電容的電容 值總和不小於最低位元電容之電容值的2(N-1)倍;(2) ,亦即每一個次電容的電容值均小於一冗餘電容,其 中該冗餘電容係定義為單位電容及位元電容的電容值總和與最低位元電容之 電容值的2(N-1)倍的差值,亦即冗餘電容定義為。上述的符 號中,C0代表的是最低位元電容,而Ci代表的是電容值第一位元電容陣列110或是第二位元電容陣列120中電容值第i高的位元電容。 In the present embodiment, it is assumed that the continuous approximation temporary analog-to-digital converter 100 is an N-bit continuous approximation temporary analog digital converter (N is 12 in the embodiment of FIG. 1), and the first bit capacitor array 110 The number of bit capacitances in the second bit capacitor array 120 is P (P is 14 in the embodiment of FIG. 1), where P needs to be greater than (N-1), and each bit capacitance is labeled C0, C1. C2,..., C(P-1), where C0 is the lowest bit capacitance, and the capacitance values of all other bit capacitors (C1~C(P-1)) are integer multiples of C0. In addition, in this embodiment, part of the high-order capacitor is split into a plurality of secondary capacitors, for example, the bit capacitor Ci is split into M secondary capacitors, that is, . In addition, in the preferred embodiment of the present embodiment, the following three conditions must be met in the design of the capacitor: (1) , that is, the capacitance value of any bit capacitor is not greater than the sum of the capacitance values of all lower bit capacitors; (2) , that is, the sum of the capacitance values of the unit capacitor and the bit capacitor is not less than 2 (N-1) times the capacitance value of the lowest bit capacitor; (2) That is, the capacitance value of each sub-capacitor is less than a redundant capacitor, wherein the redundant capacitor is defined as the sum of the capacitance value of the unit capacitor and the bit capacitor and the capacitance value of the lowest bit capacitor 2 (N-1) The difference of the double, that is, the redundant capacitance is defined as . In the above symbols, C0 represents the lowest bit capacitance, and Ci represents the capacitance value of the first bit capacitor array 110 or the second bit capacitor array 120 where the capacitance value is the i-th highest bit capacitance.

參考上述的三個條件,第1圖所示之實施例的第一位元電容陣列110與第二位元電容陣列120中的位元電容的電容值可以設計如以下的表一,其中表一中電容值的單位是C0: Referring to the above three conditions, the capacitance values of the bit capacitors in the first bit capacitor array 110 and the second bit capacitor array 120 of the embodiment shown in FIG. 1 can be designed as shown in Table 1 below. The unit of the medium capacitance value is C0:

在表一中,冗餘電容為,因此,分拆 後的次電容只要小於297*C0即可,以下的表二是C13、C12、C11、C10的一種分拆範例(C13、C12、C11、C10分別對應到第1圖的CN13/CP13、CN12/CP12、CN11/CP11、CN10/CP10),其中表二中的電容值單位是C0: In Table 1, the redundant capacitor is Therefore, the sub-capacitor after the splitting is only required to be less than 297*C0. The following Table 2 is a split example of C13, C12, C11, and C10 (C13, C12, C11, and C10 correspond to CN13 of Figure 1 respectively). /CP13, CN12/CP12, CN11/CP11, CN10/CP10), where the capacitance value unit in Table 2 is C0:

在本實施例中,由於冗餘電容為297*C0,因此,電容值小於297*C0的位元電容可以不需要分拆為多個次電容,但若是分拆也不影響到連續逼近暫存式類比數位轉換器100的運作。舉例來說,表二中的位元電容C10的電容值為256*C0,因此,位元電容C10也可以不需要分拆為兩個次電容C10,0與C10,1。 In this embodiment, since the redundant capacitor is 297*C0, the bit capacitance of the capacitor value less than 297*C0 may not need to be split into multiple sub-capacitors, but if the splitting does not affect the continuous approximation temporary storage The operation of analog digital converter 100. For example, the capacitance of the bit capacitor C10 in Table 2 is 256*C0. Therefore, the bit capacitor C10 does not need to be split into two sub-capacitors C10, 0 and C10, 1.

此外,在一實施例中,構成一位元電容的所有次電容的電容值應盡可能的相同,在較佳的情形下,構成一位元電容的所有次電容的電容值是完全相同的,例如表二中的位元電容C11與C10。 In addition, in an embodiment, the capacitance values of all the sub-capacitors constituting the one-element capacitor should be the same as possible. In a preferred case, the capacitance values of all the sub-capacitors constituting the one-element capacitor are completely the same. For example, the bit capacitors C11 and C10 in Table 2.

需注意的是,以上表一及表二中的電容值是設計值,亦即是設計者在設計連續逼近暫存式類比數位轉換器100的理想值,然而,由於表一及表二中的電容值會因為製程誤差、環境溫度變化等原因造成偏離了原本所設計的電容值,因此處理電路150會需要對這些位元電容作校準以得到實際的電容值。在以下的敘述中,權重值Wi為位元電容Ci與最低位元電容C0的比值(權重值Wi的意義也等於上述表一中每個位元電容的數值),亦即Wi=Ci/C0;而Wij為次電容Ci,j與最低位元電容C0的比值,亦即Wi,j=Ci,j/C0,且處理電路150主要即是計算出每一個位元電容Ci的實際權重值。 It should be noted that the capacitance values in Tables 1 and 2 above are design values, which is the ideal value for the designer to design the continuous approximation of the temporary analog digital converter 100. However, due to the values in Tables 1 and 2 The capacitance value deviates from the originally designed capacitance value due to process error, ambient temperature variation, etc., so the processing circuit 150 needs to calibrate these bit capacitances to obtain the actual capacitance value. In the following description, the weight value Wi is the ratio of the bit capacitance Ci to the lowest bit capacitance C0 (the meaning of the weight value Wi is also equal to the value of each bit capacitance in the above Table 1), that is, Wi=Ci/C0. And W ij is the ratio of the sub-capacitance C i,j to the lowest bit capacitance C0, that is, W i,j =C i,j /C0, and the processing circuit 150 mainly calculates each bit capacitance Ci. Actual weight value.

請參考第2圖以及第3圖,其為連續逼近暫存式類比數位轉換器100對一次電容進行背景校準的示意圖,其中第2圖所描述的是取樣階段,而第3圖所描述的是保持信號階段。請先參考第2圖,在第2圖所示的取樣階段中,開關CKS導通,第一輸入訊號Vip與第二輸入訊號Vin分別被取樣到圖式的端點VCMP與VCMN上。假設目前要校準的是次電容CP13,2與CN13,2,且當偽隨機序列K=1時,待校準的次電容CP13,2與CN13,2的端點會分別連接到第二參考電壓Vrefn與第一參考電壓Vrefp;另一方面,當偽隨機序列K=(-1)時,待校準的次電容CP13,2與CN13,2的端點則會分別連接到第一參考電壓Vrefp與第二參考電壓Vrefn。此時不參與這次校準的其他所有次電容及位元電容的端點全部都會接到共模電壓VCMPlease refer to FIG. 2 and FIG. 3, which is a schematic diagram of background calibration of the primary capacitor by the continuous approximation temporary analog digital converter 100. FIG. 2 depicts the sampling phase, and FIG. 3 depicts Maintain the signal phase. Please refer to FIG. 2 first. In the sampling phase shown in FIG. 2, the switch CKS is turned on, and the first input signal Vip and the second input signal Vin are respectively sampled to the endpoints V CMP and V CMN of the figure. Assume that the secondary capacitors CP 13, 2 and CN 13 , 2 are currently calibrated, and when the pseudo-random sequence K = 1, the endpoints of the secondary capacitors CP 13, 2 and CN 13 , 2 to be calibrated are respectively connected to the The second reference voltage Vrefn and the first reference voltage Vrefp; on the other hand, when the pseudo-random sequence K=(-1), the end points of the secondary capacitors CP 13, 2 and CN 13 , 2 to be calibrated are respectively connected to the A reference voltage Vrefp and a second reference voltage Vrefn. All other sub-capacitors and bit capacitors that do not participate in this calibration at this time will be connected to the common-mode voltage V CM .

接著,在取樣階段結束之後,進入第3圖所示的保持信號階段,而在保持信號階段中,開關CKS關閉(disable),待校準的次電容CP13,2與CN13,2的端點則會回復連接到共模電壓VCM,如此一來,抖動(dithering)訊號(K*W13,2)便會疊加到輸入訊號之中。之後,輸入訊號加上此抖動訊號會被連續逼近暫存式類比數位轉換器100量化,而此量化過後的數位碼乘以偽隨機序列K,並再進行累加求平均後,即可求得W13,2的值。 Then, after the sampling phase ends, the hold signal phase shown in FIG. 3 is entered, and in the hold signal phase, the switch CKS is disabled, and the secondary capacitors CP 13 , 2 to be calibrated and the end points of CN 13 , 2 It will be connected to the common mode voltage V CM , so that the dithering signal (K*W 13, 2 ) will be superimposed on the input signal. After that, the input signal plus the jitter signal is continuously approximated by the temporary analog digital converter 100, and the quantized digital code is multiplied by the pseudo-random sequence K, and then accumulated and averaged to obtain the W. The value of 13,2 .

以下詳細說明如何求得次電容C13,2的權重值W13,2:假設輸入訊號記為VIN,其中VIN=Vip-Vin,且假設此時連續逼近暫存式類比數位轉換器100所輸出的數位碼記為DIN,則VIN=DIN+QN,其中QN為量化誤差;由於輸入訊號會疊加上抖動訊號,故輸入訊號加上抖動訊號記為VIN+(K*W13,2),其中偽隨機序列K的值為1或(-1),而此時連續逼近暫存式類比數位轉換器100所輸出的數位碼記為Dout,則VIN+(K*W13,2)=Dout+QN;將上述的Dout乘以K並累加求平均: ,其中只要偽隨機序 列K足夠長,上述的“e”值會趨近於0,如此一來便可求得W13,2The following details how to obtain the weight value W 13,2 of the secondary capacitor C 13,2 : assume that the input signal is VIN, where VIN = Vip - Vin, and assume that the output of the temporary analog digital converter 100 is continuously approached at this time. The digit code is DIN, then VIN=DIN+Q N , where Q N is the quantization error; since the input signal will superimpose the jitter signal, the input signal plus the jitter signal is recorded as VIN+(K*W 13,2 ), The value of the pseudo-random sequence K is 1 or (-1), and at this time, the digital code outputted by the successive approximation analog digital converter 100 is Dout, then VIN+(K*W 13,2 )=Dout+ QN; multiply the above Dout by K and accumulate the average: As long as the pseudo-random sequence K is sufficiently long, the above "e" value will approach 0, so that W 13,2 can be obtained.

基於同樣的計算方式,連續逼近暫存式類比數位轉換器100可以分別對其他的次電容C13,0、C13,1...等進行類似的運算,以求得相對應的權重值。而後續在連續逼近暫存式類比數位轉換器100的工作過程中,被拆開的電容會被當作一個整體來使用,亦即所有的次電容Ci,j會被當作一個位元電容Ci來使用,例如次電容C13,0、C13,1、C13,2、C13,3、C13,4會被作為一個整體的位元電容C13來進行操作。至於後續位元電容的切換方向,則如傳統的連續逼近暫存式類比數位轉換器,根據比較器130的輸出來做判定,以達到負回授收斂,由於本領域具有通常知識者應能了解連續逼近暫存式類比數位轉換器在這方面的相關操作,故細節在此不予贅述。 Based on the same calculation method, the successive approximation temporary analog-to-digital converter 100 can perform similar operations on other sub-capacitors C 13,0 , C 13,1 , . . . , respectively, to obtain corresponding weight values. In the subsequent operation of the continuous approximation analog digital converter 100, the disassembled capacitors are used as a whole, that is, all the sub-capacitors C i,j are treated as one bit capacitors. Ci to use, for example, times the capacitance C 13,0, C 13,1, C 13,2 , C 13,3, C 13,4 will be as a whole bit capacitor C13 to operate. As for the switching direction of the subsequent bit capacitance, the conventional continuous approximation temporary analog digital converter is determined according to the output of the comparator 130 to achieve negative feedback convergence, which should be understood by those having ordinary knowledge in the field. Continuous approximation of the associated operation of the temporary analog digital converter in this respect, so the details will not be described here.

此外,在本實施例中,在連續逼近暫存式類比數位轉換器100的工作過程中,所有的次電容會不斷地進行校準,以隨時更新其權重值,並供後續的處理電路150來產生數位輸出Dout。然而,於本發明之另一實施例中,所有的次電容可以只在連續逼近暫存式類比數位轉換器100開始運作的一段時間內進行校準,等到次電容的權重值穩定之後便可以停止校準操作,這些 設計上的變化均應隸屬於本發明的範疇。 In addition, in the present embodiment, during the continuous approximation of the operation of the temporary analog digital converter 100, all of the secondary capacitors are continuously calibrated to update their weight values at any time, and are then generated by the processing circuit 150. Digital output Dout. However, in another embodiment of the present invention, all of the sub-capacitors can be calibrated only for a period of time during which the successive approximation of the temporary analog-to-digital converter 100 begins to operate, and the calibration can be stopped after the weight value of the sub-capacitor is stabilized. Operation, these Changes in design are all within the scope of the invention.

此外,處理電路150所產生數位輸出Dout可以由以下公式所計算 出來(但本發明不以此為限制):,其中 bi為比較器第i次輸出的碼(code),P為第一位元電容陣列110中位元電容的數量(在第1圖的實施例中P為14),QN為量化誤差。 In addition, the digital output Dout generated by the processing circuit 150 can be calculated by the following formula (but the invention is not limited thereto): Where b i is the code of the i-th output of the comparator, P is the number of bit capacitances in the first bit capacitor array 110 (P is 14 in the embodiment of Fig. 1), Q N is quantization error.

請參考第4圖,第4圖為根據本發明另一實施例之連續逼近暫存式類比數位轉換器400的示意圖。如第4圖所示,連續逼近暫存式類比數位轉換器400包含有一第一位元電容陣列410、一第二位元電容陣列420、一比較器430、一乘法器440、一處理電路450、以及兩個單位電容CP00與CN00,其中第一位元電容陣列410包含複數個位元電容CP0~CP13,每一個位元電容CP0~CP13均可藉由一開關來選擇性地連接到一第一輸入電壓Vip、一第一參考電壓Vrefp、一第二參考電壓Vrefn及一共模電壓VCM,且在本實施例中位元電容CP12~CP13係分拆為多個次電容(如第4圖所示之位元電容CP13分拆為多個次電容CP13,0、CP13,1、CP13,2、CP13,3),且每個次電容均可獨立地藉由一開關來選擇性地連接到第一輸入電壓Vip、第一參考電壓Vrefp、第二參考電壓Vrefn及共模電壓VCM;第二位元電容陣列420包含複數個位元電容CN0~CN13,每一個位元電容CN0~CN13均可藉由一開關來選擇性地連接到一第二輸入電壓Vin、第一參考電壓Vrefp、第二參考電壓Vrefn及共模電壓VCM、且在本實施例中位元電容CN12~CN13係分拆為多個次電容(如第4圖所示之位元電容CN13分拆為多個次電容CN13,0、CN13,1、CN13,2、CN13,3),且每個次電容均可獨立地藉由一開關來選擇性地連接到第二輸入電壓Vin、第一參考電壓Vrefp、第二參考電壓Vrefn及共模電壓VCM。此外,第4圖所示之所有開關的切換係由處理電路450所產生的多個控制訊號Vc來控制。 Please refer to FIG. 4. FIG. 4 is a schematic diagram of a continuous approximation temporary analog digital converter 400 according to another embodiment of the present invention. As shown in FIG. 4 , the continuous approximation analog digital converter 400 includes a first bit capacitor array 410 , a second bit capacitor array 420 , a comparator 430 , a multiplier 440 , and a processing circuit 450 . And two unit capacitors CP00 and CN00, wherein the first bit capacitor array 410 includes a plurality of bit capacitors CP0~CP13, and each of the bit capacitors CP0~CP13 can be selectively connected to a first by a switch An input voltage Vip, a first reference voltage Vrefp, a second reference voltage Vrefn, and a common mode voltage V CM , and in this embodiment, the bit capacitances CP12~CP13 are split into multiple sub-capacitors (as shown in FIG. 4 The bit capacitor CP13 shown is split into a plurality of sub-capacitors CP 13,0 , CP 13,1 , CP 13,2 , CP 13,3 ), and each sub-capacitor can be independently selected by a switch Connected to the first input voltage Vip, the first reference voltage Vrefp, the second reference voltage Vrefn and the common mode voltage V CM ; the second bit capacitor array 420 includes a plurality of bit capacitors CN0~CN13, each bit capacitor CN0~CN13 can be selectively connected to a second input voltage Vin by a switch Reference voltages Vrefp, Vrefn second reference voltage and the common-mode voltage V CM, and in this embodiment, the bit line capacitance CN12 ~ CN13 split into a plurality of sub-capacitors (as shown in Figure 4. The bit split capacitor CN13 It is a plurality of secondary capacitors CN 13,0 , CN 13,1 , CN 13,2 , CN 13,3 ), and each secondary capacitor can be independently connected to the second input voltage Vin by a switch The first reference voltage Vrefp, the second reference voltage Vrefn, and the common mode voltage V CM . In addition, the switching of all the switches shown in FIG. 4 is controlled by a plurality of control signals Vc generated by the processing circuit 450.

在本實施例中,連續逼近暫存式類比數位轉換器400係為12位元的連續逼近暫存式類比數位轉換器,亦即連續逼近暫存式類比數位轉換器400會接收第一輸入訊號Vip與第二輸入訊號Vin以產生12位元的數位輸出Dout。此外,雖然第4圖所示的第一位元電容陣列410與第二位元電容陣列420均包含了14個位元電容,但在設計上第一位元電容陣列410與第二位元電容陣列420中的位元電容數量也可以是12個或是13個等等,這些設計上的變化均應屬於本發明的範疇。 In this embodiment, the continuous approximation temporary analog digital converter 400 is a 12-bit continuous approximation temporary analog digital converter, that is, the continuous approximation temporary analog digital converter 400 receives the first input signal. The Vip and the second input signal Vin generate a 12-bit digital output Dout. In addition, although the first bit capacitor array 410 and the second bit capacitor array 420 shown in FIG. 4 each include 14 bit capacitors, the first bit capacitor array 410 and the second bit capacitor are designed. The number of bit capacitors in array 420 can also be 12 or 13, etc., and these design variations are all within the scope of the present invention.

於本實施例,假設連續逼近暫存式類比數位轉換器400為N位元的連續逼近暫存式類比數位轉換器(第4圖的實施例中N為12),第一位元電容陣列410與第二位元電容陣列420中的位元電容數量為P(第4圖的實施例中P為14),其中P需要大於(N-1),每個位元電容標示為C0、C1、C2、...、C(P-1),其中C0為最低位元電容,其他的所有位元電容(C1~C(P-1))的電容值都是C0的整數倍。此外,本實施例將部分的高位元電容分拆為多個次電容, 例如將位元電容Ci分拆為M個次電容,亦即。另外,本實施例在 較佳的情形下,在電容的設計上需要滿足以下三個條件:(1) ,亦即任一位元電容的電容值不大於所有較低位元電 容的電容值總和;(2),亦即位元電容的電容值總和不小 於最低位元電容之電容值的2(N-1)倍;(3),亦即每一個 次電容的電容值均小於一冗餘電容,其中該冗餘電容係定義為單位電容及位元電容的電容值總和與最低位元電容之電容值的2(N-1)倍的差值,亦即冗餘電 容定義為。上述的符號中,C0代表的是最低位元電容,而Ci代表的是電容值第一位元電容陣列110或是第二位元電容陣列120中電容 值第i高的位元電容。 In the present embodiment, it is assumed that the continuous approximation temporary analog digital converter 400 is an N-bit continuous approximation temporary analog digital converter (N is 12 in the embodiment of FIG. 4), and the first bit capacitor array 410 The number of bit capacitances in the second bit capacitor array 420 is P (P is 14 in the embodiment of FIG. 4), where P needs to be greater than (N-1), and each bit capacitance is labeled C0, C1. C2, ..., C(P-1), where C0 is the lowest bit capacitance, and the capacitance values of all other bit capacitances (C1~C(P-1)) are integer multiples of C0. In addition, in this embodiment, part of the high-order capacitor is split into a plurality of secondary capacitors, for example, the bit capacitor Ci is split into M secondary capacitors, that is, . In addition, in the preferred embodiment of the present embodiment, the following three conditions must be met in the design of the capacitor: (1) , that is, the capacitance value of any bit capacitor is not greater than the sum of the capacitance values of all lower bit capacitors; (2) , that is, the sum of the capacitance values of the bit capacitors is not less than 2 (N-1) times the capacitance value of the lowest bit capacitor; (3) That is, the capacitance value of each sub-capacitor is less than a redundant capacitor, wherein the redundant capacitor is defined as the sum of the capacitance value of the unit capacitor and the bit capacitor and the capacitance value of the lowest bit capacitor 2 (N-1) The difference of the double, that is, the redundant capacitance is defined as . In the above symbols, C0 represents the lowest bit capacitance, and Ci represents the capacitance value of the first bit capacitor array 110 or the second bit capacitor array 120 where the capacitance value is the i-th highest bit capacitance.

參考上述的三個條件,第4圖所示之實施例的第一位元電容陣列410與第二位元電容陣列420中的位元電容的電容值可以設計如以下的表三,其中表一中電容值的單位是C0: Referring to the above three conditions, the capacitance values of the bit capacitors in the first bit capacitor array 410 and the second bit capacitor array 420 of the embodiment shown in FIG. 4 can be designed as shown in Table 3 below. The unit of the medium capacitance value is C0:

在表三中,冗餘電容為,因此,分拆 後的次電容只要小於273*C0即可,以下的表四是C13、C12的一種分拆範例(C13、C12分別對應到第4圖的CN13/CP13、CN12/CP12),其中表四中的電容值單位是C0: In Table 3, the redundant capacitor is Therefore, the secondary capacitance after the splitting is only required to be less than 273*C0. The following Table 4 is a split example of C13 and C12 (C13 and C12 correspond to CN13/CP13 and CN12/CP12 of Figure 4, respectively). The unit of capacitance value in Table 4 is C0:

在本實施例中,由於冗餘電容為273*C0,因此,電容值小於273*C0的位元電容可以不需要分拆為多個次電容,但若是分拆也不影響到連 續逼近暫存式類比數位轉換器400的運作。 In this embodiment, since the redundant capacitor is 273*C0, the bit capacitance of the capacitance value less than 273*C0 may not need to be split into multiple sub-capacitors, but if it is split, it does not affect the connection. The operation of the temporary analog digital converter 400 is continued.

此外,在一實施例中,構成一位元電容的所有次電容的電容值應盡可能的相同,在較佳的情形下,構成一位元電容的所有次電容的電容值是完全相同的,例如表四中的位元電容C13與C12。 In addition, in an embodiment, the capacitance values of all the sub-capacitors constituting the one-element capacitor should be the same as possible. In a preferred case, the capacitance values of all the sub-capacitors constituting the one-element capacitor are completely the same. For example, the bit capacitors C13 and C12 in Table 4.

需注意的是,以上表三及表四中的電容值是設計值,亦即是設計者在設計連續逼近暫存式類比數位轉換器400的理想值,然而,由於表三及表四中的電容值會因為製程誤差、環境溫度變化等原因造成偏離了原本所設計的電容值,因此處理電路450會需要對這些位元電容作校準以得到實際的電容值。在以下的敘述中,權重值Wi為位元電容Ci與最低位元電容C0的比值(權重值Wi的意義也等於上述表一中每個位元電容的數值),亦即Wi=Ci/C0;而Wi,j為次電容Ci,j與最低位元電容C0的比值,亦即Wi,j=Ci,j/C0,且處理電路450主要即是計算出每一個位元電容Ci的實際權重值。 It should be noted that the capacitance values in Tables 3 and 4 above are design values, which is the ideal value for the designer to design a continuous approximation of the temporary analog analog converter 400. However, due to the values in Tables 3 and 4 The capacitance value deviates from the originally designed capacitance value due to process error, ambient temperature variation, etc., so the processing circuit 450 will need to calibrate these bit capacitances to obtain the actual capacitance value. In the following description, the weight value Wi is the ratio of the bit capacitance Ci to the lowest bit capacitance C0 (the meaning of the weight value Wi is also equal to the value of each bit capacitance in the above Table 1), that is, Wi=Ci/C0. And W i,j is the ratio of the secondary capacitance Ci,j to the lowest bit capacitance C0, that is, W i,j =C i,j /C0, and the processing circuit 450 mainly calculates each bit capacitance Ci The actual weight value.

請參考第5圖以及第6圖,其為連續逼近暫存式類比數位轉換器400對一次電容進行背景校準的示意圖,其中第5圖所描述的是取樣階段,而第6圖所描述的是保持信號階段。請先參考第5圖,在第5圖所示的取樣階段中,開關CKS導通,共模電壓VCM被取樣到圖式的VCMP與VCMN上。假設目前要校準的是次電容CP13,2與CN13,2,且當偽隨機序列K=1時,待校準的次電容CP13,2與CN13,2的端點會分別連接到第二參考電壓Vrefn與第一參考電壓Vrefp,而第一位元電容陣列410中其他所有位元電容的端點則是連接到第一輸入訊號Vip,且第二位元電容陣列420中的所有位元電容的端點則是連接到第二輸入訊號Vin;另一方面,當偽隨機序列K=(-1)時,待校準的次電容CP13,2與CN13,2的端點則會分別連接到第一參考電壓Vrefp與第二參考電壓Vrefn,而第一位元電容陣列410中其他所有位元電容的端點則是連接到第 一輸入訊號Vip,且第二位元電容陣列420中的其他所有位元電容的端點則是連接到第二輸入訊號Vin。 Please refer to FIG. 5 and FIG. 6 , which are schematic diagrams of the background calibration of the primary capacitor by the continuous approximation temporary analog-to-digital converter 400. FIG. 5 depicts the sampling phase, and FIG. 6 depicts Maintain the signal phase. Please refer to Figure 5 first. In the sampling phase shown in Figure 5, the switch CKS is turned on, and the common mode voltage V CM is sampled onto the V CMP and V CMN of the figure. Assume that the secondary capacitors CP 13, 2 and CN 13 , 2 are currently calibrated, and when the pseudo-random sequence K = 1, the endpoints of the secondary capacitors CP 13, 2 and CN 13 , 2 to be calibrated are respectively connected to the The second reference voltage Vrefn is coupled to the first reference voltage Vrefp, and the endpoints of all other bit capacitors in the first bit capacitor array 410 are connected to the first input signal Vip, and all bits in the second bit capacitor array 420 The end point of the metacapacitor is connected to the second input signal Vin; on the other hand, when the pseudo random sequence K=(-1), the end points of the sub-capacitors CP13, 2 and CN 13 , 2 to be calibrated are respectively Connected to the first reference voltage Vrefp and the second reference voltage Vrefn, and the endpoints of all other bit capacitors in the first bit capacitor array 410 are connected to the first input signal Vip, and the second bit capacitor array 420 The endpoints of all other bit capacitors are connected to the second input signal Vin.

接著,在取樣階段結束之後,進入第6圖所示的保持信號階段,而在保持信號階段中,開關CKS關閉(disable),待校準的次電容CP13,2與CN13,2的端點與其他所有的位元電容/次電容的端點則會回復連接到共模電壓VCM,如此一來,抖動(dithering)訊號(K*W13,2)便會疊加到輸入訊號之中。之後,輸入訊號加上此抖動訊號會被連續逼近暫存式類比數位轉換器400量化,而此量化過後的數位碼乘以偽隨機序列K,並再進行累加求平均後,即可求得W13,2的值。 Then, after the end of the sampling phase, the hold signal phase shown in FIG. 6 is entered, and in the hold signal phase, the switch CKS is disabled, and the secondary capacitors CP 13 , 2 to be calibrated and the end points of CN 13 , 2 The endpoints of all other bit capacitors/ subcapacitors are reverted to the common mode voltage V CM , so that the dithering signal (K*W 13, 2 ) is superimposed on the input signal. Then, the input signal plus the jitter signal is continuously approximated by the temporary analog digital converter 400, and the quantized digital code is multiplied by the pseudo-random sequence K, and then accumulated and averaged to obtain the W. The value of 13,2 .

以下詳細說明如何求得次電容C13,2的權重值W13,2:假設輸入訊號記為VIN,其中VIN=Vip-Vin,且假設此時連續逼近暫存式類比數位轉換器100所輸出的數位碼記為DIN,則VIN=DIN+QN,其中QN為量化誤差;由於輸入訊號會疊加上抖動訊號,故輸入訊號加上抖動訊號記為VIN+(K*W13,2),其中偽隨機序列K的值為1或(-1),而此時連續逼近暫存式類比數位轉換器100所輸出的數位碼記為Dout,則VIN+(K*W13,2)=Dout+QN;將上述的Dout乘以K並累加求平均: ,其中只要偽隨機序 列K足夠長,上述的“e”值會趨近於0,如此一來便可求得W13,2The following details how to obtain the weight value W 13,2 of the secondary capacitor C 13,2 : assume that the input signal is VIN, where VIN = Vip - Vin, and assume that the output of the temporary analog digital converter 100 is continuously approached at this time. The digit code is DIN, then VIN=DIN+Q N , where Q N is the quantization error; since the input signal will superimpose the jitter signal, the input signal plus the jitter signal is recorded as VIN+(K*W 13,2 ), The value of the pseudo-random sequence K is 1 or (-1), and at this time, the digital code outputted by the successive approximation analog digital converter 100 is Dout, then VIN+(K*W 13,2 )=Dout+ Q N ; multiply the above Dout by K and accumulate the average: As long as the pseudo-random sequence K is sufficiently long, the above "e" value will approach 0, so that W 13,2 can be obtained.

基於同樣的計算方式,連續逼近暫存式類比數位轉換器400可以分別對其他的次電容C13,0、C13,1...等進行類似的運算,以求得相對應的權重值。而後續在連續逼近暫存式類比數位轉換器400的工作過程中,被拆開的電容會被當作一個整體來使用,亦即所有的次電容Ci,j會被當作一個位元電容Ci來使用,例如次電容C13,0、C13,1、C13,2、C13,3會被作為一個整體的位元電 容C13來進行操作。至於後續位元電容的切換方向,則如傳統的連續逼近暫存式類比數位轉換器,根據比較器440的輸出來做判定,以達到負回授收斂,由於本領域具有通常知識者應能了解連續逼近暫存式類比數位轉換器在這方面的相關操作,故細節在此不予贅述。 Based on the same calculation method, the continuous approximation temporary analog-to-digital converter 400 can perform similar operations on other sub-capacitors C 13,0 , C 13,1 , . . . , respectively, to obtain corresponding weight values. Subsequent to the continuous approximation of the temporary analog digital converter 400, the removed capacitors are used as a whole, that is, all secondary capacitors C i,j are treated as one bit capacitors. Ci is used, for example, sub-capacitors C 13,0 , C 13,1 , C 13,2 , C 13,3 are operated as bit capacitor C13 as a whole. As for the switching direction of the subsequent bit capacitance, the conventional continuous approximation temporary analog digital converter is determined according to the output of the comparator 440 to achieve negative feedback convergence, which should be understood by those having ordinary knowledge in the field. Continuous approximation of the associated operation of the temporary analog digital converter in this respect, so the details will not be described here.

此外,在本實施例中,在連續逼近暫存式類比數位轉換器400的工作過程中,所有的次電容會不斷地進行校準,以隨時更新其權重值,並供後續的處理電路450來產生數位輸出Dout。然而,於本發明之另一實施例中,所有的次電容可以只在連續逼近暫存式類比數位轉換器400開始運作的一段時間內進行校準,等到次電容的權重值穩定之後便可以停止校準操作,這些設計上的變化均應隸屬於本發明的範疇。 Moreover, in the present embodiment, during the continuous approximation of the operation of the temporary analog digital converter 400, all of the secondary capacitances are continuously calibrated to update their weight values at any time and for subsequent processing circuits 450 to generate Digital output Dout. However, in another embodiment of the present invention, all of the sub-capacitors can be calibrated only for a period of time during which the continuous approximation of the temporary analog-to-digital converter 400 begins to operate, and the calibration can be stopped after the weight value of the sub-capacitor is stabilized. Operation, these design changes are subject to the scope of the present invention.

此外,處理電路450所產生數位輸出Dout可以由以下公式所計算 出來(但本發明不以此為限制):,)bi (b1到bp+1)為比較器i次輸出的碼(code),,P為第一位元電容陣列410中位元電容的數量(在第4圖的實施例中P為14),QN為量化誤差。 In addition, the digital output Dout generated by the processing circuit 450 can be calculated by the following formula (but the invention is not limited thereto): , b i (b1 to bp+1) is the code of the output of the comparator i times, and P is the number of bit capacitances in the first bit capacitor array 410 (in the embodiment of Fig. 4, P is 14), Q N is the quantization error.

請參考第7圖,第7圖為依據本發明一實施例之控制一連續逼近暫存式類比數位轉換器的方法的流程圖,參考以上有關於第1、4圖的敘述,第7圖所示的流程敘述如下:步驟700:提供一連續逼近暫存式類比數位轉換器,其包含有:一第一位元電容陣列,用以接收一第一輸入訊號,其中該第一位元電容陣列包含複數個第一位元電容,該第一位元電容陣列中的至少一高位元電容是由複數個次電容所構成,且每一個次電容藉由對應之開關選擇性地連接於一第一參考電壓、一第二參考電壓或是一共模電壓;以及一第二位元電容陣列,用以接收一第二輸入訊號,其中該第二位元電容陣列包含複數個第二位元電 容,該第二位元電容陣列中的至少一高位元電容是由複數個次電容所構成,且每一個次電容藉由對應之開關選擇性地連接於該第一參考電壓、該第二參考電壓或是該共模電壓;步驟702:比較該第一位元電容陣列與該第二位元電容陣列的輸出以產生一比較訊號;步驟704:根據該比較訊號以決定出每一個第一位元電容或是每一個第二位元電容所對應到的權重值;步驟706:根據該比較訊號與所決定出之複數個權重值以產生該連續逼近暫存式類比數位轉換器的一數位輸出。 Please refer to FIG. 7. FIG. 7 is a flowchart of a method for controlling a continuous approximation temporary analog digital converter according to an embodiment of the present invention. Referring to the above descriptions of FIGS. 1 and 4, FIG. The flow of the process is as follows: Step 700: Providing a continuous approximation temporary analog analog-to-digital converter, comprising: a first bit capacitor array for receiving a first input signal, wherein the first bit capacitor array Included in the plurality of first bit capacitors, the at least one high bit capacitance in the first bit capacitor array is formed by a plurality of sub-capacitors, and each sub-capacitor is selectively connected to the first by a corresponding switch a reference voltage, a second reference voltage or a common mode voltage; and a second bit capacitor array for receiving a second input signal, wherein the second bit capacitor array comprises a plurality of second bit cells The at least one high-order capacitor in the second bit capacitor array is composed of a plurality of sub-capacitors, and each sub-capacitor is selectively connected to the first reference voltage and the second reference by a corresponding switch. a voltage or the common mode voltage; step 702: comparing the output of the first bit capacitor array and the second bit capacitor array to generate a comparison signal; step 704: determining each first bit according to the comparison signal a meta-capacitor or a weight value corresponding to each of the second bit capacitors; step 706: generating a digital output of the continuous approximation temporary analog-to-digital converter according to the comparison signal and the determined plurality of weight values .

綜上所述,本發明之連續逼近暫存式類比數位轉換器具有以下幾個優點:(1)本發明的位元電容是真正的背景校準,不會影響到連續逼近暫存式類比數位轉換器的工作速度;(2)參與校準的電容能繼續參與後續連續逼近暫存式類比數位轉換器的工作,且連續逼近暫存式類比數位轉換器的工作過程和傳統的一樣,故不會額外增加太多的複雜度;(3)在本發明之連續逼近暫存式類比數位轉換器中,只要是電容值大於冗餘電容的位元電容均分拆為多個次電容,由於這些次電容在連續逼近暫存式類比數位轉換器的編碼冗餘範圍之內,故輸入訊號可以不需要限制擺幅,亦即可以滿擺幅輸入,所疊加到輸入訊號的抖動訊號可以完全由冗餘解決;(4)所有次電容的校準可以通過順序切換以分開進行,因此處理電路中的校準電路可以共用,因此晶片中相關的電路面積可以大大減小。 In summary, the continuous approximation temporary analog digital converter of the present invention has the following advantages: (1) The bit capacitance of the present invention is a true background calibration, and does not affect the continuous approximation of the temporary analog digital conversion. The working speed of the device; (2) the capacitor participating in the calibration can continue to participate in the subsequent continuous approximation of the temporary analog digital converter, and the continuous approximation of the temporary analog digital converter works the same as the conventional one, so there is no extra Adding too much complexity; (3) In the continuous approximation temporary analog digital converter of the present invention, as long as the bit capacitance of the capacitance value larger than the redundant capacitance is split into multiple sub-capacitors, due to these sub-capacitors In the continuous redundancy approximation of the coded redundancy range of the temporary analog digital converter, the input signal can be used without the need to limit the swing, that is, the full swing input, and the jitter signal superimposed on the input signal can be completely solved by redundancy. (4) Calibration of all secondary capacitors can be performed separately by sequential switching, so the calibration circuits in the processing circuit can be shared, so the relevant circuit area in the wafer can be large Decreases.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

100‧‧‧連續逼近暫存式類比數位轉換器 100‧‧‧Continuous approaching temporary analog analog converter

110‧‧‧第一位元電容陣列 110‧‧‧First bit capacitor array

120‧‧‧第二位元電容陣列 120‧‧‧Secondary Capacitor Array

130‧‧‧比較器 130‧‧‧ comparator

140‧‧‧乘法器 140‧‧‧Multiplier

150‧‧‧處理電路 150‧‧‧Processing circuit

CP00、CN00‧‧‧單位電容 CP00, CN00‧‧‧ unit capacitor

CP0~CP13、CN0~CN13‧‧‧位元電容 CP0~CP13, CN0~CN13‧‧‧ bit capacitance

CP13,0~CP13,4、CN13,0~CN13,4‧‧‧次電容 CP 13,0 ~ CP 13,4, CN 13,0 ~ CN 13,4 ‧‧‧ capacitor Ci

CKS‧‧‧開關 CKS‧‧ switch

Dout‧‧‧數位輸出 Dout‧‧‧ digital output

K‧‧‧偽隨機序列 K‧‧‧ pseudo-random sequence

Vc‧‧‧控制訊號 Vc‧‧‧ control signal

Vip‧‧‧第一輸入訊號 Vip‧‧‧first input signal

Vin‧‧‧第二輸入訊號 Vin‧‧‧second input signal

Vrefp‧‧‧第一參考電壓 Vrefp‧‧‧ first reference voltage

Vrefn‧‧‧第二參考電壓 Vrefn‧‧‧second reference voltage

VCM‧‧‧共模電壓 V CM ‧‧‧ Common mode voltage

VCMP、VCMN‧‧‧端點 V CMP , V CMN ‧‧‧ endpoint

Claims (15)

一種連續逼近暫存式類比數位轉換器(Successive Approximation Register Analog-to-Digital Converter,SAR ADC),包含有:一第一位元電容陣列,用以接收一第一輸入訊號,其中該第一位元電容陣列包含複數個第一位元電容,該第一位元電容陣列中的至少一高位元電容是由複數個次電容所構成,且每一個次電容藉由對應之開關選擇性地連接於一第一參考電壓、一第二參考電壓或是一共模電壓;一第二位元電容陣列,用以接收一第二輸入訊號,其中該第二位元電容陣列包含複數個第二位元電容,該第二位元電容陣列中的至少一高位元電容是由複數個次電容所構成,且每一個次電容藉由對應之開關選擇性地連接於該第一參考電壓、該第二參考電壓或是該共模電壓;一比較器,耦接於該第一位元電容陣列與該第二位元電容陣列,用以比較該第一位元電容陣列與該第二位元電容陣列的輸出以產生一比較訊號;以及一處理電路,耦接於該比較器,用以控制該第一位元電容陣列與該第二位元電容陣列的電容切換,並產生該連續逼近暫存式類比數位轉換器的一數位輸出;其中在該連續逼近暫存式類比數位轉換器接收該第一輸入訊號與該第二輸入訊號以產生該數位輸出的過程中,該處理電路對該第一位元電容陣列中的該至少一高位元電容的該複數個次電容分別進行校準,以產生對應於該複數個次電容的權重值,並再根據該複數個次電容的權重值以決定出該第一位元電容陣列中該至少一高位元電容的權重值;以及該處理電路對該第二位元電容陣列中的該至少一高位元電容的該複數個次電容分別進行校準,以產生對應於該複數個次電容的權重值,並再根據該複數個次電容的權重值以決定出該第二位元電容陣列中該 至少一高位元電容的權重值。 A successive approximation register analog-to-digital converter (SAR ADC) includes: a first bit capacitor array for receiving a first input signal, wherein the first bit The metacapacitor array includes a plurality of first bit capacitors, and at least one high bit capacitor in the first bit capacitor array is composed of a plurality of sub-capacitors, and each sub-capacitor is selectively connected by a corresponding switch a first reference voltage, a second reference voltage or a common mode voltage; a second bit capacitor array for receiving a second input signal, wherein the second bit capacitor array comprises a plurality of second bit capacitors At least one high-order capacitor in the second bit capacitor array is composed of a plurality of sub-capacitors, and each sub-capacitor is selectively connected to the first reference voltage and the second reference voltage by a corresponding switch Or the common mode voltage; a comparator coupled to the first bit capacitor array and the second bit capacitor array for comparing the first bit capacitor array and the second bit The output of the array is configured to generate a comparison signal; and a processing circuit coupled to the comparator for controlling capacitance switching between the first bit capacitor array and the second bit capacitor array, and generating the continuous approximation a digital output of the analog analog converter; wherein the processing circuit is in the process of receiving the first input signal and the second input signal to generate the digital output by the continuous approximation temporary analog digital converter The plurality of sub-capacitors of the at least one high-order capacitor in the one-element capacitor array are respectively calibrated to generate a weight value corresponding to the plurality of sub-capacitors, and then determined according to the weight values of the plurality of sub-capacitors a weight value of the at least one high-order capacitor in the first bit capacitor array; and the processing circuit separately calibrates the plurality of sub-capacitors of the at least one high-bit capacitor in the second bit capacitor array to generate Corresponding to the weight value of the plurality of secondary capacitors, and further determining the second bit capacitor array according to the weight value of the plurality of secondary capacitors The weight value of at least one high-order capacitor. 如申請專利範圍第1項所述之連續逼近暫存式類比數位轉換器,其中該第一位元電容陣列中構成該至少一高位元電容中的該複數個次電容的電容值均相同。 The continuous approximation temporary analog digital converter according to claim 1, wherein the capacitance values of the plurality of sub-capacitors in the at least one high-order capacitor in the first bit capacitor array are the same. 如申請專利範圍第1項所述之連續逼近暫存式類比數位轉換器,其中該連續逼近暫存式類比數位轉換器為一N位元連續逼近暫存式類比數位轉換器,該複數個第一位元電容的排列為非二進制,該複數個第一位元電容中任一位元電容的電容值不大於所有較低位元電容的電容值總和,且該第一位元電容陣列中該複數個第一位元電容的電容值總和不小於最低位元電容之電容值的2(N-1)倍。 The continuous approximation temporary analog analog-to-digital converter according to claim 1, wherein the continuous approximation temporary analog digital converter is an N-bit continuous approximation temporary analog analog digital converter, the plurality of The arrangement of the one-element capacitor is non-binary, and the capacitance value of any one of the plurality of first-bit capacitors is not greater than the sum of the capacitance values of all the lower-bit capacitors, and the first-bit capacitor array is The sum of the capacitance values of the plurality of first bit capacitors is not less than 2 (N-1) times the capacitance value of the lowest bit capacitance. 如申請專利範圍第3項所述之連續逼近暫存式類比數位轉換器,其中在該第一位元電容陣列中,電容值大於一冗餘電容的第一位元電容均由多個次電容所組成,且每一個次電容的電容值均小於該冗餘電容,其中該冗餘電容係定義為一單位電容及該第一位元電容陣列中該複數個第一位元電容的電容值總和與最低位元電容之電容值的2(N-1)倍的差值。 The continuous approximation analog analog-to-digital converter according to claim 3, wherein in the first bit capacitor array, the first bit capacitance of the capacitance value greater than a redundant capacitor is composed of multiple sub-capacitors The capacitance value of each sub-capacitor is smaller than the redundant capacitor, wherein the redundant capacitor is defined as a unit capacitance and a sum of capacitance values of the plurality of first bit capacitors in the first bit capacitor array The difference from the 2 (N-1) times the capacitance of the lowest bit capacitor. 如申請專利範圍第4項所述之連續逼近暫存式類比數位轉換器,其中在該連續逼近暫存式類比數位轉換器接收該第一輸入訊號與該第二輸入訊號以產生該數位輸出的過程中,針對每一個由多個次電容所構成的第一位元電容,該處理電路對該些次電容分別進行校準,以產生對應於該些次電容的權重值,並再根據該些次電容的權重值以決定出此第一位元電容的權重值;以及針對每一個由多個次電容所構成的第二位元電容,該處理電路對該些次電容分別進行校準,以產生對應於該些次電容的權重值,並再根據 該些次電容的權重值以決定出此第二位元電容的權重值。 The continuous approximation temporary analog analog-to-digital converter according to claim 4, wherein the continuous approximation temporary analog digital converter receives the first input signal and the second input signal to generate the digital output. In the process, for each first bit capacitor composed of a plurality of sub-capacitors, the processing circuit separately calibrates the sub-capacitors to generate weight values corresponding to the sub-capacitors, and then according to the times The weight value of the capacitor determines a weight value of the first bit capacitor; and for each second bit capacitor formed by the plurality of sub-capacitors, the processing circuit separately calibrates the capacitors to generate a corresponding The weight value of the capacitors, and then The weight values of the capacitors are used to determine the weight value of the second bit capacitor. 如申請專利範圍第1項所述之連續逼近暫存式類比數位轉換器,其中該連續逼近暫存式類比數位轉換器允許該第一輸入訊號與該第二輸入訊號以滿擺幅輸入。 The continuous approximation temporary analog digital converter according to claim 1, wherein the continuous approximation temporary analog digital converter allows the first input signal and the second input signal to be input at a rail-to-rail. 一種控制一連續逼近暫存式類比數位轉換器的方法,其中該連續逼近暫存式類比數位轉換器包含有:一第一位元電容陣列,用以接收一第一輸入訊號,其中該第一位元電容陣列包含複數個第一位元電容,該第一位元電容陣列中的至少一高位元電容是由複數個次電容所構成,且每一個次電容藉由對應之開關選擇性地連接於一第一參考電壓、一第二參考電壓或是一共模電壓;以及一第二位元電容陣列,用以接收一第二輸入訊號,其中該第二位元電容陣列包含複數個第二位元電容,該第二位元電容陣列中的至少一高位元電容是由複數個次電容所構成,且每一個次電容藉由對應之開關選擇性地連接於該第一參考電壓、該第二參考電壓或是該共模電壓;該方法包含有:比較該第一位元電容陣列與該第二位元電容陣列的輸出以產生一比較訊號;根據該比較訊號以決定出每一個第一位元電容或是每一個第二位元電容所對應到的權重值;根據該比較訊號與所決定出之複數個權重值以產生該連續逼近暫存式類比數位轉換器的一數位輸出;在該連續逼近暫存式類比數位轉換器接收該第一輸入訊號與該第二輸入訊號以產生該數位輸出的過程中,對該第一位元電容陣列中的該至少一高位元電容的該複數個次電容分別進行校準,以產生對應於 該複數個次電容的權重值,並再根據該複數個次電容的權重值以決定出該第一位元電容陣列中該至少一高位元電容的權重值;以及對該第二位元電容陣列中的該至少一高位元電容的該複數個次電容分別進行校準,以產生對應於該複數個次電容的權重值,並再根據該複數個次電容的權重值以決定出該第二位元電容陣列中該至少一高位元電容的權重值。 A method for controlling a continuous approximation of a temporary analog analog-to-digital converter, wherein the continuous approximation temporary analog digital converter comprises: a first bit capacitor array for receiving a first input signal, wherein the first The bit capacitor array includes a plurality of first bit capacitors, and at least one high bit capacitor in the first bit capacitor array is composed of a plurality of sub-capacitors, and each sub-capacitor is selectively connected by a corresponding switch a first reference voltage, a second reference voltage, or a common mode voltage; and a second bit capacitor array for receiving a second input signal, wherein the second bit capacitor array includes a plurality of second bits a metacapacitor, the at least one high bit capacitor in the second bit capacitor array is composed of a plurality of sub-capacitors, and each sub-capacitor is selectively connected to the first reference voltage by the corresponding switch, the second a reference voltage or the common mode voltage; the method includes: comparing an output of the first bit capacitor array and the second bit capacitor array to generate a comparison signal; according to the comparison signal Determining a weight value corresponding to each of the first bit capacitors or each of the second bit capacitors; generating the continuous approximation temporary analog digital converter according to the comparison signal and the determined plurality of weight values a digital output; wherein the continuous approximation temporary analog digital converter receives the first input signal and the second input signal to generate the digital output, the at least one of the first bit capacitor array The plurality of sub-capacitors of the high-order capacitor are respectively calibrated to generate corresponding a weight value of the plurality of secondary capacitors, and further determining, according to a weight value of the plurality of secondary capacitors, a weight value of the at least one high-order capacitor in the first bit capacitor array; and the second bit capacitor array The plurality of sub-capacitors of the at least one high-order capacitor are respectively calibrated to generate a weight value corresponding to the plurality of sub-capacitors, and then determining the second bit according to the weight value of the plurality of sub-capacitors A weight value of the at least one high bit capacitor in the capacitor array. 如申請專利範圍第7項所述之方法,其中該第一位元電容陣列中構成該至少一高位元電容是的該複數個次電容的電容值均相同。 The method of claim 7, wherein the capacitance values of the plurality of sub-capacitors in the first bit capacitor array that constitute the at least one high-order capacitor are the same. 如申請專利範圍第7項所述之方法,其中該連續逼近暫存式類比數位轉換器為一N位元連續逼近暫存式類比數位轉換器,該複數個第一位元電容的排列為非二進制,該複數個第一位元電容中任一位元電容的電容值不大於所有較低位元電容的電容值總和,且該第一位元電容陣列中該複數個第一位元電容的電容值總和不小於最低位元電容之電容值的2(N-1)倍。 The method of claim 7, wherein the continuous approximation temporary analog digital converter is an N-bit continuous approximation temporary analog digital converter, and the arrangement of the plurality of first bit capacitances is non- Binary, the capacitance value of any one of the plurality of first bit capacitors is not greater than the sum of the capacitance values of all the lower bit capacitors, and the plurality of first bit capacitors in the first bit capacitor array The sum of the capacitance values is not less than 2 (N-1) times the capacitance of the lowest bit capacitance. 如申請專利範圍第9項所述之方法,其中在該第一位元電容陣列中,電容值大於一冗餘電容的第一位元電容均由多個次電容所組成,且每一個次電容的電容值均小於該冗餘電容,其中該冗餘電容係定義為一單位電容及該第一位元電容陣列中該複數個第一位元電容的電容值總和與最低位元電容之電容值的2(N-1)倍的差值。 The method of claim 9, wherein in the first bit capacitor array, a first bit capacitor having a capacitance greater than a redundant capacitor is composed of a plurality of sub-capacitors, and each sub-capacitor The capacitance value is smaller than the redundant capacitance, wherein the redundant capacitance is defined as a unit capacitance and a capacitance value of the plurality of first bit capacitances and a capacitance value of the lowest bit capacitance in the first bit capacitance array. The difference of 2 (N-1) times. 如申請專利範圍第7項所述之方法,其中該第一輸入訊號與該第二輸入訊號被允許以滿擺幅輸入。 The method of claim 7, wherein the first input signal and the second input signal are allowed to be input at a rail-to-rail. 一種連續逼近暫存式類比數位轉換器(Successive Approximation Register Analog-to-Digital Converter,SAR ADC),包含有:一第一位元電容陣列,用以接收一第一輸入訊號,其包含複數個第一位元電容,該第一位元電容陣列中的至少一高位元電容是由複數個次電容所構成;一第二位元電容陣列,用以接收一第二輸入訊號,其包含複數個第二位元電容,該第二位元電容陣列中的至少一高位元電容是由複數個次電容所構成;一比較器,用以比較該第一位元電容陣列與該第二位元電容陣列的輸出以產生一比較訊號;以及一處理電路,耦接於該比較器,用以控制該第一位元電容陣列與該第二位元電容陣列的電容切換,並根據該比較訊號產生一N位元數位輸出;其中,在該第一位元電容陣列中,電容值大於一冗餘電容的第一位元電容係由多個次電容所組成,且每一個次電容的電容值小於該冗餘電容,其中該冗餘電容係定義為一單位電容及該第一位元電容陣列中該複數個第一位元電容的電容值總和與最低位元電容之電容值的2(N-1)倍的差值。 A successive approximation register analog-to-digital converter (SAR ADC) includes: a first bit capacitor array for receiving a first input signal, which includes a plurality of a one-element capacitor, wherein at least one high-order capacitor in the first-bit capacitor array is composed of a plurality of sub-capacitors; and a second-bit capacitor array is configured to receive a second input signal, which includes a plurality of a two-bit capacitor, wherein at least one high-order capacitor in the second-bit capacitor array is composed of a plurality of sub-capacitors; a comparator for comparing the first bit capacitor array and the second bit capacitor array The output is coupled to generate a comparison signal; and a processing circuit coupled to the comparator for controlling capacitance switching of the first bit capacitor array and the second bit capacitor array, and generating a N according to the comparison signal Bit digital output; wherein, in the first bit capacitor array, the first bit capacitance of the capacitance value greater than a redundant capacitance is composed of a plurality of sub-capacitors, and the electric power of each sub-capacitor The capacitance value is less than redundancy, wherein the capacitance of the redundancy bit line is defined as a first sum of the capacitance of the capacitor and the capacitance value of a unit capacitor and capacitor array of the first bit of the plurality of capacitors lowest bits of 2 ( N-1) difference. 如申請專利範圍第12項所述之連續逼近暫存式類比數位轉換器,其中該複數個第一位元電容的排列為非二進制,該複數個第一位元電容中任一位元電容的電容值不大於所有較低位元電容的電容值總和,且該第一位元電容陣列中該複數個第一位元電容的電容值總和不小於最低位元電容之電容值的2(N-1)倍。 The continuous approximation temporary analog digital converter according to claim 12, wherein the arrangement of the plurality of first bit capacitors is non-binary, and any one of the plurality of first bit capacitors The capacitance value is not greater than the sum of the capacitance values of all the lower bit capacitances, and the sum of the capacitance values of the plurality of first bit capacitances in the first bit capacitance array is not less than the capacitance value of the lowest bit capacitance 2 (N- 1) times. 一種連續逼近暫存式類比數位轉換器,包含有:一第一位元電容陣列,用以接收一第一輸入訊號,其中該第一位元電容陣 列包含複數個第一位元電容,該第一位元電容陣列中的至少一高位元電容是由複數個次電容所構成,且每一個次電容藉由對應之開關選擇性地連接於一第一參考電壓、一第二參考電壓或是一共模電壓;一第二位元電容陣列,用以接收一第二輸入訊號,其中該第二位元電容陣列包含複數個第二位元電容,該第二位元電容陣列中的至少一高位元電容是由複數個次電容所構成,且每一個次電容藉由對應之開關選擇性地連接於該第一參考電壓、該第二參考電壓或是該共模電壓;一比較器,耦接於該第一位元電容陣列與該第二位元電容陣列,用以比較該第一位元電容陣列與該第二位元電容陣列的輸出以產生一比較訊號;以及一處理電路,耦接於該比較器,用以控制該第一位元電容陣列與該第二位元電容陣列的電容切換,並產生該連續逼近暫存式類比數位轉換器的一數位輸出;其中,該第一位元電容陣列中構成該至少一高位元電容中的該複數個次電容的電容值均相同。 A continuous approximation temporary analog analog-to-digital converter includes: a first bit capacitor array for receiving a first input signal, wherein the first bit capacitor array The column includes a plurality of first bit capacitors, and at least one high bit capacitor in the first bit capacitor array is composed of a plurality of sub-capacitors, and each sub-capacitor is selectively connected to the first by a corresponding switch a reference voltage, a second reference voltage or a common mode voltage; a second bit capacitor array for receiving a second input signal, wherein the second bit capacitor array comprises a plurality of second bit capacitors, At least one high-order capacitor in the second bit capacitor array is composed of a plurality of sub-capacitors, and each sub-capacitor is selectively connected to the first reference voltage, the second reference voltage, or the corresponding switch The common mode voltage is coupled to the first bit capacitor array and the second bit capacitor array for comparing the output of the first bit capacitor array and the second bit capacitor array to generate a comparison signal; and a processing circuit coupled to the comparator for controlling capacitance switching between the first bit capacitor array and the second bit capacitor array, and generating the continuous approximation temporary analog digital conversion A digital output; wherein the first capacitor array of bits constituting the at least one high-capacitance element in the capacitance value of the plurality of capacitors are the same views. 一種控制一連續逼近暫存式類比數位轉換器的方法,其中該連續逼近暫存式類比數位轉換器包含有:一第一位元電容陣列,用以接收一第一輸入訊號,其中該第一位元電容陣列包含複數個第一位元電容,該第一位元電容陣列中的至少一高位元電容是由複數個次電容所構成,且每一個次電容藉由對應之開關選擇性地連接於一第一參考電壓、一第二參考電壓或是一共模電壓,以及該第一位元電容陣列中構成該至少一高位元電容中的該複數個次電容的電容值均相同;以及一第二位元電容陣列,用以接收一第二輸入訊號,其中該第二位元電容陣列包含複數個第二位元電容,該第二位元電容陣列中的至少一高位元 電容是由複數個次電容所構成,且每一個次電容藉由對應之開關選擇性地連接於該第一參考電壓、該第二參考電壓或是該共模電壓;該方法包含有:比較該第一位元電容陣列與該第二位元電容陣列的輸出以產生一比較訊號;根據該比較訊號以決定出每一個第一位元電容或是每一個第二位元電容所對應到的權重值;以及根據該比較訊號與所決定出之複數個權重值以產生該連續逼近暫存式類比數位轉換器的一數位輸出。 A method for controlling a continuous approximation of a temporary analog analog-to-digital converter, wherein the continuous approximation temporary analog digital converter comprises: a first bit capacitor array for receiving a first input signal, wherein the first The bit capacitor array includes a plurality of first bit capacitors, and at least one high bit capacitor in the first bit capacitor array is composed of a plurality of sub-capacitors, and each sub-capacitor is selectively connected by a corresponding switch And a capacitance value of the first reference voltage, a second reference voltage, or a common mode voltage, and the plurality of sub-capacitors in the at least one high-order capacitor in the first bit capacitor array are the same; a two-element capacitor array for receiving a second input signal, wherein the second bit capacitor array comprises a plurality of second bit capacitors, at least one high bit in the second bit capacitor array The capacitor is composed of a plurality of sub-capacitors, and each sub-capacitor is selectively connected to the first reference voltage, the second reference voltage or the common mode voltage by a corresponding switch; the method includes: comparing the And outputting the first bit capacitor array and the second bit capacitor array to generate a comparison signal; determining the weight corresponding to each of the first bit capacitors or each of the second bit capacitors according to the comparison signal And a digital output based on the comparison signal and the determined plurality of weight values to generate a digital output of the continuous approximation temporary analog digital converter.
TW102149385A 2013-12-31 2013-12-31 Successive approximation register analog-to-digital converter and associate control method TWI521888B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102149385A TWI521888B (en) 2013-12-31 2013-12-31 Successive approximation register analog-to-digital converter and associate control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102149385A TWI521888B (en) 2013-12-31 2013-12-31 Successive approximation register analog-to-digital converter and associate control method

Publications (2)

Publication Number Publication Date
TW201526552A TW201526552A (en) 2015-07-01
TWI521888B true TWI521888B (en) 2016-02-11

Family

ID=54197866

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102149385A TWI521888B (en) 2013-12-31 2013-12-31 Successive approximation register analog-to-digital converter and associate control method

Country Status (1)

Country Link
TW (1) TWI521888B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI644520B (en) * 2017-07-25 2018-12-11 國立中山大學 Merge and split sar analog-digital converter with tri-level switch
TWI659620B (en) * 2018-02-07 2019-05-11 瑞昱半導體股份有限公司 Successive approximation register analog-to-digital converter and associated method
TWI717900B (en) * 2019-11-14 2021-02-01 財團法人成大研究發展基金會 Sar adc and a reference ripple suppression circuit adaptable thereto

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108809314A (en) * 2018-05-28 2018-11-13 中国电子科技集团公司第二十四研究所 Optimize the SAR ADC comparison circuits and its method of controlling switch of capacitor array area
TWI657665B (en) * 2018-11-21 2019-04-21 財團法人成大研究發展基金會 Sar adc with high linearity
TWI739722B (en) * 2021-04-08 2021-09-11 瑞昱半導體股份有限公司 Analog-to-digital converter and method of operating same
CN113258931B (en) * 2021-06-11 2021-11-23 微龛(广州)半导体有限公司 SAR ADC circuit
CN115967403A (en) * 2021-10-13 2023-04-14 瑞昱半导体股份有限公司 Successive approximation register type analog-digital conversion device and signal conversion method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI644520B (en) * 2017-07-25 2018-12-11 國立中山大學 Merge and split sar analog-digital converter with tri-level switch
TWI659620B (en) * 2018-02-07 2019-05-11 瑞昱半導體股份有限公司 Successive approximation register analog-to-digital converter and associated method
TWI717900B (en) * 2019-11-14 2021-02-01 財團法人成大研究發展基金會 Sar adc and a reference ripple suppression circuit adaptable thereto

Also Published As

Publication number Publication date
TW201526552A (en) 2015-07-01

Similar Documents

Publication Publication Date Title
TWI521888B (en) Successive approximation register analog-to-digital converter and associate control method
US9106246B2 (en) Successive approximation register analog-to-digital converter and associated control method
TWI454064B (en) Successive approximation analog-to-digital converter having auxiliary prediction circuit and method thereof
US8599059B1 (en) Successive approximation register analog-digital converter and method for operating the same
TWI467924B (en) Successive approximation register analog to digital converter and conversion method thereof
KR102001762B1 (en) DAC capacitance array, SAR-type analog-to-digital converter and method of reducing power consumption
US11418209B2 (en) Signal conversion circuit utilizing switched capacitors
KR102017310B1 (en) Successive approximation register analog digital converter and operating method thereof
JP6372102B2 (en) Analog-digital conversion circuit
TW201943211A (en) Analog to digital converter and method
CN113794475B (en) Calibration method of capacitor array type successive approximation analog-digital converter
TWI698091B (en) Successive approximation register analog-to-digital converter and operation method thereof
KR101975002B1 (en) Successive Approximation Register Analog to Digital Converter and Converting Method Thereof
CN113271102B (en) Pipelined analog-to-digital converter
Huang et al. A 10-bit 100 MS/s successive approximation register analog-to-digital converter design
CN116318161B (en) Multi-step type monoclinic analog-to-digital conversion circuit for image sensor and control method
CN110176930B (en) Multi-position resolution sub-pipeline structure for measuring jump height of transmission curve
TWI792741B (en) Successive approximation register analog to digital converter device and signal conversion method
TWI739722B (en) Analog-to-digital converter and method of operating same
TW201347417A (en) Multi-bit per cycle successive approximation register ADC
TWI763524B (en) Method of operating analog-to-digital converter
TWI763525B (en) Analog-to-digital converter and method of operating same
TWI657665B (en) Sar adc with high linearity
KR101986699B1 (en) Successive approximation register analog digital converter and operating method thereof
TWI628919B (en) Sar analog to digital converter