TWI506783B - Semiconductor structure and manufacturing method and operating method of the same - Google Patents

Semiconductor structure and manufacturing method and operating method of the same Download PDF

Info

Publication number
TWI506783B
TWI506783B TW100114954A TW100114954A TWI506783B TW I506783 B TWI506783 B TW I506783B TW 100114954 A TW100114954 A TW 100114954A TW 100114954 A TW100114954 A TW 100114954A TW I506783 B TWI506783 B TW I506783B
Authority
TW
Taiwan
Prior art keywords
doped region
doped
region
semiconductor structure
edge
Prior art date
Application number
TW100114954A
Other languages
Chinese (zh)
Other versions
TW201244089A (en
Inventor
Hsueh I Huang
Wing Chor Chan
Miao Chun Chung
yin fu Huang
Shih Chin Lien
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW100114954A priority Critical patent/TWI506783B/en
Publication of TW201244089A publication Critical patent/TW201244089A/en
Application granted granted Critical
Publication of TWI506783B publication Critical patent/TWI506783B/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

半導體結構及其製造方法與操作方法Semiconductor structure, manufacturing method and operating method thereof

本發明係有關於半導體結構及其製造方法與操作方法,特別係有關於金屬氧化半導體及其製造方法與操作方法。The present invention relates to a semiconductor structure, a method of fabricating the same, and a method of operating the same, and more particularly to a metal oxide semiconductor, a method of fabricating the same, and a method of operation.

在近幾十年間,半導體業界持續縮小半導體結構的尺寸,並同時改善速率、效能、密度及積體電路的單位成本。一般半導體結構例如增強金屬氧化半導體電晶體(EDMOS)的製造方法,係對主動區定義結構露出的所有基底進行摻雜來形成編碼層。編碼層的相對邊緣係對準主動區定義結構的邊緣。然而,這種半導體結構有漏電流大的問題。In recent decades, the semiconductor industry has continued to shrink the size of semiconductor structures while improving the unit cost of speed, performance, density, and integrated circuits. A general semiconductor structure, such as a method of fabricating a reinforced metal oxide semiconductor (EDMOS), is to dope all of the substrate exposed by the active region defining structure to form a coding layer. The opposite edges of the coding layer are aligned with the edges of the active region definition structure. However, such a semiconductor structure has a problem of large leakage current.

本發明係有關於一種半導體結構及其製造方法與操作方法。相較於一般半導體結構,實施例之半導體結構的漏電流小。The present invention relates to a semiconductor structure, a method of fabricating the same, and a method of operation. The semiconductor structure of the embodiment has a small leakage current compared to a general semiconductor structure.

提供一種半導體結構。半導體結構包括第一摻雜區、第二摻雜區、第三摻雜區、第四摻雜區與介電結構。第二摻雜區與第三摻雜區形成摻雜編碼層。摻雜編碼層位於第一摻雜區與第四摻雜區中。介電結構位於第一摻雜區上。摻雜編碼層的邊緣係介於相鄰近的第四摻雜區的邊緣與介電結構的邊緣之間。A semiconductor structure is provided. The semiconductor structure includes a first doped region, a second doped region, a third doped region, a fourth doped region, and a dielectric structure. The second doped region and the third doped region form a doped coding layer. The doped coding layer is located in the first doped region and the fourth doped region. The dielectric structure is on the first doped region. The edge of the doped coding layer is between the edge of the adjacent fourth doped region and the edge of the dielectric structure.

提供一種半導體結構的製造方法。製造方法包括以下步驟。形成第一摻雜區。形成第二摻雜區。形成第三摻雜區。第二摻雜區與第三摻雜區形成摻雜編碼層。形成第四摻雜區。摻雜編碼層位於第一摻雜區與第四摻雜區中。形成介電結構於第一摻雜區上。摻雜編碼層的邊緣係介於相鄰近的第四摻雜區的邊緣與介電結構的邊緣之間。A method of fabricating a semiconductor structure is provided. The manufacturing method includes the following steps. A first doped region is formed. A second doped region is formed. A third doped region is formed. The second doped region and the third doped region form a doped coding layer. A fourth doped region is formed. The doped coding layer is located in the first doped region and the fourth doped region. A dielectric structure is formed on the first doped region. The edge of the doped coding layer is between the edge of the adjacent fourth doped region and the edge of the dielectric structure.

提供一種半導體結構的操作方法。半導體結構包括第一摻雜區、第二摻雜區、第三摻雜區、第四摻雜區、介電結構與閘極結構。第二摻雜區與第三摻雜區形成摻雜編碼層。摻雜編碼層位於第一摻雜區與第四摻雜區中。介電結構位於第一摻雜區上。摻雜編碼層的邊緣係介於相鄰近的第四摻雜區的邊緣與介電結構的邊緣之間。閘極結構位於摻雜編碼層與第一摻雜區上。操作方法包括以下步驟。使電性連接至第一摻雜區的第一電極與電性連接至第三摻雜區的第二電極之間具有偏壓。調變電性連接至閘極結構的第三電極的電壓,以控制半導體結構的開啟電流或關閉半導體結構。A method of operating a semiconductor structure is provided. The semiconductor structure includes a first doped region, a second doped region, a third doped region, a fourth doped region, a dielectric structure, and a gate structure. The second doped region and the third doped region form a doped coding layer. The doped coding layer is located in the first doped region and the fourth doped region. The dielectric structure is on the first doped region. The edge of the doped coding layer is between the edge of the adjacent fourth doped region and the edge of the dielectric structure. The gate structure is located on the doped coding layer and the first doped region. The method of operation includes the following steps. A bias is provided between the first electrode electrically connected to the first doped region and the second electrode electrically connected to the third doped region. The voltage of the third electrode of the gate structure is electrically connected to control the turn-on current of the semiconductor structure or to turn off the semiconductor structure.

下文特舉較佳實施例,並配合所附圖式,作詳細說明如下:DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the preferred embodiment will be described in detail with reference to the accompanying drawings.

第1圖繪示根據一實施例之半導體結構的剖面圖。請參照第1圖,半導體結構包括基底2。第一摻雜區4位於基底2中。第二摻雜區6位於第一摻雜區4與第三摻雜區8之間。第四摻雜區10位於第一摻雜區4中。第三摻雜區8位於第四摻雜區10中。第五摻雜區12位於第一摻雜區4中。第六摻雜區14位於第三摻雜區8中。第七摻雜區16可位於第四摻雜區10與第三摻雜區8之間。介電結構22位於第一摻雜區4上。閘極結構24位於第一摻雜區4、第二摻雜區6與第三摻雜區8上。閘極結構24也可延伸至介電結構22上。1 is a cross-sectional view of a semiconductor structure in accordance with an embodiment. Referring to FIG. 1, the semiconductor structure includes a substrate 2. The first doped region 4 is located in the substrate 2. The second doping region 6 is located between the first doping region 4 and the third doping region 8. The fourth doping region 10 is located in the first doping region 4. The third doping region 8 is located in the fourth doping region 10. The fifth doping region 12 is located in the first doping region 4. The sixth doping region 14 is located in the third doping region 8. The seventh doping region 16 may be located between the fourth doping region 10 and the third doping region 8. The dielectric structure 22 is located on the first doped region 4. The gate structure 24 is located on the first doping region 4, the second doping region 6, and the third doping region 8. The gate structure 24 can also extend onto the dielectric structure 22.

請參照第1圖,於一實施例中,第一摻雜區4、第二摻雜區6、第三摻雜區8、第五摻雜區12與第六摻雜區14係具有第一導電型。基底2、第四摻雜區10與第七摻雜區16具有相反於第一導電型的第二導電型。舉例來說,第一導電型係N型,第二導電型係P型。第五摻雜區12的雜質濃度可大於第一摻雜區4的雜質濃度。第六摻雜區14的雜質濃度可大於第三摻雜區8的雜質濃度。第五摻雜區12與第六摻雜區14可為重摻雜的。第七摻雜區16可包括第一部分18與第二部分20。第一部分18的雜質濃度可大於第二部分20的雜質濃度。半導體結構可為金屬氧化半導體例如LDMOS或EDMOS等,如LDNMOS、LDPMOS、EDNMOS或EDPMOS。舉例來說,第五摻雜區12可用作汲極。第六摻雜區14可用作源極。Referring to FIG. 1 , in an embodiment, the first doping region 4 , the second doping region 6 , the third doping region 8 , the fifth doping region 12 , and the sixth doping region 14 have the first Conductive type. The substrate 2, the fourth doping region 10, and the seventh doping region 16 have a second conductivity type opposite to the first conductivity type. For example, the first conductivity type is N type, and the second conductivity type is P type. The impurity concentration of the fifth doping region 12 may be greater than the impurity concentration of the first doping region 4. The impurity concentration of the sixth doping region 14 may be greater than the impurity concentration of the third doping region 8. The fifth doped region 12 and the sixth doped region 14 may be heavily doped. The seventh doped region 16 can include a first portion 18 and a second portion 20. The impurity concentration of the first portion 18 may be greater than the impurity concentration of the second portion 20. The semiconductor structure can be a metal oxide semiconductor such as LDMOS or EDMOS, such as LDNMOS, LDPMOS, EDNMOS or EDPMOS. For example, the fifth doping region 12 can be used as a drain. The sixth doping region 14 can serve as a source.

請參照第1圖,於實施例中,第一摻雜區4的雜質濃度係小於第二摻雜區6的雜質濃度。第三摻雜區8的雜質濃度也小於第二摻雜區6的雜質濃度。第二摻雜區6與介電結構22係藉由第一摻雜區1分開。第二摻雜區6與第三摻雜區8形成摻雜編碼層7。摻雜編碼層7的邊緣31係介於相鄰近的第四摻雜區10的邊緣33與介電結構22的邊緣35之間。於一實施例中,摻雜編碼層7(的邊緣31)與介電結構22(的邊緣35)之間的距離D1係約0.4um。摻雜編碼層7(的邊緣37)與主動區定義結構5(的邊緣39)之間的距離D2係約0.4um。實施例之半導體結構係具有低的漏電流。Referring to FIG. 1 , in the embodiment, the impurity concentration of the first doping region 4 is smaller than the impurity concentration of the second doping region 6 . The impurity concentration of the third doping region 8 is also smaller than the impurity concentration of the second doping region 6. The second doped region 6 and the dielectric structure 22 are separated by the first doped region 1. The second doping region 6 and the third doping region 8 form a doped coding layer 7. The edge 31 of the doped coding layer 7 is between the edge 33 of the adjacent fourth doped region 10 and the edge 35 of the dielectric structure 22. In one embodiment, the distance D1 between the edge (of the edge 31) of the doped coding layer 7 and the edge (of the edge 35) of the dielectric structure 22 is about 0.4 um. The distance D2 between the edge (of the edge 37) of the doped coding layer 7 and the edge (of the edge 39) of the active region defining structure 5 is about 0.4 um. The semiconductor structure of the embodiment has a low leakage current.

於實施例中,半導體結構的操作方法包括使電性連接至第一摻雜區4的電極26與電性連接至第三摻雜區8的電極28之間具有一偏壓。此外,可調變電性連接至閘極結構24的電極30的電壓,以控制半導體結構的開啟電流或關閉半導體結構。實施例之半導體結構係具有低的漏電流。In an embodiment, the method of operating the semiconductor structure includes having a bias voltage between the electrode 26 electrically connected to the first doped region 4 and the electrode 28 electrically connected to the third doped region 8. In addition, the variably electrically connected voltage to the electrode 30 of the gate structure 24 is controlled to control the turn-on current of the semiconductor structure or to turn off the semiconductor structure. The semiconductor structure of the embodiment has a low leakage current.

第2圖繪示一般半導體結構與實施例之半導體結構的汲極電流-閘極電壓(Id-Vg)曲線。其中係施加一正電壓至汲極。源極接地。請參照第2圖,在施加負電壓至閘極的情況下,實施例之半導體結構的電流值係小於一般半導體結構。因此,實施例之半導體結構的關閉態漏電流係小於一般半導體結構。Figure 2 is a graph showing the drain current-gate voltage (Id-Vg) curve for a semiconductor structure of a general semiconductor structure and an embodiment. One of them applies a positive voltage to the drain. The source is grounded. Referring to FIG. 2, in the case where a negative voltage is applied to the gate, the current value of the semiconductor structure of the embodiment is smaller than that of the general semiconductor structure. Therefore, the off-state leakage current of the semiconductor structure of the embodiment is smaller than that of the general semiconductor structure.

第3圖至第5圖繪示一實施例中半導體結構的製造方法。請參照第3圖,於基底102中形成第一摻雜區104。於第一摻雜區104中形成第四摻雜區110。於基底102上形成主動區定義結構105。主動區定義結構105可包括絕緣或介電材料。舉例來說,主動區定義結構105可包括氧化物例如氧化矽。主動區定義結構105可為場氧化物(FOX)或淺溝槽隔離(STI)。請參照第4圖,於第一摻雜區104上形成介電結構122。介電結構122並不限於如第4圖所示的場氧化物,也可包括淺溝槽隔離。3 to 5 illustrate a method of fabricating a semiconductor structure in an embodiment. Referring to FIG. 3, a first doped region 104 is formed in the substrate 102. A fourth doping region 110 is formed in the first doping region 104. An active region defining structure 105 is formed on the substrate 102. Active region definition structure 105 can include an insulating or dielectric material. For example, active region definition structure 105 can include an oxide such as hafnium oxide. Active region definition structure 105 can be field oxide (FOX) or shallow trench isolation (STI). Referring to FIG. 4, a dielectric structure 122 is formed on the first doped region 104. The dielectric structure 122 is not limited to the field oxide as shown in FIG. 4, and may include shallow trench isolation.

請參照第4圖,進行一摻雜步驟,以在第四摻雜區110中形成摻雜編碼層107。形成摻雜編碼層107的摻雜步驟亦可對第一摻雜區104進行。摻雜編碼層107的邊緣131係介於相鄰近的第四摻雜區110的邊緣133與介電結構122的邊緣135之間。摻雜編碼層107位於第四摻雜區110中的部分係第三摻雜區108。摻雜編碼層107邊緣延伸超過邊緣133的部分係第二摻雜區106。於一實施例中,包括第二摻雜區106與第三摻雜區108的摻雜編碼層107係利用摻雜製程同時形成,而第二摻雜區106係形成在具有相同導電型的第一摻雜區104中,第三摻雜區108係形成在具有相反導電型的第四摻雜區110中,因此第三摻雜區108的雜質濃度(例如第一導電型雜質凈濃度)係小於第二摻雜區106的雜質濃度(例如第一導電型雜質淨濃度)。此外,第一摻雜區104的雜質濃度(例如第一導電型雜質凈濃度)也小於第二摻雜區106的雜質濃度(例如第一導電型雜質淨濃度)。Referring to FIG. 4, a doping step is performed to form the doped coding layer 107 in the fourth doping region 110. The doping step of forming the doped coding layer 107 can also be performed on the first doped region 104. The edge 131 of the doped coding layer 107 is between the edge 133 of the adjacent fourth doped region 110 and the edge 135 of the dielectric structure 122. A portion of the doped code layer 107 located in the fourth doped region 110 is a third doped region 108. The portion of the edge of the doped coding layer 107 that extends beyond the edge 133 is the second doped region 106. In one embodiment, the doped coding layer 107 including the second doping region 106 and the third doping region 108 is simultaneously formed by a doping process, and the second doping region 106 is formed on the same conductivity type. In a doped region 104, the third doping region 108 is formed in the fourth doping region 110 having an opposite conductivity type, and thus the impurity concentration of the third doping region 108 (for example, the first conductivity type impurity impurity concentration) is It is smaller than the impurity concentration of the second doping region 106 (for example, the first conductivity type impurity net concentration). Further, the impurity concentration of the first doping region 104 (for example, the net concentration of the first conductivity type impurity) is also smaller than the impurity concentration of the second doping region 106 (for example, the net concentration of the first conductivity type impurity).

請參照第5圖,形成閘極結構124。閘極結構124的形成方法包括形成閘極介電層125於第一摻雜區104、第二摻雜區106與第三摻雜區108上。閘極電極層127亦可延伸至介電結構122上。閘極電極層127可包括金屬、多晶矽或金屬矽化物。Referring to FIG. 5, a gate structure 124 is formed. The method of forming the gate structure 124 includes forming a gate dielectric layer 125 on the first doped region 104, the second doped region 106, and the third doped region 108. The gate electrode layer 127 can also extend onto the dielectric structure 122. The gate electrode layer 127 may include a metal, a polysilicon or a metal halide.

請參照第5圖,分別於第一摻雜區104與第三摻雜區108中形成第五摻雜區112與第六摻雜區114。於一實施例中,第五摻雜區112與第六摻雜區114係以重摻雜的方式形成。可以重摻雜的方式形成第七摻雜區116。第七摻 雜區116形成在具有相同導電型之第四摻雜區110中的第一部分118的雜質濃度(例如第二導電型雜質淨濃度),係大於形成在具有相反導電型之第三摻雜區108中的第二部分120的雜質濃度(例如第二導電型雜質淨濃度)。Referring to FIG. 5, a fifth doping region 112 and a sixth doping region 114 are formed in the first doping region 104 and the third doping region 108, respectively. In an embodiment, the fifth doping region 112 and the sixth doping region 114 are formed in a heavily doped manner. The seventh doping region 116 can be formed in a heavily doped manner. Seventh blend The impurity concentration of the first portion 118 formed in the fourth doping region 110 having the same conductivity type (for example, the net concentration of the second conductivity type impurity) is larger than the third doping region 108 formed in the opposite conductivity type. The impurity concentration of the second portion 120 in the middle (for example, the net concentration of the second conductivity type impurity).

第6圖繪示根據一實施例之半導體結構的剖面圖。第6圖所示之半導體結構與第1圖所示之半導體結構的差異在於,第一摻雜區204係形成在第四摻雜區210中。摻雜編碼層207的邊緣231係介於相鄰近的第四摻雜區210的邊緣233與介電結構222的邊緣235之間。第四摻雜區210與第七摻雜區216係具有第一導電型。基底202、摻雜編碼層207(包括第二摻雜區206與第三摻雜區208)、第一摻雜區204、、第五摻雜區212與第六摻雜區214係具有第二導電型。舉例來說,第一導電型係N型,第二導電型係P型。於一實施例中,第一摻雜區204的雜質濃度與第三摻雜區208的雜質濃度係分別小於第二摻雜區206的雜質濃度。實施例之半導體結構可具有低的漏電流。Figure 6 is a cross-sectional view of a semiconductor structure in accordance with an embodiment. The semiconductor structure shown in FIG. 6 differs from the semiconductor structure shown in FIG. 1 in that the first doping region 204 is formed in the fourth doping region 210. The edge 231 of the doped coding layer 207 is between the edge 233 of the adjacent fourth doped region 210 and the edge 235 of the dielectric structure 222. The fourth doping region 210 and the seventh doping region 216 have a first conductivity type. The substrate 202, the doped coding layer 207 (including the second doped region 206 and the third doped region 208), the first doped region 204, the fifth doped region 212 and the sixth doped region 214 have a second Conductive type. For example, the first conductivity type is N type, and the second conductivity type is P type. In one embodiment, the impurity concentration of the first doping region 204 and the impurity concentration of the third doping region 208 are respectively smaller than the impurity concentration of the second doping region 206. The semiconductor structure of an embodiment can have low leakage current.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟悉此項技藝者,在不脫離本發明之精神和範圍內,當可做些許更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.

2、102、202‧‧‧基底2, 102, 202‧‧‧ base

4、104、204‧‧‧第一摻雜區4, 104, 204‧‧‧ first doped area

5、105‧‧‧主動區定義結構5, 105‧‧‧ active area definition structure

6、106、206‧‧‧第二摻雜區6, 106, 206‧‧‧Second doped area

7、107、207‧‧‧摻雜編碼層7, 107, 207‧‧‧ doped coding layer

8、108、208‧‧‧三摻雜區8, 108, 208‧‧‧ three doped areas

10、110、210‧‧‧第四摻雜區10, 110, 210‧‧‧ fourth doping area

12、112、212‧‧‧第五摻雜區12, 112, 212‧‧‧ fifth doping area

14、114、214‧‧‧第六摻雜區14, 114, 214‧‧‧ sixth doping area

16、116、216‧‧‧第七摻雜區16, 116, 216‧‧‧ seventh doping area

18、118‧‧‧第一部分18, 118‧‧‧ first part

20、120‧‧‧第二部分20, 120‧‧‧ Part II

22、122、222‧‧‧介電結構22, 122, 222‧‧‧ dielectric structure

24‧‧‧閘極結構24‧‧‧ gate structure

26、28、30‧‧‧電極26, 28, 30‧‧‧ electrodes

31、33、35、37、39、131、133、135、231、233、235‧‧‧邊緣Edges of 31, 33, 35, 37, 39, 131, 133, 135, 231, 233, 235 ‧

125‧‧‧閘極介電層125‧‧‧gate dielectric layer

127‧‧‧閘極電極層127‧‧‧ gate electrode layer

D1、D2‧‧‧距離D1, D2‧‧‧ distance

第1圖繪示根據一實施例之半導體結構的剖面圖。1 is a cross-sectional view of a semiconductor structure in accordance with an embodiment.

第2圖繪示一般半導體結構與實施例之半導體結構的汲極電流-閘極電壓(Id-Vg)曲線。Figure 2 is a graph showing the drain current-gate voltage (Id-Vg) curve for a semiconductor structure of a general semiconductor structure and an embodiment.

第3圖至第5圖繪示一實施例中半導體結構的製造方法。3 to 5 illustrate a method of fabricating a semiconductor structure in an embodiment.

第6圖繪示根據一實施例之半導體結構的剖面圖。Figure 6 is a cross-sectional view of a semiconductor structure in accordance with an embodiment.

2...基底2. . . Base

4...第一摻雜區4. . . First doped region

5...主動區定義結構5. . . Active area definition structure

6...第二摻雜區6. . . Second doped region

7...摻雜區(編碼層)7. . . Doped region

8...三摻雜區8. . . Three-doped region

10...第四摻雜區10. . . Fourth doped region

12...第五摻雜區12. . . Fifth doped region

14...第六摻雜區14. . . Sixth doping zone

16...第七摻雜區16. . . Seventh doping zone

18...第一部分18. . . first part

20...第二部分20. . . the second part

22...介電結構twenty two. . . Dielectric structure

24...閘極結構twenty four. . . Gate structure

26、28、30...電極26, 28, 30. . . electrode

31、33、35、37、39...邊緣31, 33, 35, 37, 39. . . edge

D1、D2...距離D1, D2. . . distance

Claims (10)

一種半導體結構,包括:一第一摻雜區;一第二摻雜區;一第三摻雜區,其中該第二摻雜區與該第三摻雜區形成一摻雜編碼層,且該第一摻雜區所形成之深度係大於該第三摻雜區所形成之深度;一第四摻雜區,其中該摻雜編碼層位於該第一摻雜區與該第四摻雜區中;以及一介電結構,位於該第一摻雜區上,其中該第四摻雜區的一邊緣係鄰接該第二摻雜區,且該摻雜編碼層的一邊緣係介於相鄰近的該第四摻雜區的該邊緣與該介電結構的一邊緣之間。 A semiconductor structure includes: a first doped region; a second doped region; a third doped region, wherein the second doped region and the third doped region form a doped coding layer, and the The first doped region is formed to have a depth greater than a depth formed by the third doped region; a fourth doped region, wherein the doped coding layer is located in the first doped region and the fourth doped region And a dielectric structure on the first doped region, wherein an edge of the fourth doped region is adjacent to the second doped region, and an edge of the doped coding layer is adjacent to The edge of the fourth doped region is between an edge of the dielectric structure. 如申請專利範圍第1項所述之半導體結構,其中該第二摻雜區係鄰接該第三摻雜區,該第二摻雜區係介於該第三摻雜區與該第一摻雜區之間,該第二摻雜區的雜質濃度係大於該第三摻雜區的雜質濃度。 The semiconductor structure of claim 1, wherein the second doped region is adjacent to the third doped region, the second doped region is between the third doped region and the first doped region The impurity concentration of the second doped region is greater than the impurity concentration of the third doped region. 如申請專利範圍第1項所述之半導體結構,更包括一閘極結構,位於該第一摻雜區與該摻雜編碼層上。 The semiconductor structure of claim 1, further comprising a gate structure on the first doped region and the doped coding layer. 如申請專利範圍第1項所述之半導體結構,其中該第一摻雜區、該第二摻雜區與該第三摻雜區具有相同的導電型。 The semiconductor structure of claim 1, wherein the first doped region, the second doped region and the third doped region have the same conductivity type. 如申請專利範圍第4項所述之半導體結構,其中該第一摻雜區的雜質濃度與該第三摻雜區的雜質濃度係分別不同於該第二摻雜區的雜質濃度。 The semiconductor structure of claim 4, wherein the impurity concentration of the first doped region and the impurity concentration of the third doped region are different from the impurity concentration of the second doped region, respectively. 如申請專利範圍第5項所述之半導體結構,其中該第一摻雜區的雜質濃度與該第三摻雜區的雜質濃度係分別小於該第二摻雜區的雜質濃度。 The semiconductor structure of claim 5, wherein an impurity concentration of the first doped region and an impurity concentration of the third doped region are respectively smaller than an impurity concentration of the second doped region. 一種半導體結構的製造方法,包括:形成一第一摻雜區;形成一第二摻雜區;形成一第三摻雜區,其中該第二摻雜區與該第三摻雜區形成一摻雜編碼層,且該第一摻雜區所形成之深度係大於該第三摻雜區所形成之深度;形成一第四摻雜區,其中該摻雜編碼層位於該第一摻雜區與該第四摻雜區中;以及形成一介電結構於該第一摻雜區上,其中該第四摻雜區的一邊緣係鄰接該第二摻雜區,且該摻雜編碼層的一邊緣係介於相鄰近的該第四摻雜區的該邊緣與該介電結構的一邊緣之間。 A method of fabricating a semiconductor structure, comprising: forming a first doped region; forming a second doped region; forming a third doped region, wherein the second doped region and the third doped region form an admixture a first coded layer, wherein the first doped region forms a depth greater than a depth formed by the third doped region; forming a fourth doped region, wherein the doped code layer is located in the first doped region And forming a dielectric structure on the first doped region, wherein an edge of the fourth doped region is adjacent to the second doped region, and one of the doped coding layers The edge is between the edge of the adjacent fourth doped region and an edge of the dielectric structure. 如申請專利範圍第7項所述之半導體結構的製造方法,其中該第一摻雜區、該第二摻雜區與該第三摻雜區具有相同的導電型。 The method of fabricating a semiconductor structure according to claim 7, wherein the first doped region, the second doped region and the third doped region have the same conductivity type. 如申請專利範圍第8項所述之半導體結構的製造方法,其中該第一摻雜區的雜質濃度與該第三摻雜區的雜質濃度係分別小於該第二摻雜區的雜質濃度。 The method of fabricating a semiconductor structure according to claim 8, wherein an impurity concentration of the first doped region and an impurity concentration of the third doped region are respectively smaller than an impurity concentration of the second doped region. 一種半導體結構的操作方法,該半導體結構包括:一第一摻雜區;一第二摻雜區;一第三摻雜區,其中該第二摻雜區與該第三摻雜區形 成一摻雜編碼層,且該第一摻雜區所形成之深度係大於該第三摻雜區所形成之深度;一第四摻雜區,其中該摻雜編碼層位於該第一摻雜區與該第四摻雜區中;一介電結構,位於該第一摻雜區上,其中該第四摻雜區的一邊緣係鄰接該第二摻雜區,且該摻雜編碼層的一邊緣係介於相鄰近的該第四摻雜區的該邊緣與該介電結構的一邊緣之間;以及一閘極結構,位於該摻雜編碼層與該第一摻雜區上,其中該操作方法包括:使電性連接至該第一摻雜區的一第一電極與電性連接至該第三摻雜區的一第二電極之間具有一偏壓;以及調變電性連接至該閘極結構的一第三電極的電壓,以控制該半導體結構的開啟電流或關閉該半導體結構。A semiconductor structure operating method, the semiconductor structure comprising: a first doped region; a second doped region; a third doped region, wherein the second doped region and the third doped region Forming a doped coding layer, and the first doped region is formed to have a depth greater than a depth formed by the third doped region; a fourth doped region, wherein the doped coding layer is located in the first doped region And a fourth dielectric region, a dielectric structure is disposed on the first doped region, wherein an edge of the fourth doped region is adjacent to the second doped region, and one of the doped coding layers An edge is between the edge of the adjacent fourth doped region and an edge of the dielectric structure; and a gate structure is disposed on the doped coding layer and the first doped region, wherein the edge is The method includes: a bias between a first electrode electrically connected to the first doped region and a second electrode electrically connected to the third doped region; and a modulation electrical connection to A voltage of a third electrode of the gate structure to control the turn-on current of the semiconductor structure or to turn off the semiconductor structure.
TW100114954A 2011-04-28 2011-04-28 Semiconductor structure and manufacturing method and operating method of the same TWI506783B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100114954A TWI506783B (en) 2011-04-28 2011-04-28 Semiconductor structure and manufacturing method and operating method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100114954A TWI506783B (en) 2011-04-28 2011-04-28 Semiconductor structure and manufacturing method and operating method of the same

Publications (2)

Publication Number Publication Date
TW201244089A TW201244089A (en) 2012-11-01
TWI506783B true TWI506783B (en) 2015-11-01

Family

ID=48093980

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100114954A TWI506783B (en) 2011-04-28 2011-04-28 Semiconductor structure and manufacturing method and operating method of the same

Country Status (1)

Country Link
TW (1) TWI506783B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080315308A1 (en) * 2007-06-22 2008-12-25 Macronix International Co., Ltd. Low on-resistance lateral double-diffused mos device and method of fabricating the same
TW200945585A (en) * 2008-03-31 2009-11-01 Freescale Semiconductor Inc Dual gate lateral diffused MOS transistor
US20100102386A1 (en) * 2008-10-23 2010-04-29 Silergy Technology Lateral double-diffused metal oxide semiconductor (LDMOS) transistors
US20100301413A1 (en) * 2009-05-29 2010-12-02 Silergy Technology Fabrication of lateral double-diffused metal oxide semiconductor (LDMOS) devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080315308A1 (en) * 2007-06-22 2008-12-25 Macronix International Co., Ltd. Low on-resistance lateral double-diffused mos device and method of fabricating the same
TW200945585A (en) * 2008-03-31 2009-11-01 Freescale Semiconductor Inc Dual gate lateral diffused MOS transistor
US20100102386A1 (en) * 2008-10-23 2010-04-29 Silergy Technology Lateral double-diffused metal oxide semiconductor (LDMOS) transistors
US20100301413A1 (en) * 2009-05-29 2010-12-02 Silergy Technology Fabrication of lateral double-diffused metal oxide semiconductor (LDMOS) devices

Also Published As

Publication number Publication date
TW201244089A (en) 2012-11-01

Similar Documents

Publication Publication Date Title
US8803234B1 (en) High voltage semiconductor device and method for fabricating the same
US9484437B2 (en) Lateral double diffused metal oxide semiconductor device and manufacturing method thereof
TWI644441B (en) High voltage device and manufacturing method thereof
TWI476924B (en) Double diffused metal oxide semiconductor device
TW201601310A (en) Semiconductor device
US10680059B2 (en) High voltage metal oxide semiconductor device and manufacturing method thereof
US20220328617A1 (en) Field effect transistor and method for manufacturing the same
JP2014022487A (en) Semiconductor device
TWI506783B (en) Semiconductor structure and manufacturing method and operating method of the same
TWI429073B (en) Semiconductor structure and method for forming the same
TWI484634B (en) Isolated device and manufacturing method thereof
TWI414051B (en) Semiconductor structure and manufacturing method for the same
TWI641146B (en) Lateral double diffused metal oxide semiconductor device manufacturing method
TWI527233B (en) Split gate lateral double-diffused mos structure
TWI451576B (en) Semiconductor structure and a method for manufacturing the same
TWI469342B (en) Semiconductor device and operating method for the same
TWI578534B (en) High voltage metal-oxide-semiconductor transistor device
TWI708364B (en) Semiconductor device and manufacturing method thereof
TWI656646B (en) High voltage component and method of manufacturing same
TWI668802B (en) Metal oxide semiconductor (mos) device and manufacturing method thereof
CN102769036B (en) Semiconductor structure and manufacturing method and operating method of semiconductor structure
TWI500139B (en) Hybrid high voltage device and manufacturing method thereof
US9640629B1 (en) Semiconductor device and method of manufacturing the same
TWI527192B (en) Semiconductor structure and method for forming the same
KR101090049B1 (en) Semiconductor device and method of manufacturing the same