TWI539581B - Semiconductor device and method of fabricating the same - Google Patents

Semiconductor device and method of fabricating the same Download PDF

Info

Publication number
TWI539581B
TWI539581B TW101117347A TW101117347A TWI539581B TW I539581 B TWI539581 B TW I539581B TW 101117347 A TW101117347 A TW 101117347A TW 101117347 A TW101117347 A TW 101117347A TW I539581 B TWI539581 B TW I539581B
Authority
TW
Taiwan
Prior art keywords
gate
layer
semiconductor device
sidewalls
fabricating
Prior art date
Application number
TW101117347A
Other languages
Chinese (zh)
Other versions
TW201349461A (en
Inventor
施秉嘉
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW101117347A priority Critical patent/TWI539581B/en
Publication of TW201349461A publication Critical patent/TW201349461A/en
Application granted granted Critical
Publication of TWI539581B publication Critical patent/TWI539581B/en

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Non-Volatile Memory (AREA)

Description

半導體裝置及其製作方法 Semiconductor device and method of fabricating the same

本發明係關於一種半導體裝置及其製作方法,尤指一種具有三閘極的半導體裝置及其製作方法。 The present invention relates to a semiconductor device and a method of fabricating the same, and more particularly to a semiconductor device having a three-gate and a method of fabricating the same.

快閃記憶體(flash memory)係一種非揮發性(non-volatile)記憶體,其在缺乏外部電源供應時,亦能夠保存儲存在記憶體中的資訊內容。近幾年來,由於快閃記憶體具有可重複寫入以及可被電抹除等優點,因此已被廣泛地應用在行動電話(mobile phone)、數位相機(digital camera)、遊戲機(video player)、個人數位助理(personal digital assistant,PDA)等電子產品或正在發展中的系統單晶片(system on a chip,SOC)中。 Flash memory is a non-volatile memory that retains the information stored in memory in the absence of an external power supply. In recent years, flash memory has been widely used in mobile phones, digital cameras, and video players because of its advantages of rewritable writing and electrical erasing. An electronic product such as a personal digital assistant (PDA) or a system on a chip (SOC) under development.

請參考第1圖,第1圖繪示了一習知快閃記憶單元的剖面示意圖。如第1圖所示,快閃記憶體單元10包含有一半導體基底12、設置於半導體基底12上的一閘極堆疊14,以及一選擇閘極(select gate)20設置於閘極堆疊14的側面,其中閘極堆疊14包括浮置閘極(floating gate)16、控制閘極(control gate)18。浮置閘極16、控制閘極18以及選擇閘極20一般係由多晶矽所構成,且各閘極之間可設置介電層22/24/26例如:氧化物層,以彼此電性絕緣。快閃記憶體單元10另包含有源極摻雜區28以及汲極摻雜區30設置於閘極堆疊 14兩側的半導體基底12中,以及一通道區32定義於源極摻雜區28以及汲極摻雜區30之間的半導體基底12中。此外,浮置閘極16與半導體基底12之間的介電層22係一穿隧氧化(tunneling oxide)層,熱電子(hot electron)即經由此穿隧氧化層隧穿(tunneling)進出浮置閘極16,而達到快閃記憶體單元10資料存取的功能。 Please refer to FIG. 1 , which illustrates a cross-sectional view of a conventional flash memory unit. As shown in FIG. 1, the flash memory cell 10 includes a semiconductor substrate 12, a gate stack 14 disposed on the semiconductor substrate 12, and a select gate 20 disposed on the side of the gate stack 14. The gate stack 14 includes a floating gate 16 and a control gate 18. The floating gate 16, the control gate 18 and the selection gate 20 are generally composed of polysilicon, and dielectric layers 22/24/26 such as oxide layers may be disposed between the gates to be electrically insulated from each other. The flash memory cell 10 further includes a source doping region 28 and a drain doping region 30 disposed on the gate stack A semiconductor substrate 12 on both sides of the 14 and a channel region 32 are defined in the semiconductor substrate 12 between the source doping region 28 and the gate doping region 30. In addition, the dielectric layer 22 between the floating gate 16 and the semiconductor substrate 12 is a tunneling oxide layer through which the hot electrons tunneling into and out of the floating layer. The gate 16 is configured to access the data access of the flash memory unit 10.

習知快閃記憶體單元10製程中,係先形成兩側壁子形狀的閘極層(圖未示)於閘極堆疊14的兩側,再藉由光罩覆蓋閘極堆疊14一側的閘極層,例如:汲極摻雜區30上的選擇閘極20,並搭配反應性離子蝕刻(reactive-ion-etching,RIE)製程,以移除閘極堆疊14另一側的閘極層,例如:源極摻雜區28上的閘極層,完成快閃記憶體單元10的結構。然而,隨著快閃記憶體單元10的尺寸縮小,在進行反應性離子蝕刻製程後,常見閘極堆疊14之側壁,例如:源極摻雜區28上之閘極堆疊14的側壁S,仍殘留多晶矽,又被稱為殘緣物(stringer)R。此殘緣物R會影響快閃記憶體單元的電性表現、導致漏電流,進而降低快閃記憶體的資料維持能力。因此,如何避免殘緣物的形成以改善快閃記憶體單元的電性表現實為相關技術者所欲改進之課題。 In the process of the conventional flash memory cell 10, a gate layer (not shown) having two sidewall shapes is formed on both sides of the gate stack 14, and the gate on the side of the gate stack 14 is covered by the photomask. a pole layer, such as a select gate 20 on the drain doped region 30, in conjunction with a reactive-ion-etching (RIE) process to remove the gate layer on the other side of the gate stack 14. For example, the gate layer on the source doping region 28 completes the structure of the flash memory cell 10. However, as the size of the flash memory cell 10 shrinks, the sidewalls of the common gate stack 14 after the reactive ion etching process, such as the sidewall S of the gate stack 14 on the source doped region 28, remain The residual polycrystalline germanium is also known as the stringer R. This residue R affects the electrical performance of the flash memory cell, causing leakage current, thereby reducing the data retention capability of the flash memory. Therefore, how to avoid the formation of the residue to improve the electrical performance of the flash memory cell is a problem that the related art desires to improve.

本發明之目的之一在於提供一種具有三閘極的半導體裝置及製作此半導體裝置的方法,以避免殘緣物的形成。 It is an object of the present invention to provide a semiconductor device having three gates and a method of fabricating the same to avoid formation of a residue.

本發明之一較佳實施例是提供一種製作半導體裝置的方法,包括下列步驟。首先,提供一半導體基底,接著,形成一閘極堆疊層於半導體基底上,且閘極堆疊層上另具有一蓋層。然後,形成二第一側壁子於閘極堆疊層之相對側壁的周圍。去除蓋層,並形成二第二側壁子於部分閘極堆疊層上。隨後,去除部分第一側壁子以及未被二第二側壁子覆蓋的閘極堆疊層以形成二閘極堆疊結構。 A preferred embodiment of the present invention provides a method of fabricating a semiconductor device comprising the following steps. First, a semiconductor substrate is provided, and then a gate stack is formed on the semiconductor substrate, and the gate stack layer further has a cap layer. Then, two first sidewalls are formed around the opposite sidewalls of the gate stack layer. The cap layer is removed and two second sidewalls are formed on a portion of the gate stack layer. Subsequently, a portion of the first sidewall spacer and a gate stack layer not covered by the second sidewall spacer are removed to form a two-gate stack structure.

本發明之另一較佳實施例是提供一種半導體裝置,包括一半導體基底以及至少一閘極結構設置於半導體基底上。閘極結構包括由下而上依序堆疊於半導體基底上之一第一閘極、一第二閘極與一上表面不平行於該半導體基底之頂蓋層,以及第三閘極位於該第一閘極以及該第二閘極的一側。 Another preferred embodiment of the present invention provides a semiconductor device including a semiconductor substrate and at least one gate structure disposed on the semiconductor substrate. The gate structure includes a first gate electrode stacked on the semiconductor substrate from bottom to top, a second gate and an upper surface not parallel to the top cover layer of the semiconductor substrate, and the third gate is located at the first gate a gate and one side of the second gate.

本發明先藉由蓋層的設置以增加第一側壁子的原始高度,再利用第一側壁子定義之後形成的第二側壁子之尺寸與位置,然後,再進一步以第二側壁子作為遮罩,以自對準製程形成各閘極結構中的三閘極,可減少製程之光罩成本並有效避免各閘極結構之側壁上殘緣物的形成。 The invention firstly increases the original height of the first side wall by the cover layer, and then uses the size and position of the second side wall formed after the first side wall sub-definition, and then further uses the second side wall as a mask. The three gates in each gate structure are formed by a self-aligned process, which can reduce the cost of the mask of the process and effectively avoid the formation of the residue on the sidewalls of the gate structures.

為使熟習本發明所屬技術領域之一般技藝者能更進一步了解本發明,下文特列舉本發明之較佳實施例,並配合所附圖式,詳細說明本發明的構成內容及所欲達成之功效。 The present invention will be further understood by those of ordinary skill in the art to which the present invention pertains. .

本發明提供一種製作半導體裝置的方法,請參考第2圖至第7圖。第2圖至第7圖繪示了本發明之一較佳實施例之製作半導體裝置的方法之示意圖。如第2圖所示,提供一半導體基底100,且形成一閘極堆疊層102於半導體基底100上。半導體基底100可包含例如一由矽、砷化鎵、矽覆絕緣(SOI)層、磊晶層、矽鍺層或其他半導體基底材料所構成的基底。閘極堆疊層102包括至少一閘極層以及至少一介電層,在本實施例中,閘極堆疊層102包括一第一介電層104、一第一閘極層106、一第二介電層108以及一第二閘極層110依序設置於半導體基底100上,且閘極堆疊層102上另具有一蓋層112。 The present invention provides a method of fabricating a semiconductor device, please refer to Figures 2 through 7. 2 to 7 are schematic views showing a method of fabricating a semiconductor device in accordance with a preferred embodiment of the present invention. As shown in FIG. 2, a semiconductor substrate 100 is provided, and a gate stack layer 102 is formed on the semiconductor substrate 100. The semiconductor substrate 100 can comprise, for example, a substrate composed of germanium, gallium arsenide, a silicon-on-insulator (SOI) layer, an epitaxial layer, a germanium layer, or other semiconductor substrate material. The gate stack layer 102 includes at least one gate layer and at least one dielectric layer. In this embodiment, the gate stack layer 102 includes a first dielectric layer 104, a first gate layer 106, and a second dielectric layer. The electric layer 108 and a second gate layer 110 are sequentially disposed on the semiconductor substrate 100, and the gate stack layer 102 further has a cap layer 112.

形成閘極堆疊層102以及蓋層112的方法包括下列步驟:首先,於半導體基底100上形成一堆疊層(圖未示),堆疊層包含介電層、閘極層、介電層、閘極層以及蓋層材料層依序設置於半導體基底100上。介電層可由絕緣材料所構成,包括矽氧化物、氮氧化物或介電常數大於4的高介電常數介電層。閘極層可由導電材料所構成,包括多晶矽、金屬矽化物或具有特定功函數的金屬材料。蓋層材料層之材料可包括絕緣材料例如氮化矽、氧化矽或氮氧化矽。在本實施例中,介電層係由熱氧化製程或化學氣相沈積(chemical vapor deposition,CVD)或原子層沈積(atomic layer deposition,ALD)等沈積製程所沈積等製程所形成的矽氧化物所組成,閘極層係由低壓化學氣相沈積(low pressure chemical vapor deposition,LPCVD)製程所形 成的多晶矽所組成,而蓋層材料層係由化學氣相沈積(CVD)製程形成的氮化矽所組成,但不以此為限。接著,在蓋層材料層上方形成一圖案化光阻層(圖未示),並進行一蝕刻製程步驟以去除部分堆疊層,形成閘極堆疊層102以及蓋層112。蝕刻製程步驟包括以圖案化光阻層作為遮罩,同時移除部分介電層、部分閘極層以及部分蓋層材料層,隨後去除圖案化光阻層;或是先將圖案化光阻層之圖案轉移至蓋層材料層,去除圖案化光阻層,再以圖案化蓋層材料層作為遮罩,移除部分介電層以及部分閘極層。由於蓋層112係用來於微影暨蝕刻製程中當作蝕刻硬遮罩,因此蓋層112之一寬度實質上相等於閘極堆疊層102之一寬度,也就是說,第一介電層104、第一閘極層106、第二介電層108、第二閘極層110以及蓋層112具有相同的寬度。 The method of forming the gate stack layer 102 and the cap layer 112 includes the following steps: First, a stacked layer (not shown) is formed on the semiconductor substrate 100, and the stacked layer includes a dielectric layer, a gate layer, a dielectric layer, and a gate. The layer and the capping material layer are sequentially disposed on the semiconductor substrate 100. The dielectric layer may be composed of an insulating material including tantalum oxide, oxynitride or a high-k dielectric layer having a dielectric constant greater than 4. The gate layer may be composed of a conductive material, including polysilicon, metal halide or a metal material having a specific work function. The material of the capping material layer may include an insulating material such as tantalum nitride, hafnium oxide or hafnium oxynitride. In this embodiment, the dielectric layer is a tantalum oxide formed by a thermal oxidation process or a deposition process such as chemical vapor deposition (CVD) or atomic layer deposition (ALD). The gate layer is formed by a low pressure chemical vapor deposition (LPCVD) process. The polycrystalline germanium is formed, and the capping material layer is composed of tantalum nitride formed by a chemical vapor deposition (CVD) process, but is not limited thereto. Next, a patterned photoresist layer (not shown) is formed over the cap layer material layer, and an etching process step is performed to remove portions of the stacked layers to form the gate stack layer 102 and the cap layer 112. The etching process step includes patterning the photoresist layer as a mask while removing a portion of the dielectric layer, a portion of the gate layer, and a portion of the capping material layer, and then removing the patterned photoresist layer; or first patterning the photoresist layer The pattern is transferred to the capping material layer, the patterned photoresist layer is removed, and the patterned capping material layer is used as a mask to remove a portion of the dielectric layer and a portion of the gate layer. Since the cap layer 112 is used as an etch hard mask in the lithography and etching process, one of the cap layers 112 has a width substantially equal to the width of one of the gate stack layers 102, that is, the first dielectric layer. 104. The first gate layer 106, the second dielectric layer 108, the second gate layer 110, and the cap layer 112 have the same width.

如第3圖所示,順應性形成一介電層114於半導體基底100上,介電層114可覆蓋蓋層112之頂面、蓋層112之側面以及閘極堆疊層102之側面,其中介電層114可由單層或複合層的絕緣材料所構成。然後,再順應性形成一導電層(圖未示)於介電層114上,且進行一非等向性蝕刻製程例如:反應性離子蝕刻(reactive-ion-etching,RIE)製程去除部分導電層,以完全暴露閘極堆疊層102上的介電層114,而剩餘的導電層即形成二第一側壁子116A/116B於閘極堆疊層102之相對側壁的周圍,亦即二第一側壁子116A/116B可環繞閘極堆疊層102以及蓋層112。基本上,各第一側壁子116A/116B之一高度h1相關於蓋層112之一高度h2,也就是說,在相同的蝕刻製 程參數條件下例如:相同的蝕刻液之選擇比以及相同的蝕刻時間,蓋層112之高度h2的增加,將有助於在非等向性蝕刻製程後保留較多的導電層,以增加形成的第一側壁子116A/116B之原始高度h1與一底部寬度w1。在本實施例中,用於形成第一側壁子116A/116B的導電層包括導電材料例如:多晶矽,但不以此為限。在其他實施例中,形成第一側壁子116A/116B的材料也可以是絕緣材料,以期應用在其他種類的半導體元件製程中。 As shown in FIG. 3, compliantly forms a dielectric layer 114 on the semiconductor substrate 100. The dielectric layer 114 can cover the top surface of the cap layer 112, the side of the cap layer 112, and the side of the gate stack layer 102. The electrical layer 114 can be constructed of a single layer or a composite layer of insulating material. Then, a conductive layer (not shown) is formed on the dielectric layer 114, and an anisotropic etching process is performed, for example, a reactive-ion-etching (RIE) process to remove a portion of the conductive layer. To completely expose the dielectric layer 114 on the gate stack layer 102, and the remaining conductive layers form two first sidewalls 116A/116B around the opposite sidewalls of the gate stack layer 102, that is, two first sidewalls The 116A/116B can surround the gate stack layer 102 and the cap layer 112. Basically, the height h1 of one of the first side walls 116A/116B is related to the height h2 of one of the cover layers 112, that is, in the same etching system. Under the condition of the parameters, for example, the same etching solution selection ratio and the same etching time, the increase of the height h2 of the cap layer 112 will help to retain more conductive layers after the anisotropic etching process to increase formation. The original height h1 of the first side wall 116A/116B and a bottom width w1. In the present embodiment, the conductive layer for forming the first sidewall spacers 116A/116B includes a conductive material such as polysilicon, but is not limited thereto. In other embodiments, the material forming the first sidewall sub-116A/116B may also be an insulating material for use in other types of semiconductor device processes.

接下來,如第4圖所示,去除閘極堆疊層102上的蓋層112。當蓋層112係由氮化矽所組成時,可進行一濕蝕刻製程,蝕刻液較佳為對第一側壁子116A/116B之材料與第二閘極層110之材料例如:多晶矽具選擇比,例如:加熱的磷酸(phosphoric acid)溶液等,以完全去除蓋層112以及部分介電層114,暴露出閘極堆疊層102的頂面,亦即第二閘極層110,且保留環繞閘極堆疊層102之側壁的第一側壁子116A/116B,此時,剩餘的各第一側壁子116A/116B之高度h3係仍實質上大於閘極堆疊層102之一高度h4。去除蓋層112的方法不以此為限,其他可完全去除蓋層112,並使各第一側壁子116A/116B之高度h3仍實質上大於閘極堆疊層102之高度h4的製程亦適用於本發明。 Next, as shown in FIG. 4, the cap layer 112 on the gate stack layer 102 is removed. When the cap layer 112 is composed of tantalum nitride, a wet etching process may be performed, and the etching liquid is preferably selected from the material of the first sidewall 116A/116B and the material of the second gate layer 110, for example: polycrystalline cookware. For example, a heated phosphoric acid solution or the like to completely remove the cap layer 112 and a portion of the dielectric layer 114, exposing the top surface of the gate stack layer 102, that is, the second gate layer 110, and retaining the surrounding gate The first sidewalls 116A/116B of the sidewalls of the pole stack layer 102, at this time, the height h3 of the remaining first sidewalls 116A/116B is still substantially greater than the height h4 of one of the gate stack layers 102. The method of removing the cap layer 112 is not limited thereto, and other processes for completely removing the cap layer 112 and making the height h3 of each of the first sidewalls 116A/116B still substantially larger than the height h4 of the gate stack layer 102 are also applicable to this invention.

如第5圖所示,形成二第二側壁子118A/118B於部分閘極堆疊層102上,其中形成的第二側壁子118A/118B未完全重疊閘極堆疊層102。去除蓋層112後形成第二側壁子118A/118B的方法包括: 順應性形成一物質層(圖未示)於半導體基底100上,並覆蓋閘極堆疊層102以及第一側壁子116A/116B,且物質層之材料係與第一閘極層106、第二閘極層110以及第一側壁子116A/116B較佳係具有蝕刻選擇比,亦即此物質層與第一閘極層106、第二閘極層110以及第一側壁子116A/116B相對於一蝕刻劑具有不同的蝕刻速率,例如其可選自絕緣材料包括氮化矽或氧化矽等。之後,進行一蝕刻製程,例如非等向性蝕刻製程,用以去除部分物質層至暴露第一側壁子116A/116B以及部分閘極堆疊層102之頂面。在本實施例中,第二側壁子118A/118B具有相對於閘極堆疊層102之頂面的相同的一高度h5以及相同的一底部寬度w2。各第二側壁子118A/118B直接接觸相對應的各第一側壁子116A/116B,且各第二側壁子118A/118B的高度h5係實質上相等於各第一側壁子116A/116B相對於閘極堆疊層102之頂面的一高度h6,也就是說,各第二側壁子118A/118B之一頂點與各第一側壁子116A/116B之一頂點具有相對於半導體基底100的相同的高度。更詳細地說,在相同的蝕刻製程參數條件下,第二側壁子118A/118B之尺寸大小以及與閘極堆疊層102之頂面的重疊面積大小均相關於第一側壁子116A/116B之高度,也就是說,隨著第一側壁子116A/116B的高度h6增加,在蝕刻製程後,形成的第二側壁子118A/118B之高度h5與底部寬度w2亦將增加。 As shown in FIG. 5, two second sidewalls 118A/118B are formed on a portion of the gate stack layer 102, wherein the second sidewall spacers 118A/118B are formed without completely overlapping the gate stack layer 102. The method of forming the second sidewall sub-118A/118B after removing the cap layer 112 includes: Compliance forms a material layer (not shown) on the semiconductor substrate 100 and covers the gate stack layer 102 and the first sidewall spacers 116A/116B, and the material of the material layer is connected to the first gate layer 106 and the second gate. The pole layer 110 and the first sidewalls 116A/116B preferably have an etch selectivity ratio, that is, the material layer is etched with respect to the first gate layer 106, the second gate layer 110, and the first sidewall spacers 116A/116B. The agents have different etch rates, for example, they may be selected from insulating materials including tantalum nitride or hafnium oxide. Thereafter, an etch process, such as an anisotropic etch process, is performed to remove portions of the material layer to expose the top surface of the first sidewall sub-116A/116B and a portion of the gate stack layer 102. In the present embodiment, the second sidewall sub-118A/118B has the same height h5 and the same bottom width w2 with respect to the top surface of the gate stack layer 102. Each of the second side walls 118A/118B directly contacts the corresponding first side wall sub-116A/116B, and the height h5 of each of the second side wall sub-118A/118B is substantially equal to the respective first side wall sub-116A/116B relative to the brake A height h6 of the top surface of the pole stack layer 102, that is, one of the apexes of each of the second sidewall sub-118A/118B and one of the apexes of each of the first sidewall sub-116A/116B has the same height with respect to the semiconductor substrate 100. In more detail, under the same etching process parameters, the size of the second sidewalls 118A/118B and the overlapping area with the top surface of the gate stack 102 are related to the height of the first sidewalls 116A/116B. That is, as the height h6 of the first sidewall sub-116A/116B increases, the height h5 and the bottom width w2 of the formed second sidewall sub-118A/118B will also increase after the etching process.

如第6圖所示,進行一蝕刻製程,例如為一乾蝕刻製程,去除部分第一側壁子116A/116B以形成一第三閘極124,並同時去除未被第二側壁子118A/118B覆蓋的閘極堆疊層102,以形成二閘極堆疊 結構102A/102B,且閘極堆疊結構102A/102B分別具有一第一閘極120以及一第二閘極122。第三閘極124之高度h7較佳係實質上相等於閘極堆疊結構102A/102B之高度h8。此外,較佳者,在此蝕刻製程中,部分第二側壁子118A/118B亦會受蝕刻影響而縮減,且剩餘的第二側壁子118A’/118B’位於閘極堆疊結構102A/102B上,並具有一非平面狀之表面。剩餘的第二側壁子118A’/118B’視製程或產品之需求,可選擇性保留於第二閘極122上,不需再經由額外製程去除。 As shown in FIG. 6, an etching process, such as a dry etching process, is performed to remove portions of the first sidewalls 116A/116B to form a third gate 124 and simultaneously remove the second sidewalls 118A/118B. The gate stacks the layers 102 to form a two-gate stack Structures 102A/102B, and gate stack structures 102A/102B have a first gate 120 and a second gate 122, respectively. The height h7 of the third gate 124 is preferably substantially equal to the height h8 of the gate stack structure 102A/102B. In addition, preferably, in the etching process, part of the second sidewall spacers 118A/118B are also reduced by etching, and the remaining second sidewall spacers 118A'/118B' are located on the gate stack structure 102A/102B. And has a non-planar surface. The remaining second sidewalls 118A'/118B' can be selectively retained on the second gate 122, depending on the process or product requirements, without the need for additional processing.

請再一併參考第5圖以及第6圖。值得注意的是,由於在上述蝕刻製程中,係利用第二側壁子118A/118B當作蝕刻遮罩,故未被第二側壁子118A/118B覆蓋的閘極堆疊層102會被去除,亦即暴露的閘極堆疊層102之頂面的寬度係實質上相等於第一閘極結構126以及第二閘極結構128之間距,也就是說,本發明是利用第二側壁子118A/118B來取代一光罩作為遮罩以定義閘極結構之預定位置,不但有助於降低製程之光罩成本,而且更可製作出更小的線寬。此外,使用第二側壁子118A/118B作為遮罩,可同時自對準定義出具有相同寬度的閘極結構,也就是說,第二側壁子118A/118B之底部寬度w2係實質上相等於閘極堆疊結構102A之一底部寬度w3以及閘極堆疊結構102B之一底部寬度w4。更詳細地說,完成去除部分第一側壁子116A/116B以及部分閘極堆疊層102的蝕刻製程之後,將分別形成具有三閘極(第一閘極120、第二閘極122,以及第三閘極124)的一第一閘極結構126以及一第二閘極結構128,其中,第二側壁 子118A’/118B’與第三閘極124可用於定義第一閘極結構126/第二閘極結構128之通道區長度。另外,第三閘極124分別僅形成於閘極堆疊結構102A/102B之一側,未有多餘的導電層餘留於第一閘極結構126以及第二閘極結構128之間,因此,不需再進行蝕刻製程以移除多餘的導電層,可有效避免導電材質組成的殘緣物(stringer)形成於第一閘極結構126以及第二閘極結構128之間的側壁S1/S2上,進而改善半導體裝置的電性表現並提高良率。 Please refer to Figure 5 and Figure 6 together. It should be noted that since the second sidewall spacers 118A/118B are used as the etch mask in the above etching process, the gate stack layer 102 not covered by the second sidewall spacers 118A/118B is removed, that is, The width of the top surface of the exposed gate stack layer 102 is substantially equal to the distance between the first gate structure 126 and the second gate structure 128, that is, the present invention is replaced with the second sidewall sub-118A/118B. A mask as a mask to define the predetermined position of the gate structure not only helps to reduce the cost of the mask of the process, but also produces a smaller line width. In addition, using the second sidewall sub-118A/118B as a mask, the gate structure having the same width can be defined by self-alignment at the same time, that is, the bottom width w2 of the second sidewall sub-118A/118B is substantially equal to the gate. One of the bottom stack structures 102A has a bottom width w3 and one of the gate stack structures 102B has a bottom width w4. In more detail, after the etching process for removing a portion of the first sidewall spacers 116A/116B and a portion of the gate stack layer 102 is completed, three gates (the first gate 120, the second gate 122, and the third portion) are respectively formed. a first gate structure 126 and a second gate structure 128 of the gate 124), wherein the second sidewall The sub-118A'/118B' and the third gate 124 can be used to define the length of the channel region of the first gate structure 126 / the second gate structure 128. In addition, the third gates 124 are respectively formed on one side of the gate stack structure 102A/102B, and no unnecessary conductive layer remains between the first gate structure 126 and the second gate structure 128. Therefore, The etching process is further performed to remove the excess conductive layer, and the stringer composed of the conductive material is effectively prevented from being formed on the sidewall S1/S2 between the first gate structure 126 and the second gate structure 128. Further, the electrical performance of the semiconductor device is improved and the yield is improved.

如第7圖所示,以第一閘極結構126與第二閘極結構128作為遮罩,另進行一離子佈植製程,分別於第一閘極結構126與第二閘極結構128兩側的半導體基底100中形成源極/汲極摻雜區130/132/134,在本實施例中,源極/汲極摻雜區132可作為第一閘極結構126與第二閘極結構128的共同源極區,有助於縮小半導體裝置所佔面積,以提升半導體裝置之積集度。 As shown in FIG. 7, the first gate structure 126 and the second gate structure 128 are used as masks, and an ion implantation process is performed on both sides of the first gate structure 126 and the second gate structure 128. The source/drain doping region 130/132/134 is formed in the semiconductor substrate 100. In the embodiment, the source/drain doping region 132 can serve as the first gate structure 126 and the second gate structure 128. The common source region helps to reduce the area occupied by the semiconductor device to enhance the integration of the semiconductor device.

本發明亦提供一種半導體裝置,為了簡化說明,在下文之實施例中使用相同的符號標注相同的元件,且不再對重覆部分進行贅述。請參考第8圖。第8圖繪示了本發明之一較佳實施例之半導體裝置的示意圖。如第8圖所示,半導體裝置148包含半導體基底100以及至少一閘極結構136/138設置於其上。在本實施例中,第一閘極結構136與第二閘極結構138分別包括由下而上依序堆疊之一第一閘極120、一第二閘極122與一上表面不平行於半導體基底之頂蓋層140,以及一第三閘極124位於第一閘極120以及第二閘極122 的一側。第一閘極120、第二閘極122以及第三閘極124均可由導電材料所構成,導電材料包括多晶矽、金屬矽化物或具有特定功函數的金屬材料。頂蓋層140之材料可包括抗氧化材料例如氮化矽或氧化矽。第一閘極結構136與相鄰的第二閘極結構138互相鏡射對稱,也就是說,第一閘極結構136與第二閘極結構138具有相同寬度w5/w6。此外,第三閘極124係為側壁子狀,第一閘極結構136之第三閘極124A位於第一閘極120A以及第二閘極122A的左側,而第二閘極結構138之第三閘極124B位於第一閘極120B以及第二閘極122B的右側。以半導體裝置148係快閃記憶單元為例,第一閘極120為浮置閘極(floating gate),第二閘極122為控制閘極(control gate),而第三閘極124為選擇閘極(select gate),另外,在某些應用中,用以做為浮置閘極的第一閘極120亦可包括氮矽化合物等材料以捕捉電荷(trap charges)。。第三閘極124之一高度h7較佳實質上相等於第二閘極122之頂面的高度h9。頂蓋層140實質上直接接觸第二閘極122的頂面,且其具有一非平面狀之上表面,在本實施例中,頂蓋層140具有一側壁子狀結構,且在同一閘極結構136/138中,頂蓋層140之弧面與第三閘極124之弧面具有彼此相對的突出方向。 The present invention also provides a semiconductor device. In order to simplify the description, the same components are denoted by the same reference numerals in the following embodiments, and the overlapping portions will not be described again. Please refer to Figure 8. Figure 8 is a schematic view of a semiconductor device in accordance with a preferred embodiment of the present invention. As shown in FIG. 8, semiconductor device 148 includes semiconductor substrate 100 and at least one gate structure 136/138 disposed thereon. In the present embodiment, the first gate structure 136 and the second gate structure 138 respectively include a first gate 120, a second gate 122 and an upper surface that are not parallel to the semiconductor. a top cover layer 140 of the substrate, and a third gate 124 are located at the first gate 120 and the second gate 122 One side. The first gate 120, the second gate 122, and the third gate 124 may each be composed of a conductive material including a polysilicon, a metal halide, or a metal material having a specific work function. The material of the cap layer 140 may include an oxidation resistant material such as tantalum nitride or tantalum oxide. The first gate structure 136 and the adjacent second gate structure 138 are mirror-symmetrical to each other, that is, the first gate structure 136 and the second gate structure 138 have the same width w5/w6. In addition, the third gate 124 is a sidewall shape, and the third gate 124A of the first gate structure 136 is located on the left side of the first gate 120A and the second gate 122A, and the third gate structure 138 is third. The gate 124B is located on the right side of the first gate 120B and the second gate 122B. Taking the semiconductor device 148 as a flash memory unit as an example, the first gate 120 is a floating gate, the second gate 122 is a control gate, and the third gate 124 is a selection gate. A select gate, in addition, in some applications, the first gate 120 used as a floating gate may also include a material such as a nitrogen ruthenium compound to trap charges. . The height h7 of one of the third gates 124 is preferably substantially equal to the height h9 of the top surface of the second gate 122. The cap layer 140 substantially directly contacts the top surface of the second gate 122 and has a non-planar upper surface. In this embodiment, the cap layer 140 has a sidewall sub-structure and is on the same gate. In the structure 136/138, the arc surface of the cap layer 140 and the arc surface of the third gate 124 have protruding directions opposite to each other.

第一閘極結構136與第二閘極結構138分別另包括一第一介電層142設置於半導體基底100與第一閘極120之間,一第二介電層144設置於第一閘極120與第二閘極122之間,以及一L形之第三介電層146設置於第三閘極124與第一閘極120及第二閘極122之間,並位於半導體基底100與第三閘極124之間。第一介電層142、第 二介電層144與第三介電層146均可由絕緣材料所構成,絕緣材料包括矽氧化物、氮氧化物或介電常數大於4的高介電常數介電層。第一介電層142可作為穿隧氧化層,熱電子即經由第一介電層142隧穿進出第一閘極120,而達到半導體裝置148之資料存取的功能。第二介電層144及第三介電層146可作為閘間氧化層,以提供第一閘極120、第二閘極122以及第三閘極124彼此之間的絕緣效果。此外,源極/汲極摻雜區130/132/134設置於第一閘極結構136與第二閘極結構138兩側的半導體基底100中。 The first gate structure 136 and the second gate structure 138 respectively include a first dielectric layer 142 disposed between the semiconductor substrate 100 and the first gate 120, and a second dielectric layer 144 disposed on the first gate. Between 120 and the second gate 122, and an L-shaped third dielectric layer 146 are disposed between the third gate 124 and the first gate 120 and the second gate 122, and are located on the semiconductor substrate 100 and Three gates between 124. First dielectric layer 142, first Both the dielectric layer 144 and the third dielectric layer 146 may be composed of an insulating material including tantalum oxide, oxynitride or a high-k dielectric layer having a dielectric constant greater than 4. The first dielectric layer 142 can serve as a tunneling oxide layer, and the hot electrons tunnel into and out of the first gate 120 via the first dielectric layer 142 to achieve the data access function of the semiconductor device 148. The second dielectric layer 144 and the third dielectric layer 146 can serve as an inter-gate oxide layer to provide an insulating effect between the first gate 120, the second gate 122, and the third gate 124. In addition, the source/drain doping regions 130/132/134 are disposed in the semiconductor substrate 100 on both sides of the first gate structure 136 and the second gate structure 138.

綜上所述,本發明先藉由蓋層的設置以增加第一側壁子的原始高度,再利用第一側壁子定義第二側壁子之尺寸與形成的位置,之後,再進一步以第二側壁子作為遮罩,以自對準製程形成第一閘極結構/第二閘極結構中的三閘極,可減少製程之光罩成本並有效避免第一閘極結構/第二閘極結構之側壁上殘緣物的形成。 In summary, the present invention firstly increases the original height of the first side wall by the cover layer, and then defines the size and the formed position of the second side wall by the first side wall, and then further the second side wall. As a mask, the three gates in the first gate structure/second gate structure are formed by the self-aligned process, which can reduce the cost of the mask of the process and effectively avoid the first gate structure/second gate structure. The formation of a residue on the sidewall.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

10‧‧‧快閃記憶體單元 10‧‧‧Flash memory unit

12,100‧‧‧半導體基底 12,100‧‧‧Semiconductor substrate

14‧‧‧閘極堆疊 14‧‧‧gate stacking

16‧‧‧浮置閘極 16‧‧‧Floating gate

18‧‧‧控制閘極 18‧‧‧Control gate

20‧‧‧選擇閘極 20‧‧‧Selecting the gate

22,24,26,114‧‧‧介電層 22,24,26,114‧‧‧ dielectric layer

28‧‧‧源極摻雜區 28‧‧‧ source doped area

30‧‧‧汲極摻雜區 30‧‧‧汲Doped area

32‧‧‧通道區 32‧‧‧Channel area

102‧‧‧閘極堆疊層 102‧‧‧ gate stack

102A,102B‧‧‧閘極堆疊結構 102A, 102B‧‧‧ gate stack structure

104,142‧‧‧第一介電層 104,142‧‧‧First dielectric layer

106‧‧‧第一閘極層 106‧‧‧First gate layer

108,144‧‧‧第二介電層 108,144‧‧‧Second dielectric layer

110‧‧‧第二閘極層 110‧‧‧second gate layer

112‧‧‧蓋層 112‧‧‧ cover

116A,116B‧‧‧第一側壁子 116A, 116B‧‧‧ first side wall

118A,118B,118A’,118B’‧‧‧第二側壁子 118A, 118B, 118A’, 118B’‧‧‧ second side

120,120A,120B‧‧‧第一閘極 120, 120A, 120B‧‧‧ first gate

122,122A,122B‧‧‧第二閘極 122,122A, 122B‧‧‧second gate

124,124A,124B‧‧‧第三閘極 124, 124A, 124B‧‧‧ third gate

126,136‧‧‧第一閘極結構 126, 136‧‧‧ first gate structure

128,138‧‧‧第二閘極結構 128,138‧‧‧second gate structure

130,132,134‧‧‧源極/汲極摻雜區 130,132,134‧‧‧Source/drain-doped area

140‧‧‧頂蓋層 140‧‧‧Top cover

146‧‧‧第三介電層 146‧‧‧ Third dielectric layer

148‧‧‧半導體裝置 148‧‧‧Semiconductor device

R‧‧‧殘緣物 R‧‧‧ Remnant

h1,h2,h3,h4,h5,h6,h7,h8,h9‧‧‧高度 H1, h2, h3, h4, h5, h6, h7, h8, h9‧‧‧ height

S,S1,S2‧‧‧側壁 S, S1, S2‧‧‧ side wall

w1,w2,w3,w4,w5,w6‧‧‧寬度 W1, w2, w3, w4, w5, w6‧‧‧ width

第1圖繪示了一習知快閃記憶單元的剖面示意圖。 FIG. 1 is a cross-sectional view showing a conventional flash memory unit.

第2圖至第7圖繪示了本發明之一較佳實施例之製作半導體裝置的方法之示意圖。 2 to 7 are schematic views showing a method of fabricating a semiconductor device in accordance with a preferred embodiment of the present invention.

第8圖繪示了本發明之一較佳實施例之半導體裝置的示意圖。 Figure 8 is a schematic view of a semiconductor device in accordance with a preferred embodiment of the present invention.

100‧‧‧半導體基底 100‧‧‧Semiconductor substrate

120,120A,120B‧‧‧第一閘極 120, 120A, 120B‧‧‧ first gate

122,122A,122B‧‧‧第二閘極 122,122A, 122B‧‧‧second gate

124,124A,124B‧‧‧第三閘極 124, 124A, 124B‧‧‧ third gate

130,132,134‧‧‧源極/汲極摻雜區 130,132,134‧‧‧Source/drain-doped area

136‧‧‧第一閘極結構 136‧‧‧First gate structure

138‧‧‧第二閘極結構 138‧‧‧Second gate structure

140‧‧‧頂蓋層 140‧‧‧Top cover

142‧‧‧第一介電層 142‧‧‧First dielectric layer

144‧‧‧第二介電層 144‧‧‧Second dielectric layer

146‧‧‧第三介電層 146‧‧‧ Third dielectric layer

148‧‧‧半導體裝置 148‧‧‧Semiconductor device

h7,h9‧‧‧高度 H7, h9‧‧‧ height

w5,w6‧‧‧寬度 W5, w6‧‧‧ width

Claims (19)

一種製作半導體裝置的方法,包括:提供一半導體基底;形成一閘極堆疊層於該半導體基底上,且該閘極堆疊層上另具有一蓋層;形成二第一側壁子於該閘極堆疊層之相對側壁的周圍;去除該蓋層;形成二第二側壁子於部分該閘極堆疊層上;以及同時去除部分該等第一側壁子以及未被該等第二側壁子覆蓋的該閘極堆疊層以形成二閘極堆疊結構。 A method of fabricating a semiconductor device, comprising: providing a semiconductor substrate; forming a gate stack on the semiconductor substrate, and having a cap layer on the gate stack; forming two first sidewalls on the gate stack Surrounding the opposite sidewalls of the layer; removing the cap layer; forming two second sidewalls on a portion of the gate stack layer; and simultaneously removing portions of the first sidewalls and the gate not covered by the second sidewalls The poles are stacked to form a two-gate stack structure. 如請求項1所述之製作半導體裝置的方法,其中該蓋層之一寬度實質上相等該閘極堆疊層之一寬度。 A method of fabricating a semiconductor device according to claim 1, wherein one of the cap layers has a width substantially equal to a width of one of the gate stack layers. 如請求項1所述之製作半導體裝置的方法,其中形成該等第一側壁子的步驟包括:形成一介電層於該蓋層上;形成一導電層於該介電層上;以及去除部分該導電層,以完全暴露該閘極堆疊層上的該介電層。 The method of fabricating a semiconductor device according to claim 1, wherein the forming the first sidewalls comprises: forming a dielectric layer on the cap layer; forming a conductive layer on the dielectric layer; and removing the portion The conductive layer is to completely expose the dielectric layer on the gate stack layer. 如請求項3所述之製作半導體裝置的方法,其中去除部分該導電層包括進行一非等向性蝕刻製程。 A method of fabricating a semiconductor device according to claim 3, wherein removing a portion of the conductive layer comprises performing an anisotropic etching process. 如請求項1所述之製作半導體裝置的方法,其中該等第一側壁子環繞該閘極堆疊層以及該蓋層。 A method of fabricating a semiconductor device according to claim 1, wherein the first sidewalls surround the gate stack layer and the cap layer. 如請求項1所述之製作半導體裝置的方法,其中去除該蓋層包括進行一濕蝕刻製程。 A method of fabricating a semiconductor device according to claim 1, wherein removing the cap layer comprises performing a wet etching process. 如請求項1所述之製作半導體裝置的方法,其中在去除該蓋層後且形成該等閘極堆疊結構之前,各該第一側壁子之一高度係實質上大於該閘極堆疊層之一高度。 The method of fabricating a semiconductor device according to claim 1, wherein a height of each of the first sidewalls is substantially larger than one of the gate stack layers after the cap layer is removed and the gate stack structures are formed. height. 如請求項1所述之製作半導體裝置的方法,其中去除該蓋層後,形成該等第二側壁子的步驟包括:形成一物質層於該半導體基底上;以及去除部分該物質層至暴露該等第一側壁子以及部分該閘極堆疊層之一頂面。 The method of fabricating a semiconductor device according to claim 1, wherein after the cap layer is removed, the step of forming the second sidewalls comprises: forming a layer of a substance on the semiconductor substrate; and removing a portion of the layer of material to expose the layer Waiting for the first sidewall and a portion of the top surface of the gate stack. 如請求項8所述之製作半導體裝置的方法,其中去除部分該物質層包括進行一非等向性蝕刻製程。 A method of fabricating a semiconductor device according to claim 8, wherein removing a portion of the material layer comprises performing an anisotropic etching process. 如請求項1所述之製作半導體裝置的方法,其中去除部分該等第一側壁子之前,各該第二側壁子直接接觸相對應的該第一側壁子。 The method of fabricating a semiconductor device according to claim 1, wherein each of the second sidewalls directly contacts the corresponding first sidewall before removing a portion of the first sidewalls. 如請求項10所述之製作半導體裝置的方法,其中各該第二側壁子相對於該閘極堆疊層之一頂面之一高度係實質上相等於各該第一側壁子相對於該閘極堆疊層之該頂面之一高度。 The method of fabricating a semiconductor device according to claim 10, wherein a height of each of the second sidewalls relative to a top surface of the gate stack layer is substantially equal to each of the first sidewalls relative to the gate One of the top faces of the stacked layers. 如請求項1所述之製作半導體裝置的方法,其中該閘極堆疊層包括至少一閘極層以及至少一介電層。 The method of fabricating a semiconductor device according to claim 1, wherein the gate stack layer comprises at least one gate layer and at least one dielectric layer. 如請求項12所述之製作半導體裝置的方法,其中該閘極層包括導電材料。 A method of fabricating a semiconductor device according to claim 12, wherein the gate layer comprises a conductive material. 如請求項1所述之製作半導體裝置的方法,其中該等第一側壁子包括導電材料。 A method of fabricating a semiconductor device according to claim 1, wherein the first sidewalls comprise a conductive material. 如請求項1所述之製作半導體裝置的方法,其中該蓋層與該等第二側壁子均包括絕緣材料。 A method of fabricating a semiconductor device according to claim 1, wherein the cap layer and the second sidewalls each comprise an insulating material. 一種半導體裝置,包括:一半導體基底;以及至少一閘極結構設置於該半導體基底上,其中該閘極結構包括由下而上依序堆疊之一第一閘極、一第二閘極與一上表面不平行於該半導體基底之頂蓋層,以及第三閘極位於該第一閘極以及該第二閘極的一側,且該第三閘極之一頂端較該頂蓋層的一頂端低。 A semiconductor device comprising: a semiconductor substrate; and at least one gate structure disposed on the semiconductor substrate, wherein the gate structure comprises a first gate, a second gate and a first stack sequentially stacked from bottom to top The upper surface is not parallel to the top cover layer of the semiconductor substrate, and the third gate is located at one side of the first gate and the second gate, and one of the top ends of the third gate is opposite to the top cover layer The top is low. 如請求項16所述之半導體裝置,其中該閘極結構另包括:一第一介電層設置於該半導體基底與該第一閘極之間;一第二介電層設置於該第一閘極與該第二閘極之間;以及一L形之第三介電層設置於該第三閘極與該第一閘極及該第二閘極之間,並位於該半導體基底與該第三閘極之間。 The semiconductor device of claim 16, wherein the gate structure further comprises: a first dielectric layer disposed between the semiconductor substrate and the first gate; a second dielectric layer disposed on the first gate Between the pole and the second gate; and an L-shaped third dielectric layer disposed between the third gate and the first gate and the second gate, and located on the semiconductor substrate and the first Between the three gates. 如請求項16所述之半導體裝置,其中該第一閘極包括浮置閘極(floating gate),該第二閘極包括控制閘極(control gate),且該第三閘極包括選擇閘極(select gate)。 The semiconductor device of claim 16, wherein the first gate comprises a floating gate, the second gate comprises a control gate, and the third gate comprises a selection gate (select gate). 如請求項16所述之半導體裝置,其中該閘極結構與相鄰的另一閘極結構互相鏡射對稱。 The semiconductor device of claim 16, wherein the gate structure and the adjacent another gate structure are mirror-symmetrical to each other.
TW101117347A 2012-05-16 2012-05-16 Semiconductor device and method of fabricating the same TWI539581B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101117347A TWI539581B (en) 2012-05-16 2012-05-16 Semiconductor device and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101117347A TWI539581B (en) 2012-05-16 2012-05-16 Semiconductor device and method of fabricating the same

Publications (2)

Publication Number Publication Date
TW201349461A TW201349461A (en) 2013-12-01
TWI539581B true TWI539581B (en) 2016-06-21

Family

ID=50157538

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101117347A TWI539581B (en) 2012-05-16 2012-05-16 Semiconductor device and method of fabricating the same

Country Status (1)

Country Link
TW (1) TWI539581B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9871050B1 (en) * 2016-08-10 2018-01-16 Globalfoundries Inc. Flash memory device

Also Published As

Publication number Publication date
TW201349461A (en) 2013-12-01

Similar Documents

Publication Publication Date Title
US20150348986A1 (en) Non-volatile memory and method of forming the same
US9711657B2 (en) Silicide process using OD spacers
KR20120067634A (en) Methods of manufacturing a semiconductor device
US9431256B2 (en) Semiconductor device and manufacturing method thereof
JP2017220474A (en) Semiconductor device and manufacturing method of the same
US8575683B1 (en) Semiconductor device and method of fabricating the same
US8502297B2 (en) Non-volatile memory and fabricating method thereof
CN102194698B (en) Method for forming semiconductor devices
JP2004207744A (en) Semiconductor memory having vertical potential trap memory cell and its manufacturing method
US9023726B1 (en) Method of fabricating semiconductor device
TWI539581B (en) Semiconductor device and method of fabricating the same
TWI543303B (en) Non-volatile memory cell and fabricating method thereof
US8722488B2 (en) Method of fabricating semiconductor device
US20060063329A1 (en) Method of fabricating a non-volatile memory
TWI506735B (en) Method of manufacturing non-volatile memory
TWI517302B (en) Method of fabricating semiconductor device
US20150008504A1 (en) Non-volatile memory structure and manufacturing method thereof
TWI555120B (en) Semiconductor device and method for fabricating the same
TW201624622A (en) Non-volatile memory cell, NAND-type non-volatile memory and method of manufacturing thereof
TWI473252B (en) Data storage structure, memory device and process for fabricating memory device
US9318396B1 (en) Method of fabricating flash memory
TWI775303B (en) Memory device and manufacturing method thereof
TWI532149B (en) Semiconductor device and method of fabricating the same
TWI495090B (en) Memory structure and fabricating method thereof
CN114068396B (en) Semiconductor structure and forming method thereof