TWI451533B - Method of forming embedded flash memory - Google Patents

Method of forming embedded flash memory Download PDF

Info

Publication number
TWI451533B
TWI451533B TW100149630A TW100149630A TWI451533B TW I451533 B TWI451533 B TW I451533B TW 100149630 A TW100149630 A TW 100149630A TW 100149630 A TW100149630 A TW 100149630A TW I451533 B TWI451533 B TW I451533B
Authority
TW
Taiwan
Prior art keywords
layer
substrate
cell region
flash memory
metal
Prior art date
Application number
TW100149630A
Other languages
Chinese (zh)
Other versions
TW201327727A (en
Inventor
Hsiu Han Liao
Lu Ping Chiang
Original Assignee
Winbond Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Winbond Electronics Corp filed Critical Winbond Electronics Corp
Priority to TW100149630A priority Critical patent/TWI451533B/en
Publication of TW201327727A publication Critical patent/TW201327727A/en
Application granted granted Critical
Publication of TWI451533B publication Critical patent/TWI451533B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Description

嵌入式快閃記憶體的製造方法Embedded flash memory manufacturing method

本發明是有關於一種半導體元件的製造方法,且特別是有關於一種嵌入式快閃記憶體的製造方法。The present invention relates to a method of fabricating a semiconductor device, and more particularly to a method of fabricating an embedded flash memory.

半導體元件為了達到降低成本及簡化製程步驟的需求,將晶胞區(memory cell)與周邊區(periphery cell)的元件整合在同一晶片上已逐漸成為一種趨勢,例如將快閃記憶體與邏輯元件整合在同一晶片上,則稱之為嵌入式快閃記憶體。In order to reduce the cost and simplify the process steps of semiconductor components, it has become a trend to integrate components of the memory cell and the peripheral cell on the same wafer, such as flash memory and logic components. Integrated on the same chip, it is called embedded flash memory.

一般而言,邏輯元件使用矽化鈷製程以降低阻值並提升元件效能。隨著設計準則因半導體構件尺寸之縮小而逐漸減小時,快閃記憶體之字元線至源極/汲極的距離亦縮減,此時若使用矽化鈷製程,可能會發生字元線至源極/汲極的漏電現象。因此,目前尚無一種可以製作出兼顧兩者效能之嵌入式快閃記憶體的方法。In general, logic components use a cobalt-cobalt process to reduce resistance and improve component performance. As the design criteria are gradually reduced due to the shrinking size of the semiconductor component, the distance from the word line to the source/drain of the flash memory is also reduced. At this time, if a cobalt telluride process is used, a word line to source may occur. Leakage of pole/bungee. Therefore, there is currently no way to create an embedded flash memory that takes into account both performances.

有鑑於此,本發明提供一種嵌入式快閃記憶體的製造方法,可以在保持邏輯元件之效能的情況下,避免快閃記憶體之字元線至源極/汲極的漏電現象。In view of the above, the present invention provides a method for fabricating an embedded flash memory, which can avoid the leakage phenomenon of the word line to the source/drain of the flash memory while maintaining the performance of the logic element.

本發明提供一種嵌入式快閃記憶體之字元線的製造方法。提供具有晶胞區與周邊區的基底,多個隔離結構配置於基底中並分別具有從基底突出的多個突起部,相鄰突起部之間配置有一介電圖案。移除晶胞區上的部分介電圖案,以於相鄰突起部之間形成一第一開口。於晶胞區之第一開口之間形成第一導體層。移除周邊區上的介電圖案,以於相鄰突起部之間形成一第二開口。於周邊區的基底上依序形成絕緣層及第二導體層,以填入第二開口中。移除晶胞區之各突起部的一部分。於晶胞區與周邊區的基底上依序形成絕緣材料層、第三導體材料層、第一金屬矽化物材料層及罩幕材料層。進行至少一圖案化製程,以於晶胞區上形成多個第一閘極結構以及於周邊區上形成至少一第二閘極結構。於第一閘極結構之間的基底上、第二閘極結構之頂面上、及第二閘極結構之兩側的基底上形成第二金屬矽化物層。The invention provides a method for manufacturing a word line of an embedded flash memory. A substrate having a cell region and a peripheral region is provided, and the plurality of isolation structures are disposed in the substrate and respectively have a plurality of protrusions protruding from the substrate, and a dielectric pattern is disposed between the adjacent protrusions. A portion of the dielectric pattern on the cell region is removed to form a first opening between adjacent protrusions. A first conductor layer is formed between the first openings of the unit cell region. The dielectric pattern on the peripheral region is removed to form a second opening between adjacent protrusions. An insulating layer and a second conductor layer are sequentially formed on the substrate of the peripheral region to fill the second opening. A portion of each protrusion of the cell region is removed. An insulating material layer, a third conductive material layer, a first metal telluride material layer, and a mask material layer are sequentially formed on the substrate of the unit cell region and the peripheral region. At least one patterning process is performed to form a plurality of first gate structures on the cell region and at least one second gate structure on the peripheral region. A second metal telluride layer is formed on the substrate between the first gate structures, the top surface of the second gate structure, and the substrates on both sides of the second gate structure.

在本發明之一實施例中,各第一閘極結構包括依序配置在基底上的穿隧氧化層、浮置閘極、絕緣層、控制閘極、第一金屬矽化物層及罩幕層,且第二閘極結構包括依序配置在基底上的閘氧化層及閘極。In an embodiment of the invention, each of the first gate structures includes a tunneling oxide layer, a floating gate, an insulating layer, a control gate, a first metal telluride layer, and a mask layer sequentially disposed on the substrate. And the second gate structure includes a gate oxide layer and a gate electrode sequentially disposed on the substrate.

基於上述,在本發明之嵌入式快閃記憶體中,由於晶胞區之閘極結構的上部為罩幕層,因此用於周邊區之矽化鈷製程並不會發生於閘極結構的頂部。所以,晶胞區之字元線至源極/汲極的漏電現象不會發生而降低快閃記憶體的效能。另一方面,周邊區之邏輯元件中使用矽化鈷製程可以降低阻值並提升元件效能。Based on the above, in the embedded flash memory of the present invention, since the upper portion of the gate structure of the cell region is the mask layer, the cobalt halide process for the peripheral region does not occur at the top of the gate structure. Therefore, the leakage from the word line to the source/drain of the cell region does not occur and the performance of the flash memory is lowered. On the other hand, the use of a cobalt antimonide process in the logic elements of the peripheral region reduces the resistance and improves component performance.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

圖1A至1H為根據本發明一實施例所繪示之嵌入式快閃記憶體的剖面示意圖。1A to 1H are schematic cross-sectional views of an embedded flash memory according to an embodiment of the invention.

首先,請參照圖1A,提供基底100。基底100例如是矽基底,具有晶胞區100a與周邊區100b。多個隔離結構101配置於基底100中並分別具有從基底100突出的多個突起部101a。隔離結構101例如是淺溝渠隔離(STI)結構。相鄰突起部101a之間配置有一介電圖案102。各介電圖案102包括氧化物圖案103及位於氧化物圖案上的氮化物圖案105。氧化物圖案103的材料例如是氧化矽。氮化物圖案105的材料例如是氮化矽。形成上述結構的方法包括於基底100上形成多個介電圖案102。然後,以介電圖案102為罩幕,移除部分基底100,以於基底100中形成多個溝渠。接著,於基底100上形成氧化矽層以填入溝渠中。之後,移除部分氧化矽層直到露出介電圖案102的表面。First, referring to FIG. 1A, a substrate 100 is provided. The substrate 100 is, for example, a germanium substrate having a cell region 100a and a peripheral region 100b. The plurality of isolation structures 101 are disposed in the substrate 100 and have a plurality of protrusions 101a protruding from the substrate 100, respectively. The isolation structure 101 is, for example, a shallow trench isolation (STI) structure. A dielectric pattern 102 is disposed between adjacent protrusions 101a. Each of the dielectric patterns 102 includes an oxide pattern 103 and a nitride pattern 105 on the oxide pattern. The material of the oxide pattern 103 is, for example, cerium oxide. The material of the nitride pattern 105 is, for example, tantalum nitride. The method of forming the above structure includes forming a plurality of dielectric patterns 102 on the substrate 100. Then, a portion of the substrate 100 is removed with the dielectric pattern 102 as a mask to form a plurality of trenches in the substrate 100. Next, a ruthenium oxide layer is formed on the substrate 100 to fill the trench. Thereafter, a portion of the hafnium oxide layer is removed until the surface of the dielectric pattern 102 is exposed.

繼之,請參照圖1B,移除晶胞區100a上的部分介電圖案102,以於相鄰突起部101a之間形成一第一開口104。具體言之,移除晶胞區100a上的部分介電圖案102為移除晶胞區100a上的氮化物圖案105。上述移除步驟包括於基底100上形成圖案化光阻層。然後,圖案化光阻層為罩幕,進行蝕刻製程來移除晶胞區100a上的氮化物圖案105,並留下胞區100a上的氧化物圖案103。之後,於晶胞區100a及周邊區100b的基底100上形成第一導體材料層107。第一導體材料層107覆蓋晶胞區100a及周邊區100b並填入第一開口104中。第一導體材料層107的材料例如是多晶矽,且其形成方法包括進行化學氣相沈積製程。Next, referring to FIG. 1B, a portion of the dielectric pattern 102 on the cell region 100a is removed to form a first opening 104 between adjacent protrusions 101a. Specifically, the partial dielectric pattern 102 on the cell region 100a is removed to remove the nitride pattern 105 on the cell region 100a. The removing step includes forming a patterned photoresist layer on the substrate 100. Then, the patterned photoresist layer is a mask, and an etching process is performed to remove the nitride pattern 105 on the cell region 100a, and the oxide pattern 103 on the cell region 100a is left. Thereafter, a first conductor material layer 107 is formed on the substrate 100 of the cell region 100a and the peripheral region 100b. The first conductor material layer 107 covers the cell region 100a and the peripheral region 100b and is filled in the first opening 104. The material of the first conductive material layer 107 is, for example, polycrystalline germanium, and the method of forming the same includes performing a chemical vapor deposition process.

接著,請參照圖1C,移除周邊區100b上的第一導體材料層107,以及移除晶胞區100a上的部分第一導體材料層107直到曝露出突起部101a的頂面。因此,於晶胞區100a之第一開口104之間形成第一導體層106。上述移除步驟例如是進行蝕刻製程或化學機械研磨製程。Next, referring to FIG. 1C, the first conductive material layer 107 on the peripheral region 100b is removed, and a portion of the first conductive material layer 107 on the cell region 100a is removed until the top surface of the protrusion 101a is exposed. Therefore, the first conductor layer 106 is formed between the first openings 104 of the cell region 100a. The above removal step is, for example, an etching process or a chemical mechanical polishing process.

之後,請參照圖1D,移除周邊區100b上的介電圖案102,以於相鄰突起部101a之間形成一第二開口108。第二開口108曝露出周邊區100b的部分基底100。上述移除步驟包括於基底100上形成僅覆蓋晶胞區100a的圖案化光阻層。然後,以圖案化光阻層為罩幕,進行蝕刻製程來移除周邊區100b上的介電圖案102。Thereafter, referring to FIG. 1D, the dielectric pattern 102 on the peripheral region 100b is removed to form a second opening 108 between the adjacent protrusions 101a. The second opening 108 exposes a portion of the substrate 100 of the perimeter region 100b. The removing step includes forming a patterned photoresist layer covering only the cell region 100a on the substrate 100. Then, using the patterned photoresist layer as a mask, an etching process is performed to remove the dielectric pattern 102 on the peripheral region 100b.

繼之,於周邊區100b的基底100上依序形成絕緣層110及第二導體層112,以填入第二開口108中。形成絕緣層110及第二導體層112的方法包括形成僅覆蓋晶胞區100a的氮化矽層。然後,進行熱氧化法,以於周邊區100b之露出的基底100上形成絕緣層110。絕緣層110例如為氧化矽層。接著,於晶胞區100a及周邊區100b的基底100上依序形成第二導體材料層及圖案化光阻層。第二導體材料層例如為多晶矽層,且其形成方法包括進行化學氣相沈積製程。之後,以圖案化光阻層為罩幕,移除晶胞區100a上的第二導體材料層。繼之,移除覆蓋晶胞區100a的氮化矽層。Then, the insulating layer 110 and the second conductor layer 112 are sequentially formed on the substrate 100 of the peripheral region 100b to be filled in the second opening 108. The method of forming the insulating layer 110 and the second conductor layer 112 includes forming a tantalum nitride layer covering only the cell region 100a. Then, a thermal oxidation method is performed to form the insulating layer 110 on the exposed substrate 100 of the peripheral region 100b. The insulating layer 110 is, for example, a ruthenium oxide layer. Next, a second conductive material layer and a patterned photoresist layer are sequentially formed on the substrate 100 of the cell region 100a and the peripheral region 100b. The second conductive material layer is, for example, a polycrystalline germanium layer, and the method of forming the same includes performing a chemical vapor deposition process. Thereafter, the second conductive material layer on the cell region 100a is removed by using the patterned photoresist layer as a mask. Next, the tantalum nitride layer covering the cell region 100a is removed.

然後,請參照圖1E,移除晶胞區100a之各突起部101a的一部分。上述移除步驟包括於基底100上選擇性地形成覆蓋周邊區100b之圖案化光阻層。然後,進行回蝕刻製程,以移除晶胞區100a之各突起部101a的一部分。因此,於晶胞區100a上形成具有突起部101b的隔離結構101。Then, referring to FIG. 1E, a portion of each of the protrusions 101a of the cell region 100a is removed. The removing step includes selectively forming a patterned photoresist layer covering the peripheral region 100b on the substrate 100. Then, an etch back process is performed to remove a portion of each of the protrusions 101a of the cell region 100a. Therefore, the isolation structure 101 having the protrusions 101b is formed on the unit cell region 100a.

接著,於晶胞區100a與周邊區100b的基底100上依序形成絕緣材料層114、第三導體材料層116、第一金屬矽化物材料層118及罩幕材料層120。絕緣材料層114例如為ONO複合層。第三導體層116例如為多晶矽層。第一金屬矽化物材料層118例如為矽化鎢層。罩幕材料層120例如為氮化矽層。上述堆疊層的形成方法包括各自進行化學氣相沈積製程。Next, an insulating material layer 114, a third conductive material layer 116, a first metal telluride material layer 118, and a mask material layer 120 are sequentially formed on the substrate 100 of the cell region 100a and the peripheral region 100b. The insulating material layer 114 is, for example, an ONO composite layer. The third conductor layer 116 is, for example, a polysilicon layer. The first metal halide material layer 118 is, for example, a tungsten germanium layer. The mask material layer 120 is, for example, a tantalum nitride layer. The method of forming the above stacked layers includes performing a chemical vapor deposition process each.

之後,請參照圖1F,進行至少一圖案化製程,以於晶胞區100a上形成多個第一閘極結構122以及於周邊區100b上形成至少一第二閘極結構124。各第一閘極結構122包括依序配置在基底100上的穿隧氧化層103a、浮置閘極106a、絕緣層114a、控制閘極116a、第一金屬矽化物層118a及罩幕層120a。第二閘極結構124包括依序配置在基底100上的閘氧化層110a及閘極112a。由於晶胞區100a與周邊區100b上所形成的堆疊膜層不同,因此需進行至少一次的圖案化製程來形成第一閘極結構122及第二閘極結構124。舉例來說,第一次圖案化製程可以移除周邊區100b上的絕緣材料層114、第三導體材料層116、第一金屬矽化物材料層118及罩幕材料層120;第二次圖案化製程可以對晶胞區100a上的堆疊膜層進行圖案化;且第三次圖案化製程可以對周邊區100b上的堆疊膜層進行圖案化。Thereafter, referring to FIG. 1F, at least one patterning process is performed to form a plurality of first gate structures 122 on the cell region 100a and at least one second gate structure 124 on the peripheral region 100b. Each of the first gate structures 122 includes a tunneling oxide layer 103a, a floating gate 106a, an insulating layer 114a, a control gate 116a, a first metal telluride layer 118a, and a mask layer 120a. The second gate structure 124 includes a gate oxide layer 110a and a gate 112a sequentially disposed on the substrate 100. Since the cell layer 100a is different from the stacked film layer formed on the peripheral region 100b, at least one patterning process is required to form the first gate structure 122 and the second gate structure 124. For example, the first patterning process may remove the insulating material layer 114, the third conductive material layer 116, the first metal telluride material layer 118, and the mask material layer 120 on the peripheral region 100b; the second patterning The process can pattern the stacked film layers on the cell region 100a; and the third patterning process can pattern the stacked film layers on the peripheral region 100b.

圖2為圖1F的上視示意圖,其具有I-I'剖面線及II-II'剖面線,圖IF是沿圖2的I-I'剖面線所繪示,圖1F-1是沿圖2的II-II'剖面線所繪示。為清楚說明起見,圖2僅繪示晶胞區100a的浮置閘極106a與控制閘極116a,以及周邊區100b的閘極112a。特別要說明的是,在圖1F-1中是以於周邊區100b上形成一個第二閘極結構124為例來說明之,但本發明並不以此為限。本領域具有通常知識者應瞭解,周邊區100b上可具有高壓元件區及低壓元件區,且形成於高壓元件區及低壓元件區上的閘氧化層可具有不同的厚度。2 is a top view of FIG. 1F, having an I-I' hatching line and a II-II' hatching line, FIG. IF is taken along the line I-I' of FIG. 2, and FIG. 1F-1 is along the figure. The II-II' hatching of 2 is shown. For clarity of illustration, FIG. 2 only shows the floating gate 106a of the cell region 100a and the control gate 116a, and the gate 112a of the peripheral region 100b. In particular, in FIG. 1F-1, a second gate structure 124 is formed on the peripheral region 100b as an example, but the invention is not limited thereto. It should be understood by those of ordinary skill in the art that the peripheral region 100b can have a high voltage device region and a low voltage device region, and the gate oxide layers formed on the high voltage device region and the low voltage device region can have different thicknesses.

上述圖1A至圖1F是依I-I'剖面線繪示,以下則藉依II-II'剖面線繪示之圖1F-1、1G至圖1H進行後續說明。1A to 1F are shown in cross-section along the line I-I', and the following description will be made by referring to Figs. 1F-1, 1G to 1H according to the II-II' hatching.

請參照圖1G,於各第一閘極結構122及第二閘極結構124的側壁上分別形成第一間隙壁126及第二間隙壁128。各第一間隙壁126與第二間隙壁128的厚度不同。在一實施例中,第二間隙壁128的厚度大於各第一間隙壁126的厚度。各第一間隙壁126與第二間隙壁128可各自為單層結構,或由多種不同材料形成的多層結構。形成第一間隙壁126與第二間隙壁128的方法為本領域具有通常知識者所熟知,於此不再贅述。Referring to FIG. 1G, a first spacer 126 and a second spacer 128 are formed on sidewalls of each of the first gate structure 122 and the second gate structure 124, respectively. The thickness of each of the first spacers 126 and the second spacers 128 is different. In an embodiment, the thickness of the second spacer 128 is greater than the thickness of each of the first spacers 126. Each of the first spacers 126 and the second spacers 128 may each be a single layer structure or a multilayer structure formed of a plurality of different materials. The method of forming the first spacer 126 and the second spacer 128 is well known to those of ordinary skill in the art and will not be described again.

然後,於第一閘極結構122之間的基底100上、第二閘極結構124之頂面上、及第二閘極結構124之兩側的基底100上形成第二金屬矽化物層130。第二金屬矽化物層130的形成方法於基底100上濺鍍金屬層。金屬層的材料例如是鈷。繼之,進行一退火處理,使得部份鈷層與矽反應形成第二金屬矽化物層130。之後,移除未反應的金屬層。Then, a second metal germanide layer 130 is formed on the substrate 100 between the first gate structures 122, the top surface of the second gate structure 124, and the substrate 100 on both sides of the second gate structure 124. The second metal telluride layer 130 is formed by sputtering a metal layer on the substrate 100. The material of the metal layer is, for example, cobalt. Subsequently, an annealing treatment is performed to cause a portion of the cobalt layer to react with the ruthenium to form the second metal ruthenide layer 130. Thereafter, the unreacted metal layer is removed.

本發明之第一金屬矽化物層118a的材料包括矽化鎢,而第二金屬矽化物層130的材料包括矽化鈷。於周邊區100a之邏輯元件中使用矽化鈷製程可以降低阻值並提升元件效能。此時,由於晶胞區100a之第一閘極結構122的上部為罩幕層120a,因此矽化鈷製程並不會發生於第一閘極結構122的頂部。所以,晶胞區100a之字元線至源極/汲極的漏電現象不會於後續自我對準窗(self-aligned contect)製程中發生而影響快閃記憶體的可靠性。另外,於晶胞區102a中,控制閘極116a上方配置有第一金屬矽化物層118a,也可以降低作為字元線之控制閘極116a的阻值。The material of the first metal telluride layer 118a of the present invention includes tungsten telluride, and the material of the second metal telluride layer 130 includes cobalt telluride. The use of a cobalt antimonide process in the logic elements of the peripheral region 100a reduces the resistance and improves component performance. At this time, since the upper portion of the first gate structure 122 of the cell region 100a is the mask layer 120a, the cobalt telluride process does not occur at the top of the first gate structure 122. Therefore, the leakage from the word line to the source/drain of the cell region 100a does not occur in the subsequent self-aligned contect process and affects the reliability of the flash memory. Further, in the cell region 102a, the first metal germanide layer 118a is disposed above the control gate 116a, and the resistance of the control gate 116a as the word line can be lowered.

接下來,進行包括沈積、微影、蝕刻等多次半導體製程,以完成本發明之嵌入式快閃記憶體,如圖1H所示。圖1G至圖1H中間未描述的步驟為本領域具有通常知識者所熟知,於此不再贅述。Next, a plurality of semiconductor processes including deposition, lithography, etching, and the like are performed to complete the embedded flash memory of the present invention, as shown in FIG. 1H. The steps not described in the middle of Figures 1G to 1H are well known to those of ordinary skill in the art and will not be described again.

請參照圖1H,於晶胞區100a之各第一閘極結構122之頂面上形成一氮化矽圖案132。於周邊區100b之基底100上形成介電層134。介電層134可以是單層或多層結構。介電層134覆蓋第二閘極結構124且具有一開口136曝露出第二閘極結構124之一側的部分基底100。於基底100上更形成金屬層138,以填入第一閘極結構122之間的間隙中與開口136中,且金屬層138與第二金屬矽化物層130電性連接。金屬層138例如是鎢層。此外,於晶胞區100a上,金屬層138的頂面與氮化矽圖案132的頂面大致共平面。於晶胞區100a上的金屬層138作為位元線層。於周邊區102b上的金屬層138作為導電插塞。至此,完成本發明之嵌入式快閃記憶體的製作。Referring to FIG. 1H, a tantalum nitride pattern 132 is formed on the top surface of each of the first gate structures 122 of the cell region 100a. A dielectric layer 134 is formed on the substrate 100 of the peripheral region 100b. Dielectric layer 134 can be a single layer or a multilayer structure. The dielectric layer 134 covers the second gate structure 124 and has an opening 136 that exposes a portion of the substrate 100 on one side of the second gate structure 124. A metal layer 138 is further formed on the substrate 100 to fill the gap between the first gate structures 122 and the openings 136, and the metal layer 138 is electrically connected to the second metal telluride layer 130. The metal layer 138 is, for example, a tungsten layer. Further, on the cell region 100a, the top surface of the metal layer 138 is substantially coplanar with the top surface of the tantalum nitride pattern 132. The metal layer 138 on the cell region 100a serves as a bit line layer. The metal layer 138 on the peripheral region 102b serves as a conductive plug. So far, the fabrication of the embedded flash memory of the present invention has been completed.

綜上所述,在本發明之嵌入式快閃記憶體中,由於晶胞區之閘極結構的上部為罩幕層,因此用於周邊區之矽化鈷製程並不會發生於閘極結構的頂部。所以,晶胞區之字元線至源極/汲極的漏電現象不會發生而降低快閃記憶體的效能。另一方面,周邊區之邏輯元件中使用矽化鈷製程可以降低阻值並提升元件效能。In summary, in the embedded flash memory of the present invention, since the upper portion of the gate structure of the cell region is a mask layer, the cobalt telluride process for the peripheral region does not occur in the gate structure. top. Therefore, the leakage from the word line to the source/drain of the cell region does not occur and the performance of the flash memory is lowered. On the other hand, the use of a cobalt antimonide process in the logic elements of the peripheral region reduces the resistance and improves component performance.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

100...基底100. . . Base

100a...晶胞區100a. . . Cell area

100b...周邊區100b. . . Surrounding area

101...隔離結構101. . . Isolation structure

101a、101b...突起部101a, 101b. . . Protrusion

102...介電圖案102. . . Dielectric pattern

103...氧化物圖案103. . . Oxide pattern

103a...穿隧氧化層103a. . . Tunneling oxide layer

104...第一開口104. . . First opening

105...氮化物圖案105. . . Nitride pattern

106...第一導體層106. . . First conductor layer

106a...浮置閘極106a. . . Floating gate

107...第一導體材料層107. . . First conductor material layer

108...第二開口108. . . Second opening

110...絕緣層110. . . Insulation

110a...閘氧化層110a. . . Gate oxide layer

112...第二導體層112. . . Second conductor layer

112a...閘極112a. . . Gate

114...絕緣材料層114. . . Insulating material layer

114a...絕緣層114a. . . Insulation

116‧‧‧第三導體材料層116‧‧‧ Third conductor material layer

116a‧‧‧控制閘極116a‧‧‧Control gate

118‧‧‧第一金屬矽化物材料層118‧‧‧First metal telluride material layer

118a‧‧‧第一金屬矽化物層118a‧‧‧First metal telluride layer

120‧‧‧罩幕材料層120‧‧‧ Cover material layer

120a‧‧‧罩幕層120a‧‧‧ Cover layer

122‧‧‧第一閘極結構122‧‧‧First gate structure

124‧‧‧第二閘極結構124‧‧‧Second gate structure

126‧‧‧第一間隙壁126‧‧‧ first gap

128‧‧‧第二間隙壁128‧‧‧Second gap

130‧‧‧第二金屬矽化物層130‧‧‧Second metal telluride layer

132‧‧‧氮化矽圖案132‧‧‧ nitride pattern

134‧‧‧介電層134‧‧‧ dielectric layer

136‧‧‧開口136‧‧‧ openings

138‧‧‧金屬層138‧‧‧metal layer

圖1A至1H為根據本發明一實施例所繪示之嵌入式快閃記憶體的剖面示意圖。1A to 1H are schematic cross-sectional views of an embedded flash memory according to an embodiment of the invention.

圖2為圖1F的上視示意圖。Figure 2 is a top plan view of Figure 1F.

100...基底100. . . Base

100a...晶胞區100a. . . Cell area

100b...周邊區100b. . . Surrounding area

103a...穿隧氧化層103a. . . Tunneling oxide layer

106a...浮置閘極106a. . . Floating gate

110a...閘氧化層110a. . . Gate oxide layer

112a...閘極112a. . . Gate

114a...絕緣層114a. . . Insulation

116a...控制閘極116a. . . Control gate

118a...第一金屬矽化物層118a. . . First metal telluride layer

120a...罩幕層120a. . . Mask layer

122...第一閘極結構122. . . First gate structure

124...第二閘極結構124. . . Second gate structure

126...第一間隙壁126. . . First spacer

128...第二間隙壁128. . . Second spacer

130...第二金屬矽化物層130. . . Second metal telluride layer

Claims (9)

一種嵌入式快閃記憶體的製造方法,包括:提供具有一晶胞區與一周邊區的一基底,多個隔離結構配置於該基底中並分別具有從該基底突出的多個突起部,相鄰突起部之間配置有一介電圖案;移除該晶胞區上的部分該些介電圖案,以於相鄰突起部之間形成一第一開口;於該晶胞區及該周邊區的該基底上形成一第一導體材料層;移除該周邊區上的該第一導體材料層,以及移除該晶胞區上的部分該第一導體材料層直到曝露出該些突起部的頂面,以於該晶胞區之該些第一開口之間形成一第一導體層;移除該周邊區上的該些介電圖案,以於相鄰突起部之間形成一第二開口;於該周邊區的該基底上依序形成一絕緣層及一第二導體層,以填入該些第二開口中;移除該晶胞區之各突起部的一部分;於該晶胞區與該周邊區的該基底上依序形成一絕緣材料層、一第三導體材料層、一第一金屬矽化物材料層及一罩幕材料層;進行至少一圖案化製程,以於該晶胞區上形成多個第一閘極結構以及於該周邊區上形成至少一第二閘極結構;以及 於該些第一閘極結構之間的該基底上、該第二閘極結構之頂面上、以及該第二閘極結構之兩側的該基底上形成一第二金屬矽化物層。 A method of fabricating an embedded flash memory, comprising: providing a substrate having a cell region and a peripheral region, wherein a plurality of isolation structures are disposed in the substrate and respectively having a plurality of protrusions protruding from the substrate, adjacent a dielectric pattern is disposed between the protrusions; a portion of the dielectric patterns on the cell region are removed to form a first opening between adjacent protrusions; and the cell region and the peripheral region Forming a first conductive material layer on the substrate; removing the first conductive material layer on the peripheral region, and removing a portion of the first conductive material layer on the cell region until a top surface of the protrusions is exposed Forming a first conductor layer between the first openings of the cell region; removing the dielectric patterns on the peripheral region to form a second opening between adjacent protrusions; An insulating layer and a second conductor layer are sequentially formed on the substrate of the peripheral region to fill the second openings; a portion of each protrusion of the cell region is removed; and the cell region is Forming an insulating material layer on the substrate of the peripheral region, a third a bulk material layer, a first metal telluride material layer and a mask material layer; performing at least one patterning process to form a plurality of first gate structures on the cell region and forming at least one on the peripheral region Second gate structure; A second metal telluride layer is formed on the substrate between the first gate structures, the top surface of the second gate structure, and the substrate on both sides of the second gate structure. 如申請專利範圍第1項所述之嵌入式快閃記憶體的製造方法,其中該第一金屬矽化物材料層與該第二金屬矽化物層的材料不同。 The method of fabricating an embedded flash memory according to claim 1, wherein the first metal telluride material layer is different from the second metal germanide layer. 如申請專利範圍第2項所述之嵌入式快閃記憶體的製造方法,其中該第一金屬矽化物材料層的材料包括矽化鎢。 The method of manufacturing an embedded flash memory according to claim 2, wherein the material of the first metal halide material layer comprises tungsten telluride. 如申請專利範圍第2項所述之嵌入式快閃記憶體的製造方法,其中該第二金屬矽化物層的材料包括矽化鈷。 The method of manufacturing an embedded flash memory according to claim 2, wherein the material of the second metal telluride layer comprises cobalt telluride. 如申請專利範圍第1項所述之嵌入式快閃記憶體的製造方法,其中各介電圖案包括一氧化物圖案及位於該氧化物圖案上的一氮化物圖案,且移除該晶胞區上的部分該些介電圖案為移除該晶胞區上的該些氮化物圖案。 The method of fabricating an embedded flash memory according to claim 1, wherein each of the dielectric patterns includes an oxide pattern and a nitride pattern on the oxide pattern, and the unit cell region is removed. The upper portion of the dielectric patterns removes the nitride patterns on the cell region. 如申請專利範圍第1項所述之嵌入式快閃記憶體的製造方法,其中各第一閘極結構包括依序配置在該基底上的一穿隧氧化層、一浮置閘極、一絕緣層、一控制閘極、一第一金屬矽化物層及一罩幕層,且該第二閘極結構包括依序配置在該基底上的一閘氧化層及一閘極。 The method for manufacturing an embedded flash memory according to claim 1, wherein each of the first gate structures comprises a tunneling oxide layer, a floating gate, and an insulating layer sequentially disposed on the substrate. a layer, a control gate, a first metal telluride layer and a mask layer, and the second gate structure comprises a gate oxide layer and a gate sequentially disposed on the substrate. 如申請專利範圍第1項所述之嵌入式快閃記憶體的製造方法,於進行該圖案化製程之後以及形成該第二金屬矽化物層之前,更包括於各第一閘極結構及該第二閘極結構的側壁上分別形成一第一間隙壁及一第二間隙壁。 The method for manufacturing an embedded flash memory according to claim 1, wherein after the patterning process and before forming the second metal germanide layer, each of the first gate structures and the first A first spacer and a second spacer are respectively formed on the sidewalls of the two gate structures. 如申請專利範圍第7項所述之嵌入式快閃記憶體的製造方法,其中各第一間隙壁與該第二間隙壁的厚度不同。 The method of manufacturing an embedded flash memory according to claim 7, wherein each of the first spacers and the second spacer has a different thickness. 如申請專利範圍第1項所述之嵌入式快閃記憶體的製造方法,於形成該第二金屬矽化物層之後,更包括於該晶胞區的該些第一閘極結構之間的間隙中形成一金屬層,且該金屬層與該第二金屬矽化物層電性連接。 The method for manufacturing an embedded flash memory according to the first aspect of the invention, after forming the second metal germanide layer, further comprising a gap between the first gate structures of the cell region. A metal layer is formed in the metal layer, and the metal layer is electrically connected to the second metal halide layer.
TW100149630A 2011-12-29 2011-12-29 Method of forming embedded flash memory TWI451533B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100149630A TWI451533B (en) 2011-12-29 2011-12-29 Method of forming embedded flash memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100149630A TWI451533B (en) 2011-12-29 2011-12-29 Method of forming embedded flash memory

Publications (2)

Publication Number Publication Date
TW201327727A TW201327727A (en) 2013-07-01
TWI451533B true TWI451533B (en) 2014-09-01

Family

ID=49225193

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100149630A TWI451533B (en) 2011-12-29 2011-12-29 Method of forming embedded flash memory

Country Status (1)

Country Link
TW (1) TWI451533B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10971508B2 (en) 2019-04-23 2021-04-06 Winbond Electronics Corp. Integrated circuit and method of manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9728545B2 (en) 2015-04-16 2017-08-08 Taiwan Semiconductor Manufacturing Co., Ltd. Method for preventing floating gate variation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200824047A (en) * 2006-11-27 2008-06-01 Powerchip Semiconductor Corp Method for manufacturing non-volatile memory
TW200917422A (en) * 2007-10-01 2009-04-16 Powerchip Semiconductor Corp Non-volatile memory cell, NAND-type non-volatile memory and method of manufacturing thereof
US20100052036A1 (en) * 2008-09-04 2010-03-04 Powerchip Semiconductor Corp. Memory device and manufacturing method thereof, and semiconductor device
TW201042729A (en) * 2009-05-26 2010-12-01 Winbond Electronics Corp Flash memory and method of fabricating the same
TWI403975B (en) * 2008-11-26 2013-08-01 Alpha Imaging Technology Corp Storage device with real-time trans-coding function and method for data trans-coding and storage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200824047A (en) * 2006-11-27 2008-06-01 Powerchip Semiconductor Corp Method for manufacturing non-volatile memory
TW200917422A (en) * 2007-10-01 2009-04-16 Powerchip Semiconductor Corp Non-volatile memory cell, NAND-type non-volatile memory and method of manufacturing thereof
US20100052036A1 (en) * 2008-09-04 2010-03-04 Powerchip Semiconductor Corp. Memory device and manufacturing method thereof, and semiconductor device
TWI403975B (en) * 2008-11-26 2013-08-01 Alpha Imaging Technology Corp Storage device with real-time trans-coding function and method for data trans-coding and storage
TW201042729A (en) * 2009-05-26 2010-12-01 Winbond Electronics Corp Flash memory and method of fabricating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10971508B2 (en) 2019-04-23 2021-04-06 Winbond Electronics Corp. Integrated circuit and method of manufacturing the same

Also Published As

Publication number Publication date
TW201327727A (en) 2013-07-01

Similar Documents

Publication Publication Date Title
JP5247014B2 (en) 5-channel fin transistor and manufacturing method thereof
US20210125998A1 (en) Semiconductor memory device and a method of fabricating the same
TWI538024B (en) Semiconductor device and method of fabricating the same
CN101026129B (en) Nonvolatile memory device and method of forming the same
KR101150586B1 (en) Method for forming semiconductor device
JP2010045344A (en) Manufacturing method of semiconductor device, and semiconductor device
JP2013089958A (en) Manufacturing method of nonvolatile memory device
CN111244104B (en) SONOS memory and manufacturing method thereof
JP6094023B2 (en) Manufacturing method of semiconductor device
JP4822792B2 (en) Semiconductor device and manufacturing method thereof
JP4290548B2 (en) Manufacturing method of semiconductor device including nonvolatile memory including memory cell having access gate, control gate, and charge storage region
JP5266672B2 (en) Manufacturing method of semiconductor device
TWI653712B (en) Semiconductor structure and manufacturing method thereof
TWI685085B (en) Memory device and method of manufacturing the same
TWI451533B (en) Method of forming embedded flash memory
US6787417B2 (en) Method of fabricating semiconductor device
US6953973B2 (en) Self-aligned trench isolation method and semiconductor device fabricated using the same
JP2010123721A (en) Semiconductor device
KR100654350B1 (en) Fabrication method of semiconductor device and semiconductor device having silicide layer fabricated thereby
TWI469269B (en) Method of forming word line of embedded flash memory
JP4565847B2 (en) Semiconductor device and manufacturing method thereof
TW201624622A (en) Non-volatile memory cell, NAND-type non-volatile memory and method of manufacturing thereof
KR20030060514A (en) Method for manufacturing semiconductor device having triple gate and semiconductor device made by the same
US20040147076A1 (en) Method for fabrication a flash memory device self-aligned contact
JP5286318B2 (en) Semiconductor device