TWI507838B - 電源方法及電源系統 - Google Patents

電源方法及電源系統 Download PDF

Info

Publication number
TWI507838B
TWI507838B TW101104205A TW101104205A TWI507838B TW I507838 B TWI507838 B TW I507838B TW 101104205 A TW101104205 A TW 101104205A TW 101104205 A TW101104205 A TW 101104205A TW I507838 B TWI507838 B TW I507838B
Authority
TW
Taiwan
Prior art keywords
circuit
control
modulation mode
control circuit
output voltage
Prior art date
Application number
TW101104205A
Other languages
English (en)
Other versions
TW201239571A (en
Inventor
Robert T Carroll
Venkat Sreenivas
Original Assignee
Int Rectifier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Int Rectifier Corp filed Critical Int Rectifier Corp
Publication of TW201239571A publication Critical patent/TW201239571A/zh
Application granted granted Critical
Publication of TWI507838B publication Critical patent/TWI507838B/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1566Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with means for compensating against rapid load changes, e.g. with auxiliary current source, with dual mode control or with inductance variation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Description

電源方法及電源系統
本發明係關於電源電路及自適應暫態控制。
習知的電壓調節器模組(例如VRM)用以調節供應至例如微處理器等負載的DC電壓。VRM包含例如DC-DC轉換器等電力轉換器,且包含例如用於控制電力轉換器的操作之控制電路等其它元件。
DC-DC轉換器的實例是同步降壓轉換器,其具有最少的元件,因此廣泛用於VRM應用中。在舉例的習知應用中,對於降低轉換器的輸入電壓典型上是12VDC 。由VRM產生的輸出電壓可為5.0 VDC 、3.3 VDC 、或更低。
習知的多相交錯VRM拓蹼包含二或更多電力轉換器,彼此並聯操作以轉換電力及將其施加至對應的負載。在每一電力轉換器中(或是每一電力轉換器相),濾波電感器比交流的、更大的單相轉換器設計更小,以取得更快的動態回應。導因於小電感之每一相中的大輸出電壓漣波會由其它相的漣波抵消。使用共多並聯相,可以降低漣波電壓。習知的多相電壓轉換器拓蹼之實施(相較於單電壓轉換器相拓蹼)因而強化電源系統的輸出電流能力。
例如所謂的同步降低轉換器等習知的VRM的典型配置包含一或更多電力轉換器相。每一電力轉換器相包含電感器、高側開關、及低側開關。與降壓轉換器相關的控制 電路重複地脈衝驅動高側開關開啟(ON),以將電力從電源經由相中的一或更多電感器載送至動態負載。控制電路重複地脈衝驅動低側開關開啟(ON)以提供從電感器的節點至接地之低阻抗路徑,以防止降壓轉換器的輸出上的過電壓條件。因此,儲存在電感器中的能量在高側開關開啟時的期間增加且在低側開關開啟時的期間降低。在開關操作期間,電感器將能量從轉換器的輸入傳送至輸出。
傳統的PID控制電路用以產生控制一或更多電力轉換器相之訊號。一般而言,習知的PID控制電路典型地包含三個分開的固定參數,包含比例値(例如P元件)、積分値(例如I元件)、及微分値(例如D元件)。P元件代表目前的誤差;I元件是過去誤差的累積,D元件是未來誤差的預測。這三個成分的加權總合作為輸入以控制電源中的一或更多相。
例如上述說明的等等習知應用受眾多缺點所苦。舉例而言,習知的電源典型上無法提供足夠快的回應給目前要求的大變化。舉例而言,假使習知的電源輸出50安培的電流以供電給負載,且負載瞬間改變及僅要求2安培時,習知的電源可能不慎地產生量値在可容許範圍之外的輸出電壓。在此情形中,由輸出電壓供電的裝置會受損。相反地,假使習知的電源輸出2安培的電流以供電給負載,且負載立即要求50安培時,習知的電源無法產生足夠的輸 出電流以防止輸出電壓因過多的電流消耗而下降至可容許範圍之下或之外。因此,由輸出電壓供電的裝置會因輸出電壓量値的下垂而關閉(OFF)。
此處的實施例超越習知的應用。舉例而言,此處的實施例包含新穎的電源控制電路,以在需要相當快速的電流變化以供電給動態負載之暫態條件期間,調整電源中的控制訊號。
更具體而言,此處的一實施例包含控制電路,配置成接收代表電源的輸出電壓與所需的輸出電壓設定點之間的誤差之誤差電壓。取決於誤差電壓,控制電路啟始以脈衝寬度調變模式操作控制電路與以脈衝頻率調變模式操作控制電路之間的切換,以產生輸出電壓來供電給負載。在暫態條件期間,例如當動態負載瞬間要求不同量的電流時,脈衝頻率調變模式的控制電路的操作使得電源能夠滿足動態負載的電流消耗。接續於暫態條件之後,控制電路切回至脈衝寬度調變模式操作。
根據更具體實施例,控制電路配置成分析誤差電壓的量値及/或斜率以偵測何時發生暫態條件並因而決定是否切換至脈衝頻率調變模式。在一實施例中,暫態負載條件被界定為誤差電壓的量値落在可接受的量値範圍之外及/或誤差電壓的斜率落在可接受的斜率範圍之外的條件。量値的大變化或是誤差電壓的斜率之陡峭變化表示當需要快速控制回應以提供電力給負載時的暫態條件。
在穩態期間,當電流需求相當固定及未偵測到暫態條 件時,控制電路實施脈衝寬度調變模式以產生輸出電壓。當在脈衝寬度調變模式時,控制電路產生控制訊號以致具有實質固定的週期及改變脈衝的寬度以控制輸出電壓及將其維持在所需範圍之內。使用者選取實質上固定的週期以用於脈衝寬度調變模式中。
在一實施例中,在脈衝寬度調變模式期間,控制電路利用控制電路的第一電路路徑以調整控制訊號的脈衝寬度來控制輸出電壓。第一電路路徑包含習知的PID控制電路之P元件、I元件、及D元件。
為回應偵測到例如當動態負載瞬間要求更多或更少的電流等暫態條件時,對於至少部份暫態條件,控制電路啟動從脈衝寬度調變模式至脈衝頻率調變模式之切換。
在一舉例說明的實施例中,當在脈衝頻率調變模式時,控制電路在控制電路的第一電路路徑中利用I元件以控制控制訊號的脈衝寬的設定,但不再使用第一電路路徑的P元件及D元件來控制脈衝寬度値。此外,當在脈衝頻率調變模式中時,控制電路利用控制電路的第二電路路徑以調整控制訊號的週期。在一實施例中,第二電路路徑根據第二電路路徑中配置的P元件及D元件以調整週期的設定。
在偵測暫態條件及在暫態條件期間以脈衝頻率調變模式操作控制電路來將輸出電壓的量値維持在範圍之內之後,控制電路啟動從脈衝頻率調變模式至脈衝寬度調變模式的切回以控制輸出電壓。
如同於下將進一步瞭解般,第一電路路徑(包含P元件、I元件、及D元件)包含一或更多濾波器以便當從誤差電壓導出各別的脈衝寬度設定資訊時使造成延遲的雜訊最小。在非暫態條件期間,由於在脈衝寬度調變模式中時,輸出電壓大致上不會急遽地改變,所以由第一電路路徑造成的延遲是無害的。
在一實施例中,第二電路路徑(支援脈衝頻率調變模式)未如同第一電路路徑般包含濾波器(例如,一或更多極)。第二電路路徑由於未如同第一電路路徑中般包含可比較的濾波器,所以具有更快的回應。在暫態條件期間,希望快速地調整一或更多相位控制訊號的控制設定,以提供輸出電壓的電流及量値的適當改變。
此處一實施例包含控制電路,其利用控制經過脈衝寬度調變的工作循環之比例、積分、微分(PID)控制電路,自電流器增加或減掉電流以回應負載改變。如同所述,在穩態條件期間(無負載改變),使用第一電路路徑中的PID。根據此處的實施例,與主PID電路平行的(如同非暫態條件期間使用般)是次級PD電路。在暫態條件期間PD控制電路使用頻率調變,以控制工作循環來回應負載電流變化。
如上所述,當暫態PD電路路徑被致動時,主PID控制電路的P及D項被歸零(亦即,不被致動以致於P元件和D元件均為零)。這防止主PID及次級PD電路以負方式交互作用。當二迴路(例如,第一電路路徑及第二電路 路徑)彼此獨立地調諧時,此配置大幅地簡化調諧。主PID控制電路的I項保持作動以作為次級PD控制電路的參考點。
此處的實施例又包含跟隨在次級PD控制電路之後的加法及整形功能。整形項是非線性項,其作動以進一步增加零化,增進控制回應。當斜率測量降至計劃的臨界値之下時,整形項解除,以致於僅對被偵測到的暫態條件之初始回應作用。
於下更詳細地揭示這些及其它更具體的實施例。
須瞭解此處所述的系統、方法、裝置等等嚴格地具體實施為硬體、軟體及硬體的混合、或是例如處理器內、或作業系統內或軟體應用內的單獨軟體。舉例說明之本發明的實施例實施在美國麻州Tewksbury的CHiL Semiconductor開發及製造的產品及/或軟體應用之內。
如同此處所述般,此處的技術良好地適用於例如切換電源、電壓調節器、低電壓處理器、降低轉換器、升壓調節器、降低-升壓調節器、等等應用中。但是,應注意,此處之實施例不侷限於用在這些應用中,此處所述的技術也良好地適用於其它應用。
此外,請注意,雖然在本揭示的不同處討論此處的每一不同的特點、技術、配置等等,但是,所要的是每一這些概念在適當時可以彼此獨立地或結合地選加執行。因此,此處所述的一或更多本發明能以很多不同方式實施及考慮。
也請注意,實施例的此先期討論目的在於指明本揭示或是申請專利範圍的發明之每一實施例及/或增加的新穎觀點。取代地,此概要說明僅呈現一般實施例及相較於習知技術之具有新穎性的對應點。讀者參閱下述進一步說明的本揭示之實施方式一節和對應的圖式,將瞭解本發明的其它細節及/或可能的展望(變換)。
此處之實施例包含多路徑控制電路,配置成在脈衝寬度調變模式與脈衝頻率調變模式之間切換。多路徑控制電路的第一電路路徑支援脈衝寬度調變模式;多路徑控制電路的第二電路路徑支援脈衝頻率調變模式。當在脈衝寬度調變模式中時,控制電路利用第一電路路徑以調整具有實質上固定的頻率之脈衝控制訊號的脈衝寬度設定。在脈衝頻率調變模式中,控制電路使用第二電路路徑以調整具有實質上固定的脈衝寬度之脈衝控制訊號的週期設定(例如,頻率)。
更具體而言,圖1是根據此處的實施例之電源控制電路的實例圖。在操作期間,電源控制電路140產生一或更多相位控制訊號195以控制一或更多各別的電力轉換器相。一或更多電力轉換器相產生輸出電壓+Vout,供應給各別的負載。這更特別地顯示於及說明於圖9中。
如圖1所示,電源控制電路140包含例如類比對數位轉換器裝置等電路110。電路110根據所需的輸出電壓設 定點Vref與用以供電給負載的輸出電壓+Vout之間的差異而產生誤差訊號111。
電源控制電路140包含監視電路118。如同其名稱所暗示般,監視電路118監視誤差訊號111。非限定地舉例而言,監視電路118監視一或更多誤差電壓的一或更多屬性(例如,量値、斜率、等等)以決定誤差訊號111何時超過臨界値。
在一舉例說明的實施例中,監視電路118使用2臨界値fc_hth(例如,高臨界値)及fc_lth(例如,低臨界値)以界定圍繞零電壓誤差的窗。監視電路界定斜率臨界値(用於負載釋放的+ve或slope_hth以及用於負載升壓的-ve或slope_lth)。當誤差訊號111的斜率大於+ve斜率臨界値時,假定負載要求較少電流;當誤差訊號111的斜率小於-ve斜率臨界値時,假定負載要求更多電流。
監視電路也界定例如err_lth等超越量誤差臨界電壓。在一實施例中,假使誤差訊號111超過此臨界値時,所有相位控制訊號被終止以使電力轉換器相不致動,而在負載瞬間消耗較少電流之負載釋放期間防止輸出電壓過衝。
根據誤差訊號111的量値及/或斜率,監視電路118選取操作電源控制電路140的一或更多模式。舉例而言,假使測量到的誤差訊號111落在量値及/或斜率的誤差窗參數所指定的範圍之外時,監視電路118致動脈衝頻率調變模式。
根據一非限定的舉例說明的實施例,監視電路118在 第一模式與第二模式之間切換以產生輸出電壓Vout。舉例而言,監視電路118在以脈衝寬度調變模式與以頻率調變模式操作電源控制電路140之間選取。
圖2是根據此處的實施例之脈衝寬度調變模式的電源控制電路的操作實例圖。一般而言,當在脈衝寬度調變模式中時,在電源控制電路140的第二電路路徑中的電路不被致動。由虛線標示的電路代表脈衝寬度調變模式期間不被致動的電路。當在脈衝寬度調變模式中時,電源控制電路140利用第一電路路徑中的成分以控制脈衝寬度調變訊號產生器155產生的控制訊號的脈衝寬度設定。
舉例而言,電路110產生誤差訊號111。誤差訊號111饋入例如具有一或更多極的低通濾波器等濾波器電路130-1。如此,濾波器130-1在誤差電壓110下游傳輸至PID電路時賦予延遲。第一電路路徑包含適當的PID係數(例如,Kp、Ki、及Kd、等等)以及低通濾波器設定以確保穩定操作。
由濾波器電路130-1產生之經過濾波的誤差電壓饋入至PID電路,如同所示,PID電路包含積分器功能115-1、積分器功能115-2、增益級120-1(例如Kp)、增益級120-2(例如Ki)、增益級120-3(例如Kd)。
PID控制電路產生三成分,亦即,P元件、I元件、及D元件。選取用於第一電路路徑中的電路之任何適當的K値及極。
功能125-1接收第一電路路徑中的P元件、I元件、 及D元件以及產生PID元件中的每一成分的總合。
PID元件的總合饋入濾波器電路130-2。濾波器電路130-2也配置成包含一或更多極。濾波器電路130-2在傳送PID元件的總合給加法器125-2時賦予或造成增加的延遲。
功能125-2將經過過濾的PID元件的總合及增益級120-4產生的額定脈衝寬度値加總,以產生脈衝寬度設定資訊154-2。脈衝寬度調變產生器電路155從功能125-2接收脈衝寬度設定資訊154-2。
如同其名稱所暗示般,脈衝寬度設定資訊154-2表示如何控制脈衝寬度調變訊號產生器155產生的各別相位控制訊號195中的一或更多脈衝寬度的設定。
當在脈衝寬度調變模式中時,PWM訊號產生器155也從功能125-4接收週期設定資訊154-1。由於電源控制電路140中的第二電路路徑未致動,所以,週期設定資訊154-1設定在實質固定的値(例如,輸入至功能125-4的輸入固定切換週期)。在一實施例中,使用者選取輸入至功能125-4的固定切換週期的設定。
因此,當電源控制電路140設定於脈衝寬度調變模式時,週期設定資訊154-1表示產生相位控制訊號195的實質固定頻率。為了將輸出電壓維持在可接受的範圍之內,PWM訊號產生器155通常根據脈衝寬度設定資訊154-2以改變相位控制訊號195的脈衝寬度。
應注意,當操作控制電路140中的第一電路路徑以產 生脈衝寬度設定資訊154-2時,濾波器電路(例如,濾波器電路130-1及濾波器電路130-2)在接收誤差訊號111與產生對應的脈衝寬度設定資訊154-2之間賦予某延遲量,以調整導因於各別動態負載之電流消耗的增加或降低之輸出電壓Vout中的任何改變。
電源控制電路140以脈衝寬度調變模式操作直到監視電路118偵測到暫態條件為止。如同先前所述般,取決於一或更多被監視的參數,由監視電路118以旗標標示暫態條件。舉例而言,根據一實施例,當量値(例如量値的絕對値)在量値臨界値之上時及/或當誤差電壓的斜率(例如斜率的絕對値)在斜率臨界値之上時,以旗標標示暫態條件。
為回應偵測到例如當負載在相當短的時間量中要求更多或更少的電流時等暫態條件或步進條件,控制電路140切換至脈衝頻率調變模式。
圖3顯示根據此處的實施例之脈衝頻率調變的電源控制電路操作的實例圖。
一般而言,在脈衝頻率調變模式中,第一電路路徑中的部份電路不致動且第二電路路徑中的電路致動以產生輸出電壓。第一電路路徑中由虛線標示的電路表示在脈衝頻率調變期間不致動的電路。其它電路在脈衝頻率調變模式期間被致動。
舉例而言,當切換至脈衝頻率調變模式時,控制電路140致動及僅使用控制迴路中的第一電路路徑中的I元件 ,以控制控制電路140的PWM訊號產生器155產生的一或更多控制訊號的脈衝寬度。控制電路140中斷第一電路路徑中的P元件及D元件的使用,以產生脈衝寬度設定資訊154-2(如同脈衝寬度調變模式中所執行般)。控制電路140使用控制迴路中的第二電路路徑中的P元件及D元件,配合控制迴路中的第一電路路徑中的I元件,以便以脈衝頻率調變模式操作。
第二電路路徑控制相位控制訊號的週期以產生輸出電壓。改變相位控制訊號195的週期造成相位控制訊號195的頻率改變。
如此,在脈衝頻率調變模式中,控制電路140操作第一電路路徑以控制相位控制訊號的脈衝寬度設定;控制電路140操作第二電路路徑以控制相位控制訊號的切換週期。在一實施例中,當在脈衝頻率調變模式中時,脈衝寬度設定可以實質上固定的或是隨著時間緩慢地改變。
如同先前述般,電路110產生誤差訊號111。誤差訊號111饋入例如具有一或更多極的低通濾波器等濾波器電路130-1。如此,濾波器電路130-1在誤差訊號111在第一電路路徑中下游傳送時賦予延遲。由濾波器電路130-1產生的經過濾波的誤差訊號饋入積分器功能115-1。如同所述及虛線標示般,第一電路路徑中的PID控制電路的P元件及D元件在脈衝頻率調變模式期間不致動。
功能125-1致動及傳送I元件給濾波器電路130-2。如同先前所述般,濾波器電路130-2配置成包含一或更多 極。濾波器電路130-2在傳送I元件至功能125-2時賦予增加的延遲。
功能125-2將增益級120-4產生的額定脈衝寬度値與I元件相加,以產生脈衝寬度設定資訊154-2。脈衝寬度調變產生器電路155從功能125-2接收脈衝寬度設定資訊154-2。如同其名稱所暗示般,脈衝寬度設定資訊154-2表示如何控制脈衝寬度調變訊號產生器155產生的各別相位控制訊號195中的一或更多脈衝寬度的設定。
如同先前所述般,當在脈衝頻率調變模式中時,脈衝寬度設定資訊154-2可以是實質上固定的値。換言之,在暫態條件期間,I元件不會改變很多。
當在脈衝頻率調變模式中時,PWM訊號產生器155接收由功能125-4產生的週期設定資訊154-1。週期設定資訊154-1是固定切換週期與第二電路路徑的輸出之間的差異之測量。
一般而言,當在脈衝頻率調變模式中時,週期設定資訊154-1中的改變將輸出電壓維持在可接受的範圍之內。亦即,PWM訊號產生器155改變相位控制訊號195的脈衝週期或頻率以將輸出電壓維持在可接受的範圍之內。在此模式中,脈衝寬度也可以調整以將輸出電壓維持在可接受的範圍之內。
如同先前所述般,第一電路路徑中的濾波器電路130延遲脈衝寬度設定資訊154-2的產生。如同所示,在一實施例中,第二電路路徑未如第一電路路徑般包含濾波器。 因此,第二電路路徑比第一電路路徑提供更快的控制回應,特別是相較於第一路徑中的P元件及D元件,對於第二路徑中的P元件及D元件之回應更快。
包含濾波器電路130濾波路徑(例如,第一電路路徑)造成可察覺的延遲。以脈衝頻率調變模式實施的控制迴路的非濾波路徑(例如,第二路徑)配置成造成延遲,此延遲遠小於第一路徑中的濾波器電路造成的延遲。在一實施例中,造成訊號延遲。
換言之,控制電路140配置成在第二電路路徑中接收誤差電壓與產生對應的週期設定資訊154-1之間的延遲小於在第一電路路徑中接收誤差電壓與產生對應的脈衝寬度設定資訊154-2之間的延遲或時間量的一半或實質上小於所述延遲或時間量。再度地,第二電路路徑缺少濾波器電路的複製(例如,第一路徑中發現的一或更多極),以比第一電路路徑提供實質上更快的控制回應。
當在脈衝頻率調變模式中時,控制電路140降低高側切換致動脈衝之間的時間量,以增加供給負載的電流量;控制電路140增加高側切換致動脈衝之間的時間量以降低供應給負載的電流量。
在一實施例中,第二電路路徑中的功能125-3的輸出x如下所述:x=Kfp*EV+Kfd*d(EV)/dt,其中,EV是誤差訊號111,d(EV)/dt是誤差訊號的斜率或是誤差訊號111的微分。如同其名稱暗示般,線性化電路150配置成將自 功能125-3接收的輸入x線性化。
當PID補償電路藉由改變脈衝寬度、使切換頻率保持固定而改變一或更多相位控制訊號195的工作循環時,系統變成實質上線性的。舉例而言,(W+d)/T=W/T(1+d/W),其中,d=脈衝寬度差量,W=脈衝寬度設定點,T=週期。乘法器具有(1+x)的形式。這是線性的。
但是,藉由改變切換頻率而改變工作循環先天上是非線性的。舉例而言,W/(T-d)=W/T(1/(1-d/T))。乘法器具有1/(1-x)的形式。這是非線性的。
為了將切換頻率的此改變線性化,此處的實施例包含數位地轉換計算的x成為y=x/(1+x)的値。這是因為1/(1-y)=1/(1-(x/1+x))=1+x。
在使用線性化功能150來線性化輸入x之後,控制電路140將由線性化電路150產生的線性化値輸入整形功能160。
又根據實施例,整形功能160是非線性項,藉由改變切換頻率以改變工作循環。當誤差訊號的斜率大於斜率臨界値時,此整形功能160僅為非線性的。整形功能160(例如,S値>=1)乘上線性化電路150輸出的「線性化的」x/(1+x)値以產生y=S*x/(1+x)。注意,S的更多細節說明於圖7中。
整體値是1/(1-y)=1/(1-(S*x/1+x))=1+x/(1-x(S-1))。對於大於1的S値,此功能是非線性的(超級線性的)。
這些特點(例如,線性化電路150及整形功能160)一起作用以增進對於負載暫態的VR回應。
圖4是舉例說明的理論時序圖,顯示根據此處的實施例之導因於負載電流消耗增加之輸出電壓變化。
如同所示,在時間T0與時間T1之間,控制電路140以脈衝寬度調變模式操作。
在時間T1,由於增加的負載電流消耗,控制電路140的監視電路118偵測到誤差訊號111的量値的絕對値及/或斜率的絕對値在臨界値之上。為回應在時間T1偵測到此暫態條件,控制電路140啟動切換至脈衝頻率調變模式。PWM訊號產生器170加速脈衝的產生以負責輸出電壓的下降。
在時間T1,整形函數160被致動以對第二電路路徑實施非線性S增加。當最需要負責負載變化時,在時間T1及T2之間脈衝頻率調變模式的非線性回應或增益提供更快的回應。
在時間T2,當誤差訊號111的斜率不再在斜率臨界値之上時,整形功能160中斷實施第二電路路徑中的非線性S增益。在時間T2之後,非線性增益不被致動且整形功能160被設定成提供1的線性增益。注意,圖7顯示在時間T1與T2之間用於規劃整形功能160的不同S增益曲線。當誤差訊號111的斜率降至斜率臨界値之下時,整形功能設定於1的增益。
再度參考圖4,在時間T3,誤差訊號111的斜率前往 零。這是來自第二電路路徑中的D元件之貢獻前往零之點。接續於時間T3之後,此D元件為負的。
在時間T4之後,誤差訊號111是零或是負的,且監視電路118啟動從脈衝頻率調變模式至脈衝寬度調變模式的切回。
圖5是舉例說明的理論時序圖,顯示根據此處的實施例之導因於負載電流消耗降低之輸出電壓變化。
在時間T5之前,監視電路118設定控制電路140以便以脈衝寬度調變模式操作。
在時間T5,監視電路118偵測到誤差訊號111的量値大於臨界値以及誤差訊號111大於斜率臨界値。如同前述,這相當於暫態。為回應暫態條件,監視電路118啟動從脈衝寬度模式至脈衝頻率調變模式的切回。
在時間T6,監視電路偵測到誤差電壓的量値大於各別的臨界値。為防止輸出電壓的量値過衝,監視電路118啟動一或更多電力轉換器相的不致動。假使沒有過衝的威脅,則監視電路118啟動脈衝頻率調變模式中控制電路140的操作。
在時間T7,誤差訊號111的斜率約為零。第二電路路徑的D元件的貢獻在此時約為零且之後為正的。
在時間T8,監視電路118偵測到誤差訊號111前往零或是正的。為回應偵測到此條件,監視電路118啟動從脈衝頻率調變模式至脈衝寬度調變模式的切換。
圖6是舉例說明的狀態圖,顯示根據此處的實施例之 脈衝寬度調變模式與脈衝頻率調變之間的切換。
狀態610表示如此處所述之脈衝寬度調變模式中的控制電路140的操作。例如較低的電流需求(例如負載降壓)等暫態條件的偵測,監視電路118啟動從狀態610的操作至狀態620的操作之切換。在一實施例中,監視電路118啟動從狀態610至狀態620的切換,以回應偵測到誤差訊號111小於低量値臨界値(例如FC_LTH)及誤差訊號111的斜率小於低斜率臨界値(例如SLOPE_LTH)。
狀態620包含以脈衝頻率調變模式操作控制電路140及降低相位控制訊號195的切換頻率。如同所述,假使誤差訊號111量値大於超越量臨界値時,監視電路118啟動電力轉換器相的不致動,以防止輸出電壓過衝。假使誤差電壓變成正的,則監視電路118啟動切換至狀態610。在一實施例中,監視電路118啟動切換至狀態630,以回應偵測到誤差訊號111大於高量値臨界値(例如,FC_HTH)以及誤差訊號111的斜率大於高斜率臨界値(例如,SLOPE_HTH)。
狀態630包含以脈衝頻率調變模式操作控制電路140及增加相位控制訊號195的切換頻率。假使誤差電壓變成零或負時,監視電路118啟動切換至狀態610。假使誤差訊號111小於低臨界値且誤差電壓的斜率小於斜率臨界値時,監視電路118啟動切換至狀態620。在一實施例中,監視電路118啟動從狀態630至狀態620的切換,以回應偵測到誤差訊號111小於低量値臨界値(例如,FC_LTH )及誤差訊號111的斜率小於低斜率臨界値(例如,SLOPE_LTH)。
圖7是顯示根據此處的實施例之不同的有效工作循環乘法器之實例圖。如同先前所述般,整形功能160配置成在時間T5與T6之間提供任何增益曲線。
圖8是根據此處的實施例之穩態及暫態條件期間控制電路為將輸出電壓維持在可接受範圍內而產生的控制脈衝之舉例說明的時序圖。
如同所示,控制電路140以不同模式操作以將輸出電壓Vout的量値保持在可接受範圍之內。在脈衝列中邏輯高狀態表示一或更多電力轉換器相中高側切換電路的致動以防止負載電流消耗增加期間輸出電壓降至臨界値之下。
圖9是顯示根據此處的實施例之驅動一或更多電力轉換器相的電源電路。如同所示,電源100包含控制電路140。如上所述般,控制電路140至少部份地根據+Vref,控制電源100的操作以及產生輸出電壓190(亦即,+Vout)。
更具體而言,根據一實施例,控制電路140接收例如Vin、Vout、Vref等輸入或回饋、每一作動相提供的電流、等等。
根據電源100的操作條件,控制電路140將一或更多電力轉換器相致動(例如,相#1、相#2、等等)以產生輸出電壓190。
根據收到的控制電路100的輸入及配置設定,當例如 相170-1等第一相被致動時,控制電路100輸出控制訊號以將高側開關151及低側開關161開啟及關閉。高側開關151及低側開關161的切換操作產生輸出電壓190以供電給負載119。
在一實施例中,如同所示,控制電路140產生相位控制訊號195-1及相位控制訊號195-2,以控制驅動器電路113-1及113-2。在電源100中,根據從控制電路140收到的控制訊號,驅動器113-1控制高側開關151的狀態(例如,控制開關)及驅動器113-2控制低側開關161的狀態(例如,同步開關)。
注意,驅動器電路113(例如,驅動器電路113-1及驅動器電路113-2)位於控制電路140中或是位於相對於控制電路140的遠端位置。
當經由控制電路140產生的控制訊號而使高側開關151開啟(亦即,致動)時(而低側161或同步開關是關閉的),經過電感器144的電流經由電壓源120與電感器144之間高側開關151提供的高度導電的電路徑而增加。
當經由控制電路140產生的控制訊號而使低側開關161開啟(亦即,致動)時(而高側開關151或控制開關關閉),如同所示,經過電感器144的電流根據電感器144與接地之間低側開關161提供的導電電路徑而降低。
根據高側開關151及低側開關161的適當切換,控制電路140將輸出電壓190調節在所需範圍之內,以供電給負載119。
在一實施例中,如同所示,電源100包含多相位。多相位中的每一相位類似於圖1中所示之舉例說明的相170-1。在較重的負載119條件期間,控制電路140啟動多相位的致動。舉例而言,在更高負載119條件期間,控制電路140使例如單相等較少的相致動。控制電路140致動一或更多相,以將輸出電壓190維持在所需範圍,以供電給負載119。
如同所示,如先前所示般,每一相包含各別的高側開關電路及低側開關電路。為了使各別相位不致動,相位控制電路140將各別相的高側開關電路及低側開關電路均設定於關閉狀態。當關閉或不致動時,各別相對於產生電流以供電給負載119並無貢獻。
控制電路140視負載119消耗的電流量而選取多少相以致動。舉例而言,當負載119消耗相當大量的電流時,控制電路140致動多個相以供電給負載119。當負載119消耗相當小量的電流時,控制電路140致動較少或單相以供電給負載119。
這些相可以彼此離散地操作。
在電源100中實施例如評估或是實體測量等不同型式的方法中的任何方法,以偵測每一相位提供的電流量或是由負載119消耗的整體電流量。此資訊可以用於決定相位應如何被致動以產生輸出電壓190。
控制電路140也監視例如輸出電壓190的量値變化率等其它參數,以決定多少相位將被用以產生輸出電壓190 。
注意,控制電路140包含或是電腦、處理器、微控制電路、數位訊號處理器、等等,配置成執行及/或支援此處所揭示的任何或所有方法操作。換言之,控制電路140包含一或更多電腦化裝置、處理器、數位訊號處理器、電腦可讀取的儲存媒體、等等,以如同此處所說明般操作來執行本發明的不同實施例。
注意,例如控制電路140等此處的實施例又包含儲存於電腦可讀取媒體上的一或更多軟體程式、可執行碼,以執行上述概述及下述中詳細揭示之步驟及操作。舉例而言,一此實施例包括具有電腦儲存媒體(例如一或複數個非電晶體式電腦可讀取媒體)的電腦程式產品,在電腦儲存媒體上包含經過編碼的電腦程式邏輯(例如,軟體、韌體、指令...),當在具有處理器及對應的儲存器的控制電路140中執行時,使控制電路140依編程數位地執行此處所揭示的操作。這些配置可以實施成配置在或編碼於例如光學媒體(例如,CD-ROM)、軟碟或硬碟等電腦可讀取的媒體上之軟體、碼、及/或其它資料(例如資料結構),或是例如在一或更多ROM或RAM或PROM晶片、特定應用積體電路(ASIC)中的韌體或微碼等其它媒體。軟體或韌體或其它此配置儲存於控制電路140中,以使控制電路140執行此處所述的技術。
圖10是流程圖1000,顯示根據此處的實施例之電源的操作之舉例說明的方法。注意,與上述所述的概念將有 某些重疊。而且,這些步驟可以以任何適當次序執行。
在步驟1010中,控制電路140接收誤差訊號111。誤差訊號111表示電源100的輸出電壓Vout與所需的輸出電壓設定點Vref之間的差異。
在步驟1020中,取決於誤差訊號111,控制電路140的監視電路118在下述之間切換:以脈衝寬度調變模式操作控制電路140以產生輸出電壓、與以脈衝頻率調變模式操作控制電路140以產生輸出電壓。
圖11及12相結合以形成流程圖1100(例如,流程圖1100-1及流程圖1100-2),顯示根據此處的實施例之操作電源的詳細舉例說明的方法。注意,與上述概念將有某些重疊。下述步驟可以以任何適當次序執行。
在流程圖1100-1的步驟1110中,控制電路140接收誤差訊號111。誤差訊號111標示電源100的輸出電壓與所需的輸出電壓設定點之間的差異。
在步驟1120中,控制電路140的監視電路118分析誤差訊號111的量値及/或斜率。
在步驟1130中,監視電路118以脈衝寬度調變模式操作控制電路140,以產生輸出電壓。
在子步驟1140中,控制電路140產生至少一控制訊號195,以具有實質上固定的週期。
在子步驟1150中,控制電路140使用第一電路路徑以調整控制訊號的脈衝寬度,來控制輸出電壓。第一電路路徑根據第一電路路徑中的P元件、I元件、及D元件, 以控制脈衝寬度的設定。
在步驟1160中,監視電路118啟動從脈衝寬度調變模式至脈衝頻率調變模式的切換,以回應偵測到暫態負載條件,在暫態負載條件期間:i)誤差訊號111的量値落至可接受的量値範圍之外及ii)誤差訊號111的斜率落在可接受的斜率範圍之外。
在步驟1210中,在至少部份暫態條件期間,監視電路118以脈衝頻率調變模式操作控制電路140,以產生輸出電壓。
在子步驟1220中,控制電路140使用控制電路140的第一電路路徑中的I元件以控制控制訊號的脈衝寬度的設定。
在子步驟1230中,控制電路140使用控制電路的第二電路路徑以控制輸出電壓,第二電路路徑根據第二電路路徑中的P元件及D元件以控制週期的設定。
在步驟1240中,在偵測暫態條件及在暫態條件期間以脈衝頻率調變模式操作控制電路140以將輸出電壓的量値維持在範圍之內之後,控制電路140啟動從頻率調變模式至脈衝寬度調變模式的切回,以控制輸出電壓。
再度注意,此處的實施例又包含儲存於電腦可讀取的媒體上的一或更多軟體程式、可執行碼,以執行上述概述及下述中詳細揭示的步驟及操作。舉例而言,一此實施例包括具有電腦儲存媒體(例如一或複數個非電晶體式電腦可讀取媒體)的電腦程式產品,在電腦儲存媒體上包含經 過編碼的電腦程式邏輯,當在具有處理器及對應的儲存器的電腦化裝置中執行時,使處理器依編程執行此處所揭示的操作。這些配置可以實施成配置在或編碼於例如光學媒體(例如,CD-ROM)、軟碟或硬碟等電腦可讀取的媒體上之軟體、碼、及/或其它資料(例如資料結構),或例如一或更多ROM或RAM或PROM晶片、特定應用積體電路(ASIC)中的韌體或微碼等等其它媒體。軟體或韌體或其它此配置儲存於控制電路140中,以使控制電路140執行此處所述的技術。
因此,本揭示的一特定實施例關於電腦程式產品,包含非電晶體式電腦可讀取的硬體儲存媒體(例如,記憶體、貯存器、光碟、積體電路、等等)。換言之,如同此處所述的控制電路140包含電腦可讀取的硬體媒體,用於儲存電流評估及模式控制演繹法。此演繹法支援例如此處所述的電源切換控制功能等操作。舉例而言,在一實施例中,當由控制電路140執行時,指令使控制電路140執行如同下述流程圖中的操作。
此處的技術良好地適用於電源應用。但是,應注意,此處的實施例不限於用於這些應用中且此處所述的這些技術也良好地適用於其它應用中。
雖然已參考發明的較佳實施例而特別地顯示及說明本發明,但是,習於此技藝者將瞭解在不悖離後附的申請專利範圍所界定的本申請案的精神及範圍之下,可以對實施例的形式及細節作出各式各樣的改變。這些變異被本申請 案的範圍所涵蓋。如此,本申請案的實施例的前述說明並非是限定性的。發明的任何限定呈現在後附的申請專利範圍中。
110‧‧‧電路
115-1‧‧‧積分器功能
115-2‧‧‧微分功能
116‧‧‧微分功能
118‧‧‧監視電路
119‧‧‧負載
120‧‧‧電壓源
120-1‧‧‧增益級
120-2‧‧‧增益級
120-3‧‧‧增益級
120-4‧‧‧增益級
125-1‧‧‧功能
125-2‧‧‧加法器
125-3‧‧‧功能
125-4‧‧‧功能
130-1‧‧‧濾波器電路
130-2‧‧‧濾波器電路
140‧‧‧控制電路
144‧‧‧電感器
150‧‧‧線性化電路
151‧‧‧高側開關
155‧‧‧脈衝寬度調變訊號產生器
160‧‧‧整形功能
161‧‧‧低側開關
如同附圖中所示般,從下述較佳實施例更特別的說明,將清楚本發明的上述及其它目的、特點、和優點,在附圖中,不同視圖中類似的代號意指相同的部份。圖式並非依比例,而是強調顯示實施例、原理、概念、等等。
圖1是根據此處的實施例之電源控制電路的實例圖。
圖2是根據此處的實施例之第一模式操作的電源控制電路的實例圖。
圖3是根據此處的實施例之第二模式操作的電源控制電路的實例圖。
圖4是舉例說明的理論時序圖,顯示根據此處的實施例之導因於負載電流消耗增加之輸出電壓變化。
圖5是舉例說明的理論時序圖,顯示根據此處的實施例之導因於負載電流消耗降低之輸出電壓變化。
圖6是舉例說明的狀態圖,顯示根據此處的實施例之脈衝寬度調變模式與脈衝頻率調變之間的切換。
圖7顯示根據此處的實施例之不同的有效工作循環乘法器整形功能。
圖8是根據此處的實施例之穩態及暫態條件期間控制電路為將輸出電壓維持在可接受範圍內而產生的控制脈衝 之理論時序圖。
圖9是顯示根據此處的實施例之包含驅動一或更多電力轉換器相的控制電路之電源電路。
圖10是流程圖,顯示根據此處的實施例之舉例說明的方法。
圖11及12相結合以形成詳細流程圖,顯示根據此處的實施例之舉例說明的方法。
110‧‧‧電路
111‧‧‧誤差訊號
115-1‧‧‧積分器功能
115-2‧‧‧微分功能
116‧‧‧微分功能
118‧‧‧監視電路
120-1、120-2、120-3、120-4‧‧‧增益級
125-1、125-3、125-4‧‧‧功能
125-2‧‧‧加法器
130-1、130-2‧‧‧濾波器電路
140‧‧‧控制電路
150‧‧‧線性化電路
154-1‧‧‧週期設定資訊
154-2‧‧‧脈衝寬度設定資訊
155‧‧‧脈衝寬度調變訊號產生器
160‧‧‧整形功能
195‧‧‧控制訊號

Claims (22)

  1. 一種電源方法,包括:經由電源中的控制電路:接收誤差訊號,該誤差訊號表示該電源的輸出電壓與所需的輸出電壓設定點之間的差異;以及取決於該誤差訊號,在下述之間切換:以脈衝寬度調變模式操作該控制電路以產生該輸出電壓,與以脈衝頻率調變模式操作該控制電路以產生該輸出電壓;該方法更包含:監視該誤差訊號以偵測暫態條件在啟動從該脈衝寬度調變模式至該脈衝頻率調變模式之切換以回應該暫態條件之前,使用該控制電路中的第一電路路徑中的P元件、I元件、及D元件而以該脈衝寬度調變模式操作;以及回應偵測該暫態條件:i)使用該控制迴路的第一電路路徑中的I元件以控制該控制電路產生的控制訊號的脈衝寬度;ii)中斷使用該第一電路路徑中的該P元件及該D元件以控制該脈衝寬度,以及iii)使用該控制迴路的第二電路路徑中的該P元件及該D元件並配合該控制迴路的該第一電路路徑中的該I元件,而以該脈衝頻率調變模式操作。
  2. 如申請專利範圍第1項之方法,其中,以該脈衝寬 度調變模式操作該控制電路包含:回應該誤差訊號的斜率的絕對值低於臨界電壓值的偵測,調整具有實質上固定的週期之相位控制訊號的脈衝寬度,以控制該電源的至少一相位來產生該輸出電壓;以及其中,以該脈衝頻率調變模式操作該控制電路包含:回應該誤差訊號的該斜率的該絕對值高於該臨界電壓值的偵測,調整具有實質上固定的脈衝寬度之相位控制訊號的週期,以控制該電源的至少一相位來產生該輸出電壓。
  3. 如申請專利範圍第1項之方法,其中,以該脈衝寬度調變模式操作該控制電路來產生該輸出電壓包含實施該第一電路路徑來控制該控制訊號的該脈衝寬度以產生該輸出電壓;及其中,以該脈衝頻率調變模式操作該控制電路來產生該輸出電壓包含實施該第二電路路徑來控制該相位控制訊號的週期設定以產生該輸出電壓。
  4. 如申請專利範圍第3項之方法,更包括:操作該第一電路路徑以根據該誤差訊號來產生該脈衝寬度設定,該第一電路路徑包含延遲該脈衝寬度設定的產生之濾波器電路;以及操作該第二電路路徑以從該誤差訊號來產生週期設定,該第二電路路徑缺少濾波器電路而比該第一電路路徑提供實質上更快的回應。
  5. 如申請專利範圍第1項之方法,更包括:為回應根據該誤差訊號的變化而偵測到的該暫態條 件,從以該脈衝寬度調變模式操作該控制電路切換至該脈衝頻率調變模式;以該脈衝頻率調變模式實施訊號整形功能,以提供對於該暫態條件非線性控制回應直到該誤差訊號的斜率降至臨界值之下的值為止;以及在提供該非線性控制之後,以該脈衝頻率調變模式實施該訊號整形功能以提供線性控制回應。
  6. 如申請專利範圍第1項之方法,更包括:分析該誤差訊號的量值及斜率;以及啟動從該脈衝寬度調變模式至該脈衝頻率調變模式之切換,以回應偵測該暫態負載條件,在該暫態負載條件期間:i)該誤差訊號的該量值落在可接受的量值範圍之外,以及ii)該誤差訊號的該斜率落在可接受的斜率範圍之外。
  7. 如申請專利範圍第6項之方法,更包括:在偵測該暫態條件以及在該暫態條件期間以該脈衝頻率調變模式操作該控制電路而將該輸出電壓的量值維持在範圍之內之後,啟動從該脈衝頻率調變模式至該脈衝寬度調變模式之切回,以控制該輸出電壓。
  8. 如申請專利範圍第1項之方法,其中,以該脈衝寬度調變模式操作該控制電路來產生該輸出電壓包含操作該第一電路路徑以控制該控制訊號的該脈衝寬度來產生該輸出電壓,而該控制訊號的切換週期是實質上固定的值;以及 其中,以該脈衝頻率調變模式操作該控制電路來產生該輸出電壓包含:操作該第一電路路徑以控制該相位控制訊號的該脈衝寬度設定,以及操作該第二電路路徑以控制該相位控制訊號的切換週期。
  9. 如申請專利範圍第1項之方法,更包括:回應偵測到的該誤差訊號的量值在臨界值之上,啟動該電源中至少一相位的不致動以防止該輸出電壓過衝。
  10. 如申請專利範圍第1項之方法,更包含:回應根據該誤差訊號的變化而偵測到的該暫態條件,從以該脈衝寬度調變模式中操作該控制電路切換為該脈衝頻率調變模式;及回應直到該誤差訊號的斜率降低至低於臨界值之下的該暫態條件為止,提供非線性控制。
  11. 如申請專利範圍第1項之方法,更包含:回應該誤差的量值高於臨界值的偵測,從以該脈衝寬度調變模式中操作該控制電路切換為以該脈衝頻率調變模式中操作該控制電路。
  12. 如申請專利範圍第1項之方法,更包含:回應該誤差的量值低於第一臨界值的偵測,從以該脈衝寬度調變模式中操作該控制電路切換為以該脈衝頻率調變模式中操作該控制電路;及回應該誤差的量值高於第二臨界值的偵測,從以該脈 衝頻率調變模式中操作該控制電路切換為以該脈衝寬度調變模式中操作該控制電路。
  13. 如申請專利範圍第1項之方法,更包含:回應該誤差的量值高於第一臨界值的偵測,從以該脈衝寬度調變模式中操作該控制電路切換為以該脈衝頻率調變模式中操作該控制電路;及回應該誤差的量值低於第二臨界值的偵測,從以該脈衝頻率調變模式中操作該控制電路切換為以該脈衝寬度調變模式中操作該控制電路。
  14. 一種電源方法,包括:經由電源中的控制電路:接收誤差訊號,該誤差訊號表示該電源的輸出電壓與所需的輸出電壓設定點之間的差異;以及取決於該誤差訊號,在下述之間切換:以脈衝寬度調變模式操作該控制電路以產生該輸出電壓,以脈衝頻率調變模式操作該控制電路以產生該輸出電壓;其中,以該脈衝寬度調變模式操作該控制電路以產生該輸出電壓包含使用該控制電路的控制迴路的濾波路徑中的P元件、I元件、及D元件,以實施該脈衝寬度調變模式,該濾波路徑包含造成訊號延遲的濾波器電路;以及其中,以該脈衝頻率調變模式操作該控制電路來產生該輸出電壓包含使用該控制迴路的該濾波路徑中的該I元 件及使用該控制迴路的非濾波路徑中的該P元件及該D元件,以實施該脈衝頻率調變模式,該非濾波路徑造成比該濾波路徑中該濾波電路造成的該訊號延遲的一半還小的訊號延遲。
  15. 如申請專利範圍第14項之方法,其中,以該脈衝頻率調變模式操作該控制電路更包括:將該非濾波路徑中的該P元件及該D元件的總合輸入至該非濾波路徑中的線性化電路,該線性化電路配置成使該總合線性化;以及至少部份地根據該線性化電路的輸出,控制該控制電路產生的控制訊號的切換週期。
  16. 一種電源系統,包括:監視電路,配置成接收誤差訊號,該誤差訊號表示該電源的輸出電壓與所需的輸出電壓設定點之間的差異;以及控制電路配置成視該誤差訊號而在以脈衝寬度調變模式操作該控制電路以產生該輸出電壓與以脈衝頻率調變模式操作該控制電路以產生該輸出電壓之間切換;其中,該監視電路配置成監視該誤差訊號以偵測暫態條件;其中,該控制電路配置成使用該控制電路的第一電路路徑中的P元件、I元件、及D元件而以該脈衝寬度調變模式操作;以及其中,該控制電路為回應該暫態條件而配置成: 使用該控制迴路的該第一電路路徑中的該I元件以控制該控制電路產生的控制訊號的脈衝寬度、中斷使用該第一電路路徑中的該P元件及該D元件以控制該脈衝寬度、以及使用該控制迴路的第二電路路徑中的該P元件及該D元件並配合該控制迴路的該第一電路路徑中的該I元件而以該脈衝頻率調變模式操作。
  17. 如申請專利範圍第16項之電源系統,其中,該控制電路包含:該第一電路路徑,以控制該控制訊號的該脈衝寬度以產生該輸出電壓;該第二電路路徑,以控制該相位控制訊號的週期設定以產生該輸出電壓;其中,該第一電路路徑配置成根據該誤差訊號產生該脈衝寬度設定資訊,該第一電路路徑包含延遲該脈衝寬度設定資訊的產生之濾波器電路;其中,該第二電路路徑配置成根據該誤差訊號產生週期設定資訊,該第二電路路徑缺少濾波器電路而比該第一電路路徑提供實質上更快的回應。
  18. 如申請專利範圍第16項之電源系統,其中,該監視電路配置成:分析該誤差訊號的量值及斜率;以及啟動從該脈衝寬度調變模式至該脈衝頻率調變模式之切換,以回應偵測該暫態負載條件,在該暫態負載條件期間:i)該誤差訊號的該量值落在可接受的量值範圍之 外,以及ii)該誤差訊號的該斜率落在可接受的斜率範圍之外。
  19. 如申請專利範圍第16項之電源系統,其中,該監視電路配置成啟動該電源中至少一相位的不致動以防止該輸出電壓過衝,以回應偵測到的該誤差訊號的量值在臨界值之上。
  20. 一種電源系統,包括:監視電路,配置成接收誤差訊號,該誤差訊號表示該電源的輸出電壓與所需的輸出電壓設定點之間的差異;以及控制電路配置成視該誤差訊號而在以脈衝寬度調變模式操作該控制電路以產生該輸出電壓與以脈衝頻率調變模式操作該控制電路以產生該輸出電壓之間切換;其中,該監視電路配置成從以該脈衝寬度調變模式操作該控制電路切換至該脈衝頻率調變模式,以回應根據該誤差訊號的變化偵測暫態條件;其中,該控制電路包含訊號整形功能,以對該暫態條件提供非線性控制回應直到誤差訊號的斜率降至臨界值之下的值為止。
  21. 一種電源系統,包括:監視電路,配置成接收誤差訊號,該誤差訊號表示該電源的輸出電壓與所需的輸出電壓設定點之間的差異;控制電路配置成視該誤差訊號而在以脈衝寬度調變模式操作該控制電路以產生該輸出電壓與以脈衝頻率調變模 式操作該控制電路以產生該輸出電壓之間切換;其中,該控制電路配置成使用該控制電路的控制迴路的濾波路徑中的P元件、I元件、及D元件,以產生該輸出電壓,該濾波路徑包含造成訊號延遲的濾波電路;以及其中,該控制電路配置成使用該控制迴路的該濾波路徑中的該I元件及使用該控制電路的該控制迴路的非濾波路徑中的該P元件及該D元件,以實施該脈衝頻率調變模式,該非濾波路徑造成比該濾波路徑中該濾波電路造成的該訊號延遲的一半還小的訊號延遲。
  22. 如申請專利範圍第21項之電源系統,其中,該非濾波路徑包含線性化電路,該線性化電路配置成接收該非濾波路徑中的該P元件及該D元件的總合,該線性化電路配置成將該非濾波路徑中的該P元件及該D元件的該總合線性化,該控制電路又包括:脈衝寬度調變訊號產生器,配置成至少部份地根據該線性化電路的輸出,控制相位控制訊號的切換週期。
TW101104205A 2011-02-23 2012-02-09 電源方法及電源系統 TWI507838B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161445857P 2011-02-23 2011-02-23
US13/087,188 US8803499B2 (en) 2011-02-23 2011-04-14 Power supply circuitry and adaptive transient control

Publications (2)

Publication Number Publication Date
TW201239571A TW201239571A (en) 2012-10-01
TWI507838B true TWI507838B (zh) 2015-11-11

Family

ID=47599549

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101104205A TWI507838B (zh) 2011-02-23 2012-02-09 電源方法及電源系統

Country Status (2)

Country Link
US (1) US8803499B2 (zh)
TW (1) TWI507838B (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9524928B2 (en) 2010-12-13 2016-12-20 Infineon Technologies Americas Corp. Power quad flat no-lead (PQFN) package having control and driver circuits
US9620954B2 (en) 2010-12-13 2017-04-11 Infineon Technologies Americas Corp. Semiconductor package having an over-temperature protection circuit utilizing multiple temperature threshold values
US9443795B2 (en) 2010-12-13 2016-09-13 Infineon Technologies Americas Corp. Power quad flat no-lead (PQFN) package having bootstrap diodes on a common integrated circuit (IC)
US9324646B2 (en) 2010-12-13 2016-04-26 Infineon Technologies America Corp. Open source power quad flat no-lead (PQFN) package
US9711437B2 (en) 2010-12-13 2017-07-18 Infineon Technologies Americas Corp. Semiconductor package having multi-phase power inverter with internal temperature sensor
US9659845B2 (en) 2010-12-13 2017-05-23 Infineon Technologies Americas Corp. Power quad flat no-lead (PQFN) package in a single shunt inverter circuit
US9449957B2 (en) 2010-12-13 2016-09-20 Infineon Technologies Americas Corp. Control and driver circuits on a power quad flat no-lead (PQFN) leadframe
US8587101B2 (en) 2010-12-13 2013-11-19 International Rectifier Corporation Multi-chip module (MCM) power quad flat no-lead (PQFN) semiconductor package utilizing a leadframe for electrical interconnections
US9362215B2 (en) 2010-12-13 2016-06-07 Infineon Technologies Americas Corp. Power quad flat no-lead (PQFN) semiconductor package with leadframe islands for multi-phase power inverter
US9531266B2 (en) * 2011-02-23 2016-12-27 Infineon Technologies Americas Corp. Power supply circuitry and adaptive transient control
US9065339B2 (en) * 2011-03-11 2015-06-23 Infineon Technologies Austria Ag Methods and apparatus for voltage regulation with dynamic transient optimization
DE102012215155A1 (de) * 2012-08-27 2014-02-27 Robert Bosch Gmbh Verfahren zum Regeln der Stromstärke des durch einen induktiven Verbraucher fließenden elektrischen Stroms sowie entsprechende Schaltungsanordnung
TWI464407B (zh) 2012-11-30 2014-12-11 Ind Tech Res Inst 電子裝置與物體活動狀態感測方法
US9871456B2 (en) * 2015-07-03 2018-01-16 Texas Instruments Incorporated Voltage conversion device and method of operation
US10230379B2 (en) 2016-05-04 2019-03-12 Apple Inc. Downshift techniques for oscillator with feedback loop
US10581440B2 (en) 2016-09-16 2020-03-03 Apple Inc. Detecting power supply noise events and initiating corrective action
US10635124B2 (en) 2017-04-11 2020-04-28 Intel Corporation Adaptive digital controller including linear and non-linear control mechanism
US10401885B2 (en) * 2017-08-18 2019-09-03 Rolls-Royce North American Technologies Inc. DC to DC converter output bus voltage control system
FR3075511A1 (fr) 2017-12-18 2019-06-21 Stmicroelectronics (Grenoble 2) Sas Alimentation a decoupage et son procede de commande
US10991092B2 (en) * 2018-08-13 2021-04-27 Siemens Healthcare Gmbh Magnetic resonance imaging quality classification based on deep machine-learning to account for less training data
US11837958B2 (en) * 2018-12-12 2023-12-05 Infineon Technologies Austria Ag Multiphase power converter
US10833616B1 (en) * 2019-11-22 2020-11-10 Rolls-Royce Marine North America Inc. Gas turbine engine generator power management control system
US11502602B2 (en) 2020-10-14 2022-11-15 Infineon Technologies Austria Ag Multi-dimensional pulse width modulation control
US11860660B2 (en) 2021-06-02 2024-01-02 Mediatek Singapore Pte. Ltd. Apparatus and method of performing load transient frequency detection for dynamically managing controllable circuit in voltage regulator
US11929679B2 (en) 2021-06-30 2024-03-12 Infineon Technologies Austria Ag Power supply configurations and PWM edge control

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5568044A (en) * 1994-09-27 1996-10-22 Micrel, Inc. Voltage regulator that operates in either PWM or PFM mode
US20070046273A1 (en) * 2005-08-23 2007-03-01 Riehl Patrick S Transient behavior while switching between control loops in a switching voltage regulator
US20100320983A1 (en) * 2009-06-23 2010-12-23 Intersil Americas Inc. System and method for pfm/pwm mode transition within a multi-phase buck converter
TW201108585A (en) * 2009-08-17 2011-03-01 Richtek Technology Corp Switching regulator with transient control function and control circuit and method therefor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7498786B2 (en) * 2003-12-01 2009-03-03 Fairchild Semiconductor Corporation Digital control of switching voltage regulators
US7923974B2 (en) * 2008-01-04 2011-04-12 Chil Semiconductor Corporation Modification of switch activation order in a power supply
JP5091028B2 (ja) * 2008-06-26 2012-12-05 株式会社リコー スイッチングレギュレータ及びそのスイッチングレギュレータを備えた半導体装置
US8081041B2 (en) * 2010-02-19 2011-12-20 Exar Corporation Glue-logic based method and system for minimizing losses in oversampled digitally controlled DC-DC converters
US8816663B2 (en) * 2010-02-26 2014-08-26 Telefonaktiebolaget L M Ericsson (Publ) Feedforward digital control unit for switched mode power supply and method thereof
US8638079B2 (en) * 2010-02-27 2014-01-28 Infineon Technologies Ag Pulse modulation control in a DC-DC converter circuit
US20120153919A1 (en) * 2010-12-17 2012-06-21 Cristian Garbossa Switching Mode Power Supply Control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5568044A (en) * 1994-09-27 1996-10-22 Micrel, Inc. Voltage regulator that operates in either PWM or PFM mode
US20070046273A1 (en) * 2005-08-23 2007-03-01 Riehl Patrick S Transient behavior while switching between control loops in a switching voltage regulator
US20100320983A1 (en) * 2009-06-23 2010-12-23 Intersil Americas Inc. System and method for pfm/pwm mode transition within a multi-phase buck converter
TW201108585A (en) * 2009-08-17 2011-03-01 Richtek Technology Corp Switching regulator with transient control function and control circuit and method therefor

Also Published As

Publication number Publication date
US20120212193A1 (en) 2012-08-23
US8803499B2 (en) 2014-08-12
TW201239571A (en) 2012-10-01

Similar Documents

Publication Publication Date Title
TWI507838B (zh) 電源方法及電源系統
TWI548182B (zh) 用於調適性暫態控制之方法,電源系統及電腦可讀式儲存硬體
US10044270B2 (en) Power supply circuitry and adaptive transient control
JP4897686B2 (ja) 電力供給装置、力率改善装置及び力率改善方法
JP4725641B2 (ja) 昇降圧型スイッチングレギュレータ
JP5960246B2 (ja) 電源制御器
TWI472124B (zh) 用於不斷電電源控制的系統與方法及配電給負載之系統及其電腦可讀取媒體
JP5901635B2 (ja) ブリッジトポロジーを用いるスイッチドモード電力コンバータ及びそのスイッチング方法
JP6047287B2 (ja) 被変調電源ステージおよび電源電圧を生成するための方法
EP2903146A2 (en) Method of feedback commanding a monophase resonant converter, a related monophase resonant converter and a polyphase resonant converter
JP6070189B2 (ja) スイッチング電源装置
CN101730972A (zh) 具有在低功率需求水平控制脉宽变异性开关的开关整流器
JP5930700B2 (ja) スイッチング電源装置及びその制御方法
JP2013537032A (ja) ブリッジトポロジーを用いるスイッチドモード電力コンバータにおけるリップル電流の低減
Cho et al. Implementation of digitally controlled phase shift full bridge converter for server power supply
TW201439703A (zh) 開關調節器電路及方法
TWI451223B (zh) 用以處理資料資訊之方法及電腦可讀取硬體儲存媒體,以及電源系統
US9007043B2 (en) Parameter adjustment depending on resonant frequency of a power supply
JP2004304960A (ja) 電源装置及びその制御装置
JP2006271089A (ja) 昇圧チョッパ装置及び昇圧チョッパ装置のスイッチング周波数制御方法
JP6554942B2 (ja) スイッチング電源装置
Kawakami Power Balance Mode Control for Boost-Type DC-DC Converter
JP2004248396A (ja) Dc/dcコンバータ制御装置
TWI552496B (zh) 用於電源控制之方法及電源系統
KR101215825B1 (ko) 능동형 전압 제어를 통한 전압 변환 장치 및 방법