TWI517302B - Method of fabricating semiconductor device - Google Patents
Method of fabricating semiconductor device Download PDFInfo
- Publication number
- TWI517302B TWI517302B TW101113741A TW101113741A TWI517302B TW I517302 B TWI517302 B TW I517302B TW 101113741 A TW101113741 A TW 101113741A TW 101113741 A TW101113741 A TW 101113741A TW I517302 B TWI517302 B TW I517302B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- gate
- semiconductor device
- fabricating
- gate stack
- Prior art date
Links
Landscapes
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Description
本發明係關於一種半導體裝置的製作方法,尤指一種具有三閘極的半導體裝置的製作方法。The present invention relates to a method of fabricating a semiconductor device, and more particularly to a method of fabricating a semiconductor device having three gates.
快閃記憶體(flash memory)係一種非揮發性(non-volatile)記憶體,其在缺乏外部電源供應時,亦能夠保存儲存在記憶體中的資訊內容。近幾年來,由於快閃記憶體具有可重複寫入以及可被電抹除等優點,因此已被廣泛地應用在行動電話(mobile phone)、數位相機(digital camera)、遊戲機(video player)、個人數位助理(personal digital assistant,PDA)等電子產品或正在發展中的系統單晶片(system on a chip,SOC)中。Flash memory is a non-volatile memory that retains the information stored in memory in the absence of an external power supply. In recent years, flash memory has been widely used in mobile phones, digital cameras, and video players because of its advantages of rewritable writing and electrical erasing. An electronic product such as a personal digital assistant (PDA) or a system on a chip (SOC) under development.
請參考第1圖,第1圖繪示了一習知快閃記憶單元的剖面示意圖。如第1圖所示,快閃記憶體單元10包含有一半導體基底12、設置於半導體基底12上的一閘極堆疊14,以及一選擇閘極(select gate)20設置於閘極堆疊14的側面,其中閘極堆疊14包括浮置閘極(floating gate)16、控制閘極(control gate)18。浮置閘極16、控制閘極18以及選擇閘極20一般係由多晶矽所構成,且各閘極之間可設置介電層22/24/26例如:氧化物層,以彼此電性絕緣。快閃記憶體單元10另包含有源極摻雜區28以及汲極摻雜區30設置於閘極堆疊14兩側的半導體基底12中,以及一通道區32定義於源極摻雜區28以及汲極摻雜區30之間的半導體基底12中。此外,浮置閘極16與半導體基底12之間的介電層22係一穿隧氧化(tunneling oxide)層,熱電子(hot electron)即經由此穿隧氧化層隧穿(tunneling)進出浮置閘極16,而達到快閃記憶體單元10資料存取的功能。Please refer to FIG. 1 , which illustrates a cross-sectional view of a conventional flash memory unit. As shown in FIG. 1, the flash memory cell 10 includes a semiconductor substrate 12, a gate stack 14 disposed on the semiconductor substrate 12, and a select gate 20 disposed on the side of the gate stack 14. The gate stack 14 includes a floating gate 16 and a control gate 18. The floating gate 16, the control gate 18 and the selection gate 20 are generally composed of polysilicon, and dielectric layers 22/24/26 such as oxide layers may be disposed between the gates to be electrically insulated from each other. The flash memory cell 10 further includes a source doping region 28 and a drain doping region 30 disposed in the semiconductor substrate 12 on both sides of the gate stack 14, and a channel region 32 defined in the source doping region 28 and The semiconductor substrate 12 is between the drain regions 30. In addition, the dielectric layer 22 between the floating gate 16 and the semiconductor substrate 12 is a tunneling oxide layer through which the hot electrons tunneling into and out of the floating layer. The gate 16 is configured to access the data access of the flash memory unit 10.
習知快閃記憶體單元10製程中,係先形成兩側壁子形狀的閘極層(圖未示)於閘極堆疊14的兩側,再藉由光罩覆蓋閘極堆疊14一側的閘極層,例如:汲極摻雜區30上的選擇閘極20,並搭配反應性離子蝕刻(reactive-ion-etching,RIE)製程,以移除閘極堆疊14另一側的閘極層,例如:源極摻雜區28上的閘極層(圖未示),完成快閃記憶體單元10的結構。然而,隨著快閃記憶體單元10的尺寸縮小,在進行反應性離子蝕刻製程後,常見閘極堆疊14之側壁,例如:源極摻雜區28上之閘極堆疊14的側壁S,仍殘留多晶矽,又被稱為殘緣物(stringer)R。此殘緣物R會影響快閃記憶體單元的電性表現、導致漏電流,進而降低快閃記憶體的資料維持能力。因此,如何避免殘緣物的形成以改善快閃記憶體單元的電性表現實為相關技術者所欲改進之課題。In the process of the conventional flash memory cell 10, a gate layer (not shown) having two sidewall shapes is formed on both sides of the gate stack 14, and the gate on the side of the gate stack 14 is covered by the photomask. a pole layer, such as a select gate 20 on the drain doped region 30, in conjunction with a reactive-ion-etching (RIE) process to remove the gate layer on the other side of the gate stack 14. For example, a gate layer (not shown) on the source doping region 28 completes the structure of the flash memory cell 10. However, as the size of the flash memory cell 10 shrinks, the sidewalls of the common gate stack 14 after the reactive ion etching process, such as the sidewall S of the gate stack 14 on the source doped region 28, remain The residual polycrystalline germanium is also known as the stringer R. This residue R affects the electrical performance of the flash memory cell, causing leakage current, thereby reducing the data retention capability of the flash memory. Therefore, how to avoid the formation of the residue to improve the electrical performance of the flash memory cell is a problem that the related art desires to improve.
本發明之目的之一在於提供一種製作具有三閘極的半導體裝置的方法,以避免殘緣物的形成。One of the objects of the present invention is to provide a method of fabricating a semiconductor device having three gates to avoid formation of a residue.
本發明之一較佳實施例是提供一種製作半導體裝置的方法,包括下列步驟。首先,形成二閘極堆疊層於一半導體基底上,接著,形成一材料層於半導體基底上,且材料層覆蓋二閘極堆疊層。然後,移除部分材料層,以於二閘極堆疊層之間形成一犧牲層並於二閘極堆疊層之相對外側分別形成一側壁子。隨後,形成一圖案化遮罩層覆蓋二閘極堆疊層與側壁子並暴露犧牲層,以及去除犧牲層。A preferred embodiment of the present invention provides a method of fabricating a semiconductor device comprising the following steps. First, a two-gate stack is formed on a semiconductor substrate, and then a material layer is formed on the semiconductor substrate, and the material layer covers the two gate stack layers. Then, a portion of the material layer is removed to form a sacrificial layer between the two gate stack layers and a sidewall is formed on opposite sides of the two gate stack layers. Subsequently, a patterned mask layer is formed to cover the two gate stack layers and the sidewalls and expose the sacrificial layer, and the sacrificial layer is removed.
本發明藉由僅在閘極堆疊層的一側形成側壁子,以及在二閘極堆疊層之間形成一犧牲層的半導體裝置之製作方法,使二閘極堆疊層之間不會形成多餘的側壁子,因此,不需再額外進行去除二閘極堆疊層之間的側壁子的微影蝕刻製程,也可避免因為光罩對位誤差,發生於閘極堆疊層之側壁上形成殘緣物的情形,有助於改善半導體裝置的電性表現。The present invention can form a semiconductor device by forming a sidewall spacer on only one side of the gate stack layer and forming a sacrificial layer between the gate stack layers, so that no redundant between the two gate stack layers is formed. The sidewalls, therefore, there is no need to additionally perform a lithography process for removing the sidewalls between the two gate stack layers, and it is also possible to avoid the formation of a residue on the sidewalls of the gate stack layer due to the mask alignment error. The situation helps to improve the electrical performance of the semiconductor device.
使熟習本發明所屬技術領域之一般技藝者能更進一步了解本發明,下文特列舉本發明之較佳實施例,並配合所附圖式,詳細說明本發明的構成內容及所欲達成之功效。The present invention will be further understood by those of ordinary skill in the art of the present invention. The preferred embodiments of the present invention are set forth in the accompanying drawings.
本發明提供一種製作半導體裝置的方法,請參考第2圖至第7圖。第2圖至第7圖繪示了本發明之一較佳實施例之製作半導體裝置的方法之示意圖。如第2圖所示,形成二閘極堆疊層102/104於一半導體基底100上,半導體基底100可包含例如一由矽、砷化鎵、矽覆絕緣(SOI)層、磊晶層、矽鍺層或其他半導體基底材料所構成的基底。各閘極堆疊層102/104分別包括至少一閘極層以及至少一介電層。在本實施例中,各閘極堆疊層102/104分別包括一第一介電層106、一第一閘極層108、一第二介電層110以及一第二閘極層112依序設置於半導體基底100上,且原則上二閘極堆疊層102/104具有相同的高度以及寬度,但不以此為限。 The present invention provides a method of fabricating a semiconductor device, please refer to Figures 2 through 7. 2 to 7 are schematic views showing a method of fabricating a semiconductor device in accordance with a preferred embodiment of the present invention. As shown in FIG. 2, a two gate stack layer 102/104 is formed on a semiconductor substrate 100. The semiconductor substrate 100 may comprise, for example, a germanium, gallium arsenide, germanium-on-insulator (SOI) layer, an epitaxial layer, germanium. A substrate composed of a layer of germanium or other semiconductor substrate material. Each of the gate stack layers 102/104 includes at least one gate layer and at least one dielectric layer. In this embodiment, each of the gate stack layers 102/104 includes a first dielectric layer 106, a first gate layer 108, a second dielectric layer 110, and a second gate layer 112. On the semiconductor substrate 100, and in principle, the two gate stack layers 102/104 have the same height and width, but are not limited thereto.
形成二閘極堆疊層102/104的方法可包括下列步驟:首先,於半導體基底100上形成一堆疊層(圖未示),堆疊層包含介電層、閘極層、介電層以及閘極層依序設置於半導體基底100上。介電層可由單層或複數層的絕緣材料所構成,包括矽氧化物、氮氧化物或介電常數大於4的高介電常數介電層。閘極層可由導電材料所構成,包括多晶矽、金屬矽化物或具有特定功函數的金屬材料。在本實施例中,介電層係由熱氧化製程或化學氣相沈積(chemical vapor deposition,CVD)或原子層沈積(atomic layer deposition,ALD)等沈積製程所形成的矽氧化物所組成,而閘極層係由低壓化學氣相沈積(low pressure chemicalvapor deposition,LPCVD)製程所形成的多晶矽所組成,但不以此為限。接著,在堆疊層上方形成一圖案化光阻層(圖未示),並進行一蝕刻製程步驟以去除部分堆疊層,形成二具有相同寬度的閘極堆疊層102/104。蝕刻製程步驟包括以圖案化光阻層作為遮罩,進行一非等向性乾蝕刻製程,移除圖案化光阻層下方的部分介電層以及部分閘極層,以形成第一介電層106、第一閘極層108、第二介電層110以及第二閘極層112依序設置於半導體基 底100上。在本實施例中,第一介電層106可作為穿隧氧化層,第一閘極層108可作為浮置閘極(floating gate),第二介電層110可作為閘間介電層,且第二閘極層112可作為控制閘極(control gate)。此外,在某些應用中,用來做為浮置閘極的第一閘極層108亦可包括氮矽化合物等材料以捕捉電荷(trap charges)。隨後,去除圖案化光阻層。 The method of forming the two gate stack layers 102/104 may include the following steps: First, a stacked layer (not shown) is formed on the semiconductor substrate 100, and the stacked layer includes a dielectric layer, a gate layer, a dielectric layer, and a gate. The layers are sequentially disposed on the semiconductor substrate 100. The dielectric layer may be composed of a single layer or a plurality of layers of insulating material, including tantalum oxide, oxynitride or a high-k dielectric layer having a dielectric constant greater than four. The gate layer may be composed of a conductive material, including polysilicon, metal halide or a metal material having a specific work function. In this embodiment, the dielectric layer is composed of a tantalum oxide formed by a thermal oxidation process or a chemical vapor deposition (CVD) or atomic layer deposition (ALD) deposition process. The gate layer is composed of polycrystalline germanium formed by a low pressure chemical vapor deposition (LPCVD) process, but is not limited thereto. Next, a patterned photoresist layer (not shown) is formed over the stacked layers, and an etching process step is performed to remove portions of the stacked layers to form two gate stack layers 102/104 having the same width. The etching process includes performing an anisotropic dry etching process by patterning the photoresist layer as a mask, removing a portion of the dielectric layer and a portion of the gate layer under the patterned photoresist layer to form a first dielectric layer. 106. The first gate layer 108, the second dielectric layer 110, and the second gate layer 112 are sequentially disposed on the semiconductor base. On the bottom 100. In this embodiment, the first dielectric layer 106 can serve as a tunneling oxide layer, the first gate layer 108 can serve as a floating gate, and the second dielectric layer 110 can serve as a gate dielectric layer. And the second gate layer 112 can serve as a control gate. In addition, in some applications, the first gate layer 108 used as a floating gate may also include materials such as nitrogen ruthenium compounds to trap charges. Subsequently, the patterned photoresist layer is removed.
如第3圖所示,順應性形成一介電層114於半導體基底100上,介電層114可由單層或複合層的絕緣材料所構成,包括矽氧化物、氮氧化物或介電常數大於4的高介電常數介電層。介電層114位於二閘極堆疊層102/104上方,以覆蓋且接觸二閘極堆疊層102/104之頂面以及二閘極堆疊層102/104之側面。形成介電層114的方法包括進行一熱氧化製程,將暴露的二閘極堆疊層102/104以及半導體基底的表面氧化,或是進行化學氣相沈積(CVD)製程,以形成由氧化矽等絕緣材料所構成的介電層114。然後,順應性形成一材料層(圖未示)於介電層114上,材料層係形成於半導體基底100上並覆蓋二閘極堆疊層102/104與介電層114。材料層可由導電材料所構成,包括多晶矽、金屬矽化物或具有特定功函數的金屬材料,用以於後續製程中,形成一第三閘極層,做為選擇閘極(select gate);或是由絕緣材料所構成,以期可應用在其他種類的半導體元件製程中。在本實施例中,材料層係藉由進行化學氣相沈積(CVD)製程所形成的多晶矽層。 As shown in FIG. 3, compliantly forms a dielectric layer 114 on the semiconductor substrate 100. The dielectric layer 114 may be composed of a single or composite insulating material, including tantalum oxide, oxynitride or a dielectric constant greater than 4 high dielectric constant dielectric layer. A dielectric layer 114 is over the two gate stack layers 102/104 to cover and contact the top surfaces of the two gate stack layers 102/104 and the sides of the two gate stack layers 102/104. The method of forming the dielectric layer 114 includes performing a thermal oxidation process, oxidizing the exposed two gate stack layers 102/104 and the surface of the semiconductor substrate, or performing a chemical vapor deposition (CVD) process to form a ruthenium oxide or the like. A dielectric layer 114 of insulating material. Then, a material layer (not shown) is formed on the dielectric layer 114, and a material layer is formed on the semiconductor substrate 100 and covers the two gate stack layers 102/104 and the dielectric layer 114. The material layer may be composed of a conductive material, including polycrystalline germanium, metal germanide or a metal material having a specific work function, for forming a third gate layer as a select gate in a subsequent process; It is made of an insulating material and can be applied to other types of semiconductor device processes. In this embodiment, the material layer is a polycrystalline germanium layer formed by a chemical vapor deposition (CVD) process.
接著,移除部分材料層,直至暴露部分介電層114,且被暴露的部分介電層114係位於各閘極堆疊層102/104之上方。移除部分材料層的方法包含進行一非等向性蝕刻製程例如:反應性離子蝕刻(reactive-ion-etching,RIE)製程,剩餘的材料層在二閘極堆疊層102/104之間形成一犧牲層116,且在二閘極堆疊層102/104之相對外側分別自對準形成側壁子118A/118B。閘極堆疊層102之外側的側壁子118A與閘極堆疊層104之外側的側壁子118B具有相同的高度H與底部寬度W,此外,側壁子118A與側壁子118B之弧面具有彼此相對的突出方向。 Next, a portion of the material layer is removed until a portion of the dielectric layer 114 is exposed, and the exposed portion of the dielectric layer 114 is overlying each of the gate stack layers 102/104. The method of removing a portion of the material layer includes performing an anisotropic etching process such as a reactive-ion-etching (RIE) process, and the remaining material layer forms a layer between the two gate stack layers 102/104. The sacrificial layer 116 is self-aligned to form sidewall spacers 118A/118B on opposite outer sides of the two gate stack layers 102/104, respectively. The side wall sub-118A on the outer side of the gate stack layer 102 and the side wall sub-118B on the outer side of the gate stack layer 104 have the same height H and bottom width W, and further, the curved faces of the side wall sub-118A and the side wall sub-118B have opposite projections from each other. direction.
本實施例所揭露的製作方式可應用在各種相對應之半導體裝置中,以快閃記憶單元為例,材料層之材料係為多晶矽,因此,各側壁子118A/118B可作為一第三閘極層,亦即選擇閘極(select gate),分別設置於各閘極堆疊層102/104的一側,而側壁子118A與閘極堆疊層102之間的介電層114以及側壁子118B與閘極堆疊層104之間的介電層114,則可作為閘間介電層,使側壁子118A/118B(第三閘極層)、第一閘極層108與第二閘極層112彼此之間電性絕緣。此外,適當地控制二閘極堆疊層102/104之一間距D與調整此移除部分材料層的非等向性蝕刻製程的參數,可使二閘極堆疊層102/104之相對內側的材料層在蝕刻後無法分別形成獨立的側壁子而連結成犧牲層116。在本實施例中,形成的犧牲層116係完全重疊二閘極堆疊層102/104之間的半導體基底100。此外,二閘極堆疊層102/104之間的一間距D將影響犧牲層116的頂面係一平坦面或具有一V形 凹口。 The fabrication method disclosed in this embodiment can be applied to various corresponding semiconductor devices. Taking a flash memory cell as an example, the material of the material layer is polysilicon. Therefore, each sidewall sub-118A/118B can serve as a third gate. The layers, that is, the select gates, are respectively disposed on one side of each of the gate stack layers 102/104, and the dielectric layer 114 and the sidewall spacers 118B and the gate between the sidewall sub-118A and the gate stack layer 102. The dielectric layer 114 between the pole stack layers 104 can serve as a gate dielectric layer such that the sidewall spacers 118A/118B (third gate layer), the first gate layer 108, and the second gate layer 112 are mutually Inter-electrical insulation. In addition, by appropriately controlling the pitch D of one of the two gate stack layers 102/104 and the parameter of the anisotropic etching process for adjusting the material layer of the removed portion, the material of the opposite inner side of the two gate stack layers 102/104 can be made. The layers cannot be separated into individual sacrificial layers 116 after etching. In the present embodiment, the sacrificial layer 116 is formed to completely overlap the semiconductor substrate 100 between the two gate stack layers 102/104. In addition, a spacing D between the two gate stack layers 102/104 will affect the top surface of the sacrificial layer 116 to a flat surface or have a V shape. Notch.
如第4圖所示,接著順應性形成一圖案化遮罩層120完全覆蓋閘極堆疊層102/104與側壁子118A/118B並暴露犧牲層116,且圖案化遮罩層120之上部為非平面。圖案化遮罩層120之材料係與犧牲層116之材料及介電層114之材料具有蝕刻選擇比,亦即此圖案化遮罩層120與犧牲層116及介電層114相對於一蝕刻劑具有不同的蝕刻速率。例如可直接形成一圖案化光阻層當作此圖案化遮罩層120,以覆蓋閘極堆疊層102/104與側壁子118A/118B並暴露犧牲層116。而在本發明之一較佳實施例中,係選用氮化矽當作圖案化遮罩層120之材料,以提供較佳的蝕刻選擇比以及與其他元件製程的高整合性,其中形成圖案化遮罩層120的方法可例示為下列步驟:順應性形成一氮化矽遮罩層(圖未示)於半導體基底100上,此遮罩層覆蓋半導體基底100、閘極堆疊層102/104以及側壁子118A/118B;然後,形成一圖案化光阻層(圖未示)於遮罩層上,並進行一蝕刻製程移除部分遮罩層,以形成一開口O於遮罩層中,且開口O用於暴露犧牲層116;最後,移除圖案化光阻層。值得注意的是,為了提供已形成的閘極堆疊層102/104與側壁子118A/118B較佳的保護效果,開口O之一寬度較佳係實質上小於二閘極堆疊層102/104之間的間距D,也就是說,圖案化遮罩層120較佳係部分覆蓋犧牲層116,且圖案化遮罩層120的開口O係暴露部分犧牲層116。 As shown in FIG. 4, a patterning mask layer 120 is then formed to completely cover the gate stack layer 102/104 and the sidewall spacers 118A/118B and expose the sacrificial layer 116, and the upper portion of the patterned mask layer 120 is non- flat. The material of the patterned mask layer 120 has an etching selectivity ratio with the material of the sacrificial layer 116 and the material of the dielectric layer 114, that is, the patterned mask layer 120 and the sacrificial layer 116 and the dielectric layer 114 are opposed to an etchant. Have different etch rates. For example, a patterned photoresist layer can be directly formed as the patterned mask layer 120 to cover the gate stack layer 102/104 and the sidewall spacers 118A/118B and expose the sacrificial layer 116. In a preferred embodiment of the present invention, tantalum nitride is selected as the material of the patterned mask layer 120 to provide a better etching selectivity and high integration with other component processes, wherein patterning is formed. The method of the mask layer 120 can be exemplified by the following steps: compliant formation of a tantalum nitride mask layer (not shown) on the semiconductor substrate 100, the mask layer covering the semiconductor substrate 100, the gate stack layer 102/104, and a sidewall spacer 118A/118B; then, a patterned photoresist layer (not shown) is formed on the mask layer, and an etching process is performed to remove a portion of the mask layer to form an opening O in the mask layer, and Opening O is used to expose sacrificial layer 116; finally, the patterned photoresist layer is removed. It should be noted that in order to provide a better protection effect of the formed gate stack layer 102/104 and sidewall spacers 118A/118B, one of the openings O preferably has a width substantially less than between the two gate stack layers 102/104. The pitch D, that is, the patterned mask layer 120 preferably partially covers the sacrificial layer 116, and the opening O of the patterned mask layer 120 exposes a portion of the sacrificial layer 116.
如第5圖所示,隨後,進行一蝕刻製程去除二閘極堆疊層102/104 之間的犧牲層116。在本實施例中,可進行一濕蝕刻製程去除犧牲層116,其中濕蝕刻製程的蝕刻液較佳係對氧化矽與氮化物具選擇比,也就是說,在去除犧牲層116時,係以圖案化遮罩層120作為遮罩,且以部分介電層包含閘極堆疊層102/104與犧牲層116之間的介電層114以及半導體基底100與犧牲層116之間的介電層114作為蝕刻停止層,避免在蝕刻製程中蝕刻液對閘極堆疊層102/104、側壁子118A/118B與半導體基底100造成損傷。 As shown in FIG. 5, an etching process is then performed to remove the two gate stack layers 102/104. The sacrificial layer 116 between. In this embodiment, a wet etching process can be performed to remove the sacrificial layer 116. The etching solution of the wet etching process preferably has a selectivity ratio of cerium oxide to nitride, that is, when the sacrificial layer 116 is removed. The patterned mask layer 120 serves as a mask, and the dielectric layer 114 between the gate stack layer 102/104 and the sacrificial layer 116 and the dielectric layer 114 between the semiconductor substrate 100 and the sacrificial layer 116 are partially dielectric layers As an etch stop layer, the etchant is prevented from causing damage to the gate stack layer 102/104, the sidewall spacers 118A/118B, and the semiconductor substrate 100 during the etching process.
然後,如第6圖所示,進行一蝕刻製程移除圖案化遮罩層120以分別形成一第一閘極結構122以及一第二閘極結構124,且第一閘極結構122與第二閘極結構124互相鏡射對稱。在本實施例中,可進行一濕蝕刻製程,且使用加熱的磷酸(phosphoric acid)溶液作為蝕刻液,以移除由氮化矽組成的圖案化遮罩層120。此外,第一閘極結構122以及第二閘極結構124均包含三閘極,也就是第一閘極層108、第二閘極層112以及側壁子118A/118B(第三閘極層)。由於二閘極堆疊層102/104之間的犧牲層116已被去除,側壁子118A/118B僅形成於閘極堆疊層102/104之相對外側,亦即,位於第一閘極結構122之左側以及第二閘極結構124之右側,因此,不需再進行蝕刻製程移除位於第一閘極結構122以及第二閘極結構124之間的多餘導電物質例如:可導電的側壁子,可有效避免因光罩對位誤差於第一閘極結構122以及第二閘極結構124的側壁S1/S2上形成殘緣物(stringer),有利於改善半導體裝置的電性表現。 Then, as shown in FIG. 6, an etching process is performed to remove the patterned mask layer 120 to form a first gate structure 122 and a second gate structure 124, respectively, and the first gate structure 122 and the second The gate structures 124 are mirror-symmetrical to each other. In this embodiment, a wet etching process can be performed and a heated phosphoric acid solution is used as an etchant to remove the patterned mask layer 120 composed of tantalum nitride. In addition, the first gate structure 122 and the second gate structure 124 each include three gates, that is, a first gate layer 108, a second gate layer 112, and sidewall spacers 118A/118B (third gate layer). Since the sacrificial layer 116 between the two gate stack layers 102/104 has been removed, the sidewall spacers 118A/118B are formed only on the opposite outer side of the gate stack layer 102/104, that is, on the left side of the first gate structure 122. And the right side of the second gate structure 124. Therefore, it is not necessary to perform an etching process to remove excess conductive material between the first gate structure 122 and the second gate structure 124, for example, an electrically conductive sidewall. It is avoided that a stringer is formed on the sidewalls S1/S2 of the first gate structure 122 and the second gate structure 124 due to the mask alignment error, which is advantageous for improving the electrical performance of the semiconductor device.
如第7圖所示,以第一閘極結構122與第二閘極結構124作為遮罩,另進行一離子佈植製程,於第一閘極結構122與第二閘極結構124兩側的半導體基底中形成源極/汲極摻雜區126/128/130,在本實施例中,源極/汲極摻雜區128可作為第一閘極結構122與第二閘極結構124的共同源極區,有助於縮小後續形成的半導體裝置所佔面積,以提升半導體裝置之積集度。 As shown in FIG. 7 , the first gate structure 122 and the second gate structure 124 are used as a mask, and an ion implantation process is performed on both sides of the first gate structure 122 and the second gate structure 124. A source/drain doping region 126/128/130 is formed in the semiconductor substrate. In this embodiment, the source/drain doping region 128 can serve as the first gate structure 122 and the second gate structure 124. The source region helps to reduce the area occupied by the subsequently formed semiconductor device to enhance the integration of the semiconductor device.
綜上所述,本發明藉由在二閘極堆疊層的第一閘極層、第二閘極層形成後,僅在閘極堆疊層的一側形成側壁子,以及在二閘極堆疊層之間形成一犧牲層的半導體裝置之製作方法,使二閘極堆疊層之間不會形成多餘的側壁子,因此,不需再額外進行去除二閘極堆疊層之間的側壁子的微影蝕刻製程,也可避免因為光罩對位誤差,發生於閘極堆疊層之側壁上形成殘緣物的情形,有助於改善半導體裝置的電性表現。 In summary, the present invention forms a sidewall spacer on only one side of the gate stack layer and a stack layer on the second gate layer after the first gate layer and the second gate layer of the two gate stack layers are formed. A semiconductor device in which a sacrificial layer is formed therebetween, so that no excess sidewalls are formed between the two gate stack layers, and therefore, no additional lithography for removing sidewalls between the two gate stack layers is required. The etching process can also avoid the formation of a residue on the sidewall of the gate stack layer due to the mask alignment error, which helps to improve the electrical performance of the semiconductor device.
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.
10‧‧‧快閃記憶體單元 10‧‧‧Flash memory unit
12,100‧‧‧半導體基底 12,100‧‧‧Semiconductor substrate
14‧‧‧閘極堆疊 14‧‧‧gate stacking
16‧‧‧浮置閘極 16‧‧‧Floating gate
18‧‧‧控制閘極 18‧‧‧Control gate
20‧‧‧選擇閘極 20‧‧‧Selecting the gate
22,24,26,114‧‧‧介電層 22,24,26,114‧‧‧ dielectric layer
28‧‧‧源極摻雜區 28‧‧‧ source doped area
30‧‧‧汲極摻雜區 30‧‧‧汲Doped area
32‧‧‧通道區 32‧‧‧Channel area
102,104‧‧‧閘極堆疊層 102,104‧‧‧ gate stack
106‧‧‧第一介電層 106‧‧‧First dielectric layer
108‧‧‧第一閘極層 108‧‧‧First gate layer
110‧‧‧第二介電層 110‧‧‧Second dielectric layer
112‧‧‧第二閘極層 112‧‧‧second gate layer
116‧‧‧犧牲層 116‧‧‧ Sacrifice layer
118A,118B‧‧‧側壁子 118A, 118B‧‧‧ Sidewall
120‧‧‧圖案化遮罩層 120‧‧‧ patterned mask layer
122‧‧‧第一閘極結構 122‧‧‧First gate structure
124‧‧‧第二閘極結構 124‧‧‧Second gate structure
126,128,130‧‧‧源極/汲極摻雜區 126, 128, 130‧‧‧ source/drain doping
D‧‧‧間距 D‧‧‧ spacing
H‧‧‧高度 H‧‧‧ Height
O‧‧‧開口 O‧‧‧ openings
R‧‧‧殘緣物 R‧‧‧ Remnant
S,S1,S2‧‧‧側壁 S, S1, S2‧‧‧ side wall
W‧‧‧底部寬度 W‧‧‧ bottom width
第1圖繪示了一習知快閃記憶單元的剖面示意圖。 FIG. 1 is a cross-sectional view showing a conventional flash memory unit.
第2圖至第7圖繪示了本發明之一較佳實施例之製作半導體裝置的方法之示意圖。 2 to 7 are schematic views showing a method of fabricating a semiconductor device in accordance with a preferred embodiment of the present invention.
100...半導體基底100. . . Semiconductor substrate
102,104...閘極堆疊層102,104. . . Gate stack
106...第一介電層106. . . First dielectric layer
108...第一閘極層108. . . First gate layer
110...第二介電層110. . . Second dielectric layer
112...第二閘極層112. . . Second gate layer
114...介電層114. . . Dielectric layer
116...犧牲層116. . . Sacrificial layer
118A,118B...側壁子118A, 118B. . . Side wall
120...圖案化遮罩層120. . . Patterned mask layer
D...間距D. . . spacing
O...開口O. . . Opening
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101113741A TWI517302B (en) | 2012-04-18 | 2012-04-18 | Method of fabricating semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101113741A TWI517302B (en) | 2012-04-18 | 2012-04-18 | Method of fabricating semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201344846A TW201344846A (en) | 2013-11-01 |
TWI517302B true TWI517302B (en) | 2016-01-11 |
Family
ID=49990314
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101113741A TWI517302B (en) | 2012-04-18 | 2012-04-18 | Method of fabricating semiconductor device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI517302B (en) |
-
2012
- 2012-04-18 TW TW101113741A patent/TWI517302B/en active
Also Published As
Publication number | Publication date |
---|---|
TW201344846A (en) | 2013-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106356374B (en) | Flash memory and manufacturing method thereof | |
KR101650621B1 (en) | Flash memory structure and method of forming the same | |
US9431256B2 (en) | Semiconductor device and manufacturing method thereof | |
TW202018917A (en) | Non-volatile memory and manufacturing method thereof | |
US8575683B1 (en) | Semiconductor device and method of fabricating the same | |
CN111244104A (en) | SONOS memory and manufacturing method thereof | |
TWI566381B (en) | Non-volatile memory and fabricating method thereof | |
US9023726B1 (en) | Method of fabricating semiconductor device | |
TWI543303B (en) | Non-volatile memory cell and fabricating method thereof | |
US8722488B2 (en) | Method of fabricating semiconductor device | |
TWI571975B (en) | Semiconductor device and method of forming the same | |
TWI517302B (en) | Method of fabricating semiconductor device | |
US20160181267A1 (en) | Non-volatile memory cell, nand-type non-volatile memory, and method of manufacturing the same | |
TWI451533B (en) | Method of forming embedded flash memory | |
TWI539581B (en) | Semiconductor device and method of fabricating the same | |
TWI506735B (en) | Method of manufacturing non-volatile memory | |
TWI469269B (en) | Method of forming word line of embedded flash memory | |
US20070111449A1 (en) | Non-volatile memory cell and method for manufacturing the same | |
TWI532149B (en) | Semiconductor device and method of fabricating the same | |
TWI555120B (en) | Semiconductor device and method for fabricating the same | |
TWI495090B (en) | Memory structure and fabricating method thereof | |
US20230025163A1 (en) | Method of manufacturing semiconductor structure | |
TWI473252B (en) | Data storage structure, memory device and process for fabricating memory device | |
TWI433277B (en) | Memory structure and fabricating method thereof | |
US9431406B1 (en) | Semiconductor device and method of forming the same |