TW200917422A - Non-volatile memory cell, NAND-type non-volatile memory and method of manufacturing thereof - Google Patents

Non-volatile memory cell, NAND-type non-volatile memory and method of manufacturing thereof Download PDF

Info

Publication number
TW200917422A
TW200917422A TW96136786A TW96136786A TW200917422A TW 200917422 A TW200917422 A TW 200917422A TW 96136786 A TW96136786 A TW 96136786A TW 96136786 A TW96136786 A TW 96136786A TW 200917422 A TW200917422 A TW 200917422A
Authority
TW
Taiwan
Prior art keywords
layer
substrate
volatile memory
volatile
gate
Prior art date
Application number
TW96136786A
Other languages
Chinese (zh)
Inventor
Houng-Chi Wei
Shi-Hsien Chen
Original Assignee
Powerchip Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powerchip Semiconductor Corp filed Critical Powerchip Semiconductor Corp
Priority to TW96136786A priority Critical patent/TW200917422A/en
Publication of TW200917422A publication Critical patent/TW200917422A/en

Links

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

A method of manufacturing a non-volatile memory cell is provided. An insulating layer, a first conductive layer, an inter-gates insulating layer, a second conductive layer and a hard mask layer are sequentially formed on a substrate. The hard mask layer, the second conductive layer, the inter-gates insulating layer and the first conductive layer are patterned in order to form a stacked gate structure. A portion of the insulating layer disposed at the sides of the stacked gate structure on the substrate is removed until a surface of the substrate is exposed. An epitaxial material layer is formed on the substrate. Next, an ion implant process is performed to form a doping region in the substrate and the epitaxial material layer is converted into a doped epitaxial layer.

Description

200917422 _ 'twf.doc/p 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種記憶體及其製造方法,且特別是 有關於非揮發性記憶胞、NAND型非揮發性記憶體及其製 造方法。 【先前技術】 在各種記憶體產品中,具有可進行多次資料之存入、 讀取、抹除等動作,且存入之資料在斷電後也不會消失之 優點的非揮發性§己憶體’已成為個人電腦和電子設備所廣 泛採用的一種記憶體元件。 〃 另一方面,目前業界較常使用的非揮發性記憶體陣列 包括反或閘(NOR)型陣列結構與反及閘(NAND)型陣列結 構。由於反及閘(NAND)型陣列的非揮發性記憶體結構是 使各記憶胞串接在一起,其積集度與面積利用率較反或閘 (NOR)型陣列的非揮發性記憶體佳,已經廣泛地應用在; 種電子產品中。 然而,隨著積體電路的蓬勃發展,記憶體的橫向尺寸 日益縮小,因此,記憶體中之通道長度亦隨之所小。這麼 一來,在操作非揮發性記憶體時,在不同偏壓下,更容易 造成程式化干擾(program disturb),而使記憶體被錯誤寫入 的情况’導致§己憶體的可靠度(reliability)降低。一般而‘令, 藉由在s己憶體的源極/汲極區植入高濃度的摻質可以減低 熱載子注入(hot carrier injection ’ HCI)問題,以及改善記憮 胞在編程(program)時的干擾問題。 200917422 >twf.doc/p 但是’上达提純極/没極區之摻質濃度的作法,合使 得源極/沒極區之間容易發生不 through),如此將嚴重影響記憶體元件的電性表現 服電性擊穿的問題’典型的方奸需進行環狀植入㈣〇 impianta—)等抗擊穿植人製程。林的是,當使用環狀植 入技術來製造記舰時,元件的可靠度也會相對降低。 由此可知,在目前元件小型化的趨勢下,如何在 η u 的空間中兼顧元件的積集度及元件可靠度, 的重點之一。 Μ九 【發明内容】 有鑑於此,本發明提供一種非揮發性記憶胞、NAND 型非揮發性記憶體及其製造方法,能夠獲得較淺的接面深 度,且可避免習知的種種問題以及提高元件可靠度。 本發明提出一種非揮發性記憶胞的製作方法。首先, 在基底上依序形成絕緣層、第一導體層、閘間絕緣層、 二導體層以及硬罩幕層。然後,圖案化硬罩幕層、^二 體層、閘間絕緣層與第一導體層,以形成堆疊閛極結構。 之後’移除堆疊閘極結構兩旁的基底上之絕緣層,直至曝 露出基底表面。隨後,於所曝露出的基底上形成磊晶材料 層。接著,進行一離子植入製程,於基底中形成—摻雜區: 以及使蟲晶材料層轉變成一摻雜屋晶材料層。 °° 依照本發明的實施例所述之非揮發性記憶胞的製作 方法’上述之磊晶材料層的形成方法例如是進行一選 磊晶成長製程。 、擇性 200917422 itwf.doc/p 、、依照本發明的實施例所述之非揮發性記憶胞的製作 方法,上述之移除部分絕緣層直至曝露出基底表面的^法 例如是進行一回蝕刻製程。 、依照本發明的實施例所述之非揮發性記憶胞的製作 方法’上述之氧化層的形成方法例如是進行一再氧化製程。 、依,、、、本發明的實施例所述之非揮發性記憶胞的^作 方法在閘極結構形成之後,以及移除部分絕緣層之前, 更包括在堆疊閘極結構的侧壁形成一氧化層。 、依照本發明的實施例所述之非揮發性記憶胞的製作 方法,在移除部分絕緣層之後、形成磊晶材料層之前,更 包括進行一預清潔步驟。 依,系本發明的實施例所述之非揮發性記憶胞的製作 方法,上述之第—導體層的材質例如是摻雜多晶矽。 依照本發明的實施例所述之非揮發性記憶胞的製作 方法,上述之第二導體層的材質例如是摻雜多晶矽。200917422 _ 'twf.doc/p IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD The present invention relates to a memory and a method of fabricating the same, and more particularly to a non-volatile memory cell, a NAND type non-volatile memory Body and its manufacturing method. [Prior Art] Among various memory products, there are non-volatile § which can perform the operations of depositing, reading, erasing, etc., and the stored data will not disappear after power-off. Recalling 'has become a memory component widely used in personal computers and electronic devices. 〃 On the other hand, the non-volatile memory arrays currently used in the industry include reverse OR gate (NOR) array structures and reverse gate (NAND) array structures. Since the non-volatile memory structure of the NAND type array is such that the memory cells are connected in series, the degree of integration and area utilization is better than that of the non-volatile memory of the gate (NOR) type array. , has been widely used in; electronic products. However, with the development of the integrated circuit, the lateral size of the memory is shrinking, and therefore the length of the channel in the memory is also small. In this way, when operating non-volatile memory, under different bias voltages, it is more likely to cause program disturb, and the memory is written incorrectly, which leads to the reliability of the § memory. Reliability) lower. In general, by implanting a high concentration of dopants in the source/drain regions of the sigma memory, the hot carrier injection (HCI) problem can be reduced, and the memory cells can be improved in programming. The interference problem at the time. 200917422 >twf.doc/p However, 'the method of extracting the concentration of the dopant in the electrode/no-polar region makes it easy for the source/no-polar region to pass through, which will seriously affect the memory of the memory device. Sexual performance of electrical breakdown problems 'Typical traitors need to carry out ring implants (four) 〇impianta-) and other anti-penetration procedures. Lin's is that when ring-shaped implant technology is used to build a ship, the reliability of the component is relatively reduced. From this, it is known that in the current trend of miniaturization of components, how to balance the degree of component accumulation and component reliability in the space of η u is one of the focuses. In view of the above, the present invention provides a non-volatile memory cell, a NAND-type non-volatile memory, and a method of fabricating the same, which can achieve a shallow junction depth and avoid various conventional problems and Improve component reliability. The invention provides a method for preparing a non-volatile memory cell. First, an insulating layer, a first conductor layer, an inter-gate insulating layer, a two-conductor layer, and a hard mask layer are sequentially formed on the substrate. Then, the hard mask layer, the dummy layer, the inter-gate insulating layer and the first conductor layer are patterned to form a stacked drain structure. The insulating layer on the substrate on both sides of the stacked gate structure is then removed until the substrate surface is exposed. Subsequently, a layer of epitaxial material is formed on the exposed substrate. Next, an ion implantation process is performed to form a doped region in the substrate: and to transform the layer of the germanic material into a layer of doped house material. The method for forming the non-volatile memory cell according to the embodiment of the present invention is, for example, a method of forming an epitaxial material layer by performing a selective epitaxial growth process. The method for fabricating a non-volatile memory cell according to an embodiment of the present invention, wherein the method of removing a portion of the insulating layer until the surface of the substrate is exposed is, for example, performing an etch back. Process. The method for producing a non-volatile memory cell according to an embodiment of the present invention is as follows. A method of forming the above-mentioned oxide layer is, for example, performing a reoxidation process. The method for fabricating a non-volatile memory cell according to an embodiment of the present invention, after forming the gate structure, and before removing a portion of the insulating layer, further comprises forming a sidewall on the sidewall of the stacked gate structure. Oxide layer. The method for fabricating a non-volatile memory cell according to an embodiment of the present invention further includes performing a pre-cleaning step after removing a portion of the insulating layer and before forming the layer of the epitaxial material. According to a method of fabricating a non-volatile memory cell according to an embodiment of the present invention, the material of the first conductor layer is, for example, doped polysilicon. According to a method of fabricating a non-volatile memory cell according to an embodiment of the invention, the material of the second conductor layer is, for example, doped polysilicon.

依照本發明的實施例所述之非揮發性記憶胞的製作 方法,上述之第二導體層例如是由一導體材料層與一金屬 石夕化物層組成。 β 本發明另提出一種非揮發性記憶胞,其包括基底、堆 3:閘極結構、絕緣層以及摻雜蠢晶材料層。其中,堆疊閘 極結構配置在基底上。此堆疊閘極結構例如是從基底往上 依序由第一導體層、閘間絕緣層、第二導體層與硬罩幕層 所組成。另外’絕緣層配置在基底、氧化層與堆疊閘極結 構之間。摻雜磊晶材料層配置在堆疊閘極結構兩側之基底 200917422 2twf.doc/p 上。換雜區配置在摻雜磊晶材料層下方之基底中。 依照本發明的實施例所述之非揮發性記憶胞,更包括 氧化層,配置在堆疊閘極結構側壁。 依照本發明的實施例所述之非揮發性記憶胞,上述之 第一導體層的材質例如是摻雜多晶石夕。 々依照本發明的實施例所述之非揮發性記憶胞,上述之 第一導體層的材質例如是摻雜多晶石夕。According to a method of fabricating a non-volatile memory cell according to an embodiment of the present invention, the second conductor layer is composed of, for example, a conductor material layer and a metal ceramsite layer. The present invention further provides a non-volatile memory cell comprising a substrate, a stack 3: a gate structure, an insulating layer, and a doped material layer. Wherein, the stacked gate structure is disposed on the substrate. The stacked gate structure is composed of, for example, a first conductor layer, an inter-gate insulating layer, a second conductor layer and a hard mask layer from the substrate upward. Further, the insulating layer is disposed between the substrate, the oxide layer, and the stacked gate structure. A layer of doped epitaxial material is disposed on the substrate on both sides of the stacked gate structure 200917422 2twf.doc/p. The swap region is disposed in the substrate underlying the layer of doped epitaxial material. The non-volatile memory cell according to an embodiment of the invention further includes an oxide layer disposed on the sidewall of the stacked gate structure. According to the non-volatile memory cell of the embodiment of the present invention, the material of the first conductor layer is, for example, doped polycrystalline. According to the non-volatile memory cell of the embodiment of the present invention, the material of the first conductor layer is, for example, doped polysilicon.

外一依照本發明的實施例所述之非揮發性記憶胞,上述之 第二導體層例如是由—導體材料層與—金屬魏物層組 成。 本^明又提種NAND型非揮發性記憶體的製作 =。首先,提供-基底,基底具有選擇閘極區域。然後^ j上依序形成絕緣層、第—導體層、閘間絕緣層。接 :部極區域的至少部分的開間介電層,以曝露In addition to the non-volatile memory cell according to the embodiment of the present invention, the second conductor layer is composed of, for example, a layer of a conductor material and a layer of a metal material. This book also mentions the production of NAND type non-volatile memory. First, a substrate is provided, the substrate having a selective gate region. Then, an insulating layer, a first conductor layer, and an inter-gate insulating layer are sequentially formed on the surface. Connect: at least part of the open dielectric layer of the pole region to expose

以及:置莫ί體層。之後’在基底上依序形成第二導體層 曝露出的部分第^ = — ¥體層覆盖關介電層以及所 導❹ 導體層。繼之,圖案化硬罩幕層、第二 結構、==層與第—導體層’以形成多個堆疊閘極 除各掩田、擇閑極區域形成選擇閘極結構。之後,移 =侧極結構兩旁的二 選擇閘極‘兩相。接者,於各堆疊閘極結構及 接著,的基底上形成^材料層。 擇閘極結槿 f入私,於堆疊閘極結構兩側以及選 貝1之土底中形成—軸區’以及使遙晶材料 -twf.d〇c/p 200917422 層轉變成一摻雜磊晶材料層。 依照本發明的實施例所述之NAND型非揮發性 體的製作方法,上述之Μ㈣層齡彡成方^進二 一選擇性磊晶成長製程。 疋退仃 體的明的實施例所述之NAND型非揮發性記憶 叫方法例如是緣層直至曝露出基底表 體的述之nand型非揮發性記憶 氣化製程。'、上述之氧化層的形成方法例如是進行一再 體的ίίίΓ月Γ實施例所述之NAND型非揮發性記憶 絕緣層t “轉_纟_彡成之後,叹移除部分 二則’更U括在堆疊閘極結構的側壁形成—氧化芦。 體的月Π施例所述之NAND型非揮發性記曰隐 Ο 之前,更⑽除部分絕緣層之後、形成悬晶材料層 炅包括進仃—預清潔步驟。 體的明=施例所述之NAND型非揮發性記憶 石夕。作方法,上述之第—導體層的材質例如是摻雜多晶 體的例所述之麵D型非揮發性記憶 矽。 上述之第二導體層的材質例如是摻雜多晶 體的述之NAND型非揮發性記憶 ;L弟二導體層例如是由導體材料層與 200917422 -twf.doc/p 金屬石夕化物層組成。 本發明再提-種NAND型非揮發性記贿,I 基底、多個堆㈣極結構、選擇_結構、絕緣層以 雜蟲晶材料層。其中,基底具有―選擇閘極區域。多個^ 疊閘極結構串聯配置於基底上,選擇閘極結構配置於這此 堆疊閘極結構兩側之選擇_區域的基底上。各堆極 結構例如是從基底往上依序由第—導體層、閘間絕^、 第二導體層與硬罩幕層雜成。另外,絕緣層配置在^堆 疊閘極結構、基底與氧化層之間,以及配置在選擇問極姓 構與基底之間。摻雜磊晶材料層配置在各堆疊閘極結構^ 側及該選擇閘極結構兩側之基底上。摻雜區配置在堆叠問 極結構兩側以及選擇閘極結構兩側之基底中。 依照本發明的實施例所述之NAND型非揮發性記憶 體,更包括一氧化層,配置在堆疊閘極結構的側壁。在二 實施例中’氧化層更包括同時配置在選擇閘極結構的侧壁。 依照本發明的實施例所述之NAND型非揮發性記憶 體,上述之弟一導體層的材質例如是摻雜多晶石夕。 依照本發明的實施例所述之NAND型非揮發性記携 體,上述之第二導體層的材質例如是摻雜多晶矽。 X ° 依照本發明的實施例所述之NAND型非揮發性記憶 體,上述之第二導體層例如是由導體材料層與金屬矽化物 層組成。 本發明之方法是在形成摻雜區之前,利用選擇性蠢晶 成長製程於基底上形成蟲晶材料層。本發明之結構在摻雜 200917422 , twf.doc/p 區上方配置有磊晶材料層。因此,可進一步降低記憶體元 件的源極/及極接面(source/drajn juncti〇n,s/d juncti〇n)深 度,以提高元件的可靠度。 為讓本發明之上述特徵和優點能更明顯易懂,下文特 舉較佳實施例,並配合所附圖式,作詳細說明如下。 【實施方式】 以下,將以非揮發性記憶體的製作為例進—步說明本And: set the body layer. Then, the portion of the second conductor layer exposed on the substrate is sequentially exposed to cover the dielectric layer and the conductive layer. Subsequently, the hard mask layer, the second structure, the == layer and the first conductor layer are patterned to form a plurality of stacked gates. After that, shift = two sides of the side pole structure to select the gate 'two phases. The material layer is formed on each of the stacked gate structures and the substrate. Selecting the gate poles into the private, forming the -axis region on both sides of the stacked gate structure and the bottom of the shell 1 and transforming the layer of the telecrystalline material -twf.d〇c/p 200917422 into a doped epitaxial Material layer. According to the method for fabricating a NAND-type non-volatile body according to an embodiment of the present invention, the above-mentioned 四(4) layer age 彡 ^ ^ 二 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性The NAND type non-volatile memory method described in the embodiment of the present invention is, for example, a nand-type non-volatile memory gasification process in which the edge layer is exposed to the surface of the substrate. The method for forming the above-mentioned oxide layer is, for example, a NAND type non-volatile memory insulating layer described in the embodiment of the present invention. After the conversion, the second part is removed. Included in the sidewall of the stacked gate structure - oxidized reed. Before the NAND-type non-volatile recording of the body described in the example of the moon, the (10) after the partial insulation layer is formed, the layer of the suspension material is formed. - Pre-cleaning step. The body of the invention is a non-volatile memory of the NAND type described in the example. The material of the first conductor layer is, for example, the surface of the doped polycrystal. The material of the second conductor layer is, for example, a NAND-type non-volatile memory of doped polycrystals; the second conductor layer of L is, for example, a layer of conductive material and 200917422 -twf.doc/p The present invention further proposes a NAND type non-volatile bribe, an I substrate, a plurality of stack (four) pole structures, a selection structure, and an insulating layer as a layer of a parasitic material. The substrate has a "selective gate region". Multiple gate gate structures are arranged in series on the substrate The gate structure is disposed on the substrate of the selection_region on both sides of the stacked gate structure. The stack structure is, for example, sequentially from the substrate to the first conductor layer, the gate region, and the second conductor layer. The hard mask layer is mixed. In addition, the insulating layer is disposed between the stack gate structure, the substrate and the oxide layer, and is disposed between the selected gate and the substrate. The doped epitaxial material layer is disposed in each of the stacked gates. The pole structure is on the side and the substrate on both sides of the selected gate structure. The doped region is disposed in the substrate on both sides of the stacked gate structure and on both sides of the selected gate structure. The NAND type non-destruction according to the embodiment of the present invention The volatile memory further includes an oxide layer disposed on the sidewall of the stacked gate structure. In the second embodiment, the 'oxide layer further includes sidewalls disposed at the same time to select the gate structure. According to an embodiment of the present invention The NAND type non-volatile memory, the material of the above-mentioned conductor layer is, for example, doped polycrystalline stone. The NAND type non-volatile carrier according to the embodiment of the present invention, the second conductor layer The material is, for example, more doped X ° According to the NAND type non-volatile memory of the embodiment of the present invention, the second conductor layer is composed of a conductor material layer and a metal halide layer, for example. The method of the present invention is to form a doped region. Previously, a layer of insect crystal material was formed on the substrate by a selective stupid growth process. The structure of the present invention is provided with an epitaxial material layer above the doping 200917422, twf.doc/p region. Therefore, the memory device can be further reduced. Source/drain junction (source/drajn juncti〇n, s/d juncti〇n) depth to improve the reliability of the component. In order to make the above features and advantages of the present invention more obvious, the following is a special The preferred embodiment, in conjunction with the drawings, is described in detail below. [Embodiment] Hereinafter, the production of non-volatile memory will be taken as an example.

° 發明,但此例並非用以限定本發明的範圍。圖1Λ至圖1H 為依照本發明實施例所繪示之非揮發性記憶體的製造流程 的不意圖,此非揮發性記憶體的製造流程内含本發明的非 揮發性圯憶胞以及NAND型非揮發性記憶體的製作方法。 首先,請參照圖1A,提供基底100,基底1〇〇例如為 =基底或是其他合適之半導體基底。基底1〇〇具有記憶胞 區101與周邊電路區103,記憶胞區1〇1具有選擇閘極區 域 105。 〇 ,後,於記憶胞區的基底100上形成絕緣層,以 作為牙随介電層102,以及於周邊電路區1()3的基底⑽ 上形成閘介電層刚。穿随介電層搬與閘介電層1〇4的 t料例如為氧化砍,而二者的形成方法為本領域中具有通 f知識者所熟知,於此不再贅述。此外,穿隨介電層102 的厚度與閘介電層1〇4的厚度也並不相同。 接著,於基底100上形成導體層106。導體層1〇6的 材料例如是摻雜多晶砍。導體層1〇6的形成方法,例如是 先進行化學氣相沈積製程來形成一層未摻雜多晶矽層,之 200917422 丄 itwf.doc/p 以形成之;或者也可以採用臨場 進行化學氣相沈積製程,以形成 後再進行離子植入製程, (in-situ)植入摻質的方式, 之。The invention is not intended to limit the scope of the invention. FIG. 1A to FIG. 1H are schematic diagrams showing a manufacturing process of a non-volatile memory according to an embodiment of the present invention. The non-volatile memory manufacturing process of the present invention includes the non-volatile memory cell of the present invention and a NAND type. A method of making non-volatile memory. First, referring to FIG. 1A, a substrate 100 is provided, such as a substrate or other suitable semiconductor substrate. The substrate 1 has a memory cell region 101 and a peripheral circuit region 103, and the memory cell region 101 has a gate region 105. Thereafter, an insulating layer is formed on the substrate 100 of the memory cell region to form the gate dielectric layer 102, and a gate dielectric layer is formed on the substrate (10) of the peripheral circuit region 1 () 3. The t-material which is carried by the dielectric layer and the gate dielectric layer 1〇4 is, for example, oxidized chopping, and the formation methods of the two are well known to those skilled in the art and will not be described herein. In addition, the thickness of the pass-through dielectric layer 102 is not the same as the thickness of the gate dielectric layer 1〇4. Next, a conductor layer 106 is formed on the substrate 100. The material of the conductor layer 1 〇 6 is, for example, doped polycrystalline dicing. The method for forming the conductor layer 1〇6 is, for example, a chemical vapor deposition process to form an undoped polysilicon layer, which is formed by 200917422 丄itwf.doc/p; or a chemical vapor deposition process may be used. After the formation, the ion implantation process is performed, and the method of implanting the dopant is in-situ.

繼之’於基底⑽均成M絕緣層,轉為開間 電層⑽。關介電層⑽的材料例如是氧化 氮化石夕。關介電層1G8的形成方法,例如是先以熱氧化 法形成於導體層⑽上形成第—層氧㈣層,接著再進行 化學氣相沈積製程以於氧切層上形成—層氮切層,之 後再於氮切層上形成第二層氧切層。#然,閘間介電 層⑽的㈣也相是氧切、氧似地化料其他的介 電材料。 之後,請參照圖1B,於記憶胞區1〇1的基底1〇〇上 形成圖案化罩幕層11G。圖案化罩幕層11()例如是圖案化 光阻層,其暴露出記憶胞區1〇1中的選擇閘極區域1〇5的 至少-部分關介電層⑽以及周邊電路區⑽的閘間介 電層108。Subsequent to the substrate (10), an M insulating layer is turned into an open dielectric layer (10). The material of the dielectric layer (10) is, for example, ZnO. The method for forming the dielectric layer 1G8 is, for example, first forming a first layer of oxygen (four) layer on the conductor layer (10) by thermal oxidation, and then performing a chemical vapor deposition process to form a layer of nitrogen nitride on the oxygen layer. Then, a second layer of oxygen cut layer is formed on the nitrogen cut layer. #然, (4) of the dielectric layer (10) of the gate is also an oxygen-cut, oxygen-like material other dielectric material. Thereafter, referring to Fig. 1B, a patterned mask layer 11G is formed on the substrate 1 of the memory cell region 1〇1. The patterned mask layer 11() is, for example, a patterned photoresist layer that exposes at least a portion of the gate layer (10) of the selected gate region 1〇5 in the memory cell region 1〇1 and the gate of the peripheral circuit region (10). Inter-dielectric layer 108.

然後,以圖案化罩幕層H〇為罩幕,進行姓刻製程, 移除暴露出來的閘間介電層1〇8,以暴露出導體層1〇6。 接著,請參照圖1C,移除圖案化罩幕層110。移除圖 案化罩幕層110的方法例如是先以氧電漿灰化圖案化罩幕 層110之後,再進行濕式清洗製程。 繼之,於基底100上形成導體層112,且導體層ι12 覆蓋閘間介電層108以及所曝露出的部分導體層1〇6。同 樣地’導體層112的材料以及形成方法例如與導體層ι〇6 12 . itwf.doc/p 相同。隨後,於基底100上形成一層硬罩幕層116。硬罩 幕層116的材質例如是氧化石夕,其例如是以四乙基正石夕酸 鹽(TEOS)為反應氣體’進行化學氣相沈積法’以形成之。 在一實施例中,還可選擇性地於導體層112上形成金 屬矽化物層114,以降低元件的電阻值。金屬矽化物層114 的材料例如為矽化鎢、矽化鈦、矽化鈷、矽化钽、矽化鎳、 矽化鉑或矽化鈀。金屬矽化物層114的形成方法例如是化 學氣相沈積製程。Then, the patterned mask layer H is used as a mask to perform the engraving process, and the exposed inter-gate dielectric layer 1〇8 is removed to expose the conductor layer 1〇6. Next, referring to FIG. 1C, the patterned mask layer 110 is removed. The method of removing the patterned mask layer 110 is, for example, a patterning of the mask layer 110 by oxygen plasma ashing, followed by a wet cleaning process. Next, a conductor layer 112 is formed on the substrate 100, and the conductor layer ι12 covers the inter-gate dielectric layer 108 and the exposed portion of the conductor layer 1〇6. Similarly, the material of the conductor layer 112 and the formation method are the same as, for example, the conductor layer ι 6 12 . itwf.doc/p. Subsequently, a hard mask layer 116 is formed on the substrate 100. The material of the hard mask layer 116 is, for example, oxidized stone, which is formed, for example, by chemical vapor deposition using tetraethyl oxalate (TEOS) as a reaction gas. In one embodiment, a metal telluride layer 114 may also be selectively formed over the conductor layer 112 to reduce the resistance of the component. The material of the metal telluride layer 114 is, for example, tungsten telluride, titanium telluride, cobalt telluride, antimony telluride, nickel telluride, platinum telluride or palladium telluride. The method of forming the metal telluride layer 114 is, for example, a chemical vapor deposition process.

200917422 接著,請參照圖1D,進行圖案化製程,將記憶胞區 101的硬罩幕層116、金屬矽化物層114、導體層112、閘 間介電層108與導體層i〇6ffi案化,以形成多個堆疊間二 結構118以及於選擇閘極區域1〇5之基底1〇〇上形成選擇 閘極結構120。堆疊閘極結構118自基底1〇〇起依序是由 導體層106、閘間介電層應、導體層112、金屬石夕化物層 1U與硬罩幕層116所構成。其中,導體層祕作為浮置 閘極(floating gate),而導體層112與金屬矽化物層ιΐ4丘 同構成控制閘極gate)。另外,位於選^極區域 阳的選擇閘極結構12〇則作為選擇閘極㈣沈如㈣的之 用。上述’堆疊閘極結構118與穿隨介電層1〇2以及選擇 閑,結構12〇與穿隨介電層1〇2構成非揮發性記憶體中的 吕己f思胞。 另外在進订上速圖案化製程時,也 路區103的硬罩幕層116、全屬欲絲β 9 U谓周逯 盥墓栌思1屬物層114、導體層11 體層廳圖案化,以形成堆疊閘 13 200917422 !twf.doc/p 極結構122與閘介電層104構成非揮發性記憶體之周邊電 路區中的電晶體。 要說明的是,在本實施例中,是以圖1D繪示之選擇 閘極結構120為例做說明,並不用以限定本發明。在其他 實施例中,選擇閘極結構亦可具有不同的配置與形^方 法。例如,在圖2B的步驟中可移除選擇閘極區域1〇5中 Ο. Ο 全部的閘間介電層應’而形成之選擇閘極結構則不包括 閘間介電層。 接下來,請繼續參照圖1E至圖1H,在這些圖式中皆 僅對於記憶胞區1G1做說明,而省錢示出周邊電路區 103 〇 繼之,,請參照1E’在堆疊閘極結構ιΐ8與選擇問極 ::I20域,後’接著在堆疊閘極結構118關壁形成 氧化層124的材料例如是氧化砍,其形成方 4卜屏’用進订一再氧化(㈣灿此。11)製程。上述之氧 的韻是㈣堆疊閘極結構118在後續製程中不 随介電ί 外目1F ’移除堆疊閘極結構118兩側之穿 直至曝露出基底刚表面。上述之移除穿 程。此^ _^的方法例如是進行回餘刻_ing back)製 層不受到損傷。心°α 01之選擇閘極區域105,以使膜 釦之,請參照圖1G,於堆疊閘極結構118兩側之所 200917422 ▲ ltwf.doc/p 曝露出的基底100上形成一磊晶材料層126。磊晶材料層 126的材料例如是磊晶矽,其形成方法例如是利用選擇性 邱 b日成長製程(selective epitaxial growth process,SEG process)。此處的選擇性磊晶成長製程技術為本領域中具有 通常知識者所熟知,於此不再贅述。另外,在形成磊晶材 料層126之鈾,可以先利用進行一預清潔(pre_cieaning)步 η 驟’清除基底100表面的雜質,以提高磊晶材料層126的 膜層品質。 +然後,請參照圖1H,在形成磊晶材料層〗26之後, ,著進行一離子植入製程128 ’以於基底丨⑻中形成摻雜 區130。此時’離子植入製程128亦會在磊晶材料層i26 中植入摻質而轉變成為摻雜磊晶材料層132。 接著,後續再視元件需求來進行一般熟悉的製程步 驟,而廷些步驟已為公知技術,於此不再另行說明。200917422 Next, referring to FIG. 1D, a patterning process is performed to form the hard mask layer 116, the metal telluride layer 114, the conductor layer 112, the inter-gate dielectric layer 108, and the conductor layer i〇6ffi of the memory cell region 101. The selection gate structure 120 is formed on the substrate 1A on which the plurality of inter-stack structures 118 are formed and on the gate region 1〇5. The stacked gate structure 118 is formed by the conductor layer 106, the inter-gate dielectric layer, the conductor layer 112, the metal-lithium layer 1U and the hard mask layer 116 from the substrate 1 in this order. Wherein, the conductor layer acts as a floating gate, and the conductor layer 112 forms a control gate with the metal telluride layer ΐ4. In addition, the selective gate structure 12〇 located in the positive electrode region is used as the selection gate (4) sinking (4). The above-mentioned stacked gate structure 118 and the dielectric layer 1〇2 and the optional dielectric layer 12〇 and the dielectric layer 1〇2 constitute a non-volatile memory in the non-volatile memory. In addition, when the upper speed patterning process is advanced, the hard mask layer 116 of the road area 103, the whole genus β 9 U, and the body layer 114 of the tomb 1 and the body layer of the conductor layer 11 are patterned. To form a stacked gate 13 200917422 !twf.doc / p pole structure 122 and gate dielectric layer 104 constitute a transistor in the peripheral circuit region of the non-volatile memory. It should be noted that, in this embodiment, the selective gate structure 120 illustrated in FIG. 1D is taken as an example for illustration and is not intended to limit the present invention. In other embodiments, the select gate structure can also have different configurations and methods. For example, in the step of Fig. 2B, the select gate region of the selected gate region 1〇5 can be removed. The select gate structure formed by the entire gate dielectric layer does not include the gate dielectric layer. Next, please continue to refer to FIG. 1E to FIG. 1H. In these figures, only the memory cell region 1G1 is explained, and the money is shown to show the peripheral circuit region 103. Next, please refer to 1E' in the stacked gate structure. Ιΐ8 and select the pole::I20 domain, then 'the material that forms the oxide layer 124 at the gate of the stacked gate structure 118, for example, is oxidized and chopped, and the formed square 4 screen is oxidized by the order ((4).) )Process. The above-mentioned oxygen rhyme is that (4) the stacked gate structure 118 does not follow the dielectric ί 1F ' removes both sides of the stacked gate structure 118 in the subsequent process until the substrate is exposed. The above removal process. The method of this ^_^ is, for example, to carry out the _ing back) layer without damage. Selecting the gate region 105 of the heart °α 01 to buckle the film, please refer to FIG. 1G to form an epitaxial material on the substrate 100 exposed on the sides of the stacked gate structure 118 200917422 ▲ ltwf.doc/p Layer 126. The material of the epitaxial material layer 126 is, for example, an epitaxial germanium, and the formation method thereof is, for example, a selective epitaxial growth process (SEG process). The selective epitaxial growth process techniques herein are well known to those of ordinary skill in the art and will not be described again. In addition, in the uranium forming the epitaxial material layer 126, impurities in the surface of the substrate 100 may be removed by performing a pre-cleaning step η to improve the film quality of the epitaxial material layer 126. + Then, referring to FIG. 1H, after forming the epitaxial material layer 26, an ion implantation process 128' is performed to form the doping region 130 in the substrate germanium (8). At this time, the ion implantation process 128 also implants a dopant in the epitaxial material layer i26 to be converted into a doped epitaxial material layer 132. Subsequent revisiting of the component requirements is followed by a generally familiar process step, which is well known in the art and will not be described again.

在其他實施例中,於圖1E至圖1(3之步驟中,在堆疊 閘極、、^構118的側壁形成氧化層丨24時,亦可同時在選擇 ,極結構12〇的侧壁形成氧化層124。接著,移除堆疊間 構118兩側之穿隨介電層1〇2時,亦可同時移除選擇 =結構120兩側之穿隱介電層1〇2。然後,於堆叠問極 、j m兩側的基底100均成遙晶材料層126時,亦可 =於選擇閘極結構12G兩側的基底刚上形成蠢晶材料 值得特別注意的是 為源極/汲極區的摻雜區 ’本實施例之記憶體元件在形成作 之别’利用選擇性蠢晶成長製程於 15 200917422 * itwf.doc/p 基底上形成磊晶材料層。因此,可使記憶體元件獲得深度 較淺的源極/汲極接面(s〇urce/drain junction,S/D juncti〇n),能更有效避免電擊穿(punch through)的問題,而 不舄進行習知的環狀植入(hai〇 impiantati〇n)等抗擊穿植入 製程,且可提高元件的可靠度。 接下來’以圖1H來說明本發明之非揮發性記憶胞與 NAND型非揮發性記憶體。以下說明省略有關元件之各構 件的材料等可能重複的敘述。 请再次參照圖1H,本發明之元件結構包括基底1〇〇、 多個堆疊閘極結構H8、選擇閘極結構120、氧化層124、 絕緣層102、摻雜磊晶材料層132以及摻雜區130。其中, 基底100具有選擇閘極區域1〇5。另外,多個堆疊閘極結 構118串聯配置於基底1〇〇上,選擇閘極結構12〇配置於 這些堆疊閘極結構118兩側之選擇閘極區域1〇5的基底 1〇〇上。每一個堆疊閘極結構118是從基底1〇〇往上依序 由導體層106、閘間絕緣層108、導體層112、金屬矽化物 層114與硬罩幕層U6。 本實施例之氧化層124配置在堆疊閘極結構118的側 壁。絕緣層102配置在堆疊閘極結構118、基底1〇〇與氧 化層124之間,以及配置在選擇閘極結構12〇與基底1〇〇 之間。摻雜磊晶材料層132配置在堆疊閘極結構118兩側 之基底1〇〇上。摻雜區130配置在堆疊閘極結構118兩侧 以及選擇閘極結構120兩側之基底中。 另外,在其他實施例中,氧化層124亦可同時配置在 16 200917422 itwf.doc/p 極結構m的側壁。而且,雜蟲晶材料層m亦 w 5 %·配置在選擇閘極結構〗2〇兩側之基底丨⑻上。 ❹^上所述,本發明之方法與記㈣元件可藉由蟲晶材 縣晶㈣層),來進—步減少源極級極接面深 I ’達到兼顧元件的積集度以及提高元件可靠度之目的。 —雖然本發明已啸佳實補揭露如上,然其並非用以 限定本發明,任何所屬技術領域中具有通常知識者,在不 ° 脫離本發明之精神和範圍内’當可作些許之更動與潤飾, 因此本發明之保護範圍當視後附之申請專利範圍所界定者 為準。 【圖式簡單說明】 圖1A至圖1H為依照本發明實施例所繪示之非揮發 性s己憶體的製造流程的示意圖。 【主要元件符號說明】 100 ·基底 101 :記憶胞區 } 103 :周邊電路區 105 :選擇閘極區域 102 :穿隧介電層 104 :閘介電層 106、112 :導體層 108 :閘間介電層 110 :圖案化罩幕層 1H:金屬矽化物層 17 !twf.doc/p 200917422 116 :硬罩幕層 118、122 :堆疊閘極結構 120 :選擇閘極結構 124 :氧化層 126 ·遙晶材料層 128 :離子植入製程 130 :摻雜區 13 2 .換雜遙晶材料層In other embodiments, in the steps of FIG. 1E to FIG. 1 (3), when the oxide layer 丨 24 is formed on the sidewalls of the stacked gates and the structures 118, the side walls of the pole structure 12 〇 may also be formed at the same time. Oxide layer 124. Next, when the dielectric layer 1〇2 on both sides of the stack structure 118 is removed, the pass-through dielectric layer 1〇2 on both sides of the selection structure 120 can also be removed at the same time. Then, on the stack When the base 100 on both sides of the jm is formed into the layer 126 of the remote crystal material, the formation of the stray crystal material on the substrate on both sides of the gate structure 12G may be particularly important for the source/drain region. The doped region 'the memory element of the present embodiment is formed into a layer of epitaxial material on the substrate of 15 200917422 * itwf.doc/p by using a selective stray growth process. Therefore, the memory device can be deepened. The shallower source/drain junction (s〇urce/drain junction, S/D juncti〇n) can more effectively avoid the problem of electrical punching, without the conventional ring implant (hai〇impiantati〇n) and other anti-breakdown implant processes, and can improve the reliability of the component. Next, take Figure 1H The non-volatile memory cell and the NAND-type non-volatile memory of the present invention will be described below. The description of the materials and the like of the respective components of the device may be omitted as follows. Referring again to FIG. 1H, the component structure of the present invention includes a substrate. a plurality of stacked gate structures H8, a selected gate structure 120, an oxide layer 124, an insulating layer 102, a doped epitaxial material layer 132, and a doped region 130. The substrate 100 has a selected gate region 1〇5. A plurality of stacked gate structures 118 are disposed in series on the substrate 1 , and a gate structure 12 is disposed on the substrate 1 选择 of the selected gate regions 1 〇 5 on both sides of the stacked gate structures 118. The stacked gate structure 118 is sequentially provided from the substrate 1 to the conductor layer 106, the inter-gate insulating layer 108, the conductor layer 112, the metal telluride layer 114 and the hard mask layer U6. The oxide layer 124 of this embodiment is configured. The sidewalls of the gate structure 118 are stacked. The insulating layer 102 is disposed between the stacked gate structure 118, the substrate 1 and the oxide layer 124, and is disposed between the selected gate structure 12A and the substrate 1? Epitaxial material layer 132 is disposed in the stack The substrate is stacked on both sides of the gate structure 118. The doped regions 130 are disposed on both sides of the stacked gate structure 118 and in the substrate on both sides of the gate structure 120. In addition, in other embodiments, the oxide layer 124 It can also be disposed at the side wall of the 16 200917422 itwf.doc/p pole structure m. Moreover, the layer of the impurity crystal material m is also 5% disposed on the substrate 丨(8) on both sides of the gate structure 〗2 。. As described above, the method of the present invention and the (4) element can further reduce the depth of the source-level junction by using the crystal layer (four) layer of the crystal crystal material to achieve the integration of the components and improve the reliability of the component. The purpose. </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The scope of protection of the present invention is therefore defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A to FIG. 1H are schematic diagrams showing a manufacturing process of a non-volatile simon memory according to an embodiment of the present invention. [Main component symbol description] 100 · Substrate 101 : Memory cell region 103 : Peripheral circuit region 105 : Select gate region 102 : Tunneling dielectric layer 104 : Gate dielectric layer 106 , 112 : Conductor layer 108 : Gate device Electrical layer 110: patterned mask layer 1H: metal telluride layer 17 !twf.doc/p 200917422 116: hard mask layer 118, 122: stacked gate structure 120: selective gate structure 124: oxide layer 126 · remote Crystal material layer 128: ion implantation process 130: doped region 13 2 . replacement of the remote crystal material layer

1818

Claims (1)

!twf.doc/p 直 Ο u 以 200917422 十、申請專利範圍: 1.—種非揮發性記憶胞的製作方法,包括: 在-基底上依序形成-絕緣層、—第—導❹、 間絕緣層、一第二導體㉟以及—硬罩幕層;3 該第圖ίίί硬罩幕層、該第&quot;導體層、該_絕緣層與 以弟冷體層,以形成一堆疊閘極結構; 至曝結構兩旁的該基底上之該絕緣層 於所曝露出的該基底上形成一磊晶材料層;以及 進行-離子植入製程,於該基底中形成— 及使該蟲晶材料層轉變成—摻聽晶材料層。… 作方Hi專利範㈣1項所述之非揮發性記憶胞的製 蠢晶成長製Γ緣晶材料層的形成方法包括進行—選擇性 作方in專利範圍第1顧述之非揮發性記憶胞的製 ·!、/=移除部分該絕緣層直至曝露出該基底表面的 万沄包括進行一回蝕刻製程。 你古、土廿申叫專利範圍第1項所述之非揮發性記憶胞的製 作方法,〃 T該氧化層的形成方法包括進行一再氧化製程。 你古、5.如^請專·1項所狀非揮紐記憶胞的製 法,其中在該堆疊閘極結構之後,以及移除部分該絕 緣層之前’更包括在該堆疊閘極結構的侧壁形成一氧化層。 乍方法’射在雜部分該躲狀後、戦綠晶材料 19 &gt;twf.doc/p 200917422 層之前,更包括進行一預清潔步驟。 7·如申請專利第i項所述之非 作方法,其中該第-導體層的材質包括摻雜卜曰己:肊眺 8.如申請專利範圍第i項所述之非 = 作方法,其中該第二導體層的材質包括摻雜胞的衣 9·如申請專利範圍第i項所述之料= 作方法,其中該第二導體層包括由—導 。己U脃的衣 Ο Ο 石夕化物層組成。 I括由導體材料層與-金屬 10.—種非揮發性記憶胞,包括: 一基底; 一堆疊閘減構,配置在絲紅,其巾 結構包括由該基底往上依序是該第__ ° ° 層、該第二導體層與該硬罩i層體層、該閘間絕緣 構之^絕緣層,配置在該基底、該氧化層與該堆叠閘極結 基底mi晶材制’配置在該堆㈣極結構兩側之該 中。1雜區’配置在該摻雜蟲晶材料層下方之該基底 更包補_ ig項所述之非揮發性記憶胞, 17虱化層,配置在該堆疊閘極結構側壁。 其中該專利範圍第1G項所述之非揮發性記憶胞, '、° 導體層的材質包括摻雜多晶矽。 .如申請專利範圍第1〇項所述之非揮發性記憶胞, 20 itwf.doc/p 200917422 其中該第二導體層的材質包括摻雜多晶矽。 第1G項所叙轉雜記憶胞, 組2該第—¥體層包括由一導體材料層與一金屬石夕化物層 15.-種NANDH轉發性記憶體的製作方法 提供-基底,該基底具有一選擇閘極區域; · Ο Ο 基底增形成―賴、—第—導體層、1 域㈣物刪介電層,《 ,該基底上依序形an體㈣及 層覆蓋該閘間介電層以及所曝露出: 兮第圖硬罩幕層、該第二導體層、該閘間絕緣層與 二以形成多數個堆疊閘極結構,同時於該選 擇閘極£域喊—麵閑極結構; 的該結祕 使—=:==:摻雜區’以及 16.如申請專利範圍第15項所述之NAND型非揮發性 21 2twf.doc/p 200917422 記憶體的製作方法,其中該蠢 行一選擇性磊晶成長製程。 晶材料層的形成方法包括進!twf.doc/p 直Οu to 200917422 X. Patent application scope: 1. A method for fabricating non-volatile memory cells, including: sequentially forming on-substrate-insulation layer,------- An insulating layer, a second conductor 35 and a hard mask layer; 3 the first layer of the mask layer, the first conductor layer, the insulating layer and the cold layer to form a stacked gate structure; The insulating layer on the substrate on both sides of the exposed structure forms a layer of epitaxial material on the exposed substrate; and an ion implantation process is formed in the substrate - and the layer of the german crystal material is converted into - Doping the layer of crystalline material. The method for forming the non-volatile memory cell of the non-volatile memory cell described in the above-mentioned patent specification (4), includes the non-volatile memory cell of the first aspect of the patent range. The method of removing the portion of the insulating layer until the surface of the substrate is exposed includes performing an etching process. The method for producing non-volatile memory cells according to item 1 of the patent scope of the invention, the method of forming the oxide layer includes performing a reoxidation process. You are ancient, 5. If you want to use the method of non-window memory cells, which is included in the side of the stacked gate structure after the stacked gate structure and before removing part of the insulating layer The wall forms an oxide layer. The 乍 method is performed after the impurity portion of the opaque layer, before the eutectic material 19 &gt; twf.doc/p 200917422 layer, and further includes a pre-cleaning step. 7. The method according to claim i, wherein the material of the first conductor layer comprises doping: 肊眺 8. The method according to claim i of claim i, wherein The material of the second conductor layer comprises a doped cell coating. The material of the second conductor layer comprises a guide. It consists of a 衣 脃 Ο Ο 夕 化物 layer. I include a layer of a conductor material and a metal-type non-volatile memory cell, comprising: a substrate; a stacking gate subtraction, arranged in a silk red, the towel structure including the substrate up to the order is the first _ ° ° layer, the second conductor layer and the hard mask i layer layer, the gate insulating structure of the insulating layer, disposed on the substrate, the oxide layer and the stacked gate junction base mi crystal material The middle of the stack (four) pole structure. The one impurity region is disposed on the substrate under the layer of doped insect crystal material to further encapsulate the non-volatile memory cell described in the item _ ig, and the germanium layer is disposed on the sidewall of the stacked gate structure. In the non-volatile memory cell described in item 1G of the patent scope, the material of the ', ° conductor layer includes doped polysilicon. The non-volatile memory cell according to the first aspect of the patent application, 20 itwf.doc/p 200917422 wherein the material of the second conductor layer comprises doped polysilicon. The first memory layer of the group 1G includes a conductive material layer and a metal lithium layer 15. The NANDH transmissive memory is provided by the substrate, and the substrate has a substrate. Selecting a gate region; · Ο 基底 a substrate is formed to form a ray, a first-conductor layer, and a region (four) is a dielectric layer, and the substrate is covered with a dielectric layer (4) and a layer covering the gate dielectric layer and Exposed: 兮 the first hard mask layer, the second conductor layer, the inter-gate insulating layer and the second to form a plurality of stacked gate structures, and at the same time, the selection gate is shouting-surface idle structure; The method of making a memory of the NAND type non-volatile 21 2 twf.doc/p 200917422 memory as described in claim 15 of the patent application, wherein the stupid one Selective epitaxial growth process. a method of forming a layer of crystalline material includes 如圍第15項所述之非揮發性 的&amp;作方法,其中移除部分賴緣層直至曝露出該 基底表面的方法包括崎—⑽刻製程。 ^ μ.如申請專利範圍帛15項所述之NANDs非揮發性 己L體的I作方法’其巾該氧化層的形成方法 再氧化製程。 仃 19.如申請專利範圍第15項所述之ΝΑΝ〇型非 記憶體的製作方法,其巾在闕制極結獅紅後,以 及移除部分該絕緣層之前,更包括在每—該些堆疊問極社 構的側壁形成一氧化層。 σ 二20.如申請專利範圍第15項所述之NAND型非揮發性 C憶體的製作方法’其巾在移除部分⑽緣狀後、形成 該磊晶材料層之前,更包括進行一預清潔步驟。 21·如申請專利範圍第15項所述之NAND型非揮發性 讀、體的製作方法,其巾該第—導體層的材f包括摻雜多 晶石夕0 22.如申請專利範圍第15項所述之NAND型非揮發性 把憶體的製作方法’其巾該第二導體層的材f包括接雜多 晶咬。 2 3.如申請專利範圍第15項所述之NAN D型非揮發性 记k'體的製作方法,其中該第二導體層包括由一導體材料 層與一金屬矽化物層組成。 24.—種NAND型非揮發性記憶體,包括: 22 2twf.doc/p 200917422 一基底’該基底具有一選擇閘極區域; 多數個堆疊閘極結構以及一選擇閘極結構,其中該些 堆璺閘極結構串聯配置於該基底上,該選擇閘極結構配置 於該些堆疊閘極結構兩側之該選擇閘極區域的該基底上, 且每一該些堆疊閘極結構包括由該基底往上依序是一第一 ‘體層、一閘間絕緣層、一第二導體層與一硬罩幕層; =—一絕緣層,配置在每一該些堆疊閘極結構、該基底與 該氧化層之間,以及配置在該選擇閘極結構與該基底之間; 一摻雜磊晶材料層,配置在每一該些堆疊閘極結構兩 側及該選擇閘極結構兩側之該基底上;以及 摻雜區,配置在每一該些堆疊閘極結構兩側以及該 k擇閘極結構兩側之該基底中。 士立25·如申請專利範圍第24項所述之NAND型非揮發性 的Si。更包括一氧化層,配置在每-該些堆疊閘極結構A non-volatile &amp; method of claim 15, wherein the method of removing a portion of the rim layer until the surface of the substrate is exposed comprises a smear- (10) engraving process. ^ μ. The method for forming a non-volatile hexa-L-body of the NANDs as described in claim 15 of the invention, the method for forming the oxide layer, is a reoxidation process.仃 19. The method for manufacturing a non-memory type according to claim 15, wherein the towel is included in each of the stalks after the smashing of the lion red, and before removing the insulating layer. The sidewalls of the stacked interrogation structure form an oxide layer. σ二20. The method for fabricating a NAND type non-volatile C memory material according to claim 15 of the patent application, wherein the towel comprises a pre-preparation after the edge portion (10) is removed and the epitaxial material layer is formed. Cleaning steps. 21. The method of fabricating a NAND type non-volatile read body according to claim 15 of the invention, wherein the material f of the first conductor layer comprises doped polycrystalline stone. The method for fabricating the NAND type non-volatile memory of the present invention is characterized in that the material f of the second conductor layer comprises a bonded polycrystalline bite. 2. The method of fabricating a NAN D-type non-volatile k' body as described in claim 15 wherein the second conductor layer comprises a layer of a conductive material and a layer of a metal halide. 24. A NAND type non-volatile memory comprising: 22 2twf.doc/p 200917422 a substrate having a select gate region; a plurality of stacked gate structures and a select gate structure, wherein the stacks The gate structure is disposed in series on the substrate, the select gate structure is disposed on the substrate of the select gate region on both sides of the stacked gate structures, and each of the stacked gate structures comprises the substrate Upwardly, a first 'body layer, a gate insulating layer, a second conductor layer and a hard mask layer; = an insulating layer disposed on each of the stacked gate structures, the substrate and the Between the oxide layers, and between the selected gate structure and the substrate; a doped epitaxial material layer disposed on both sides of each of the stacked gate structures and the substrate on both sides of the selected gate structure And a doped region disposed in the substrate on both sides of each of the stacked gate structures and on both sides of the k-gate structure.士立25· NAND type non-volatile Si as described in claim 24 of the patent application. Further comprising an oxide layer disposed in each of the stacked gate structures 記悚Π申f專利範圍第25項所述之_°型非揮發性 的^壁。〃魏化層更包括同時配置在該選擇閘極結構 記憶範圍第24項所述之NAND型非揮發性 &quot;78 k第—導體層的材質包括摻雜多晶矽。 記憶體,範賴叙NA_非揮發性 中以弟一^體層的材質包括摻雜多晶矽。 記憶體,項所叙似_非揮發性 石夕化物層^ 由—導體㈣層與—金屬 23Record the non-volatile wall of the _° type described in item 25 of the patent application. The material of the NAND type non-volatile &quot;78 k first conductor layer described in item 24 of the memory structure of the selected gate structure includes the doped polysilicon. Memory, Fan Lai-Shun NA_Non-Volatile The material of the body layer consists of doped polysilicon. Memory, the item is similar to _ non-volatile, the layer of stone, and the layer of the conductor (four) and the metal 23
TW96136786A 2007-10-01 2007-10-01 Non-volatile memory cell, NAND-type non-volatile memory and method of manufacturing thereof TW200917422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96136786A TW200917422A (en) 2007-10-01 2007-10-01 Non-volatile memory cell, NAND-type non-volatile memory and method of manufacturing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96136786A TW200917422A (en) 2007-10-01 2007-10-01 Non-volatile memory cell, NAND-type non-volatile memory and method of manufacturing thereof

Publications (1)

Publication Number Publication Date
TW200917422A true TW200917422A (en) 2009-04-16

Family

ID=44726386

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96136786A TW200917422A (en) 2007-10-01 2007-10-01 Non-volatile memory cell, NAND-type non-volatile memory and method of manufacturing thereof

Country Status (1)

Country Link
TW (1) TW200917422A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103208458A (en) * 2012-01-11 2013-07-17 华邦电子股份有限公司 Manufacturing method of embedded flash memory
TWI451533B (en) * 2011-12-29 2014-09-01 Winbond Electronics Corp Method of forming embedded flash memory
CN105810682A (en) * 2014-12-17 2016-07-27 力晶科技股份有限公司 Non-volatile memory unit, NAND non-volatile memory and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI451533B (en) * 2011-12-29 2014-09-01 Winbond Electronics Corp Method of forming embedded flash memory
CN103208458A (en) * 2012-01-11 2013-07-17 华邦电子股份有限公司 Manufacturing method of embedded flash memory
CN103208458B (en) * 2012-01-11 2015-05-20 华邦电子股份有限公司 Manufacturing method of embedded flash memory
CN105810682A (en) * 2014-12-17 2016-07-27 力晶科技股份有限公司 Non-volatile memory unit, NAND non-volatile memory and manufacturing method thereof

Similar Documents

Publication Publication Date Title
TWI259585B (en) Split gate flash memory and manufacturing method thereof
TW494573B (en) Non-volatile memory device having a metal-oxide-nitride-oxide-semiconductor gate structure and fabrication method thereof
TW560044B (en) Semiconductor memory device having floating gate and manufacturing method of the same
TWI249241B (en) Nonvolatile memory cell with multiple floating gates formed after the select gate
TWI220316B (en) Flash memory cell, flash memory cell array and manufacturing method thereof
TW561532B (en) Salicided gate for virtual ground arrays
TW201005954A (en) Semiconductor memory and method for manufacturing the same
TWI424571B (en) Electronic device including channel regions lying at different elevations and processes of forming the same
TW200417021A (en) Field effect transistors having multiple stacked channels
TWI296145B (en) Non-volatile memory and fabricating method thereof
US20110233631A1 (en) Vertically stacked fusion semiconductor device
JP2006228844A (en) Nonvolatile semiconductor memory device and its manufacturing method
TW201227932A (en) Non-volatile memory and fabricating method thereof
TWI251323B (en) Bit line structure and method for fabricating it
TWI289912B (en) Method of manufacturing a non-volatile memory device
TW200832528A (en) Transistor gates including cobalt silicide, semiconductor device structures including the transistor gates, precursor structures, and methods of fabrication
TWI306670B (en) Memory device
TWI304251B (en) Method of manufacturing split gate flash device
TWI259519B (en) Method of forming a semiconductor device
TW200917422A (en) Non-volatile memory cell, NAND-type non-volatile memory and method of manufacturing thereof
TWI220788B (en) Flash memory cell and fabrication thereof
JP2003203995A (en) Manufacturing method for mask rom
TWI277179B (en) Non-volatile memory device
TW200807725A (en) Non-volatile memory and fabricating method thereof
KR100563095B1 (en) Method for fabricating silicide of semiconductor device