TWI517092B - Three-dimensional gesture sensing device and method of sensing three-dimensional gestures - Google Patents

Three-dimensional gesture sensing device and method of sensing three-dimensional gestures Download PDF

Info

Publication number
TWI517092B
TWI517092B TW102147226A TW102147226A TWI517092B TW I517092 B TWI517092 B TW I517092B TW 102147226 A TW102147226 A TW 102147226A TW 102147226 A TW102147226 A TW 102147226A TW I517092 B TWI517092 B TW I517092B
Authority
TW
Taiwan
Prior art keywords
light source
frequency
alternating current
sampling result
image
Prior art date
Application number
TW102147226A
Other languages
Chinese (zh)
Other versions
TW201428682A (en
Inventor
張鴻德
吳高彬
蔡坤隍
洪尚銘
莊政達
方智仁
郭蔡增
Original Assignee
義明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 義明科技股份有限公司 filed Critical 義明科技股份有限公司
Priority to US14/148,693 priority Critical patent/US9667883B2/en
Priority to CN201410008686.9A priority patent/CN103916660B/en
Priority to CN201610203183.6A priority patent/CN105721786A/en
Publication of TW201428682A publication Critical patent/TW201428682A/en
Application granted granted Critical
Publication of TWI517092B publication Critical patent/TWI517092B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/745Detection of flicker frequency or suppression of flicker wherein the flicker is caused by illumination, e.g. due to fluorescent tube illumination or pulsed LED illumination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/141Control of illumination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/145Illumination specially adapted for pattern recognition, e.g. using gratings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/20Movements or behaviour, e.g. gesture recognition
    • G06V40/28Recognition of hand or arm movements, e.g. recognition of deaf sign language

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • General Health & Medical Sciences (AREA)
  • Psychiatry (AREA)
  • Social Psychology (AREA)
  • Artificial Intelligence (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

3D影像感測裝置與3D影像感測的方法 3D image sensing device and 3D image sensing method

本發明是有關於一種3D影像感測裝置與3D影像感測的方法,尤指一種利用整數倍交流電頻率或預定頻率消除背景光的雜訊的3D影像感測裝置與3D影像感測的方法。 The present invention relates to a 3D image sensing device and a 3D image sensing method, and more particularly to a 3D image sensing device and 3D image sensing method for eliminating background light noise by using an integer multiple of alternating current frequency or a predetermined frequency.

隨著行動裝置的人機介面的演進,人機介面具有朝向自然使用者介面(natural user interface,NUI)的趨勢,其中手勢辨識是最重要的自然使用者介面科技之一。可利用不同的2D影像處理執行手勢辨識。然而,2D影像感測器並無法決定影像的深度,導致大大影響手勢辨識的能力。因此,利用包含深度資訊的3D影像感測是往後執行手勢辨識較佳的方法。 With the evolution of the human-machine interface of mobile devices, the human-machine interface has a tendency toward a natural user interface (NUI), in which gesture recognition is one of the most important natural user interface technologies. Gesture recognition can be performed using different 2D image processing. However, the 2D image sensor cannot determine the depth of the image, which greatly affects the ability of gesture recognition. Therefore, the use of 3D image sensing including depth information is a preferred method of performing gesture recognition in the future.

背景光感測器(Ambient light sensor,ALS)和鄰接感測器(proximity sensor,PS)被廣泛使用在大多數行動裝置上(例如智慧型手機或平板電腦)。因為對於任何行動裝置而言,新元件設置在印刷電路板的空間都將大幅增加行動裝置的成本,所以任何行動裝置都具有整合背景光感測器、鄰接感測器、色溫感測器或溫度感測器與手勢辨識至同一積體電路的需求。然而,現有技術並無法提供整合的解決方案給使用者。 Ambient light sensors (ALS) and proximity sensors (PS) are widely used on most mobile devices (such as smart phones or tablets). Because for any mobile device, the space for new components placed on the printed circuit board will greatly increase the cost of the mobile device, any mobile device has an integrated background light sensor, adjacency sensor, color temperature sensor or temperature. The need for sensors and gestures to be recognized to the same integrated circuit. However, the prior art does not provide an integrated solution to the user.

本發明的一實施例提供一種3D影像感測裝置。該3D影像感測裝置包含一光源、一感測模組及一信號處理模組,其中該感測模組包含一像素 陣列、一控制單元及一光源驅動器。該光源是用以產生具有一K倍交流電頻率或一預定頻率的一閃爍光,其中K為一正實數。該像素陣列是用以取樣該閃爍光以產生一取樣結果,其中該取樣結果包含該光源開啟時的複數個第一影像與該光源關閉時的複數個第二影像;該控制單元對該取樣結果執行一影像處理以產生對應該取樣結果的一頻譜;該光源驅動器是用以根據該K倍交流電頻率或該預定頻率,驅動該光源。該信號處理模組是耦接於該感測模組,用以根據該頻譜,產生該K倍交流電頻率,且根據該複數個第一影像與該複數個第二影像,產生一深度資訊,其中當該K倍交流電頻率在一預定頻率範圍內時,該信號處理模組輸出該K倍交流電頻率至該光源驅動器,或當該K倍交流電頻率在該預定頻率範圍外時,該信號處理模組輸出該預定頻率至該光源驅動器。 An embodiment of the invention provides a 3D image sensing device. The 3D image sensing device includes a light source, a sensing module and a signal processing module, wherein the sensing module comprises a pixel An array, a control unit, and a light source driver. The light source is for generating a scintillation light having a K times alternating current frequency or a predetermined frequency, wherein K is a positive real number. The pixel array is configured to sample the scintillation light to generate a sampling result, wherein the sampling result includes a plurality of first images when the light source is turned on and a plurality of second images when the light source is turned off; the control unit compares the sampling result Performing an image processing to generate a spectrum corresponding to the sampling result; the light source driver is configured to drive the light source according to the K times alternating current frequency or the predetermined frequency. The signal processing module is coupled to the sensing module for generating the K times alternating current frequency according to the frequency spectrum, and generating a depth information according to the plurality of first images and the plurality of second images, wherein The signal processing module outputs the K times alternating current frequency to the light source driver when the K times alternating current frequency is within a predetermined frequency range, or the signal processing module when the K times alternating current frequency is outside the predetermined frequency range The predetermined frequency is output to the light source driver.

本發明的另一實施例提供一種3D影像感測的方法,其中應用於該方法的3D影像感測裝置包含一光源、一感測模組及一信號處理模組。該方法包含該感測模組根據一K倍交流電頻率或一預定頻率,驅動該光源產生具有該K倍交流電頻率或該預定頻率的一閃爍光,其中K為一正實數;該感測模組對該閃爍光取樣以產生一取樣結果,其中該取樣結果包含該光源開啟時的複數個第一影像與該光源關閉時的複數個第二影像;該感測模組對該取樣結果執行一影像處理以產生對應該取樣結果的一頻譜;該信號處理模組直接輸出該預定頻率,或根據該頻譜,產生並輸出該K倍交流電頻率至該感測模組;該信號處理模組根據該複數個第一影像與該複數個第二影像,產生一深度資訊。 Another embodiment of the present invention provides a 3D image sensing device, wherein the 3D image sensing device applied to the method includes a light source, a sensing module, and a signal processing module. The method includes the sensing module driving the light source to generate a flashing light having the K times alternating current frequency or the predetermined frequency according to a K times alternating current frequency or a predetermined frequency, wherein K is a positive real number; the sensing module Sampling the scintillation light to generate a sampling result, where the sampling result includes a plurality of first images when the light source is turned on and a plurality of second images when the light source is turned off; the sensing module performs an image on the sampling result Processing to generate a spectrum corresponding to the sampling result; the signal processing module directly outputs the predetermined frequency, or generates and outputs the K times alternating current frequency to the sensing module according to the spectrum; the signal processing module is based on the complex The first image and the plurality of second images generate a depth information.

本發明提供一種3D影像感測裝置與3D影像感測的方法。相較於現有技術,因為該3D影像感測裝置整合一感測模組與一信號處理模組至同一積體電路,所以本發明具有較低的成本與較有效率。另外,因為一光源可 產生具有整數倍交流電頻率或一預定頻率的一閃爍光,所以本發明可消除一背景光的雜訊,導致本發明的深度感測與手勢辨識的能力可被提高。 The invention provides a 3D image sensing device and a method for 3D image sensing. Compared with the prior art, the 3D image sensing device integrates a sensing module and a signal processing module into the same integrated circuit, so the invention has lower cost and more efficiency. In addition, because a light source can A scintillation light having an integer multiple of the alternating current frequency or a predetermined frequency is generated, so that the present invention can eliminate the noise of a background light, resulting in the ability of the depth sensing and gesture recognition of the present invention to be improved.

100、400、500、600、700‧‧‧3D影像感測裝置 100, 400, 500, 600, 700‧‧‧3D image sensing devices

102‧‧‧光源 102‧‧‧Light source

104、404‧‧‧感測模組 104, 404‧‧‧ Sensing Module

106、506、606、706‧‧‧信號處理模組 106, 506, 606, 706‧‧‧ Signal Processing Module

1042‧‧‧像素陣列 1042‧‧‧pixel array

1044‧‧‧控制單元 1044‧‧‧Control unit

1046‧‧‧光源驅動器 1046‧‧‧Light source driver

10442‧‧‧類比數位轉換器 10442‧‧‧ Analog Digital Converter

10444‧‧‧離散傅立葉轉換器 10444‧‧‧Discrete Fourier Transformer

1062‧‧‧閃爍雜訊鑑別器 1062‧‧‧Flicker noise discriminator

1064‧‧‧頻率產生器 1064‧‧‧frequency generator

1066‧‧‧非揮發性記憶體 1066‧‧‧ Non-volatile memory

4042‧‧‧背景可見光感測器 4042‧‧‧Background visible light sensor

4044‧‧‧鄰接感測器 4044‧‧‧Adjacent sensor

4046‧‧‧色溫感測器 4046‧‧‧Color temperature sensor

4048‧‧‧溫度感測器 4048‧‧‧temperature sensor

5062‧‧‧觸控控制器 5062‧‧‧ touch controller

508‧‧‧觸控感測器 508‧‧‧ touch sensor

6062‧‧‧數位影像處理器 6062‧‧‧Digital Image Processor

608‧‧‧外部影像感測器 608‧‧‧External image sensor

708‧‧‧慣性感測器 708‧‧‧Inertial Sensor

7062‧‧‧感測集線器 7062‧‧‧Sense Hub

AF‧‧‧交流電頻率 AF‧‧‧AC frequency

CS‧‧‧控制信號 CS‧‧‧Control signal

DS‧‧‧數位信號 DS‧‧‧ digital signal

IS‧‧‧紅綠藍影像 IS‧‧‧Red, Green and Blue Images

SR‧‧‧取樣結果 SR‧‧‧Sampling results

SP‧‧‧頻譜 SP‧‧‧ spectrum

TS‧‧‧訊號 TS‧‧‧ signal

800-816‧‧‧步驟 800-816‧‧‧Steps

第1圖是本發明的一實施例說明一種3D影像感測裝置的示意圖。 Fig. 1 is a schematic view showing a 3D image sensing device according to an embodiment of the present invention.

第2圖和第3圖是說明當光源產生具有K倍交流電頻率或預定頻率的閃爍光時,信號處理模組可產生不受背景光影響的深度資訊的示意圖。 2 and 3 are diagrams illustrating that the signal processing module can generate depth information that is not affected by the background light when the light source generates scintillation light having a K-fold alternating current frequency or a predetermined frequency.

第4圖是說明信號處理模組利用光源所產生的具有K倍交流電頻率的閃爍光,判斷使用者的手勢的示意圖。 Fig. 4 is a schematic diagram for explaining the gesture of the user by the signal processing module using the scintillation light having a K-fold alternating current frequency generated by the light source.

第5圖是本發明的另一實施例說明一種3D影像感測裝置的示意圖。 Fig. 5 is a schematic view showing a 3D image sensing device according to another embodiment of the present invention.

第6圖是本發明的另一實施例說明一種3D影像感測裝置的示意圖。 Figure 6 is a schematic view showing a 3D image sensing device according to another embodiment of the present invention.

第7圖是本發明的另一實施例說明一種3D影像感測裝置的示意圖。 Fig. 7 is a schematic view showing a 3D image sensing device according to another embodiment of the present invention.

第8圖是本發明的另一實施例說明一種3D影像感測裝置的示意圖。 Figure 8 is a schematic view showing a 3D image sensing device according to another embodiment of the present invention.

第9圖是本發明的另一實施例說明一種3D影像感測的方法的流程圖。 Figure 9 is a flow chart illustrating a method of 3D image sensing in accordance with another embodiment of the present invention.

請參照第1圖,第1圖是本發明的一實施例說明一種3D影像感測裝置100的示意圖。如第1圖所示,3D影像感測裝置100包含一光源102、一感測模組104和一信號處理模組106,其中感測模組104包含一像素陣列1042、一控制單元1044和一光源驅動器1046,且控制單元1044包含一類比數位轉換器10442與一離散傅立葉(discrete Fourier transform,DFT)轉換器10444。光源102是一紅外線光源或一紅外線雷射光源(例如一紅外線發光二極體或一紅外線雷射二極體),且是用以產生具有一K倍交流電頻率(例如100Hz或120Hz)或一預定頻率的一閃爍光,其中像素陣列1042在光源102開啟時的曝光時間等於像素陣列1042在光源102關閉時的曝光時間,且K為一正實數(例如K為N或, 其中N為一大於1的正整數)。但在本發明的另一實施例中,光源102是一可見光源。像素陣列1042是一G乘H的互補式金氧半導體(Complementary metal-oxide-semiconductor,CMOS)影像感測像素陣列,其中G和H是正整數。但本發明並不受限於像素陣列1042是一互補式金氧半導體影像感測像素陣列,亦即像素陣列1042亦可是一電荷耦合元件(Charge-coupled Device,CCD)影像感測像素陣列。像素陣列1042包含一紅外線濾波器,所以像素陣列1042可衰減紅外線之外的其他光波。在本發明的一實施例中,光源102所產生的閃爍光的波長是850nm。當光源102產生具有K倍交流電頻率或預定頻率的閃爍光時,感測模組104的像素陣列1042是用以取樣光源102所產生的閃爍光以產生一取樣結果SR,其中像素陣列1042所產生的取樣結果SR包含光源102開啟時的複數個第一影像與光源102關閉時的複數個第二影像,且光源102和像素陣列1042可同步於每一畫面的起點。當像素陣列1042產生取樣結果SR後,控制單元1044對像素陣列1042所產生的取樣結果SR執行一影像處理以產生對應像素陣列1042所產生的取樣結果SR的一頻譜SP,其中頻譜SP是對應於取樣結果SR內光源102關閉時的複數個第二影像。如第1圖所示,控制單元1044所執行的影像處理包含類比數位轉換器10442根據像素陣列1042所產生的取樣結果SR,產生一數位信號DS,以及離散傅立葉轉換器10444根據類比數位轉換器10442所產生的數位信號DS,產生對應像素陣列1042所產生的取樣結果SR的頻譜SP。另外,光源驅動器1046是用以根據K倍交流電頻率或一預定頻率,產生方波以開啟或關閉光源102,其中光源驅動器1046所產生的方波具有K倍交流電頻率或一預定頻率。 Please refer to FIG. 1 . FIG. 1 is a schematic diagram of a 3D image sensing device 100 according to an embodiment of the present invention. As shown in FIG. 1 , the 3D image sensing device 100 includes a light source 102 , a sensing module 104 , and a signal processing module 106 . The sensing module 104 includes a pixel array 1042 , a control unit 1044 , and a The light source driver 1046, and the control unit 1044 includes an analog-to-digital converter 10442 and a discrete Fourier transform (DFT) converter 10444. The light source 102 is an infrared light source or an infrared laser light source (for example, an infrared light emitting diode or an infrared laser diode), and is used to generate a K times alternating current frequency (for example, 100 Hz or 120 Hz) or a predetermined a flashing light of frequency, wherein the exposure time of the pixel array 1042 when the light source 102 is turned on is equal to the exposure time of the pixel array 1042 when the light source 102 is turned off, and K is a positive real number (eg, K is N or , where N is a positive integer greater than one). However, in another embodiment of the invention, light source 102 is a source of visible light. The pixel array 1042 is a G by H complementary metal-oxide-semiconductor (CMOS) image sensing pixel array, where G and H are positive integers. However, the present invention is not limited to the pixel array 1042 being a complementary MOS image sensing pixel array, that is, the pixel array 1042 may also be a Charge-coupled Device (CCD) image sensing pixel array. The pixel array 1042 includes an infrared filter, so the pixel array 1042 can attenuate other light waves than infrared rays. In an embodiment of the invention, the wavelength of the scintillation light produced by the light source 102 is 850 nm. When the light source 102 generates scintillation light having a K-fold alternating current frequency or a predetermined frequency, the pixel array 1042 of the sensing module 104 is configured to sample the scintillation light generated by the light source 102 to generate a sampling result SR, wherein the pixel array 1042 generates The sampling result SR includes a plurality of first images when the light source 102 is turned on and a plurality of second images when the light source 102 is turned off, and the light source 102 and the pixel array 1042 can be synchronized with the starting point of each picture. After the pixel array 1042 generates the sampling result SR, the control unit 1044 performs an image processing on the sampling result SR generated by the pixel array 1042 to generate a spectrum SP corresponding to the sampling result SR generated by the pixel array 1042, wherein the spectrum SP corresponds to The sampling result is a plurality of second images when the light source 102 is turned off in the SR. As shown in FIG. 1, the image processing performed by the control unit 1044 includes an analog digital converter 10442 that generates a digital signal DS based on the sampling result SR generated by the pixel array 1042, and a discrete Fourier converter 10444 according to the analog digital converter 10442. The generated digital signal DS produces a spectrum SP corresponding to the sampling result SR generated by the pixel array 1042. In addition, the light source driver 1046 is configured to generate a square wave to turn on or turn off the light source 102 according to the K times alternating current frequency or a predetermined frequency, wherein the square wave generated by the light source driver 1046 has a K times alternating current frequency or a predetermined frequency.

如第1圖所示,信號處理模組106是耦接於像素陣列1042和控制單元1044。因為像素陣列1042所產生的取樣結果SR包含光源102開啟時的複數個第一影像與光源102關閉時的複數個第二影像,所以信號處理模組106可根據光源102開啟時的複數個第一影像與光源102關閉時的複數個第二影像,產 生一深度資訊。亦即信號處理模組106利用複數個第一影像的每一第一影像減去複數個第二影像的一相對應的第二影像,產生深度資訊。請參照第2圖,第2圖是說明當光源102產生具有K倍交流電頻率或預定頻率的閃爍光時,信號處理模組106可產生不受背景光影響的深度資訊的示意圖。如第2圖所示,當閃爍光具有K倍交流電頻率或預定頻率時,信號處理模組106根據複數個第一影像(光源102開啟)所產生對應於背景光(例如室內日光燈)的面積和(區塊I和區塊III)會等於根據複數個第二影像(光源102關閉)所產生對應於背景光的面積和(區塊II和區塊IV)。因此,如式(1)所示,信號處理模組106便可透過複數個第一影像和複數個第二影像,消除室內日光燈(100Hz或120Hz)的能量波形的影響。如式(1)所示,式(1)在不同的起始相位角θ和不同的曝光時間X都成立。另外,信號處理模組106所產生的深度資訊大約和距離的平方成反比。 As shown in FIG. 1 , the signal processing module 106 is coupled to the pixel array 1042 and the control unit 1044 . Because the sampling result SR generated by the pixel array 1042 includes a plurality of first images when the light source 102 is turned on and a plurality of second images when the light source 102 is turned off, the signal processing module 106 can be based on the plurality of first when the light source 102 is turned on. a plurality of second images when the image and the light source 102 are turned off, Give birth to a deeper message. That is, the signal processing module 106 subtracts a corresponding second image of the plurality of second images from each of the first images of the plurality of first images to generate depth information. Referring to FIG. 2, FIG. 2 is a schematic diagram illustrating the depth of information that the signal processing module 106 can generate without being affected by the background light when the light source 102 generates scintillation light having a K-fold alternating current frequency or a predetermined frequency. As shown in FIG. 2, when the scintillation light has a K-fold alternating current frequency or a predetermined frequency, the signal processing module 106 generates an area corresponding to the background light (for example, an indoor fluorescent lamp) according to the plurality of first images (the light source 102 is turned on). (Block I and Block III) will be equal to the area corresponding to the background light (Block II and Block IV) generated from the plurality of second images (light source 102 off). Therefore, as shown in the formula (1), the signal processing module 106 can eliminate the influence of the energy waveform of the indoor fluorescent lamp (100 Hz or 120 Hz) through the plurality of first images and the plurality of second images. As shown in the formula (1), the equation (1) holds at different initial phase angles θ and different exposure times X. In addition, the depth information generated by the signal processing module 106 is approximately inversely proportional to the square of the distance.

其中0<X<π/2 Where 0<X<π/2

另外,式(2)是對應於式(1)的一般通式: Further, the formula (2) is a general formula corresponding to the formula (1):

如式(2)和第3圖所示,X1為光源102開啟時的積分時間,X2為光源102關閉時的積分時間,以及θ起始相位角,其中K可以為N或1/N,但N是不為1的正整數,且K*(X1+X2)不大於1/120Hz或1/100Hz。 As shown in equations (2) and 3, X1 is the integration time when the light source 102 is turned on, X2 is the integration time when the light source 102 is off, and θ is the initial phase angle, where K can be N or 1/N, but N is a positive integer not equal to 1, and K*(X1+X2) is not greater than 1/120 Hz or 1/100 Hz.

如第1圖所示,信號處理模組106包含一閃爍雜訊鑑別器1062與一頻率產生器1064,其中頻率產生器1064是一延遲時間振盪器(delay time oscillator)、一阻容振盪器(RC oscillator)、一鎖相迴路、一晶體振盪器、一共振器(resonator)或一除頻器。閃爍雜訊鑑別器1062是用以根據頻譜SP,決定對應於K倍交流電頻率的一閃爍雜訊,以及用以根據對應於K倍交流電頻率的閃爍雜訊,產生對應於K倍交流電頻率的一控制信號CS;頻率產生器1064是耦接於閃爍雜訊鑑別器1062,用以根據控制信號CS,產生K倍交流電頻率AF至光源驅動器1046,其中頻率產生器1064所產生的K倍交流電頻率是在一預定頻率範圍內。另外,當頻率產生器1064所產生的K倍交流電頻率在預定頻率範圍外時,頻率產生器1064直接輸出預定頻率至光源驅動器1046。 As shown in FIG. 1, the signal processing module 106 includes a flicker noise discriminator 1062 and a frequency generator 1064. The frequency generator 1064 is a delay time oscillator and a RC oscillator. RC oscillator), a phase-locked loop, a crystal oscillator, a resonator, or a frequency divider. The flicker noise discriminator 1062 is configured to determine a flicker noise corresponding to the K times alternating current frequency according to the frequency spectrum SP, and to generate a flash corresponding to the K times alternating current frequency according to the flicker noise corresponding to the K times alternating current frequency. The frequency generator 1064 is coupled to the scintillation noise discriminator 1062 for generating a K-fold alternating current frequency AF to the light source driver 1046 according to the control signal CS, wherein the K-times alternating current frequency generated by the frequency generator 1064 is Within a predetermined frequency range. In addition, when the K-fold alternating current frequency generated by the frequency generator 1064 is outside the predetermined frequency range, the frequency generator 1064 directly outputs the predetermined frequency to the light source driver 1046.

請參照第4圖,第4圖是說明信號處理模組106利用光源102所產生的具有K倍交流電頻率或預定頻率的閃爍光,判斷一使用者的手勢的示意圖。如第2圖所示,當光源102產生具有K倍交流電頻率或預定頻率的閃爍光 時,信號處理模組106可利用像素陣列1042所產生的複數個第一影像的每一第一影像減去複數個第二影像的一相對應的第二影像,產生深度資訊。然後,信號處理模組106可再從深度資訊中,判斷使用者的手勢。 Please refer to FIG. 4 . FIG. 4 is a schematic diagram illustrating the signal processing module 106 determining the gesture of a user by using the K-frequency alternating current frequency or a predetermined frequency generated by the light source 102. As shown in FIG. 2, when the light source 102 generates a scintillation light having a K-fold alternating current frequency or a predetermined frequency The signal processing module 106 may generate a depth information by subtracting a corresponding second image of the plurality of second images from each of the plurality of first images generated by the pixel array 1042. Then, the signal processing module 106 can further determine the gesture of the user from the depth information.

請參照第5圖,第5圖是本發明的另一實施例說明一種3D影像感測裝置400的示意圖。如第5圖所示,3D影像感測裝置400和3D影像感測裝置100的差別在於3D影像感測裝置400的感測模組404另包含一背景可見光感測器4042、一鄰接(proximity)感測器4044、一色溫感測器4046以及一溫度感測器4048。因此,整合背景可見光感測器4042、鄰接感測器4044、色溫感測器4046以及溫度感測器4048的感測模組404具有較少的元件數、佔據較少的電路板空間以及較低的成本。另外,因為感測模組404整合背景可見光感測器4042、鄰接感測器4044、色溫感測器4046以及溫度感測器4048,所以3D影像感測裝置400的信號處理模組106的深度感測與手勢辨識的能力可被提高。 Please refer to FIG. 5. FIG. 5 is a schematic diagram of a 3D image sensing device 400 according to another embodiment of the present invention. As shown in FIG. 5 , the difference between the 3D image sensing device 400 and the 3D image sensing device 100 is that the sensing module 404 of the 3D image sensing device 400 further includes a background visible light sensor 4042 and a proximity. A sensor 4044, a color temperature sensor 4046, and a temperature sensor 4048. Therefore, the sensing module 404 integrating the background visible light sensor 4042, the adjacent sensor 4044, the color temperature sensor 4046, and the temperature sensor 4048 has fewer component counts, occupies less board space, and is lower. the cost of. In addition, since the sensing module 404 integrates the background visible light sensor 4042, the adjacent sensor 4044, the color temperature sensor 4046, and the temperature sensor 4048, the sense of depth of the signal processing module 106 of the 3D image sensing device 400 The ability to measure and recognize gestures can be improved.

當背景可見光足夠且光源102關閉時,像素陣列1042所產生的取樣結果SR仍然可藉由背景可見光產生一物件的輪廓。相反地,當背景可見光被調暗時,此時,光源102必須開啟以使像素陣列1042產生用以深度感測與手勢辨識的取樣結果SR。因此,背景可見光感測器可使光源102的工作週期(duty cycle)動態調整。如此,3D影像感測裝置400可進一步降低光源102的開啟時間以及最佳化3D影像感測裝置400的深度感測與手勢辨識的整體功耗。然而,在大多數的情況中,信號處理模組106還是根據光源102開啟時的複數個第一影像與光源102關閉時的複數個第二影像,產生一深度資訊,其中深度資訊對於信號處理模組106辨識物件與背景相當有用。 When the background visible light is sufficient and the light source 102 is turned off, the sampling result SR produced by the pixel array 1042 can still produce an outline of an object by the background visible light. Conversely, when the background visible light is dimmed, at this point, the light source 102 must be turned on to cause the pixel array 1042 to generate a sampling result SR for depth sensing and gesture recognition. Therefore, the background visible light sensor can dynamically adjust the duty cycle of the light source 102. As such, the 3D image sensing device 400 can further reduce the turn-on time of the light source 102 and optimize the overall power consumption of the depth sensing and gesture recognition of the 3D image sensing device 400. However, in most cases, the signal processing module 106 generates a depth information according to the plurality of first images when the light source 102 is turned on and the plurality of second images when the light source 102 is turned off, wherein the depth information is used for the signal processing mode. Group 106 identifies objects and backgrounds that are quite useful.

鄰接感測器4044是根據光源102的開啟與關閉,偵測物件與鄰接感測器4044之間的平均距離。因為鄰接感測器4044可用以偵測物件與鄰接感測 器4044之間的近似距離,所以鄰接感測器4044可使3D影像感測裝置400整體的功耗較少以及反應時間較快。 The adjacency sensor 4044 is based on the opening and closing of the light source 102, and detects the average distance between the object and the adjacent sensor 4044. Because the adjacency sensor 4044 can be used to detect object and adjacency sensing The approximate distance between the devices 4044, so the proximity sensor 4044 can reduce the power consumption of the 3D image sensing device 400 as a whole and the reaction time is faster.

在本發明的一實施例中,阻隔紅外線與彩色濾光塗層是包含在色溫感測器4046,其中色溫感測器4046可藉由對應於阻隔紅外線與彩色濾光塗層的光譜,量測背景光。一般說來,阻隔紅外線與彩色濾光塗層可阻隔具有約700nm波長的紅外光。另外,色溫感測器4046可偵測背景可見光的色溫,其中背景可見光的色溫可用於一顯示裝置的動態調整白平衡以及增強一影像擷取裝置的影像品質。 In an embodiment of the invention, the blocking infrared and color filter coatings are included in the color temperature sensor 4046, wherein the color temperature sensor 4046 can be measured by a spectrum corresponding to the blocking infrared and color filter coatings. Background light. In general, blocking infrared and color filter coatings can block infrared light having a wavelength of about 700 nm. In addition, the color temperature sensor 4046 can detect the color temperature of the background visible light, wherein the color temperature of the background visible light can be used for dynamically adjusting the white balance of a display device and enhancing the image quality of an image capturing device.

溫度感測器4048是用以量測周遭環境的溫度。然而,量測周遭環境的溫度亦用以背景光與色彩測量的溫度補償。如第5圖所示,信號處理模組106具有一非揮發性記憶體(例如一快閃記憶體)1066。信號處理模組106可根據從一目前取樣結果SR所萃取的特徵與儲存於非揮發性記憶體1066的預錄(pre-recorded)特徵的差異,執行手勢辨識。當差異夠小時,信號處理模組106可得到一正向辨識(positive recognition)。 Temperature sensor 4048 is used to measure the temperature of the surrounding environment. However, measuring the temperature of the surrounding environment is also used to compensate for the temperature of the background light and color measurements. As shown in FIG. 5, the signal processing module 106 has a non-volatile memory (eg, a flash memory) 1066. The signal processing module 106 can perform gesture recognition based on the difference between the features extracted from a current sampling result SR and the pre-recorded features stored in the non-volatile memory 1066. When the difference is small enough, the signal processing module 106 can obtain a positive recognition.

請參照第6圖,第6圖是本發明的另一實施例說明一種3D影像感測裝置500的示意圖。如第6圖所示,3D影像感測裝置500和3D影像感測裝置400的差別在於3D影像感測裝置500的信號處理模組506另包含一觸控控制器5062。整合手勢辨識與觸控控制器5062的好處是具有較低的積體電路成本。 Please refer to FIG. 6. FIG. 6 is a schematic diagram of a 3D image sensing device 500 according to another embodiment of the present invention. As shown in FIG. 6 , the difference between the 3D image sensing device 500 and the 3D image sensing device 400 is that the signal processing module 506 of the 3D image sensing device 500 further includes a touch controller 5062 . The benefit of integrating the gesture recognition and touch controller 5062 is that it has a lower overall circuit cost.

另外,3D影像感測裝置500具有下列優點:第一、觸控控制器5062主要用以處理一產生自觸控感測器508的訊號TS,其中產生自觸控感測器508的訊號TS可代表觸碰一觸控面板的物件(例如一手指)的位置或觸控面板鄰近物件(未觸碰觸控面板)的位置。像素陣列1042可用以產生物件的指示方向。因 此,不論物件是否觸碰或遠離觸控面板,結合觸控與手勢辨識可使一使用者具有能力追蹤顯示面板上的一項目。第二、在本發明的一實施例中,使用者的一手指正在觸碰顯示面板上的一項目時,使用者的另一隻手可執行一3D手勢以操作顯示面板上被觸碰的項目。例如,顯示面板所顯示的一地圖中的一建築物可被使用者觸碰而確認,然後使用者的另一隻手的3D手勢將可執行使用者相對於地圖中的建築物想要移動的方向(例如上、下、左、右;放大或縮小)或地圖中的建築物觀察方向的一指令。 In addition, the 3D image sensing device 500 has the following advantages: First, the touch controller 5062 is mainly used to process a signal TS generated from the touch sensor 508, wherein the signal TS generated from the touch sensor 508 can be Represents the position of an object (such as a finger) that touches a touch panel or the position of the touch panel adjacent to the object (without touching the touch panel). Pixel array 1042 can be used to generate an indication direction of the object. because Thus, regardless of whether the object touches or moves away from the touch panel, combining touch and gesture recognition allows a user to have the ability to track an item on the display panel. Secondly, in an embodiment of the invention, when a user's finger is touching an item on the display panel, the user's other hand can perform a 3D gesture to operate the touched item on the display panel. . For example, a building in a map displayed by the display panel can be confirmed by the user touching, and then the 3D gesture of the user's other hand can perform the user's desire to move relative to the building in the map. Direction (such as up, down, left, right; zoom in or out) or an instruction in the direction of the building in the map.

請參照第7圖,第7圖是本發明的另一實施例說明一種3D影像感測裝置600的示意圖。如第7圖所示,3D影像感測裝置600和3D影像感測裝置400的差別在於3D影像感測裝置600的信號處理模組606另包含一數位影像處理器6062。如第7圖所示,一外部影像感測器608可用以擷取一物件的2D紅綠藍影像IS。數位影像處理器6062包含一些正常的影像處理功能,例如影像壓縮和防手振等。 Please refer to FIG. 7. FIG. 7 is a schematic diagram of a 3D image sensing device 600 according to another embodiment of the present invention. As shown in FIG. 7 , the difference between the 3D image sensing device 600 and the 3D image sensing device 400 is that the signal processing module 606 of the 3D image sensing device 600 further includes a digital image processor 6062. As shown in FIG. 7, an external image sensor 608 can be used to capture a 2D red, green, and blue image IS of an object. The digital image processor 6062 includes some normal image processing functions such as image compression and anti-shake.

另外,3D影像感測裝置600具有下列優點:第一、信號處理模組606不僅可利用深度資訊亦可利用2D紅綠藍影像IS執行手勢辨識。因為外部影像感測器608的紅綠藍影像感測器具有較高的解析度,所以信號處理模組606可更有效率地從一前景中區別一物件。另外,深度資訊和2D紅綠藍影像IS的重疊部分可大大地增強萃取特徵的準確性。第二、當使用者處於一特定狀況時(例如使用者戴一黑色手指套),黑色手指套將會減弱手指所反射的紅外光。然而,外部影像感測器608的紅綠藍影像感測器有能力從背景衣服中區別黑色手指套。因此,外部影像感測器608的紅綠藍影像感測器與像素陣列1042中的紅外線感測器的互補效果將可增強3D影像感測裝置600的手勢辨識能力的準確性。 In addition, the 3D image sensing device 600 has the following advantages: First, the signal processing module 606 can perform gesture recognition using not only the depth information but also the 2D red, green, and blue images IS. Because the red, green, and blue image sensors of the external image sensor 608 have a higher resolution, the signal processing module 606 can more effectively distinguish an object from a foreground. In addition, the overlap of the depth information and the 2D red, green and blue image IS can greatly enhance the accuracy of the extraction features. Second, when the user is in a particular situation (eg, the user wears a black finger cuff), the black finger cuff will weaken the infrared light reflected by the finger. However, the red, green, and blue image sensors of the external image sensor 608 have the ability to distinguish black finger sleeves from the background garment. Therefore, the complementary effect of the red-green-blue image sensor of the external image sensor 608 and the infrared sensor in the pixel array 1042 can enhance the accuracy of the gesture recognition capability of the 3D image sensing device 600.

請參照第8圖,第8圖是本發明的另一實施例說明一種3D影像感測裝置700的示意圖。如第8圖所示,3D影像感測裝置700和3D影像感測裝置400的差別在於3D影像感測裝置700的信號處理模組706包含一慣性感測器708的感測集線器(sensor hub)7062,其中慣性感測器708包含微機電系統(Micro Electro Mechanical Systems,MEMS)加速度計、陀螺儀、磁力儀以及高度計。慣性感測器708是做為一慣性測量單元(inertial measurement unit,IMU),其中慣性測量單元對於室內導航而言是相當重要的。因為信號處理模組706整合慣性感測器708的感測集線器7062以及手勢處理器,所以信號處理模組706是一個更有效率的積體電路。 Please refer to FIG. 8. FIG. 8 is a schematic diagram of a 3D image sensing device 700 according to another embodiment of the present invention. As shown in FIG. 8 , the difference between the 3D image sensing device 700 and the 3D image sensing device 400 is that the signal processing module 706 of the 3D image sensing device 700 includes a sensor hub of an inertial sensor 708 . 7062, wherein the inertial sensor 708 comprises a Micro Electro Mechanical Systems (MEMS) accelerometer, a gyroscope, a magnetometer, and an altimeter. The inertial sensor 708 is used as an inertial measurement unit (IMU), wherein the inertial measurement unit is quite important for indoor navigation. Because the signal processing module 706 integrates the sensing hub 7062 of the inertial sensor 708 and the gesture processor, the signal processing module 706 is a more efficient integrated circuit.

另外,3D影像感測裝置700具有下列優點:第一、慣性感測器708的感測集線器7062可辨別手機使用者的位置、方向和傾斜。感測模組404包含背景可見光感測器、鄰接感測器、色溫感測器以及溫度感測器。因此,使用者的位置和週遭環境可被3D影像感測裝置700辨識,以及根據使用者的位置和週遭環境,可產生許多應用。第二、因為使用者可圍繞本身移動手機,所以可藉由陀螺儀和磁力儀執行測量的手機方向。然後,信號處理模組706能夠重建使用者的3D影像。在本發明的另一實施例中,慣性測量單元的傾斜及/或方向的測量可幫助行動裝置偵測觀看方向的改變。因為行動裝置可能會離開偵測角或偵測範圍,所以慣性測量單元(慣性感測器708)和手勢處理器將警示使用者保持手勢在像素陣列1042的偵測角或偵測範圍。 In addition, the 3D image sensing device 700 has the following advantages: First, the sensing hub 7062 of the inertial sensor 708 can distinguish the position, direction, and tilt of the mobile phone user. The sensing module 404 includes a background visible light sensor, an adjacent sensor, a color temperature sensor, and a temperature sensor. Thus, the location and surroundings of the user can be recognized by the 3D image sensing device 700, and many applications can be generated depending on the location of the user and the surrounding environment. Second, because the user can move the mobile phone around itself, the measured direction of the mobile phone can be performed by the gyroscope and the magnetometer. The signal processing module 706 can then reconstruct the 3D image of the user. In another embodiment of the invention, the measurement of the tilt and/or direction of the inertial measurement unit can assist the mobile device in detecting changes in the viewing direction. Because the mobile device may leave the detection angle or detection range, the inertial measurement unit (inertial sensor 708) and the gesture processor will alert the user to the gesture or detection range of the pixel array 1042.

另外,3D影像感測裝置100、400、500、600、700並不受限於僅判斷使用者的手勢,亦即3D影像感測裝置100、400、500、600、700亦可辨識使用者的手指、手背或眼珠,或執行物件辨識。 In addition, the 3D image sensing devices 100, 400, 500, 600, and 700 are not limited to determining only the gesture of the user, that is, the 3D image sensing devices 100, 400, 500, 600, and 700 can also identify the user. Finger, back of the hand or eyeball, or perform object recognition.

請參照第1圖、第2圖、第4圖和第9圖,第9圖是本發明的另 一實施例說明一種3D影像感測的方法的流程圖,其中第9圖的方法是利用第1圖的3D影像感測裝置100說明,詳細步驟如下:步驟800:開始;步驟802:感測模組104根據一K倍交流電頻率或一預定頻率,驅動光源102產生具有K倍交流電頻率或預定頻率的一閃爍光;步驟804:感測模組104對閃爍光取樣以產生一取樣結果SR,其中取樣結果SR包含光源102開啟時的複數個第一影像與光源102關閉時的複數個第二影像;步驟806:類比數位轉換器10442根據取樣結果SR,產生一數位信號DS;步驟808:離散傅立葉轉換器10444根據數位信號DS,產生對應取樣結果SR的頻譜SP;步驟810:閃爍雜訊鑑別器1062根據頻譜SP,決定對應於K倍交流電頻率的一閃爍雜訊;步驟812:閃爍雜訊鑑別器1062根據對應於K倍交流電頻率的閃爍雜訊,產生對應於K倍交流電頻率的一控制信號CS;步驟814:頻率產生器1064直接輸出預定頻率,或根據控制信號CS,產生K倍交流電頻率AF至感測模組104;步驟816:信號處理模組106根據複數個第一影像與該複數個第二影像,產生一深度資訊。 Please refer to FIG. 1 , FIG. 2 , FIG. 4 and FIG. 9 , and FIG. 9 is another embodiment of the present invention. An embodiment illustrates a flowchart of a method for 3D image sensing, wherein the method of FIG. 9 is illustrated by the 3D image sensing device 100 of FIG. 1 . The detailed steps are as follows: Step 800: Start; Step 802: Sensing Mode The group 104 drives the light source 102 to generate a scintillation light having a K times alternating current frequency or a predetermined frequency according to a K times alternating current frequency or a predetermined frequency; step 804: the sensing module 104 samples the scintillation light to generate a sampling result SR, wherein The sampling result SR includes a plurality of first images when the light source 102 is turned on and a plurality of second images when the light source 102 is turned off; Step 806: The analog digital converter 10442 generates a digital signal DS according to the sampling result SR; Step 808: Discrete Fourier The converter 10444 generates a spectrum SP corresponding to the sampling result SR according to the digital signal DS; Step 810: The blinking noise discriminator 1062 determines a blinking noise corresponding to the K times alternating current frequency according to the frequency spectrum SP; Step 812: Scintillation noise identification The controller 1062 generates a control signal CS corresponding to the K times alternating current frequency according to the flicker noise corresponding to the K times alternating current frequency; step 814: frequency generator 1064 Outputting a predetermined frequency, or generating a K times alternating current frequency AF to the sensing module 104 according to the control signal CS; Step 816: The signal processing module 106 generates a depth information according to the plurality of first images and the plurality of second images .

在步驟802中,感測模組104中的光源驅動器1046是用以根據K倍交流電頻率或預定頻率,產生方波以開啟或關閉光源102,其中光源驅動器1046所產生的方波具有K倍交流電頻率或預定頻率。另外,光源102是一紅外線光源或一紅外線雷射光源(例如一紅外線發光二極體或一紅外線雷射二極 體),且是用以產生具有K倍交流電頻率(例如100Hz或120Hz)或預定頻率的閃爍光,其中像素陣列1042在光源102開啟時的曝光時間等於像素陣列1042在光源102關閉時的曝光時間,且K為一正實數(例如K為N或,其中N為一大於1的正整數)。在步驟804中,當光源102產生具有K倍交流電頻率或預定頻率的閃爍光時,感測模組104的像素陣列1042是用以取樣光源102所產生的閃爍光以產生取樣結果SR,其中光源102和像素陣列1042可同步於每一畫面的起點。在步驟806中,當像素陣列1042產生取樣結果SR後,控制單元1044內的類比數位轉換器10442根據像素陣列1042所產生的取樣結果SR,產生數位信號DS,以及在步驟808中,控制單元1044內的離散傅立葉轉換器10444根據類比數位轉換器10442所產生的數位信號DS,產生對應像素陣列1042所產生的取樣結果SR的頻譜SP,其中頻譜SP是對應於取樣結果SR內光源102關閉時的複數個第二影像。 In step 802, the light source driver 1046 in the sensing module 104 is configured to generate a square wave to turn on or off the light source 102 according to the K times alternating current frequency or a predetermined frequency, wherein the square wave generated by the light source driver 1046 has K times alternating current Frequency or predetermined frequency. In addition, the light source 102 is an infrared light source or an infrared laser light source (for example, an infrared light emitting diode or an infrared laser diode), and is used to generate a K times alternating current frequency (for example, 100 Hz or 120 Hz) or predetermined. Frequency flickering light, wherein the exposure time of the pixel array 1042 when the light source 102 is turned on is equal to the exposure time of the pixel array 1042 when the light source 102 is turned off, and K is a positive real number (eg, K is N or , where N is a positive integer greater than one). In step 804, when the light source 102 generates scintillation light having a K-fold alternating current frequency or a predetermined frequency, the pixel array 1042 of the sensing module 104 is used to sample the scintillation light generated by the light source 102 to generate a sampling result SR, wherein the light source 102 and pixel array 1042 can be synchronized to the beginning of each picture. In step 806, after the pixel array 1042 generates the sampling result SR, the analog digital converter 10442 in the control unit 1044 generates the digital signal DS according to the sampling result SR generated by the pixel array 1042, and in step 808, the control unit 1044 The discrete Fourier transformer 10444 generates a spectrum SP corresponding to the sampling result SR generated by the pixel array 1042 according to the digital signal DS generated by the analog-to-digital converter 10442, wherein the spectrum SP corresponds to the sampling result SR when the light source 102 is turned off. A plurality of second images.

在步驟810和步驟812中,信號處理模組106內的閃爍雜訊鑑別器1062是用以根據頻譜SP,決定對應於K倍交流電頻率的閃爍雜訊,以及用以根據對應於K倍交流電頻率的閃爍雜訊,產生對應於K倍交流電頻率的控制信號CS。在步驟814中,信號處理模組106內的頻率產生器1064根據控制信號CS,產生K倍交流電頻率AF至感測模組104內的光源驅動器1046,其中頻率產生器1064所產生的K倍交流電頻率是在一預定頻率範圍內。另外,當頻率產生器1064所產生的K倍交流電頻率在預定頻率範圍外時,頻率產生器1064直接輸出預定頻率至光源驅動器1046。 In step 810 and step 812, the flicker noise discriminator 1062 in the signal processing module 106 is configured to determine flicker noise corresponding to the K times alternating current frequency according to the frequency spectrum SP, and to use the frequency corresponding to the K times alternating current frequency. The flicker noise produces a control signal CS corresponding to the K times the AC frequency. In step 814, the frequency generator 1064 in the signal processing module 106 generates a K times alternating current frequency AF to the light source driver 1046 in the sensing module 104 according to the control signal CS, wherein the frequency generator 1064 generates K times alternating current The frequency is within a predetermined frequency range. In addition, when the K-fold alternating current frequency generated by the frequency generator 1064 is outside the predetermined frequency range, the frequency generator 1064 directly outputs the predetermined frequency to the light source driver 1046.

在步驟816中,如第1圖所示,因為像素陣列1042所產生的取樣結果SR包含光源102開啟時的複數個第一影像與光源102關閉時的複數個第二影像,所以信號處理模組106可根據光源102開啟時的複數個第一影像與光源102關閉時的複數個第二影像,產生深度資訊。亦即信號處理模組106利用複 數個第一影像的每一第一影像減去複數個第二影像的一相對應的第二影像,產生深度資訊。 In step 816, as shown in FIG. 1 , the sampling result SR generated by the pixel array 1042 includes a plurality of first images when the light source 102 is turned on and a plurality of second images when the light source 102 is turned off, so the signal processing module 106 may generate depth information according to the plurality of first images when the light source 102 is turned on and the plurality of second images when the light source 102 is turned off. That is, the signal processing module 106 utilizes the complex Each of the first images of the plurality of first images is subtracted from a corresponding second image of the plurality of second images to generate depth information.

另外,如第4圖所示,當光源102產生具有K倍交流電頻率或預定頻率的閃爍光時,信號處理模組106可利用像素陣列1042所產生的複數個第一影像的每一第一影像減去複數個第二影像的一相對應的第二影像,產生深度資訊。然後,信號處理模組106可再從深度資訊中,判斷使用者的手勢。 In addition, as shown in FIG. 4, when the light source 102 generates scintillation light having a K-fold alternating current frequency or a predetermined frequency, the signal processing module 106 can utilize each of the plurality of first images generated by the pixel array 1042. Subtracting a corresponding second image of the plurality of second images to generate depth information. Then, the signal processing module 106 can further determine the gesture of the user from the depth information.

綜上所述,相較於現有技術,因為本發明所提供的3D影像感測裝置整合感測模組與信號處理模組至同一積體電路,所以本發明具有較低的成本與較有效率。另外,因為光源可產生具有整數倍交流電頻率或預定頻率的閃爍光,所以本發明可消除背景光的雜訊,導致本發明的深度感測與手勢辨識的能力可被提高。 In summary, the present invention has lower cost and more efficiency than the prior art, because the 3D image sensing device provided by the present invention integrates the sensing module and the signal processing module to the same integrated circuit. . In addition, since the light source can generate scintillation light having an integer multiple of the alternating current frequency or a predetermined frequency, the present invention can eliminate the noise of the background light, resulting in the ability of the depth sensing and gesture recognition of the present invention can be improved.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

100‧‧‧3D影像感測裝置 100‧‧‧3D image sensing device

102‧‧‧光源 102‧‧‧Light source

104‧‧‧感測模組 104‧‧‧Sensing module

106‧‧‧信號處理模組 106‧‧‧Signal Processing Module

1042‧‧‧像素陣列 1042‧‧‧pixel array

1044‧‧‧控制單元 1044‧‧‧Control unit

1046‧‧‧光源驅動器 1046‧‧‧Light source driver

10442‧‧‧類比數位轉換器 10442‧‧‧ Analog Digital Converter

10444‧‧‧離散傅立葉轉換器 10444‧‧‧Discrete Fourier Transformer

1062‧‧‧閃爍雜訊鑑別器 1062‧‧‧Flicker noise discriminator

1064‧‧‧振盪器 1064‧‧‧Oscillator

AF‧‧‧交流電頻率 AF‧‧‧AC frequency

CS‧‧‧控制信號 CS‧‧‧Control signal

DS‧‧‧數位信號 DS‧‧‧ digital signal

SR‧‧‧取樣結果 SR‧‧‧Sampling results

SP‧‧‧頻譜 SP‧‧‧ spectrum

Claims (15)

一種3D影像感測裝置,包含:一光源,用以產生一閃爍光,該閃爍光的閃爍頻率為一K倍交流電頻率或一預定頻率,其中K為一正實數;一感測模組,包含:一像素陣列,用以取樣該閃爍光以產生一取樣結果,其中該取樣結果包含該光源開啟時的複數個第一影像與該光源關閉時的複數個第二影像;一控制單元,對該取樣結果執行一影像處理以產生對應該取樣結果的一頻譜;其中頻譜是對應於取樣結果內該光源關閉時的複數個第二影像;及一光源驅動器,用以根據該K倍交流電頻率或該預定頻率,驅動該光源;及一信號處理模組,耦接於該感測模組,用以根據該頻譜,產生該K倍交流電頻率,且根據該複數個第一影像與該複數個第二影像,產生一深度資訊,其中當該K倍交流電頻率在一預定頻率範圍內時,該信號處理模組輸出該K倍交流電頻率至該光源驅動器,或當該K倍交流電頻率在該預定頻率範圍外時,該信號處理模組輸出該預定頻率至該光源驅動器。 A 3D image sensing device includes: a light source for generating a flashing light, the blinking frequency of the flashing light is a K times alternating current frequency or a predetermined frequency, wherein K is a positive real number; and a sensing module includes a pixel array for sampling the scintillation light to generate a sampling result, wherein the sampling result includes a plurality of first images when the light source is turned on and a plurality of second images when the light source is turned off; and a control unit The sampling result performs an image processing to generate a spectrum corresponding to the sampling result; wherein the spectrum corresponds to a plurality of second images when the light source is turned off in the sampling result; and a light source driver for using the K times alternating current frequency or the a predetermined frequency to drive the light source; and a signal processing module coupled to the sensing module for generating the K times alternating current frequency according to the frequency spectrum, and according to the plurality of first images and the plurality of second The image generates a depth information, wherein when the K times alternating current frequency is within a predetermined frequency range, the signal processing module outputs the K times alternating current frequency to the light source driving , Or K times when the alternating current frequency outside the predetermined frequency range, the signal processing module to output the predetermined frequency of the light source driver. 如請求項1所述的3D影像感測裝置,其中該光源是一紅外線光源或一紅外線雷射光源。 The 3D image sensing device of claim 1, wherein the light source is an infrared light source or an infrared laser light source. 如請求項1所述的3D影像感測裝置,其中該控制單元包含:一類比數位轉換器,用以根據該取樣結果,產生一數位信號;及一離散傅立葉(discrete Fourier transform,DFT)轉換器,用以根據該數位信號,產生對應該取樣結果的該頻譜。 The 3D image sensing device of claim 1, wherein the control unit comprises: an analog-to-digital converter for generating a digital signal according to the sampling result; and a discrete Fourier transform (DFT) converter And generating, according to the digital signal, the spectrum corresponding to the sampling result. 如請求項1所述的3D影像感測裝置,其中該信號處理模組包含: 一閃爍雜訊鑑別器,用以根據該頻譜,決定對應於該K倍交流電頻率的一閃爍雜訊,以及用以根據該閃爍雜訊,產生對應於該K倍交流電頻率的一控制信號;及一頻率產生器,耦接於該閃爍雜訊鑑別器,用以根據該控制信號,產生該K倍交流電頻率。 The 3D image sensing device of claim 1, wherein the signal processing module comprises: a flicker noise discriminator for determining a flicker noise corresponding to the K times alternating current frequency according to the spectrum, and for generating a control signal corresponding to the K times alternating current frequency according to the flicker noise; and A frequency generator is coupled to the blinking noise discriminator for generating the K times alternating current frequency according to the control signal. 如請求項4所述的3D影像感測裝置,其中該頻率產生器是一延遲時間振盪器(delay time oscillator)、一阻容振盪器(RC oscillator)、一鎖相迴路、一晶體振盪器、一共振器(resonator)或一除頻器。 The 3D image sensing device of claim 4, wherein the frequency generator is a delay time oscillator, a RC oscillator, a phase locked loop, a crystal oscillator, A resonator or a frequency divider. 如請求項1所述的3D影像感測裝置,其中該像素陣列在該光源開啟時的曝光時間等於該像素陣列在該光源關閉時的曝光時間。 The 3D image sensing device of claim 1, wherein an exposure time of the pixel array when the light source is turned on is equal to an exposure time of the pixel array when the light source is turned off. 如請求項1所述的3D影像感測裝置,其中信號處理模組另用以根據該複數個第一影像中的一第一影像與對應於該第一影像的一第二影像,判斷一使用者的手勢。 The 3D image sensing device of claim 1, wherein the signal processing module is further configured to determine, according to a first image of the plurality of first images and a second image corresponding to the first image, Gesture. 如請求項1所述的3D影像感測裝置,其中該感測模組另包含:一紅外線濾波器,用以衰減紅外線之外的其他光波。 The 3D image sensing device of claim 1, wherein the sensing module further comprises: an infrared filter for attenuating other light waves than infrared rays. 如請求項1所述的3D影像感測裝置,其中K為N或,其中N為 一大於1的正整數。 The 3D image sensing device of claim 1, wherein K is N or Where N is a positive integer greater than one. 一種3D影像感測的方法,其中應用於該方法的3D影像感測裝置包含一光源、一感測模組及一信號處理模組,該方法包含:該感測模組根據一K倍交流電頻率或一預定頻率,驅動該光源的閃爍光的閃爍頻率為該K倍交流電頻率或該預定頻率,其中K為一正實數;該感測模組對該閃爍光取樣以產生一取樣結果,其中該取樣結果包含該光源開啟時的複數個第一影像與該光源關閉時的複數個第二影像; 該感測模組對該取樣結果執行一影像處理以產生對應該取樣結果的一頻譜;其中頻譜是對應於取樣結果內該光源關閉時的複數個第二影像;該信號處理模組直接輸出該預定頻率,或根據該頻譜,產生並輸出該K倍交流電頻率至該感測模組;及該信號處理模組根據該複數個第一影像與該複數個第二影像,產生一深度資訊。 A method for sensing a 3D image, wherein the 3D image sensing device applied to the method comprises a light source, a sensing module and a signal processing module, the method comprising: the sensing module is based on a K times AC frequency Or a predetermined frequency, the blinking frequency of the flashing light driving the light source is the K times alternating current frequency or the predetermined frequency, wherein K is a positive real number; the sensing module samples the scintillation light to generate a sampling result, wherein the sampling result The sampling result includes a plurality of first images when the light source is turned on and a plurality of second images when the light source is turned off; The sensing module performs an image processing on the sampling result to generate a spectrum corresponding to the sampling result; wherein the spectrum corresponds to a plurality of second images when the light source is turned off in the sampling result; the signal processing module directly outputs the spectrum And generating, according to the frequency spectrum, the K times alternating current frequency to the sensing module; and the signal processing module generates a depth information according to the plurality of first images and the plurality of second images. 如請求項10所述的方法,其中該感測模組對該取樣結果執行該影像處理以產生對應該取樣結果的該頻譜包含:根據該取樣結果,產生一數位信號;及根據該數位信號,產生對應該取樣結果的該頻譜。 The method of claim 10, wherein the sensing module performs the image processing on the sampling result to generate the spectrum corresponding to the sampling result: generating a digital signal according to the sampling result; and according to the digital signal, This spectrum is generated corresponding to the sampling result. 如請求項10所述的方法,其中該信號處理模組根據該頻譜,產生並輸出該交流電頻率至該感測模組包含:根據該頻譜,決定對應於該K倍交流電頻率的閃爍雜訊;根據該閃爍雜訊,產生對應於該K倍交流電頻率的一控制信號;及根據該控制信號,產生該K倍交流電頻率至該感測模組。 The method of claim 10, wherein the signal processing module generates and outputs the alternating current frequency to the sensing module according to the spectrum: determining, according to the frequency spectrum, a flicker noise corresponding to the K times alternating current frequency; And generating, according to the blinking noise, a control signal corresponding to the K times alternating current frequency; and generating the K times alternating current frequency to the sensing module according to the control signal. 如請求項10所述的方法,其中該像素陣列在該光源開啟時的曝光時間等於該像素陣列在該光源關閉時的曝光時間。 The method of claim 10, wherein the exposure time of the pixel array when the light source is turned on is equal to the exposure time of the pixel array when the light source is turned off. 如請求項10所述的方法,其中當該K倍交流電頻率在一預定頻率範圍內時,該信號處理模組輸出該K倍交流電頻率至該光源驅動器,或當該K倍交流電頻率在該預定頻率範圍外時,該信號處理模組輸出該預定頻率至該光源驅動器。 The method of claim 10, wherein the signal processing module outputs the K times alternating current frequency to the light source driver when the K times alternating current frequency is within a predetermined frequency range, or when the K times alternating current frequency is at the predetermined When the frequency range is out, the signal processing module outputs the predetermined frequency to the light source driver. 如請求項10所述的方法,其中K為N或,其中N為一大於1的 正整數。 The method of claim 10, wherein K is N or Where N is a positive integer greater than one.
TW102147226A 2013-01-07 2013-12-19 Three-dimensional gesture sensing device and method of sensing three-dimensional gestures TWI517092B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/148,693 US9667883B2 (en) 2013-01-07 2014-01-06 Three-dimensional image sensing device and method of sensing three-dimensional images
CN201410008686.9A CN103916660B (en) 2013-01-07 2014-01-07 3D image sensing device and 3D image sensing method
CN201610203183.6A CN105721786A (en) 2013-01-07 2014-01-07 Image sensing device and image sensing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201361749864P 2013-01-07 2013-01-07

Publications (2)

Publication Number Publication Date
TW201428682A TW201428682A (en) 2014-07-16
TWI517092B true TWI517092B (en) 2016-01-11

Family

ID=51726141

Family Applications (3)

Application Number Title Priority Date Filing Date
TW104139780A TWI533256B (en) 2013-01-07 2013-12-19 Gesture sensing device and method of sensing three-dimensional gestures
TW105109427A TW201621814A (en) 2013-01-07 2013-12-19 Gesture sensing device and method of sensing three-dimensional gestures
TW102147226A TWI517092B (en) 2013-01-07 2013-12-19 Three-dimensional gesture sensing device and method of sensing three-dimensional gestures

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW104139780A TWI533256B (en) 2013-01-07 2013-12-19 Gesture sensing device and method of sensing three-dimensional gestures
TW105109427A TW201621814A (en) 2013-01-07 2013-12-19 Gesture sensing device and method of sensing three-dimensional gestures

Country Status (2)

Country Link
CN (1) CN105721786A (en)
TW (3) TWI533256B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI651663B (en) * 2016-12-19 2019-02-21 宏達國際電子股份有限公司 Method, device, and non-transitory computer readable storage medium for object tracking

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018195831A1 (en) * 2017-04-26 2018-11-01 深圳市柔宇科技有限公司 Control method, control apparatus and optic inspection device
TWI684165B (en) 2018-07-02 2020-02-01 華晶科技股份有限公司 Image processing method and electronic device
CN109544617B (en) * 2018-12-05 2024-04-16 光微信息科技(合肥)有限公司 Temperature compensation method and temperature compensation device applied to phase type TOF sensor
CN110719400B (en) * 2019-09-17 2021-01-08 北京兆维电子(集团)有限责任公司 Image acquisition method and system
US11882637B2 (en) 2021-01-28 2024-01-23 Sensortek Technology Corp. Operation method of proximity sensor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4377013B2 (en) * 1999-11-18 2009-12-02 國寛 渡辺 Solid-state imaging device and solid-state imaging device
WO2011069152A2 (en) * 2009-12-04 2011-06-09 Next Holdings Limited Imaging methods and systems for position detection
TW201227159A (en) * 2010-12-24 2012-07-01 wen-jin Zhang Method of taking pictures for generating three-dimensional image data
CN102638642B (en) * 2011-02-12 2014-04-02 原相科技股份有限公司 Image system and interference eliminating method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI651663B (en) * 2016-12-19 2019-02-21 宏達國際電子股份有限公司 Method, device, and non-transitory computer readable storage medium for object tracking
US10475194B2 (en) 2016-12-19 2019-11-12 Htc Corporation Method, device, and non-transitory computer readable storage medium for object tracking

Also Published As

Publication number Publication date
TW201621814A (en) 2016-06-16
TW201610911A (en) 2016-03-16
TWI533256B (en) 2016-05-11
TW201428682A (en) 2014-07-16
CN105721786A (en) 2016-06-29

Similar Documents

Publication Publication Date Title
TWI517092B (en) Three-dimensional gesture sensing device and method of sensing three-dimensional gestures
US9667883B2 (en) Three-dimensional image sensing device and method of sensing three-dimensional images
JP6340477B2 (en) Distance image acquisition device and distance image acquisition method
US10215557B2 (en) Distance image acquisition apparatus and distance image acquisition method
US9609206B2 (en) Image processing apparatus, method for controlling image processing apparatus and storage medium
CN107534751B (en) Display apparatus and image display method thereof
JP6240609B2 (en) Vision-based interactive projection system
KR102085766B1 (en) Method and Apparatus for controlling Auto Focus of an photographing device
JP6290512B2 (en) Distance image acquisition device and distance image acquisition method
KR20150021353A (en) Image systhesis system and image synthesis method
JP2015526927A (en) Context-driven adjustment of camera parameters
WO2014099263A1 (en) System and method for passive live person verification using real-time eye reflection
JP2011188024A (en) Information processing unit, method of processing information, and program
CN110892443B (en) Personal authentication device
JP2011188023A (en) Information processing unit, method of processing information, and program
WO2023077914A1 (en) Multi-parameter synchronous measurement method and apparatus, and electronic device and storage medium
JP6492588B2 (en) Projector and projector control method
US11494945B2 (en) Image analysis device, image analysis method, and program
JP6068741B2 (en) Display system
US11816873B2 (en) Image analysis device, image analysis method, and program
JP2015204603A (en) Information processing device, information processing method, and program
JP2011254302A (en) Camera with proximity detection means
JP2015172939A (en) Information processing apparatus, information processing method, and program
JP2015050704A (en) Portable terminal device, program, and recording medium
JP2011186537A (en) Apparatus and method for processing information, and program