TWI517540B - Charge pump - Google Patents

Charge pump Download PDF

Info

Publication number
TWI517540B
TWI517540B TW100126442A TW100126442A TWI517540B TW I517540 B TWI517540 B TW I517540B TW 100126442 A TW100126442 A TW 100126442A TW 100126442 A TW100126442 A TW 100126442A TW I517540 B TWI517540 B TW I517540B
Authority
TW
Taiwan
Prior art keywords
sub
voltage
current
control node
switching
Prior art date
Application number
TW100126442A
Other languages
Chinese (zh)
Other versions
TW201306462A (en
Inventor
陳建良
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW100126442A priority Critical patent/TWI517540B/en
Publication of TW201306462A publication Critical patent/TW201306462A/en
Application granted granted Critical
Publication of TWI517540B publication Critical patent/TWI517540B/en

Links

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Description

電荷幫浦 Charge pump

本發明係為一種電荷幫浦,特別是一種因應控制節點之電壓位準變化而改變所輸出之電流的電荷幫浦。 The present invention is a charge pump, and in particular, a charge pump that changes the output current in response to a voltage level change of a control node.

請參見第一圖,其為習用技術所提供之鎖相迴路之示意圖。此鎖相迴路10主要包含了相位偵測器101、電荷幫浦(charge pump,CP)103、低通濾波器(Low Pass Filter,LF)105與電壓控制振盪器(Voltage Control Oscillator,VCO)107,另外,還可以選擇性的搭配除頻器109使用。鎖相迴路10的基本原理是,比較由除頻器109所輸出的除頻信號Vdiv與輸入信號Vin的相位差,並根據相位差的比較結果,而調整電壓控制振盪器107的輸出信號Vout之頻率fout。理想上,經除頻後的輸出信號Vout(即,除頻信號Vdiv)應與輸入信號Vin一致。 Please refer to the first figure, which is a schematic diagram of a phase-locked loop provided by the prior art. The phase locked loop 10 mainly includes a phase detector 101, a charge pump (CP) 103, a low pass filter (LF) 105, and a Voltage Control Oscillator (VCO) 107. In addition, it can also be selectively used with the frequency divider 109. The basic principle of the phase-locked loop 10 is to compare the phase difference between the frequency-divided signal V div outputted by the frequency divider 109 and the input signal V in , and adjust the output signal of the voltage-controlled oscillator 107 according to the comparison result of the phase difference. The frequency of V out is f out . Ideally, the frequency-divided output signal V out (ie, the frequency-divided signal V div ) should coincide with the input signal V in .

更進一步探究鎖相迴路10內的各個元件,與對應產生的信號之間的關係可以得知:電壓控制振盪器107所輸出的輸出信號(Vout)的相位與輸出頻率分別為θout、fout。在鎖相迴路10的回授路徑上,可以利用除頻器109對輸出信號Vout進行除頻,經由除頻後得出的除頻信號Vdiv之頻率與相位分別為fdiv與θdiv。此外,鎖相迴路10由外部輸入的輸入信號Vin所對應的相位為θinFurther exploring the respective components in the phase-locked loop 10, and the relationship between the corresponding generated signals, it can be known that the phase and output frequency of the output signal (V out ) output by the voltage controlled oscillator 107 are θ out , f , respectively. Out . In the feedback path of the phase-locked loop 10, the output signal V out can be divided by the frequency divider 109, and the frequency and phase of the frequency-divided signal V div obtained by the frequency division are f div and θ div , respectively . Further, the phase corresponding to the input signal V in input from the external phase of the phase-locked loop 10 is θ in .

再者,相位偵測器101被用來比較除頻信號的相位θdiv,與輸入信號的相位θin而得到兩者的相位差(θindiv),並 利用此相位差得出一組輸出至電荷幫浦103的相位比較信號(Vup、Vdown)。相位比較信號(Vup、Vdown)再經由電荷幫浦103,與低通濾波器105轉換成電壓形式的控制信號後,被用來調整電壓控振盪器107所輸出之輸出信號VoutFurthermore, the phase detector 101 is used to compare the phase θ div of the frequency-divided signal with the phase θ in of the input signal to obtain a phase difference (θ indiv ) between the two, and use the phase difference to obtain a phase difference The group outputs a phase comparison signal ( Vup , Vdown ) to the charge pump 103. After the phase comparison signal (V up, V down) and then through the charge pump 103, low pass filter 105 and converted into a voltage in the form of a control signal, voltage control is used to adjust the output signal V out of the output of the oscillator 107.

請參見第二圖(a),其係由第一電流源組與第二電流源組所組成的電荷幫浦之示意圖。電荷幫浦103中的第一電流源組103a包含第一電流源1031與第一切換開關1033,而第二電流源組103b則由第二電流源1032與第二切換開關1034所組成。 Please refer to the second figure (a), which is a schematic diagram of a charge pump composed of a first current source group and a second current source group. The first current source group 103a of the charge pump 103 includes a first current source 1031 and a first switch 1033, and the second current source group 103b is composed of a second current source 1032 and a second switch 1034.

電荷幫浦103雖然分別利用第一電流源1031與第二電流源1032提供第一切換電流IP與第二切換電流IN,但這些切換電流是否實際導通,並透過控制節點Scont對低通濾波器105進行充放電,仍需取決於所搭配使用的切換開關。其中第一切換開關1033與第二切換開關1034係根據相位偵測器101輸出的第一相位比較信號Vup、第二相位比較信號Vdown而對應開啟。 The charge pump 103 provides the first switching current I P and the second switching current I N by using the first current source 1031 and the second current source 1032, respectively, but whether the switching currents are actually turned on, and the low-pass is passed through the control node S cont . The filter 105 is charged and discharged, and it still depends on the switch used. The first changeover switch 1033 and the second changeover switch 1034 are correspondingly turned on according to the first phase comparison signal V up and the second phase comparison signal V down output by the phase detector 101.

請參見第二圖(b),其係說明相位偵測器輸出的相位比較信號,相對應於電荷幫浦在其控制節點所輸出的電流之時脈圖。在此圖式中,橫軸代表時間t,而縱軸則分別代表相位比較信號(Vup、Vdown)的電壓變化,以及由電荷幫浦103輸出的切換電流。 Please refer to the second figure (b), which illustrates the phase comparison signal output by the phase detector, corresponding to the clock map of the current output by the charge pump at its control node. In this figure, the horizontal axis represents time t, and the vertical axis represents voltage changes of the phase comparison signals ( Vup , Vdown ), respectively, and the switching current output by the charge pump 103.

當相位偵測器101輸出第一相位比較信號Vup而使第一切換開關1033導通時,電荷幫浦103將輸出第一切換電流IP,並利用第一切換電流IP對低通濾波器105進行充電。也就是說,第一相位比較信號Vup產生的期間相當於第一切換電流IP輸出的期間,而這段期間也等同於電荷幫浦103對低通濾波器105 進行充電的期間。 When the phase detector 101 outputs a first phase comparison signal V up the first switch 1033 is turned on, charge pump 103 outputs the first switching current I P, and the switching current I P using the first low-pass filter 105 to charge. That is, during a first phase comparison signal corresponding to V up generated during a first switching output current I P, the period is also equivalent to the charge pump 103 pairs of the low pass filter 105 during charging.

同樣的,當相位偵測器101輸出第二相位比較信號Vdown而使第二切換開關1034導通時,電荷幫浦103將輸出第二切換電流IN,並利用第二切換電流IN對低通濾波器105進行放電。也就是說,第二相位比較信號Vdown產生的期間相當於第二切換電流IN輸出的期間,而這段期間也等同於電荷幫浦103對低通濾波器105進行放電的期間。 Similarly, when the output of the phase detector 101 of the second phase comparison signal V down the second switch 1034 is turned on, charge pump 103 outputs the second switching current I N, and using a second low switching current I N The pass filter 105 performs discharge. That is, the period during which the second phase comparison signal Vdown is generated corresponds to the period during which the second switching current I N is output, and this period is also equivalent to the period during which the charge pump 103 discharges the low-pass filter 105.

承上所述,第一切換電流IP與第二切換電流IN之輸出組合ICP形成對後端的低通濾波器進行充放與否的相位比較信號。通常在實現電荷幫浦103時,會以P型金氧半電晶體(p-channel metal-oxide-semiconductor,簡稱為PMOS)之組合實現第一電流源組103a,並以N型金氧半電晶體(n-channel metal-oxide-semiconductor,簡稱為NMOS)之組合實現第二電流源組103b。 As described above, the output combination I CP of the first switching current I P and the second switching current I N forms a phase comparison signal for charging or discharging the low-pass filter at the rear end. Generally, when the charge pump 103 is implemented, the first current source group 103a is realized by a combination of a p-channel metal-oxide-semiconductor (PMOS), and the N-type metal oxide half-electricity is realized. A combination of n-channel metal-oxide-semiconductors (abbreviated as NMOS) implements the second current source group 103b.

理想中,第一電流源組103a與第二電流源組103b對低通濾波器105充放電之影響應該彼此對稱,而可抵銷的,但是這兩種類型的電晶體的特性並非全然對稱而存在差異,可能導致充放電電流之電流值,並非完全相等的情形,亦即,在電荷幫浦103的控制節點Scont上,輸出第一切換電流IP,與第二切換電流IN的電流值並不一致的現象。 Ideally, the effects of the first current source group 103a and the second current source group 103b on the charge and discharge of the low-pass filter 105 should be symmetrical with each other, but offset, but the characteristics of the two types of transistors are not completely symmetrical. There is a difference that may cause the current value of the charge and discharge current to be not completely equal, that is, at the control node S cont of the charge pump 103, the first switching current I P and the current of the second switching current I N are output. The values are not consistent.

在PMOS與NMOS本身特性並不相同的情況下,實際由第一電流源組103a內之PMOS產生的第一切換電流IP、由第二電流源組103b內之NMOS產生的第二切換電流IN並不一定匹配,這也將連帶使鎖相迴路10在使用時不甚理想,因此本發明便以此為目標而提出電荷幫浦之改善設計。 In the case where the characteristics of the PMOS and the NMOS are not the same, the first switching current I P actually generated by the PMOS in the first current source group 103a and the second switching current I generated by the NMOS in the second current source group 103b N does not necessarily match, which will also make the phase-locked loop 10 less than ideal when used. Therefore, the present invention proposes an improved design of the charge pump.

本發明係為一種電荷幫浦,根據一相位比較信號而於一控制節點輸出一電流,該電荷幫浦包含:一第一電流源組,設置於一第一電壓端點與該控制節點間,其係根據該相位比較信號而於該控制節點輸出一第一切換電流;以及一第二電流源組,設置於該控制節點與一第二電壓端點間,該第二電流源組包含:一第一子切換電流產生電路,電連接於該控制節點與該第二電壓端點,其係因應該相位比較信號而產生一第一子切換電流;一第二子切換電流產生電路,電連接於該控制節點與該第二電壓端點,其係因應該相位比較信號而產生一第二子切換電流;以及一選擇電路,電連接於該第一子切換電流產生電路與該第二子切換電流產生電路,其係根據該控制節點之電壓位準而選擇於該控制節點輸出該第一子切換電流或該第二子切換電流。 The present invention is a charge pump that outputs a current at a control node according to a phase comparison signal. The charge pump includes: a first current source group disposed between a first voltage terminal and the control node. The first current switching source outputs a first switching current according to the phase comparison signal; and a second current source group is disposed between the control node and a second voltage terminal group, the second current source group includes: a first sub-switching current generating circuit electrically connected to the control node and the second voltage end point, which generates a first sub-switching current due to the phase comparison signal; and a second sub-switching current generating circuit electrically connected The control node and the second voltage end point generate a second sub-switching current due to the phase comparison signal; and a selection circuit electrically connected to the first sub-switching current generating circuit and the second sub-switching current And generating a circuit, wherein the control node outputs the first sub-switching current or the second sub-switching current according to a voltage level of the control node.

為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。 The above and other objects, features and advantages of the present invention will become more <RTIgt;

由於頻寬(K)、相位邊限(phase margin)和阻尼因子(damping factor)等等系統參數,決定了鎖相迴路整個系統的抖動(jitter)和穩定度(stability)。也因此,這些參數經常被用來評估鎖相迴路的優劣。 Due to system parameters such as bandwidth (K), phase margin, and damping factor, the jitter and stability of the entire system of the phase-locked loop are determined. Therefore, these parameters are often used to evaluate the advantages and disadvantages of the phase-locked loop.

在設計鎖相迴路時,低通濾波器的頻寬K通常會被設計成為小於、等於輸入信號Vin的頻率的十分之一。再者,輸出 信號Vout可以利用不同的輸入信號Vin,與除頻係數M的組合來完成。舉例來說,若希望鎖相迴路產生頻率為1GHz的輸出信號Vout時,可以選擇以除頻係數M=100搭配輸入信號之頻率為10MHz的方式,也可以選擇以除頻係數M=50搭配輸入信號之頻率為20MHz的方式來提供。 When designing a phase-locked loop, the bandwidth K of the low-pass filter is typically designed to be less than or equal to one tenth of the frequency of the input signal V in . Further, the output signal V out may utilize different input signal V in, and to complete the frequency dividing ratio M of the other compositions. For example, if the phase-locked loop is expected to generate an output signal V out with a frequency of 1 GHz, the frequency of the input signal with the frequency division coefficient M=100 may be selected to be 10 MHz, or the frequency division coefficient M=50 may be selected. The frequency of the input signal is provided in a manner of 20 MHz.

換言之,輸出信號Vout可能受到到輸入信號Vin與除頻係數M的影響,而輸入信號Vin與低通濾波器的頻寬K之間又有比例關係的考量。 In other words, the output signal V out may be affected by the input signal V in and the frequency division coefficient M, and the input signal V in is proportional to the bandwidth K of the low pass filter.

此外,由於低通濾波器的頻寬K,與電荷幫浦產生於控制節點Scont上的充放電電流ICP成正比,當充放電電流ICP之電流值越高時,低通濾波器的頻寬K也隨之增加。另一方面,由於低通濾波器的頻寬K,與除頻器的除頻係數M成反比,因此可以歸納出低通濾波器的頻寬K正比於ICP/M之關係式。 In addition, since the bandwidth K of the low-pass filter is proportional to the charge and discharge current I CP generated by the charge pump on the control node S cont , when the current value of the charge and discharge current I CP is higher, the low-pass filter The bandwidth K also increases. On the other hand, since the bandwidth K of the low-pass filter is inversely proportional to the frequency division coefficient M of the frequency divider, the relationship of the bandwidth K of the low-pass filter proportional to I CP /M can be summarized.

在考量鎖相迴路之穩定度的情況下,實際操作鎖相迴路時,需要維持低通濾波器的頻寬K,然而輸出信號Vout的頻率又需要經常被調整,代表除頻器的除頻係數M也需要被對應的調整,才能維持低通濾波器的頻寬K。由低通濾波器的頻寬K正比於ICP/M之關係式可以得知,一旦調整除頻器的除頻係數M,代表電荷幫浦產生於控制節點Scont的充放電電流ICP的大小也需要調整,方能維持低通濾波器的頻寬K不變。 Considering the stability of the phase-locked loop, the bandwidth K of the low-pass filter needs to be maintained when actually operating the phase-locked loop. However, the frequency of the output signal V out needs to be adjusted frequently, representing the frequency division of the frequency divider. The coefficient M also needs to be adjusted accordingly to maintain the bandwidth K of the low pass filter. It can be known from the relationship between the bandwidth K of the low-pass filter and the I CP /M that once the frequency division coefficient M of the frequency divider is adjusted, it represents that the charge pump generates the charge and discharge current I CP of the control node S cont . The size also needs to be adjusted to maintain the bandwidth K of the low-pass filter.

亦即,在設計鎖相迴路時,可以利用電荷幫浦產生的充放電電流ICP來補償因為除頻係數M的調整而對頻寬K造成的影響。例如:若除頻係數M越高、電荷幫浦提供的充放電電流ICP也越高時,頻寬K就可以維持固定;若除頻係數M越小、電荷幫浦的充放電電流ICP也越小時,低通濾波器的頻寬K也可以維持固定。 That is, when designing the phase-locked loop, the charge and discharge current I CP generated by the charge pump can be utilized to compensate for the influence on the bandwidth K due to the adjustment of the frequency-dividing coefficient M. For example, if the frequency coefficient M is higher and the charge and discharge current I CP provided by the charge pump is higher, the bandwidth K can be kept fixed; if the frequency coefficient M is smaller, the charge and discharge current of the charge pump I CP The smaller the interval, the wider the K of the low pass filter can also be maintained.

舉例來說:假設除頻係數M的範圍介於0~100,設計時便需從中選擇可以讓相對應之頻寬K的值為10的參數。由於在動態操作鎖相迴路時,除頻係數M的數值會被調整,為了避免頻寬K受到除頻係數M的改變而變化,所以利用電荷幫浦產生的充放電電流ICP對除頻係數M的變化進行相對應的補償。 For example, if the range of the frequency division coefficient M is between 0 and 100, the design must select a parameter that allows the corresponding bandwidth K to be 10. Since the value of the frequency division coefficient M is adjusted when the phase-locked loop is operated dynamically, in order to prevent the bandwidth K from being changed by the change of the frequency-dividing coefficient M, the charge-discharge current I CP generated by the charge pump is used to divide the frequency coefficient. The change in M is compensated accordingly.

承上所述,由於鎖相迴路的輸出信號Vout的頻率會調整,連帶使除頻係數M需要被調整,在維持頻寬K不變動的考量下,便需要動態的調整電荷幫浦所產生的充放電電流ICP。因此,充放電電流ICP的可調整範圍越大時,相當於除頻係數M,與頻寬K的數值可以調整的彈性也越大。 As described above, since the frequency of the output signal V out of the phase-locked loop is adjusted, the frequency-dividing coefficient M needs to be adjusted. In order to maintain the bandwidth K without fluctuation, it is necessary to dynamically adjust the charge pump. Charge and discharge current I CP . Therefore, when the adjustable range of the charge/discharge current I CP is larger, it corresponds to the frequency division coefficient M, and the elasticity of the value of the bandwidth K can be adjusted to be larger.

由於電荷幫浦的充放電電流ICP需要被用來調整受到除頻係數影響下之頻寬K的影響,因此流經電荷幫浦的充放電電流ICP是否可以穩定的變化便成為一個重要的議題。 Since the charge and discharge current I CP of the charge pump needs to be used to adjust the bandwidth K under the influence of the frequency division coefficient, it is important that the charge and discharge current I CP flowing through the charge pump can be stably changed. issue.

參看第二圖(a)可以得知,對PMOS來說,第一電壓端點V1的電壓位準與控制節點Scont之電壓位準的第一電壓壓差△V1相當於PMOS的源極與汲極之間的跨壓vDS,P;同理,對於NMOS來說,第二電壓端點V2的電壓位準與控制節點Scont之電壓位準的第二電壓壓差△V2相當於NMOS的源極與汲極之間的跨壓vDS,NReferring to the second graph (a) can be known, for a PMOS, a first voltage level of the voltage at terminal S cont of V 1 voltage level control node and a first quasi-differential pressure △ V 1 corresponds to the voltage of the PMOS source The voltage across the pole and the drain is v DS,P . Similarly, for the NMOS, the voltage level of the second voltage terminal V 2 and the voltage level of the control node S cont are the second voltage difference ΔV 2 corresponds to the voltage across the source and the drain of the NMOS, v DS,N .

由於第一電壓端點V1的電壓位準(假設為電壓源Vdd),與第二電壓端點V2的電壓位準(假設為接地VGND)為固定,因此控制節點Scont的電壓位準若發生變化時,將連帶影響第一電壓壓差△V1,與第二電壓壓差△V2的值,以及其所對應之PMOS的源極與汲極之間的跨壓、NMOS的源極與汲極之間的跨壓。 Due to the voltage level of the first voltage terminal V 1 (assumed to be the voltage source V dd ), the voltage level of the second voltage terminal V 2 (assumed to be ground V GND ) is fixed, so the voltage of the control node S cont If the level changes, it will affect the value of the first voltage drop ΔV 1 , the second voltage drop ΔV 2 , and the voltage and NMOS between the source and the drain of the corresponding PMOS. The cross-pressure between the source and the bungee.

承上所述,當電荷幫浦在控制節點Scont上的電壓位準產生變化時,將連帶影響PMOS的源極與汲極之間的跨壓、NMOS的源極與汲極之間的跨壓。 As described above, when the voltage level of the charge pump on the control node S cont changes, it will affect the cross-voltage between the source and the drain of the PMOS, and the cross between the source and the drain of the NMOS. Pressure.

請參見第三圖(a),其係NMOS之導通電流對應於源極、汲極之跨壓變化的特性曲線。對NMOS而言,當閘極、汲極的壓差小於臨界電壓(即,v GD-N<Vt-N)時,NMOS的運作處於截止區(cutoff region)。 Please refer to the third figure (a), which is the characteristic curve of the on-current of the NMOS corresponding to the change of the source and the gate across the voltage. For the NMOS, when the gate and drain voltage difference is less than the threshold voltage (ie, v GD-N <V tN ), the NMOS operates in a cutoff region.

另一方面,當NMOS的閘極、汲極的壓差大於臨界電壓(即,v GD-N>Vt-N)時,則根據源極、汲極之間的跨壓,以及閘極、源極之間的壓差、臨界電壓之關係式而可能進入三極區(triode region)或飽和區(saturation region)。以下說明NMOS這兩種區域中,產生導通電流時,導通電流與電極之間的跨壓之對應關係。 On the other hand, when the voltage difference between the gate and the drain of the NMOS is greater than the threshold voltage (ie, v GD-N >V tN ), it depends on the voltage across the source and the drain, and the gate and source. The relationship between the pressure difference and the threshold voltage may enter the triode region or the saturation region. The correspondence between the on-current and the voltage across the electrodes when the on-current is generated in the two regions of the NMOS will be described below.

首先,若NMOS的源極、汲極之間的跨壓v DS-N,以及閘極、源極之間的壓差v GS-N、臨界電壓Vt-N之間滿足v DS-N<(v GS-N-Vt-N)之關係式時,NMOS處於三極區,在此種狀態下,NMOS所導通之電流可以如下方程式表示:i D-N =k[2(v GS-N-V t-N )v DS-N -v DS-N 2]。 First, if the voltage across the source and the drain of the NMOS, v DS-N , and the voltage difference between the gate and the source, v GS-N , and the threshold voltage V tN , satisfy v DS-N < ( v In the relation of GS-N -V tN ), the NMOS is in the three-pole region. In this state, the current that the NMOS turns on can be expressed by the following equation: i DN = k [2( v GS-N - V tN ) v DS-N - v DS-N 2 ].

其次,若NMOS的源極、汲極之間的跨壓v DS-N,以及閘極、源極之間的壓差v GS-N、臨界電壓Vt-N之間滿足v DS-N≧(v GS-N-Vt-N)之關係式時,NMOS的運作方式處於飽和區,在此種狀態下,NMOS所導通之電流可以如下方程式表示:i D-N =k(v GS-N-V -Nt )2(1+λ DS-N )。 Secondly, if the voltage across the source and the drain of the NMOS, v DS-N , and the voltage difference between the gate and the source, v GS-N , and the threshold voltage V tN , satisfy v DS-N ≧ ( v ) In the relationship of GS-N - V tN ), the operation mode of the NMOS is in a saturation region. In this state, the current that the NMOS turns on can be expressed by the following equation: i DN = k ( v GS-N - V -Nt ) 2 (1+ λ DS-N ).

依據前述說明,當NMOS的源極、汲極之間的跨壓v DS-N很小時,NMOS所導通的電流iDv DS-N成正比,亦與(v GS-N-Vt-N)成正比,而呈現如第三圖(a)在三級區之線性關係;當v DS-N逐 漸增加至一定程度時,v DS-N的變化並不會影響NMOS導通的電流iD,因此在NMOS所導通的電流將iD呈現如第三圖(a)在飽和區之水平線分佈。 Based on the foregoing description, when the NMOS source, cross voltage v DS-N is small between the drain current i D and v DS-N is proportional to the NMOS conduction, and also (v GS-N -V tN) It is proportional to the linear relationship of the third-order region (a) in the third-order region; when v DS-N is gradually increased to a certain extent, the change of v DS-N does not affect the NMOS-on current i D , so The current conducted at the NMOS presents i D as a horizontal line of the saturation region in the third graph (a).

也就是說,對NMOS而言,其源極、汲極之間的跨壓會影響iD的電流值。同樣的,對PMOS而言,源極、汲極之間的跨壓也會影響iD的電流值,並影響其運作區域,此處因與NMOS相類似而不再贅述。 That is to say, for the NMOS, the voltage across the source and the drain will affect the current value of i D . Similarly, for PMOS, the voltage across the source and drain also affects the current value of i D and affects its operating region, which is similar to NMOS and will not be described here.

根據前述對電荷幫浦之控制節點Scont的電壓位準說明,以及對NMOS、PMOS在導通時之電流關係式,可以看出以下的現象:當電荷幫浦的控制節點Scont上的電壓位準逐漸升高時,代表第一電壓壓差△V1逐漸變小、第二電壓壓差△V1逐漸變大。亦即,PMOS的源極與汲極之間的跨壓逐漸變小、NMOS的源極與汲極之間的跨壓逐漸變大。 According to the foregoing description of the voltage level of the control node S cont of the charge pump, and the current relationship of the NMOS and PMOS when conducting, the following phenomenon can be seen: the voltage level on the control node S cont of the charge pump When the gradual increase is gradually increased, the first voltage difference ΔV 1 is gradually decreased, and the second voltage difference ΔV 1 is gradually increased. That is, the voltage across the source and the drain of the PMOS is gradually reduced, and the voltage across the source and the drain of the NMOS is gradually increased.

對PMOS而言,一旦源極、汲極之間的跨壓VDS逐漸變小,並變小至一定程度時,代表PMOS將由飽和區進入三極區。一旦PMOS的運作模式由飽和區進入三極區之運作狀態時,流經PMOS的電流IP之電流值也將隨之減少,甚至因此而關閉PMOS(進入截止狀態);對NMOS來說,一旦源極、汲極之間的跨壓(VDS)逐漸變大而至一定程度時,代表NMOS的運作區域可能由三極區進入飽和區,使得流經NMOS的電流IN之電流值隨之增加。 For the PMOS, once the voltage across the source and the drain V DS becomes smaller and becomes smaller to a certain extent, the representative PMOS will enter the triode from the saturation region. Once the PMOS mode of operation enters the tripolar region from the saturation region, the current value of the current I P flowing through the PMOS will also decrease, and thus the PMOS (turns off the state) is turned off; for the NMOS, once When the voltage across the source and the drain (V DS ) is gradually increased to a certain extent, the operating region representing the NMOS may enter the saturation region from the three-pole region, so that the current value of the current I N flowing through the NMOS follows increase.

請參見第三圖(b),其係以電荷幫浦內的PMOS與NMOS所提供之切換電流相對於控制信號之電壓位準變化之關係圖。由此圖中可以看出,當控制節點Scont的電壓位準剛開始由0伏特逐漸增加時,第一切換電流IP與第二切換電流IN均伴隨 著控制節點Scont的電壓位準之增加而增加。 Please refer to the third diagram (b), which is a relationship diagram of the switching current provided by the PMOS and NMOS in the charge pump with respect to the voltage level change of the control signal. As can be seen from the figure, when the voltage level of the control node S cont is gradually increased from 0 volts, the first switching current I P and the second switching current I N are accompanied by the voltage level of the control node S cont . Increase and increase.

一旦控制節點Scont的電壓位準Vcont持續增加,並達到一定程度時(如:0.9伏特),PMOS產生的第一切換電流IP隨著電壓變高時,會發生反轉向下的情形;但是對NMOS來說,當控制節點Scont的電壓位準Vcont增加時,代表NMOS的Vds跨壓增加,因此NMOS仍然持續保持開啟狀態,因此其導通時的第二切換電流IN仍持續增加。 Once the voltage level V cont of the control node S cont continues to increase and reaches a certain level (eg, 0.9 volts), the first switching current I P generated by the PMOS may reverse downward as the voltage becomes higher. However, for the NMOS, when the voltage level V cont of the control node S cont increases, the V ds representing the NMOS increases across the voltage, so the NMOS remains continuously turned on, so the second switching current I N when it is turned on remains Continued to increase.

因此,若將第一切換電流IP與第二切換電流IN進行加總時,將可看到如第三圖(b)所示之,流出於電荷幫浦的淨電流在控制節點Scont的電壓位準小於0.9伏特時,其電流值趨近於0。反之,一旦控制節點Scont的電壓位準大於0.9伏特時,由於第一切換電流IP之電流值不足以抵銷第二切換電流IN之電流值,導致第一切換電流IP與第二切換電流IN之加總形成的淨充放電電流ICP將急速增加。 Therefore, if the first switching current I P and the second switching current I N are summed, it can be seen that the net current flowing out of the charge pump is as shown in the third diagram (b) at the control node S cont When the voltage level is less than 0.9 volts, the current value approaches zero. On the contrary, once the voltage level of the control node S cont is greater than 0.9 volts, the current value of the first switching current I P is insufficient to offset the current value of the second switching current I N , resulting in the first switching current I P and the second The net charge and discharge current I CP formed by the sum of the switching currents I N will increase rapidly.

需注意的是,此處的切換電流之電流總和需考慮電流的方向性,由於第一切換電流Ip的流向與第二切換電流IN的流向為反向,因此兩者的總和(即,電荷幫浦實際輸出於控制節點Scont的電流值)相當於二者電流值的絕對值之差值。 It should be noted that the sum of the currents of the switching currents here needs to consider the directivity of the current. Since the flow direction of the first switching current I p is opposite to the flow direction of the second switching current I N , the sum of the two (ie, The current value that the charge pump actually outputs to the control node S cont is equivalent to the difference between the absolute values of the current values.

歸納前述說明可以發現,控制節點Scont的電壓位準Vcont越高時,輸出信號的頻率fout就越高;除頻係數M越高,則輸出信號的頻率fout也越高。也因此,可以推論出除頻係數M越高時,控制節點Scont的電壓位準Vcont也越高的關係式。 In summary, it can be found that the higher the voltage level V cont of the control node S cont , the higher the frequency f out of the output signal; the higher the frequency coefficient M, the higher the frequency f out of the output signal. Therefore, it can be inferred that the higher the frequency coefficient M is, the higher the voltage level V cont of the control node S cont is.

此外,由於控制節點Scont的電壓位準Vcont對於充放電電流也會產生影響,理論上,除頻係數M越大時,充放電電流ICP之電流值也越高。然而,當控制節點Scont的電壓位準Vcont大於一定程度時,可能因為PMOS、NMOS之不匹配,而使充 放電電流ICP之總和不為0,導致鎖相迴路在控制節點Scont的電壓位準Vcont大於一定程度時,便無法正常運作,這也使得除頻係數M之可調整範圍受到限制。為此,本發明便提供了一種讓電荷幫浦產生的淨充放電電流ICP,保持穩定而不受電壓位準變化而影響的作法。 In addition, since the voltage level V cont of the control node S cont also affects the charge and discharge current, theoretically, the larger the frequency coefficient M, the higher the current value of the charge and discharge current I CP . However, when the voltage level V cont of the control node S cont is greater than a certain degree, the sum of the charge and discharge currents I CP may not be zero due to the mismatch of the PMOS and the NMOS, resulting in the phase locked loop at the control node S cont . When the voltage level V cont is greater than a certain level, it cannot operate normally, which also limits the adjustable range of the frequency division coefficient M. To this end, the present invention provides a method of allowing the charge and discharge current I CP generated by the charge pump to remain stable without being affected by voltage level changes.

簡言之,本發明的構想是增加電荷幫浦在因應控制節點Scont之電壓位準Vcont變動時的運作範圍,讓輸出節點Scont的淨充放電電流ICP在控制節點Scont之電壓位準Vcont較大時,也能維持為0的狀態,不會因為PMOS被關閉而產生影響,進而讓充放電電流ICP的調整能更具有彈性,連帶也讓鎖相迴路在調整除頻係數M時,頻寬變化的容忍度得以提升。 In short, the idea of the present invention is to increase the operating range of the charge pump in response to the voltage level V cont of the control node S cont , and let the voltage of the net charge and discharge current I CP of the output node S cont be at the control node S cont . When the level V cont is large, it can maintain the state of 0, and it will not be affected by the PMOS being turned off, so that the adjustment of the charge and discharge current I CP can be more flexible, and the phase-locked loop can be adjusted and removed. When the coefficient is M, the tolerance of the bandwidth variation is improved.

請參見第四圖(a),其係本發明所提出之電荷幫浦的較佳實施例之功能方塊示意圖。根據相位比較信號而於控制節點Scont輸出電流的電荷幫浦30包含:設置第一電壓端點V1與控制節點Scont間的第一電流源組31,以及設置於控制節點Scont與第二電壓端點V2間的第二電流源組32。透過來自相位偵測器101的相位比較信號,選擇性的利用第一電流源組31或第二電流源組32之一者,於控制節點Scont產生對低通濾波器的充放電電流ICPPlease refer to the fourth figure (a), which is a functional block diagram of a preferred embodiment of the charge pump proposed by the present invention. The charge pump 30 for outputting current at the control node S cont according to the phase comparison signal includes: setting a first current source group 31 between the first voltage endpoint V 1 and the control node S cont , and setting the control node S cont and the two terminal voltage V 2 of the second current source 32 is set. Selectively utilizing one of the first current source group 31 or the second current source group 32 by the phase comparison signal from the phase detector 101 to generate a charge and discharge current I CP to the low pass filter at the control node S cont .

首先,第一電流源組31的結構類似第二圖(a)之電荷幫浦之上半部,由第一電流源(未繪示)與第一開關單元(未繪示)所組成。其中第一電流源電連接於第一電壓端點V1,並用來提供一個固定的電流(即,第一切換電流IP);而第一開關單元電連接於第一電流源與控制節點Scont間,用以根據第一相位比較信號Vup而決定是否由第一電流源組31輸出第一切換電流IP。第一電流源組31係根據第一相位比較信號Vup而於控 制節點Scont輸出第一切換電流IPFirst, the structure of the first current source group 31 is similar to the upper portion of the charge pump of the second figure (a), and is composed of a first current source (not shown) and a first switching unit (not shown). The first current source is electrically connected to the first voltage terminal V 1 and is used to provide a fixed current (ie, the first switching current I P ); and the first switching unit is electrically connected to the first current source and the control node S Between cont , it is determined whether to output the first switching current I P from the first current source group 31 according to the first phase comparison signal V up . The first current source group 31 outputs the first switching current I P at the control node S cont according to the first phase comparison signal V up .

在此較佳實施例中,第二電流源組32的組成較第一電流源組31更多元,以第四圖(a)(b)為例,第二電流源組32包含了兩個子切換電流產生電路321、322,以及一個選擇電路323。以下說明第二電流源組32的內部構造:首先,第一子切換電流產生電路321與第二子切換電流產生電路322均電連接在控制節點Scont與第二電壓端點V2間,前者因應控制節點Scont之電壓位準而產生第一子切換電流INO,後者則因應控制節點Scont之電壓位準而產生第二子切換電流INN。也就是說,控制節點Scont的電壓位準之變化,將連帶影響第一子切換電流INO、第二子切換電流INN的產生與否。 In the preferred embodiment, the second current source group 32 has more components than the first current source group 31. Taking the fourth diagram (a) and (b) as an example, the second current source group 32 includes two. The sub-switching current generating circuits 321, 322, and a selection circuit 323. The internal structure of the second current source group 32 will be described below. First, the first sub-switching current generating circuit 321 and the second sub-switching current generating circuit 322 are electrically connected between the control node S cont and the second voltage terminal V2. The voltage level of the control node S cont is generated to generate a first sub-switching current I NO , which in turn generates a second sub-switching current I NN in response to the voltage level of the control node S cont . That is to say, the change of the voltage level of the control node S cont will affect the generation of the first sub-switching current I NO and the second sub-switching current I NN .

此外,選擇電路323則電連接於第一子切換電流產生電路321與第二子切換電流產生電路322,選擇電路323的功用是根據控制節點Scont之電壓位準而選擇於控制節點Scont輸出第一子切換電流INO或第二子切換電流INNFurther, the selection circuit 323 is electrically connected to the first sub-current generating circuit 321 is switched to the second switching sub-current generating circuit 322, the function selecting circuit 323 is the voltage level of the control node S cont selected output to the control node S cont The first sub-switching current I NO or the second sub-switching current I NN .

選擇電路323利用控制節點Scont之電壓位準,而選擇輸出第一子切換電流INO或第二子切換電流INN的依據,可能因為應用上的考量而變化,例如:利用控制節點Scont之電壓位準Vcont與第二電壓端點V2之電壓壓差、利用控制節點Scont之電壓位準Vcont與一比較電壓位準之間的電壓壓差來選擇在控制節點Scont輸出的電流等方式。以下的說明係以控制節點Scont之電壓位準Vcont與第二電壓端點V2之間的電壓壓差為例。 The selection circuit 323 uses the voltage level of the control node S cont to select the basis for outputting the first sub-switching current I NO or the second sub-switching current I NN , which may vary due to application considerations, for example: using the control node S cont the voltage level of the second voltage V cont and the terminal voltage V 2 a pressure difference, the pressure difference between the voltage level of the voltage V cont S cont of the control node to a voltage level of the comparison to select an output control node S cont Current and other ways. The following description is taken as an example of the voltage difference between the voltage level V cont of the control node S cont and the second voltage terminal V 2 .

簡言之,選擇電路323的用途是選擇在電荷幫浦30下方之電路中,應該由第一子切換電流產生電路321或由第二子切換電流產生電路322來輸出電流至控制節點Scont。而參考偏壓Vdc的選擇,可以透過模擬等方式得出,通常參考偏壓Vdc的 值可以是一個範圍,例如:以電壓源的電壓位準Vdd與源、汲極之跨壓Vsd的差值(Vdd-Vsd)作為參考偏壓Vdc,其中的Vsd可以是Vsd可能之最小值。 In short, the purpose of the selection circuit 323 is to select a circuit below the charge pump 30 that should be output by the first sub-switching current generating circuit 321 or by the second sub-switching current generating circuit 322 to the control node S cont . The selection of the reference bias voltage V dc can be obtained by analog or the like. Generally, the value of the reference bias voltage V dc can be a range, for example, the voltage level of the voltage source V dd and the voltage across the source and the drain V. sd difference (V dd -V sd) as a reference bias voltage V dc, where V sd sd V may be the minimum possible.

請參見第四圖(b),其係本發明所提出之較佳實施例中,透過比較器實現電荷幫浦之第二電流源組之示意圖。此圖式進一步說明了第一子電流切換產生電路321、第二子電流切換產生電路322,以及選擇電路323之內部構造。 Referring to FIG. 4(b), which is a schematic diagram of a second current source group of charge pumps implemented by a comparator in a preferred embodiment of the present invention. This figure further illustrates the internal configuration of the first sub-current switching generating circuit 321, the second sub-current switching generating circuit 322, and the selecting circuit 323.

第一子切換電流產生電路321包含:第一子開關單元321a與第一子電流源321b。其中第一子開關單元321a電連接於控制節點Scont,並在控制節點Scont的電壓位準Vcont小於參考偏壓Vdc時開啟;而第一子電流源321b則電連接於第二電壓端點V2與第一子開關單元321a間,其係於第一子開關單元321a開啟時,提供第一子切換電流INO於控制節點ScontThe first sub-switching current generating circuit 321 includes a first sub-switching unit 321a and a first sub-current source 321b. The first sub-switching unit 321a is electrically connected to the control node S cont and is turned on when the voltage level V cont of the control node S cont is less than the reference bias voltage V dc ; and the first sub-current source 321 b is electrically connected to the second voltage The terminal V 2 and the first sub-switch unit 321a are provided to provide the first sub-switching current I NO to the control node S cont when the first sub-switch unit 321a is turned on.

提供第一子切換電流產生電路321的目的是,當控制節點Scont之電壓位準Vcont與第二電壓端點V2之電壓壓差小於參考偏壓Vdc時,選擇電路323選擇輸出第一子切換電流INOThe purpose of providing the first sub-switching current generating circuit 321 is to select the output first when the voltage voltage difference between the voltage level V cont of the control node S cont and the second voltage terminal V2 is less than the reference bias voltage V dc . sub-switching current I NO.

第二子切換電流產生電路322包含:第二子開關單元322a與第二子電流源322b。其中第二子開關單元322a電連接於控制節點Scont,並於控制節點Scont之電壓位準Vcont大於參考偏壓Vdc時開啟;而第二子電流源322b則電連接於第二電壓端點V2與第二子開關單元322a間,並於第二子開關單元322a開啟時,提供第二子切換電流INN於控制節點ScontThe second sub-switching current generating circuit 322 includes a second sub-switching unit 322a and a second sub-current source 322b. The second sub-switching unit 322a is electrically connected to the control node S cont and is turned on when the voltage level V cont of the control node S cont is greater than the reference bias voltage V dc ; and the second sub-current source 322 b is electrically connected to the second voltage The second sub-switching current I NN is provided between the terminal V 2 and the second sub-switch unit 322a, and when the second sub-switch unit 322a is turned on, the control node S cont is provided .

提供第二子切換電流產生電路322的目的是,當控制節點Scont之電壓位準Vcont與第二電壓端點V2之電壓壓差大於參考偏壓Vdc時,選擇電路323選擇在控制節點Scont輸出第二子切換電流INNThe purpose of providing the second sub-switching current generating circuit 322 is to select the control node 323 when the voltage difference between the voltage level V cont of the control node S cont and the second voltage terminal V2 is greater than the reference bias voltage V dc . S cont outputs a second sub-switching current I NN .

選擇電路323主要包含電連接於控制節點Scont的比較單元323a,以及電連接於第一子開關單元321a、第二子開關單元322a的控制單元323b。其中比較單元323a的兩個輸入端點分別連接至控制節點Scont與參考偏壓Vdc,根據兩者的比較結果而輸出電壓比較信號Vcmp。控制單元323b在接收到電壓比較信號Vcmp後,再據此而選擇由第一子切換電流產生電路321提供第一子切換電流INO,或由第二子切換電流產生電路322提供第二子切換電流INNThe selection circuit 323 mainly includes a comparison unit 323a electrically connected to the control node S cont , and a control unit 323 b electrically connected to the first sub-switch unit 321 a and the second sub-switch unit 322 a. The two input terminals of the comparing unit 323a are respectively connected to the control node S cont and the reference bias voltage V dc , and the voltage comparison signal V cmp is output according to the comparison result of the two. After receiving the voltage comparison signal Vcmp , the control unit 323b may select to provide the first sub-switching current I NO by the first sub-switching current generating circuit 321 or provide the second sub-switching current generating circuit 322 by the second sub-switching current generating circuit 322. Switch current I NN .

請參見第五圖(a),其係根據本發明構想而實現選擇電路之示意圖。除了比較單元323a、控制單元323b外,選擇電路323還可進一步包含電連接於比較單元323a與控制單元323b間的反向器323c,反向器323c被用來將電壓比較信號Vcmp進行反向後得到Vcmp’,並將其輸出至控制單元323b。 Referring to Figure 5(a), a schematic diagram of a selection circuit is implemented in accordance with the teachings of the present invention. In addition to the comparing unit 323a and the control unit 323b, the selecting circuit 323 may further include an inverter 323c electrically connected between the comparing unit 323a and the control unit 323b, and the inverter 323c is used to invert the voltage comparison signal Vcmp . V cmp ' is obtained and output to the control unit 323b.

本發明係因應控制節點Scont上的電壓位準Vcont變化,利用電壓比較信號Vcmp與其補數Vcmp’分別對應啟動不同的子切換電流產生電路。例如:當控制節點Scont的電壓位準Vcont小於參考偏壓Vdc時,電壓比較信號Vcmp的電壓位準為0伏特,代表電壓比較信號Vcmp為邏輯0、其補數為邏輯1的狀態,此時電荷幫浦30便產生第一子切換電流INOThe present invention in response to a control voltage V cont level variation on the node S cont, comparing the voltage signal V cmp its complement V cmp 'respectively corresponding to different sub-promoter switching current generating circuit. For example, when the voltage level V cont of the control node S cont is less than the reference bias voltage V dc , the voltage level of the voltage comparison signal V cmp is 0 volt, which represents that the voltage comparison signal V cmp is logic 0 and its complement is logic 1 In this state, the charge pump 30 generates the first sub-switching current I NO .

反之,當控制節點Scont的電壓位準Vcont大於參考偏壓Vdc時,電壓比較信號Vcmp的電壓位準相當於Vdd,代表電壓比較信號Vcmp為邏輯1、其補數為邏輯0的狀態,此時電荷幫浦30便產生第二子切換電流INNConversely, when the voltage level V cont of the control node S cont is greater than the reference bias voltage V dc , the voltage level of the voltage comparison signal V cmp is equivalent to V dd , which represents that the voltage comparison signal V cmp is logic 1 and its complement is logic In the state of 0, the charge pump 30 generates a second sub-switching current I NN .

根據所控制之子切換電流產生電路的不同,控制單元323b內部可以進一步劃分為:電連接於比較單元323a與第一子切 換電流產生電路321的第一控制區塊3231,以及電連接於比較單元323a與第二子切換電流產生電路322的第二控制區塊3232,其中前者用於選擇產生第一子切換電流INO,後者用於選擇產生第二子切換電流INNThe control unit 323b may be further divided into: a first control block 3231 electrically connected to the comparison unit 323a and the first sub-switching current generating circuit 321, and electrically connected to the comparing unit 323a, depending on the controlled sub-switching current generating circuit. And a second control block 3232 of the second sub-switching current generating circuit 322, wherein the former is used to select to generate a first sub-switching current I NO for selecting to generate a second sub-switching current I NN .

也就是說,控制單元323b在接收到電壓比較信號Vcmp以及經過反相後的電壓比較信號Vcmp’後,再據此而選擇由第一子切換電流產生電路321提供第一子切換電流INO,或由第二子切換電流產生電路322提供第二子切換電流INNThat is, after receiving the voltage comparison signal Vcmp and the inverted voltage comparison signal Vcmp' , the control unit 323b selects the first sub-switching current generating circuit 321 to provide the first sub-switching current I. NO , or a second sub-switching current I NN is provided by the second sub-switching current generating circuit 322.

第一控制區塊3231根據電壓比較信號Vcmp而輸出第一控制信號,藉此開啟在第一子切換電流產生電路321內之第一子開關單元321a,並輸出第一子切換電流INO;第二控制區塊3232根據反向後的電壓比較信號Vcmp’而輸出第二控制信號,藉此開啟在第二子切換電流產生電路322內之第二子開關單元322a,並輸出第二子切換電流INNThe first control block 3231 outputs a first control signal according to the voltage comparison signal Vcmp , thereby turning on the first sub-switching unit 321a in the first sub-switching current generating circuit 321, and outputting the first sub-switching current INO ; The second control block 3232 outputs a second control signal according to the reversed voltage comparison signal V cmp ', thereby turning on the second sub-switch unit 322a in the second sub-switching current generating circuit 322, and outputting the second sub-switching Current I NN .

第一控制區塊3231包含第一半導體開關元件3201與第二半導體開關元件3202,兩者的閘極分別連接於反向後的電壓比較信號Vcmp’與電壓比較信號VcmpThe first control block 3231 includes a first semiconductor switching element 3201 and a second semiconductor switching element 3202, and the gates of the two are respectively connected to the inverted voltage comparison signal V cmp ' and the voltage comparison signal V cmp .

其中第一半導體開關元件3201的兩極分別電連接於第二相位比較信號Vdown與第一子開關單元321a的閘極,當第一半導體開關元件3201開啟並導通時,便將第二相位比較信號的電壓位準,導通至第一子開關單元321a的閘極,進而提供第一子切換電流INO於控制節點Scont上;而第二半導體開關元件3202的兩極分別電連接於第一子開關單元321a的閘極與第二電壓端點V2,當第二半導體開關元件開啟並導通時,便將第二電壓端點V2的電壓位準(VGND)導通至第一子開關單元321a的閘極,進而停止提供第一子切換電流INO於控制節點Scont 上。 Wherein the first gate bipolar semiconductor switching element 3201 are electrically connected to the second phase comparison signal V down switching unit 321a of the first sub-pole, when the first semiconductor switching element is turned on and 3201, put the second phase comparison signal The voltage level is turned on to the gate of the first sub-switch unit 321a, thereby providing the first sub-switching current I NO on the control node S cont ; and the two poles of the second semiconductor switching element 3202 are electrically connected to the first sub-switch respectively The gate of the cell 321a and the second voltage terminal V 2 , when the second semiconductor switching element is turned on and turned on, turns on the voltage level (V GND ) of the second voltage terminal V 2 to the first sub-switch unit 321a The gate further stops providing the first sub-switching current I NO on the control node S cont .

第二控制區塊3232的內部構造與第一控制區塊3231的內部構造相當類似,第二控制區塊3232由第三半導體開關元件3203以及第四半導體開關元件3204所組成,這兩個半導體開關元件的閘極分別連接於電壓比較信號Vcmp與反向後的電壓比較信號Vcmp’。 The internal configuration of the second control block 3232 is quite similar to the internal configuration of the first control block 3231, and the second control block 3232 is composed of a third semiconductor switching element 3203 and a fourth semiconductor switching element 3204, the two semiconductor switches The gates of the components are respectively connected to the voltage comparison signal Vcmp and the inverted voltage comparison signal Vcmp '.

其中第三半導體開關元件3203的兩極分別電連接於第二相位比較信號Vdown與第二子開關單元322a的閘極,當第三半導體開關元件3203開啟並導通時,便將第二相位比較信號Vdown的電壓位準導通至第二子開關單元322a的閘極,進而提供第二子切換電流INN於控制節點上;而第四半導體開關元件3204的兩極分別電連接於第二子開關單元322a的閘極,與第二電壓端點V2,當第四半導體開關元件3204開啟並導通時,便將第二電壓端點的電壓位準(VGND)導通至第二子開關單元322a的閘極,進而停止提供第二子切換電流INN於控制節點Scont上。 Wherein the third gate bipolar semiconductor switching element 3203 are electrically connected to the second phase comparison signal V down switching unit and the second sub electrode 322a is, when the third semiconductor switching element is turned on and 3203, a second phase comparison signal put The voltage level of V down is conducted to the gate of the second sub-switch unit 322a, thereby providing the second sub-switching current I NN to the control node; and the two poles of the fourth semiconductor switching element 3204 are electrically connected to the second sub-switch unit, respectively. The gate of 322a, and the second voltage terminal V 2 , when the fourth semiconductor switching element 3204 is turned on and turned on, turns on the voltage level (V GND ) of the second voltage terminal to the second sub-switch unit 322a. The gate, in turn, stops providing the second sub-switching current I NN on the control node S cont .

由電壓比較信號Vcmp所連接的方式來看,電壓比較信號Vcmp被電連接至第二半導體開關元件3202與第三半導體開關元件3203,而反向後的電壓比較信號Vcmp’則被電連接至第一半導體開關元件3201與第四半導體開關元件3204。 A voltage comparison signal V cmp manner connected point of view, the comparison voltage signal V cmp is electrically connected to the second semiconductor switching element 3202 and the third semiconductor switching element 3203, and the voltage comparison signal V cmp after reverse 'were electrically connected To the first semiconductor switching element 3201 and the fourth semiconductor switching element 3204.

需注意的是,電壓比較信號Vcmp或經由反向器323c反向後的電壓比較信號Vcmp’所連接至第一控制區塊3231或第二控制區塊3232的方式並不需要限定,這是因為比較單元323a具有正、負兩個輸入端點,根據這些輸入端點連接控制節點Scont與參考偏壓Vdc之順序不同,比較單元323a所輸出的電壓比較信號Vcmp也可能改變。 It should be noted that the manner in which the voltage comparison signal V cmp or the voltage comparison signal V cmp ' inverted by the inverter 323c is connected to the first control block 3231 or the second control block 3232 is not limited, which is because the comparison unit 323a having positive, two negative input terminal, the input terminal connected to the control nodes based on these S cont sequence differs from the reference bias voltage V dc, the comparison unit 323a output by the voltage comparator signal V cmp may change.

請參見第五圖(b),其係採用第五圖(a)之連線的選擇電路設計,因應控制節點之電壓位準與參考偏壓之間的大小關係,與控制單元內部之節點的電壓位準,與半導體開關元件的開啟狀態列表。在此假設第二電壓端點V2之電壓位準為0伏特,而比較單元323a為一比較器,其正向輸入端點連接至控制節點Scont,負向輸入端點則連接至參考偏壓Vdc。在實際應用時,比較器的正向輸入端點與負向輸入端點的連接方式並不以此為限。 Please refer to the fifth figure (b), which uses the selection circuit design of the connection of the fifth figure (a), in response to the relationship between the voltage level of the control node and the reference bias voltage, and the node inside the control unit. Voltage level, and a list of open states of the semiconductor switching elements. It is assumed here that the voltage level of the second voltage terminal V2 is 0 volts, and the comparison unit 323a is a comparator whose forward input terminal is connected to the control node S cont and the negative input terminal is connected to the reference bias voltage. V dc . In practical applications, the way the comparator's forward input endpoint is connected to the negative input endpoint is not limited to this.

當控制節點Scont的電壓位準Vcont低於參考偏壓Vdc時(即,Vcont<Vdc)時,比較單元323a所輸出的電壓比較信號Vcmp之電壓位準為0,其邏輯狀態為0,而其反向後的邏輯狀態(即其補數)為1。 When the voltage level V cont of the control node S cont is lower than the reference bias voltage V dc (ie, V cont <V dc ), the voltage level of the voltage comparison signal V cmp output by the comparison unit 323a is 0, and its logic The state is 0, and its reversed logic state (ie its complement) is 1.

對第一控制區塊3231來說,由於第一半導體開關元件3201的閘極,電連接至反向後的電壓比較信號Vcmp’,因此呈現開啟狀態;由於第二半導體開關元件3202的閘極連接至電壓比較信號Vcmp,因此呈現關閉狀態。也就是說,第二相位比較信號Vdown的電壓位準,將透過第一半導體開關元件3201的導通,而使第一節點S1的電壓位準與第二相位比較信號Vdown的電壓位準相當。 For the first control block 3231, since the gate of the first semiconductor switching element 3201 is electrically connected to the inverted voltage comparison signal Vcmp ', it is in an on state; due to the gate connection of the second semiconductor switching element 3202 The voltage comparison signal V cmp is thus presented in a closed state. That is, the voltage level of the second phase comparison signal Vdown will be conducted through the first semiconductor switching element 3201, and the voltage level of the first node S1 is equivalent to the voltage level of the second phase comparison signal Vdown . .

對第二控制區塊3232來說,由於第三半導體開關元件3203的閘極連接至電壓比較信號Vcmp,因此呈現關閉狀態;由於第四半導體開關元件3204的閘極連接至電壓比較信號Vcmp的補數,因此呈現開啟狀態。也就是說,第二相位比較信號Vdown的電壓位準,將透過第四半導體開關元件3204的導通,而使第二節點S2的電壓位準為第二電壓端點V2的電壓,即,0伏特。 For the second control block 3232, since the gate of the third semiconductor switching element 3203 is connected to the voltage comparison signal Vcmp , it is in a closed state; since the gate of the fourth semiconductor switching element 3204 is connected to the voltage comparison signal Vcmp The complement is therefore rendered open. That is, the voltage level of the second phase comparison signal Vdown will be transmitted through the fourth semiconductor switching element 3204, and the voltage level of the second node S2 is the voltage of the second voltage terminal V2, that is, 0. volt.

綜上所述,當控制節點Scont的電壓位準低於參考偏壓Vdc時,第一節點S1的電壓位準相當於第二相位比較信號Vdown、第二節點S2的電壓位準為0伏特,因此與第一節點S1電連接之第一子開關單元321a便因此而開啟、與第二節點S2電連接之第二子開關單元322a便因此而關閉。這也代表了在此種狀態下,第二電流源組32僅提供第一子切換電流INO而不提供第二子切換電流INNIn summary, when the voltage level of the control node S cont is lower than the reference bias voltage V dc , the voltage level of the first node S1 is equivalent to the second phase comparison signal V down , and the voltage level of the second node S2 is 0 volts, so that the first sub-switch unit 321a electrically connected to the first node S1 is thus turned on, and the second sub-switch unit 322a electrically connected to the second node S2 is thus turned off. This also means that in this state, the second current source group 32 provides only the first sub-switching current I NO and does not provide the second sub-switching current I NN .

當控制節點Scont的電壓位準高於參考偏壓Vdc時(即,Vcont>Vdc)時,比較單元所輸出的電壓比較信號Vcmp之電壓位準為Vdd,其邏輯狀態為1,而經反向後的電壓比較信號Vcmp’之邏輯狀態為0。 When the voltage level of the control node S cont is higher than the reference bias voltage V dc (ie, V cont >V dc ), the voltage level of the voltage comparison signal V cmp output by the comparison unit is V dd , and the logic state thereof is 1, and the logic state of the reverse voltage comparison signal V cmp ' is 0.

對第一控制區塊3231來說,由於第一半導體開關元件3201的閘極連接至邏輯狀態為0的反向電壓比較信號Vcmp’,因此呈現關閉狀態;由於第二半導體開關元件3202的閘極連接至邏輯狀態為1的電壓比較信號Vcmp,因此呈現開啟狀態。也就是說,第二電壓端點V2的電壓位準(VGND)將透過第二半導體開關元件3202的導通而使第一節點S1的電壓位準為0伏特。 For the first control block 3231, since the gate of the first semiconductor switching element 3201 is connected to the reverse voltage comparison signal V cmp ' with a logic state of 0, a closed state is exhibited; due to the gate of the second semiconductor switching element 3202 The pole is connected to a voltage comparison signal V cmp with a logic state of 1, thus exhibiting an on state. That is, the voltage level (V GND ) of the second voltage terminal V2 will pass through the conduction of the second semiconductor switching element 3202 such that the voltage level of the first node S1 is 0 volts.

對第二控制區塊3232來說,由於第三半導體開關元件3203的閘極,連接至邏輯狀態為1的電壓比較信號Vcmp,因此呈現開啟狀態;由於第四半導體開關元件3204的閘極,連接至邏輯狀態為0的反向後的電壓比較信號Vcmp’,因此呈現關閉狀態。也就是說,第二相位比較信號Vdown的電壓位準,將透過第三半導體開關元件3203的導通,而使第二節點S2的電壓位準,相當於第二相位比較信號Vdown的電壓位準。 For the second control block 3232, since the gate of the third semiconductor switching element 3203 is connected to the voltage comparison signal Vcmp having a logic state of 1, it is in an on state; due to the gate of the fourth semiconductor switching element 3204, Connected to the reversed voltage comparison signal V cmp ' with a logic state of 0, thus presenting a closed state. That is, the voltage level of the second phase comparison signal Vdown will be transmitted through the third semiconductor switching element 3203, and the voltage level of the second node S2 is equivalent to the voltage level of the second phase comparison signal Vdown . quasi.

綜上所述,當控制節點Scont的電壓位準Vcont高於參考偏 壓Vdc時,第一節點S1的電壓位準為0伏特、第二節點的電壓位準為Vdown,因此與第一節點S1電連接之第一子開關單元便因此而關閉、與第二節點S2電連接之第二子開關單元便因此而開啟。這也代表了在此種狀態下,第二電流源組32僅提供第二子切換電流INN,而不提供第一子切換電流INOIn summary, when the voltage level V cont of the control node S cont is higher than the reference bias voltage V dc , the voltage level of the first node S1 is 0 volts, and the voltage level of the second node is V down , thus The first sub-switch unit electrically connected to the first node S1 is thus turned off, and the second sub-switch unit electrically connected to the second node S2 is thus turned on. This also means that in this state, the second current source group 32 provides only the second sub-switching current I NN without providing the first sub-switching current I NO .

請參見第六圖,其係根據本發明之構想所採用的較佳實施例中,實現第二子切換電流產生電路之示意圖。在此圖式中,第二子切換電流產生電路322包含由四個半導體開關元件3205~3208所組成的電流鏡,透過第二子開關單元322a將反射的參考電流導通至控制節點ScontPlease refer to a sixth diagram, which is a schematic diagram of a second sub-switching current generating circuit in accordance with a preferred embodiment employed in accordance with the teachings of the present invention. In this figure, the second sub-switching current generating circuit 322 includes a current mirror composed of four semiconductor switching elements 3205 to 3208, and the reflected reference current is conducted to the control node S cont through the second sub-switching unit 322a.

透過負回授的放大器3221,控制節點Scont的電壓位準Vcont將被傳導至第五半導體開關元件3205的閘極,並將導通的電流,透過電流鏡反射作為第二子切換電流INN使用。 Through the negative feedback amplifier 3221, the voltage level V cont of the control node S cont will be conducted to the gate of the fifth semiconductor switching element 3205, and the conduction current will be reflected by the current mirror as the second sub-switching current I NN use.

以下利用第七圖(a)(b)分別說明控制節點Scont的電壓位準Vcont小於參考偏壓Vdc時,以及控制節點Scont的電壓位準Vcont大於參考偏壓Vdc時,在第二電流源組32內的半導體開關元件之開啟、關閉狀態,以及第二電流源組32內部節點電壓變化之情形。 Hereinafter, when the voltage level V cont of the control node S cont is smaller than the reference bias voltage V dc and the voltage level V cont of the control node S cont is greater than the reference bias voltage V dc , respectively, using the seventh diagram (a) and (b), The on and off states of the semiconductor switching elements in the second current source group 32, and the changes in the internal node voltages of the second current source group 32.

由於第二電流源組32內的半導體開關元件之狀態,與節點之對應變化已於第五圖(a)(b)說明,此處僅簡要說明本發明如何使第二電流源組32在不同狀態下,在控制節點Scont輸出不同的電流。 Due to the state of the semiconductor switching elements in the second current source group 32, the corresponding changes with the nodes have been described in the fifth diagram (a) and (b), and only the present invention will be briefly described herein how the second current source group 32 is different. In the state, different currents are output at the control node S cont .

請參見第七圖(a),其係本發明所舉之較佳實施例在電荷幫浦上的控制節點,在其電壓位準小於參考偏壓時,選擇由第一子切換電流產生電路輸出第一子切換電流之示意圖。 Referring to FIG. 7( a ), the control node on the charge pump according to the preferred embodiment of the present invention selects the output of the first sub-switching current generating circuit when the voltage level thereof is less than the reference bias voltage. A schematic diagram of a sub-switching current.

當控制節點Scont的電壓位準Vcont小於參考偏壓Vdc時, 電壓比較信號Vcmp輸出為0伏特,與其電連接的第二半導體開關元件3202、第三半導體開關元件3203均因此而關閉。另一方面,經過反向後的電壓比較信號Vcmp’之電壓位準為Vdd,與其電連接的第一半導體開關元件3201、第四半導體開關元件3204均因此而開啟。 When the voltage level V cont of the control node S cont is less than the reference bias voltage V dc , the voltage comparison signal V cmp is outputted as 0 volts, and the second semiconductor switching element 3202 and the third semiconductor switching element 3203 electrically connected thereto are thus turned off. . On the other hand, the voltage level of the inverted voltage comparison signal V cmp ' is V dd , and the first semiconductor switching element 3201 and the fourth semiconductor switching element 3204 electrically connected thereto are thus turned on.

承上所述,由於第一半導體開關元件3201與第四半導體開關元件3204均被開啟並導通,前者將第二相位比較信號Vdown導通至第一子切換電流產生電路321,後者將VGND導通至第二子切換電流產生電路322。也就是說,第一子電流源321b所產生的第一子切換電流INO,將被輸出至控制節點Scont上,而第二子切換電流INN,並不會輸出至控制節點Scont。也因此,在第七圖(a)中,第二子切換電流產生電路322係以虛線表示,代表在此種狀態下,第二子切換電流產生電路322並未提供電流至控制節點ScontAs described above, since both the first semiconductor switching element 3201 and the fourth semiconductor switching element 3204 are turned on and turned on, the former turns on the second phase comparison signal V down to the first sub-switching current generating circuit 321, which turns on V GND . The second sub-switching current generating circuit 322 is connected. That is, the first sub-switching current I NO generated by the first sub-current source 321b will be output to the control node S cont , and the second sub-switching current I NN will not be output to the control node S cont . Therefore, in the seventh diagram (a), the second sub-switching current generating circuit 322 is indicated by a broken line, indicating that in this state, the second sub-switching current generating circuit 322 does not supply current to the control node S cont .

請參見第七圖(b),其係本發明所舉之較佳實施例在電荷幫浦上的控制節點,在其電壓位準大於參考偏壓時,選擇由第二子切換電流產生電路輸出第二子切換電流之示意圖。 Referring to FIG. 7(b), the control node of the preferred embodiment of the present invention is configured to control the output of the second sub-switching current generating circuit when the voltage level thereof is greater than the reference bias voltage. Schematic diagram of the two sub-switching currents.

當控制節點Scont的電壓位準Vcont大於參考偏壓Vdc時,電壓比較信號輸出為Vdd,與其電連接的第二半導體開關元件3202、第三半導體開關元件3203均開啟。另一方面,由於反向後的電壓比較信號Vcmp’為0伏特,與其電連接的第一半導體開關元件3201、第四半導體開關元件3204之閘極均被關閉而不導通。 When the voltage level V cont of the control node S cont is greater than the reference bias voltage V dc , the voltage comparison signal is outputted as V dd , and the second semiconductor switching element 3202 and the third semiconductor switching element 3203 electrically connected thereto are both turned on. On the other hand, since the reverse voltage comparison signal V cmp ' is 0 volt, the gates of the first semiconductor switching element 3201 and the fourth semiconductor switching element 3204 electrically connected thereto are both turned off and not turned on.

承上所述,由於第二半導體開關元件3202與第三半導體開關元件3203均被開啟,前者將VGND導通至第一子切換電流產生電路321,後者則將第二相位比較信號Vdown導通至第二 子切換電流產生電路322。因此,第一子電流源321b所產生的第一子切換電流INO,並不會被輸出至控制節點Scont上,而第二子切換電流INN則被輸出至控制節點Scont。也因此,在第七圖(b)中,第一子切換電流產生電路321係以虛線表示,代表在此種狀態下,第一子切換電流產生電路321並未提供電流。 As described above, since both the second semiconductor switching element 3202 and the third semiconductor switching element 3203 are turned on, the former turns on V GND to the first sub-switching current generating circuit 321, and the latter turns on the second phase comparison signal V down to The second sub-switches the current generating circuit 322. Therefore, the first sub-switching current I NO generated by the first sub-current source 321b is not outputted to the control node S cont , and the second sub-switching current I NN is output to the control node S cont . Therefore, in the seventh diagram (b), the first sub-switching current generating circuit 321 is indicated by a broken line, indicating that the first sub-switching current generating circuit 321 does not supply current in this state.

由於PMOS與NMOS先天特性的不同,導致在電荷幫浦輸出之淨充放電電流不匹配的現象,而本發明所提出電荷幫浦設計,可以動態的依據控制節點Scont之電壓位準Vcont,選擇性的調整放電電流的來源,而能改善當控制節點Scont之電壓位準Vcont偏高時,所導致之PMOS導通電流變小的情形。 Depending PMOS innate characteristics the NMOS, resulting in the phenomenon of the charge pump output in net charge and discharge current does not match, the present invention proposes a charge pump design, the voltage level V cont S cont of dynamically according to the control node, Selectively adjusting the source of the discharge current can improve the PMOS on-current caused by the voltage level V cont of the control node S cont being high.

換言之,當控制節點Scont的電壓位準Vcont變大時,實際在第二電流源組32所提供的放電電流的來源也對應改變,由原本自第一子切換電流產生電路321輸出的第一子切換電流INO,改變成為自第二子切換電流產生電路322輸出的第二子切換電流INN,因此可以改善在輸出電壓過高時,PMOS與NMOS的電流無法匹配的情形。 In other words, when the voltage level V cont of the control node S cont becomes large, the source of the discharge current actually supplied by the second current source group 32 also changes correspondingly, which is output from the first sub-switching current generating circuit 321 a sub-switching current I NO, be changed from the second sub-case of the second sub-current generating circuit 322 switches the output of the switching current I NN, can be improved when the output voltage is too high, the current of the PMOS and the NMOS not match.

請參見第八圖,其係本發明所提出之較佳實施例中,實現第二子切換電流產生電路後,第一子切換電流與第二子切換電流之電流值與輸出電壓之關係圖。 Please refer to the eighth figure, which is a diagram showing the relationship between the current value of the first sub-switching current and the second sub-switching current and the output voltage after the second sub-switching current generating circuit is implemented in the preferred embodiment of the present invention.

其中第八圖的第一部份說明了第一切換電流IP、第一子切換電流INO與第二子切換電流INN之電流值對應於控制節點Scont之電壓位準變化關係。 The first part of the eighth figure illustrates that the current values of the first switching current I P , the first sub-switching current I NO and the second sub-switching current I NN correspond to the voltage level change relationship of the control node S cont .

就第一切換電流IP而言,與第三圖(b)相類似,亦即,當控制節點Scont的電壓位準大於參考偏壓Vdc時,第一切換電流IP的電流值將發生反轉向下的情形。 As for the first switching current I P , similar to the third figure ( b ), that is, when the voltage level of the control node S cont is greater than the reference bias voltage V dc , the current value of the first switching current I P A reversed down situation occurs.

第一子切換電流產生電路321所提供的第一子切換電流INO則與第三圖(b)的第二切換電流IN類似,當控制節點Scont的電壓位準Vcont大於參考偏壓Vdc時,第一子切換電流INO的電流值仍將持續遞增。 The first sub-switching current I NO provided by the first sub-switching current generating circuit 321 is similar to the second switching current I N of the third graph (b), when the voltage level V cont of the control node S cont is greater than the reference bias voltage At V dc , the current value of the first sub-switching current I NO will continue to increase.

第二子切換電流產生電路322所提供的第二子切換電流INN則是在控制節點Scont的電壓位準逐漸變大的過程中,呈現逐步增加後、持續下滑的特性曲線。簡單來說,本發明是利用第二子切換電流INN,來補償第一子切換電流INO的電流值,藉以習用技術在控制節點Scont的電壓位準大於參考偏壓Vdc時,PMOS與NMOS之不匹配之影響。 The second sub-switching current I NN provided by the second sub-switching current generating circuit 322 is a characteristic curve which is gradually increased and continues to slide in a process in which the voltage level of the control node S cont gradually becomes larger. Briefly, the present invention utilizes the second sub-switching current I NN to compensate the current value of the first sub-switching current I NO , whereby the PMOS is used when the voltage level of the control node S cont is greater than the reference bias voltage V dc . The effect of mismatch with NMOS.

另一方面,第八圖的第二部份則說明了將第一切換電流IP、第一子切換電流INO與第二子切換電流INN之電流加總後之淨電流,對應於控制節點Scont之電壓位準Vcont變化關係。由於在NMOS端,提供了具有不同特性的第一子切換電流INO與第二子切換電流INN,兩者分別在控制節點Scont的電壓小於參考偏壓Vdc、大於參考偏壓Vdc時提供輸出電流。 On the other hand, the second part of the eighth figure illustrates the net current after summing the currents of the first switching current I P , the first sub-switching current I NO and the second sub-switching current I NN , corresponding to the control The voltage level of the node S cont is V cont . Since the first sub-switching current I NO and the second sub-switching current I NN having different characteristics are provided at the NMOS terminal, the voltages at the control node S cont are respectively smaller than the reference bias voltage V dc and greater than the reference bias voltage V dc . Provides output current.

易言之,當控制節點Scont的電壓位準小於參考偏壓Vdc時,係由第一子切換電流產生電路321搭配第一電流組31使用,因此由電荷幫浦30所產生的淨充放電電流ICP,便相當於第一切換電流IP,與第一子切換電流INO的加總,即,ICP=IP+INOIn other words, when the voltage level of the control node S cont is less than the reference bias voltage V dc , the first sub-switching current generating circuit 321 is used in conjunction with the first current group 31 , so the net charge generated by the charge pump 30 is used. The discharge current I CP corresponds to the sum of the first switching current I P and the first sub-switching current I NO , that is, I CP =I P +I NO .

當控制節點Scont的電壓位準大於參考偏壓Vdc時,係由第二子切換電流產生電路322搭配第一電流組31使用,因此由電荷幫浦30所產生的淨充放電電流ICP,便相當於第一切換電流IP與第二子切換電流INN的加總,即,ICP=IP+INNWhen the voltage level of the control node S cont is greater than the reference bias voltage V dc , the second sub-switching current generating circuit 322 is used in conjunction with the first current group 31 , so the net charge and discharge current I CP generated by the charge pump 30 That is equivalent to the sum of the first switching current I P and the second sub-switching current I NN , that is, I CP =I P +I NN .

當鎖相迴路所輸出的輸出信號的頻率越高時,電荷幫浦在 控制節點Scont上輸出的充放電電流值也越高,此時電壓控制振盪器的控制電壓就越高。相當於利用第二相位比較信號Vdown的電壓位準之大小變化來回授、改變輸入至電壓控制振盪器的偏壓。 When the frequency of the output signal outputted by the phase-locked loop is higher, the charge and discharge current value of the charge pump outputted at the control node S cont is also higher, and the control voltage of the voltage controlled oscillator is higher. Corresponding to the magnitude change of the voltage level of the second phase comparison signal Vdown , the bias voltage input to the voltage controlled oscillator is changed.

構想是把NMOS的第二切換電流IN變小,也就是在控制節點Scont的電壓Vcont大於參考偏壓Vdc的時候,電流走的路徑是另外一個,將兩者結合在一起時,可以讓鎖相迴路工作在一個頻寬比較大的範圍。 The idea is to reduce the second switching current I N of the NMOS, that is, when the voltage V cont of the control node S cont is greater than the reference bias voltage V dc , the path of the current travel is another, when the two are combined, The phase-locked loop can be operated in a relatively wide range of frequencies.

理想中,鎖相迴路的輸出電壓可以被鎖定在一個頻率,但是在鎖定(tacking)的過程中,控制節點Scont的電壓位準Vcont仍可能發生改變,一旦控制節點Scont的電壓位準Vcont超過參考偏壓Vdc時,則鎖相迴路的電路行為可能變得發散。 Ideally, the output voltage of the phase locked loop can be locked at one frequency, but the lock (tacking) of the process, the control node S cont voltage level V cont still may change, once the control node of the voltage level S cont When V cont exceeds the reference bias voltage V dc , the circuit behavior of the phase locked loop may become divergent.

換言之,本發明提供了在控制節點Scont之電壓位準變異較大的情況下,維持淨充放電電流的設計,藉此降低PMOS與NMOS之不匹配,所可能導致對輸出信號Vout與除頻係數M之連帶影響。 In other words, the present invention provides a design for maintaining a net charge and discharge current in the case where the voltage level variation of the control node S cont is large, thereby reducing the mismatch between the PMOS and the NMOS, possibly resulting in an output signal V out and division. The influence of the frequency coefficient M.

依據本發明之構想,電荷幫浦上半部之PMOS所形成的電流與電荷幫浦下半部之NMOS所導通的電流之電流值的大小能夠趨於一致,讓淨充放電電流ICP即使在控制節點Scont的電壓位準變大時,仍趨近於0,也就是讓淨充放電電流ICP的運作範圍更加彈性。一旦淨充放電電流ICP的運作範圍增加,除了改善鎖相迴路在控制節點Scont的電壓位準變大時因為無法鎖定而發散得缺失外,也使除頻係數M的調整不至於影響頻寬K,而使鎖相迴路的運作更為理想。 According to the concept of the present invention, the current formed by the PMOS of the upper half of the charge pump and the current of the current of the NMOS of the lower half of the charge pump can be made uniform, so that the net charge and discharge current I CP is even under control. When the voltage level of the node S cont becomes large, it still approaches 0, that is, the operating range of the net charge and discharge current I CP is more flexible. Once the operating range of the net charge and discharge current I CP increases, in addition to improving the phase-locked loop when the voltage level of the control node S cont becomes large, the divergence is lost because it cannot be locked, and the adjustment of the frequency-dividing coefficient M is not affected. The width K makes the phase-locked loop work better.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內, 當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the scope of the present invention. The scope of protection of the present invention is defined by the scope of the appended claims.

本案圖式中所包含之各元件列示如下: The components included in the diagram of this case are listed as follows:

101‧‧‧相位偵測器 101‧‧‧ phase detector

103、30‧‧‧電荷幫浦 103, 30‧‧‧ Charge pump

105‧‧‧低通濾波器 105‧‧‧Low-pass filter

107‧‧‧電壓控制振盪器 107‧‧‧Voltage Controlled Oscillator

109‧‧‧除頻器 109‧‧‧Delephone

10‧‧‧鎖相迴路 10‧‧‧ phase-locked loop

103a、31‧‧‧第一電流源組 103a, 31‧‧‧First current source group

1031‧‧‧第一電流源 1031‧‧‧First current source

1033‧‧‧第一切換開關 1033‧‧‧First switch

103b、32‧‧‧第二電流源組 103b, 32‧‧‧second current source group

1032‧‧‧第二電流源 1032‧‧‧second current source

1034‧‧‧第二切換開關 1034‧‧‧Second switch

321‧‧‧第一子切換電流產生電路 321‧‧‧ first sub-switching current generating circuit

322‧‧‧第二子切換電流產生電路 322‧‧‧Second sub-switching current generating circuit

323‧‧‧選擇電路 323‧‧‧Selection circuit

321a‧‧‧第一子開關單元 321a‧‧‧First sub-switch unit

321b‧‧‧第一子電流源 321b‧‧‧ first sub current source

322a‧‧‧第二子開關單元 322a‧‧‧Second sub-switch unit

322b‧‧‧第二子電流源 322b‧‧‧Second sub-current source

323a‧‧‧比較單元 323a‧‧‧Comparative unit

323b‧‧‧控制單元 323b‧‧‧Control unit

323c‧‧‧反向器 323c‧‧‧ reverser

3231‧‧‧第一控制區塊 3231‧‧‧First Control Block

3232‧‧‧第二控制區塊 3232‧‧‧Second control block

3201‧‧‧第一半導體開關元件 3201‧‧‧First semiconductor switching element

3202‧‧‧第二半導體開關元件 3202‧‧‧Second semiconductor switching element

3203‧‧‧第三半導體開關元件 3203‧‧‧ Third semiconductor switching element

3204‧‧‧第四半導體開關元件 3204‧‧‧fourth semiconductor switching element

3221‧‧‧放大器 3221‧‧‧Amplifier

3205‧‧‧第五半導體開關元件 3205‧‧‧ Fifth semiconductor switching element

3206‧‧‧第六半導體開關元件 3206‧‧‧ sixth semiconductor switching element

3207‧‧‧第七半導體開關元件 3207‧‧‧ seventh semiconductor switching element

3208‧‧‧第八半導體開關元件 3208‧‧‧ eighth semiconductor switching element

本案得藉由下列圖式及說明,俾得更深入之了解:第一圖,其為習用技術所提供之鎖相迴路之示意圖。 The case can be further understood by the following figures and descriptions: The first figure is a schematic diagram of the phase-locked loop provided by the conventional technology.

第二圖(a),其係由第一電流源組與第二電流源組所組成的電荷幫浦之示意圖。 The second figure (a) is a schematic diagram of a charge pump composed of a first current source group and a second current source group.

第二圖(b),其係說明相位偵測器輸出的判斷信號,相對應於電荷幫浦在其控制節點所輸出的電流之時脈圖。 The second figure (b) shows the judgment signal output by the phase detector, corresponding to the clock map of the current output by the charge pump at its control node.

第三圖(a),其係NMOS之導通電流對應於源極、汲極之跨壓變化的特性曲線。 The third graph (a) is a characteristic curve in which the on-current of the NMOS corresponds to the change in the voltage across the source and the drain.

第三圖(b),其係以電荷幫浦內的PMOS與NMOS所提供之切換電流相對於控制信號之電壓位準變化之關係圖。 The third graph (b) is a graph showing the relationship between the switching current supplied by the PMOS and the NMOS in the charge pump with respect to the voltage level change of the control signal.

第四圖(a),其係本發明所提出之電荷幫浦的較佳實施例之功能方塊示意圖。 Figure 4 (a) is a functional block diagram of a preferred embodiment of the charge pump of the present invention.

第四圖(b),其係本發明所提出之較佳實施例中,透過比較器實現電荷幫浦之第二電流源組之示意圖。 Figure 4 (b) is a schematic diagram of a second current source set of charge pumps implemented by a comparator in a preferred embodiment of the present invention.

第五圖(a),其係根據本發明構想而實現選擇電路之示意圖。 Figure 5 (a) is a schematic diagram of a selection circuit implemented in accordance with the teachings of the present invention.

第五圖(b),其係採用第五圖(a)之連線的選擇電路設計,因應控制節點之電壓位準與參考偏壓之間的大小關係,與控制單元內部之節點的電壓位準與半導體開關元件的開啟狀態列表。 Figure 5 (b), which uses the selection circuit design of the connection of the fifth diagram (a), in response to the magnitude relationship between the voltage level of the control node and the reference bias voltage, and the voltage level of the node inside the control unit A list of open states of the semiconductor switching elements.

第六圖,其係根據本發明之構想所採用的較佳實施例中,實現第二子切換電流產生電路之示意圖。 Figure 6 is a schematic illustration of a second sub-switching current generating circuit in accordance with a preferred embodiment employed in accordance with the teachings of the present invention.

第七圖(a),其係本發明所舉之較佳實施例在電荷幫浦上的控制 節點,在其電壓位準小於參考偏壓時,選擇由第一子切換電流產生電路輸出第一子切換電流之示意圖。 Figure 7 (a), which is a control of the preferred embodiment of the present invention on a charge pump The node selects a schematic diagram of outputting the first sub-switching current by the first sub-switching current generating circuit when the voltage level thereof is less than the reference bias voltage.

第七圖(b),其係本發明所舉之較佳實施例在電荷幫浦上的控制節點,在其電壓位準大於參考偏壓時,選擇由第二子切換電流產生電路輸出第二子切換電流之示意圖。 Figure 7 (b) is a control node of the preferred embodiment of the present invention. When the voltage level is greater than the reference bias, the second sub-switching current generating circuit outputs the second sub-subject. Schematic diagram of switching current.

第八圖,其係本發明所提出之較佳實施例中,實現第二子切換電流產生電路後,第一子切換電流與第二子切換電流之電流值與輸出電壓之關係圖。Figure 8 is a diagram showing the relationship between the current value of the first sub-switching current and the second sub-switching current and the output voltage after the second sub-switching current generating circuit is implemented in the preferred embodiment of the present invention.

32‧‧‧第二電流源組 32‧‧‧Second current source group

321‧‧‧第一子切換電流產生電路 321‧‧‧ first sub-switching current generating circuit

322‧‧‧第二子切換電流產生電路 322‧‧‧Second sub-switching current generating circuit

323‧‧‧選擇電路 323‧‧‧Selection circuit

321a‧‧‧第一子開關單元 321a‧‧‧First sub-switch unit

321b‧‧‧第一子電流源 321b‧‧‧ first sub current source

322a‧‧‧第二子開關單元 322a‧‧‧Second sub-switch unit

322b‧‧‧第二子電流源 322b‧‧‧Second sub-current source

323a‧‧‧比較單元 323a‧‧‧Comparative unit

323b‧‧‧控制單元323b‧‧‧Control unit

Claims (10)

一種電荷幫浦,根據一相位比較信號而於一控制節點輸出一電流,該電荷幫浦包含:一第一電流源組,設置於一第一電壓端點與該控制節點間,其係根據該相位比較信號而於該控制節點輸出一第一切換電流;以及一第二電流源組,設置於該控制節點與一第二電壓端點間,該第二電流源組包含:一第一子切換電流產生電路,電連接於該控制節點與該第二電壓端點,其係因應該相位比較信號而產生一第一子切換電流;一第二子切換電流產生電路,電連接於該控制節點與該第二電壓端點,其係因應該相位比較信號而產生一第二子切換電流;以及一選擇電路,電連接於該第一子切換電流產生電路與該第二子切換電流產生電路,其係根據該控制節點之電壓位準而選擇於該控制節點輸出該第一子切換電流或該第二子切換電流。A charge pump outputs a current at a control node according to a phase comparison signal, the charge pump comprising: a first current source group disposed between a first voltage end point and the control node, a phase comparison signal outputs a first switching current at the control node; and a second current source group disposed between the control node and a second voltage terminal group, the second current source group comprising: a first sub-switch a current generating circuit electrically connected to the control node and the second voltage end point, wherein the first sub-switching current is generated due to the phase comparison signal; and a second sub-switching current generating circuit electrically connected to the control node The second voltage end point generates a second sub-switching current due to the phase comparison signal; and a selection circuit electrically connected to the first sub-switching current generating circuit and the second sub-switching current generating circuit, And selecting, according to a voltage level of the control node, the first sub-switching current or the second sub-switching current to be output by the control node. 如申請專利範圍第1項所述之電荷幫浦,其中該第一電流源組包含:一第一開關單元,電連接於該控制節點,其係根據該相位比較信號而開啟;以及一第一電流源,電連接於該第一電壓端點及該第一開關單元,其係因應該第一開關單元之開啟而提供該第一切換電流於該控制節點上。The charge pump according to claim 1, wherein the first current source group comprises: a first switch unit electrically connected to the control node, which is turned on according to the phase comparison signal; and a first The current source is electrically connected to the first voltage end point and the first switching unit, and the first switching current is provided on the control node due to the opening of the first switching unit. 如申請專利範圍第1項所述之電荷幫浦,其中該第一子切換電流產生電路包含:一第一子開關單元,電連接於該控制節點,其係於該控制節點之電壓位準小於一參考偏壓時開啟;以及一第一子電流源,電連接於該第二電壓端點與該第一子開關單元間,其係因應該第一子開關單元之開啟而提供該第一子切換電流於該控制節點上。The charge pump according to claim 1, wherein the first sub-switching current generating circuit comprises: a first sub-switching unit electrically connected to the control node, wherein a voltage level of the control node is less than Turning on a reference bias voltage; and a first sub current source electrically connected between the second voltage terminal and the first sub-switch unit, the first sub-switch unit being provided to provide the first sub-switch unit Switching current to the control node. 如申請專利範圍第1項所述之電荷幫浦,其中該第二子切換電流產生電路包含:一第二子開關單元,電連接於該控制節點,其係於該控制節點之電壓位準大於一參考偏壓時開啟;以及一第二子電流源,電連接於該第二電壓端點與該第二子開關單元間,其係因應該第二子開關單元之開啟而提供該第二子切換電流於該控制節點上。The charge pump according to claim 1, wherein the second sub-switching current generating circuit comprises: a second sub-switching unit electrically connected to the control node, wherein a voltage level of the control node is greater than Turning on a reference bias voltage; and a second sub current source electrically connected between the second voltage terminal and the second sub-switch unit, the second sub-switch unit being provided to provide the second sub-switch unit Switching current to the control node. 如申請專利範圍第1項所述之電荷幫浦,其係因應該相位比較信號而由選擇由該第一電流源組或該第二電流源組輸出該電流於該控制節點上。The charge pump according to claim 1, wherein the current is output to the control node by the first current source group or the second current source group due to the phase comparison signal. 如申請專利範圍第1項所述之電荷幫浦,其中當該控制節點之電壓位準與該第二電壓端點之電壓壓差小於一參考偏壓時,該選擇電路啟動該第一子切換電流產生電路而於該控制節點輸出該第一子切換電流。The charge pump of claim 1, wherein the selection circuit initiates the first sub-switch when the voltage level of the control node and the voltage difference of the second voltage terminal are less than a reference bias voltage. A current generating circuit outputs the first sub-switching current at the control node. 如申請專利範圍第1項所述之電荷幫浦,其中當該控制節點之電壓位準與該第二電壓端點之電壓壓差大於一參考偏壓時,該選擇電路選擇輸出該第二子切換電流。The charge pump of claim 1, wherein the selection circuit selects and outputs the second sub-voltage when a voltage difference between the voltage level of the control node and the second voltage end point is greater than a reference bias voltage. Switch the current. 如申請專利範圍第1項所述之電荷幫浦,其中該選擇電路包含:一比較單元,電連接於該控制節點,其係根據該控制節點之電壓位準與一參考偏壓之比較而輸出一電壓比較信號;以及一控制單元,電連接於該比較單元、該第一子切換電流產生電路與該第二子切換電流產生電路,其係根據該電壓比較信號而選擇由該第一子切換電流產生電路或由該第二子切換電流產生電路提供該電流。The charge pump according to claim 1, wherein the selection circuit comprises: a comparison unit electrically connected to the control node, which is output according to a comparison between a voltage level of the control node and a reference bias voltage. a voltage comparison signal; and a control unit electrically connected to the comparison unit, the first sub-switching current generating circuit and the second sub-switching current generating circuit, and selecting to switch by the first sub-subject according to the voltage comparison signal The current is generated by the current generating circuit or by the second sub-switching current generating circuit. 如申請專利範圍第8項所述之電荷幫浦,其中該選擇電路更包含一反向器,電連接於該比較單元與該控制單元間,其係將經反向之該電壓比較信號輸出至該控制單元。The charge pump of claim 8, wherein the selection circuit further comprises an inverter electrically connected between the comparison unit and the control unit, and the reversed voltage comparison signal is output to The control unit. 如申請專利範圍第8項所述之電荷幫浦,其中該控制單元包含:一第一控制區塊,電連接於該比較單元與該第一子切換電流產生電路,其係根據該電壓比較信號而輸出一第一控制信號,藉此開啟在該第一子切換電流產生電路內之一第一子開關單元而輸出該第一子切換電流;以及一第二控制區塊,電連接於該比較單元與該第二子切換電流產生電路,其係根據該電壓比較信號而輸出一第二控制信號,藉此開啟在該第二子切換電流產生電路內之一第二子開關單元而輸出該第二子切換電流。The charge pump according to claim 8 , wherein the control unit comprises: a first control block electrically connected to the comparison unit and the first sub-switching current generating circuit, and comparing signals according to the voltage And outputting a first control signal, thereby turning on a first sub-switching unit in the first sub-switching current generating circuit to output the first sub-switching current; and a second control block electrically connected to the comparison And a second sub-switching current generating circuit that outputs a second control signal according to the voltage comparison signal, thereby turning on a second sub-switching unit in the second sub-switching current generating circuit to output the first The second sub-switches the current.
TW100126442A 2011-07-26 2011-07-26 Charge pump TWI517540B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100126442A TWI517540B (en) 2011-07-26 2011-07-26 Charge pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100126442A TWI517540B (en) 2011-07-26 2011-07-26 Charge pump

Publications (2)

Publication Number Publication Date
TW201306462A TW201306462A (en) 2013-02-01
TWI517540B true TWI517540B (en) 2016-01-11

Family

ID=48169361

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100126442A TWI517540B (en) 2011-07-26 2011-07-26 Charge pump

Country Status (1)

Country Link
TW (1) TWI517540B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113593492B (en) * 2021-07-15 2022-10-04 Tcl华星光电技术有限公司 Driving system and driving method of display panel

Also Published As

Publication number Publication date
TW201306462A (en) 2013-02-01

Similar Documents

Publication Publication Date Title
KR102509824B1 (en) Oscillator
US6111445A (en) Phase interpolator with noise immunity
JP5139536B2 (en) High speed switching low noise charge pump
US7659760B2 (en) PLL circuit and semiconductor integrated device
WO2017173857A1 (en) Power-on reset circuit
JP4512642B2 (en) PLL circuit
US20060017476A1 (en) Phase locked loop integrated circuits having fast locking characteristics and methods of operating same
US8786334B2 (en) Lock detection circuit and phase-locked loop circuit including the same
EP2713518B1 (en) Voltage translation circuit and a voltage-controlled oscillator including the latter
TWI302058B (en) Power management for low-jitter phase-locked loop in portable application
JP2001274682A (en) Phase locked loop circuit
TWI517540B (en) Charge pump
KR20120012386A (en) Lock detection circuit and phase-locked loop circuit including the same
US20060033554A1 (en) Charge pump circuit
JP2002330067A (en) Charge pump circuit and phase synchronizing loop circuit
US8427210B2 (en) Charge pump
JP2011130518A (en) Charge pump circuit
JP2009182584A (en) Pll circuit
JP2007295180A (en) Charge pump circuit, and pll circuit and dll circuit using same
CN102931831B (en) charge pump
TWI657664B (en) Two-steps switching method of circuit switch
US20080218278A1 (en) Means to control pll phase slew rate
JP4062495B2 (en) Charge pump circuit
CN117294303B (en) Frequency adjusting circuit of direct current voltage stabilizer
CN115051692B (en) Frequency signal generator with wide power supply range and frequency modulation method