TWI469342B - Semiconductor device and operating method for the same - Google Patents

Semiconductor device and operating method for the same Download PDF

Info

Publication number
TWI469342B
TWI469342B TW101146020A TW101146020A TWI469342B TW I469342 B TWI469342 B TW I469342B TW 101146020 A TW101146020 A TW 101146020A TW 101146020 A TW101146020 A TW 101146020A TW I469342 B TWI469342 B TW I469342B
Authority
TW
Taiwan
Prior art keywords
doped
region
doping
conductivity type
semiconductor structure
Prior art date
Application number
TW101146020A
Other languages
Chinese (zh)
Other versions
TW201423986A (en
Inventor
Ying Chieh Tsai
Wing Chor Chan
Jeng Gong
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW101146020A priority Critical patent/TWI469342B/en
Publication of TW201423986A publication Critical patent/TW201423986A/en
Application granted granted Critical
Publication of TWI469342B publication Critical patent/TWI469342B/en

Links

Description

半導體結構及其操作方法Semiconductor structure and method of operation thereof

本發明係有關於半導體結構及其操作方法,特別係有關於絕緣閘雙極電晶體(IGBT)及其操作方法。The present invention relates to semiconductor structures and methods of operation thereof, and more particularly to insulated gate bipolar transistors (IGBTs) and methods of operation thereof.

在近幾十年間,半導體業界持續縮小半導體結構的尺寸,並同時改善速率、效能、密度及積體電路的單位成本。In recent decades, the semiconductor industry has continued to shrink the size of semiconductor structures while improving the unit cost of speed, performance, density, and integrated circuits.

縮小裝置面積通常會嚴重犧牲半導體結構的電性效能。為了維持半導體結構的電性效能,在操作上,必須避免高壓裝置區的高電壓、漏電流影響到低壓裝置,而降低裝置的操作效能。Reducing the device area often severely compromises the electrical performance of the semiconductor structure. In order to maintain the electrical performance of the semiconductor structure, it is necessary to avoid the high voltage and leakage current of the high voltage device region from affecting the low voltage device and reducing the operational efficiency of the device.

提供一種半導體結構。半導體結構包括第一摻雜區、第二摻雜區、第三摻雜區、第四摻雜區與第一閘結構。第一摻雜區具有第一導電型。第二摻雜區圍住第一摻雜區並具有相反於第一導電型的第二導電型。第三摻雜區具有第一導電型。第四摻雜區具有第二導電型。第一閘結構位在第二摻雜區上。第三摻雜區與第四摻雜區分別位在第一閘結構之相反側上的第二摻雜區與第一摻雜區中。A semiconductor structure is provided. The semiconductor structure includes a first doped region, a second doped region, a third doped region, a fourth doped region, and a first gate structure. The first doped region has a first conductivity type. The second doped region encloses the first doped region and has a second conductivity type opposite to the first conductivity type. The third doped region has a first conductivity type. The fourth doped region has a second conductivity type. The first gate structure is located on the second doped region. The third doped region and the fourth doped region are respectively located in the second doped region and the first doped region on opposite sides of the first gate structure.

提供一種半導體結構的操作方法。半導體結構包括第一摻雜區、第二摻雜區、第三摻雜區、第四摻雜區與第一閘結構。第一摻雜區具有第一導電型。第二摻雜區圍住第一摻雜區並具有相反於第一導電型的第二導電型。第三摻 雜區具有第一導電型。第四摻雜區具有第二導電型。第一閘結構位在第二摻雜區上。第三摻雜區與第四摻雜區分別位在第一閘結構之相反側上的第二摻雜區與第一摻雜區中。半導體結構的操作方法包括以下步驟。施加第一偏壓至第一閘結構。將第四摻雜區耦接至第一電極。第一電極是陽極與陰極其中之一。將第二摻雜區與第三摻雜區耦接至第二電極。第二電極是陽極與陰極其中之另一。A method of operating a semiconductor structure is provided. The semiconductor structure includes a first doped region, a second doped region, a third doped region, a fourth doped region, and a first gate structure. The first doped region has a first conductivity type. The second doped region encloses the first doped region and has a second conductivity type opposite to the first conductivity type. Third doping The impurity region has a first conductivity type. The fourth doped region has a second conductivity type. The first gate structure is located on the second doped region. The third doped region and the fourth doped region are respectively located in the second doped region and the first doped region on opposite sides of the first gate structure. The method of operation of the semiconductor structure includes the following steps. A first bias voltage is applied to the first gate structure. The fourth doped region is coupled to the first electrode. The first electrode is one of an anode and a cathode. The second doped region and the third doped region are coupled to the second electrode. The second electrode is the other of the anode and the cathode.

下文特舉較佳實施例,並配合所附圖式,作詳細說明如下:DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the preferred embodiment will be described in detail with reference to the accompanying drawings.

第1圖繪示根據一實施例之半導體結構的剖面圖。第一摻雜區102可包括鄰接的摻雜井104與摻雜井106。於一實施例中,摻雜井104與摻雜井106具有第一導電型例如N導電型。舉例來說,摻雜井104是高壓N型井(HVNW)。1 is a cross-sectional view of a semiconductor structure in accordance with an embodiment. The first doped region 102 can include adjacent doping wells 104 and doping wells 106. In one embodiment, the doping well 104 and the doping well 106 have a first conductivity type, such as an N conductivity type. For example, the doping well 104 is a high pressure N-type well (HVNW).

第二摻雜區108可包括鄰接的摻雜井110、埋摻雜層112、摻雜井114、第一摻雜層116與摻雜接觸區118。於一實施例中,摻雜井110、埋摻雜層112、摻雜井114、第一摻雜層116與摻雜接觸區118具有相反於第一導電型的第二導電型例如P導電型。舉例來說,摻雜井110與摻雜井114是高壓P型摻雜區(HVPD)。摻雜接觸區118是重摻雜的(P+)。The second doped region 108 can include adjacent doped wells 110, buried doped layers 112, doped wells 114, first doped layers 116, and doped contact regions 118. In one embodiment, the doping well 110, the buried doped layer 112, the doping well 114, the first doped layer 116, and the doped contact region 118 have a second conductivity type opposite to the first conductivity type, such as a P conductivity type. . For example, doping well 110 and doping well 114 are high voltage P-type doped regions (HVPD). The doped contact region 118 is heavily doped (P+).

於實施例中,第二摻雜區108的摻雜井110、埋摻雜層112、摻雜井114、第一摻雜層116與摻雜接觸區118是圍住第一摻雜區102的摻雜井104與摻雜井106。In an embodiment, the doping well 110 , the buried doping layer 112 , the doping well 114 , the first doping layer 116 , and the doping contact region 118 of the second doping region 108 are surrounding the first doping region 102 . Doping well 104 and doping well 106.

第三摻雜區120位在第二摻雜區108的摻雜井114、 第一摻雜層116與摻雜接觸區118之間。於一實施例中,第三摻雜區120具有第一導電型例如N導電型。舉例來說,第三摻雜區120是重摻雜的(N+)接觸區。The third doping region 120 is located at the doping well 114 of the second doping region 108, The first doped layer 116 is between the doped contact region 118. In an embodiment, the third doping region 120 has a first conductivity type such as an N conductivity type. For example, the third doped region 120 is a heavily doped (N+) contact region.

第四摻雜區122配置在第一摻雜區102的摻雜井106中。於一實施例中,第四摻雜區122具有第二導電型例如P導電型。舉例來說,第四摻雜區122是重摻雜的(P+)接觸區。The fourth doped region 122 is disposed in the doping well 106 of the first doped region 102. In an embodiment, the fourth doping region 122 has a second conductivity type such as a P conductivity type. For example, the fourth doped region 122 is a heavily doped (P+) contact region.

第一閘結構124位在摻雜井104與第三摻雜區120之間的摻雜井114上。The first gate structure 124 is on the doping well 114 between the doping well 104 and the third doping region 120.

第五摻雜區126可包括鄰接的摻雜接觸區128、摻雜井130、摻雜井132、埋摻雜層134與摻雜井136。於一實施例中,摻雜接觸區128、摻雜井130、摻雜井132、埋摻雜層134與摻雜井136具有第一導電型例如N導電型。舉例來說,摻雜接觸區128是重摻雜的(N+)。摻雜井136是高壓N型井(HVNW)。於一實施例中,第五摻雜區126的摻雜接觸區128、摻雜井130、摻雜井132、埋摻雜層134與摻雜井136是圍住第二摻雜區108,如第1圖所示。The fifth doped region 126 can include adjacent doped contact regions 128, doped wells 130, doped wells 132, buried doped layers 134, and doped wells 136. In one embodiment, the doped contact region 128, the doping well 130, the doping well 132, the buried doped layer 134, and the doping well 136 have a first conductivity type, such as an N conductivity type. For example, the doped contact region 128 is heavily doped (N+). The doping well 136 is a high pressure N-type well (HVNW). In one embodiment, the doped contact region 128, the doping well 130, the doping well 132, the buried doping layer 134, and the doping well 136 of the fifth doping region 126 surround the second doping region 108, such as Figure 1 shows.

第六摻雜區140可包括鄰接的基底基底142、埋摻雜區144、摻雜井146、第二摻雜層148與摻雜接觸區150。於一實施例中,基底基底142、埋摻雜區144、摻雜井146、第二摻雜層148與摻雜接觸區150具有第二導電型例如P導電型。舉例來說,摻雜井146是高壓摻雜井(HVPD)。摻雜接觸區150是重摻雜的(P+)。The sixth doped region 140 can include an adjacent base substrate 142, a buried doped region 144, a doping well 146, a second doped layer 148, and a doped contact region 150. In one embodiment, the base substrate 142, the buried doped region 144, the doping well 146, the second doped layer 148, and the doped contact region 150 have a second conductivity type, such as a P conductivity type. For example, the doping well 146 is a high pressure doped well (HVPD). The doped contact region 150 is heavily doped (P+).

摻雜接觸區138配置在第二摻雜區108的摻雜井114、第一摻雜層116與摻雜接觸區118之間。於一實施例 中,摻雜接觸區138具有第一導電型例如N導電型。舉例來說,摻雜接觸區138是重摻雜的(N+)。The doped contact region 138 is disposed between the doping well 114 of the second doped region 108, the first doped layer 116, and the doped contact region 118. In an embodiment The doped contact region 138 has a first conductivity type such as an N conductivity type. For example, the doped contact region 138 is heavily doped (N+).

摻雜接觸區152配置在第六摻雜區140的摻雜井146、第二摻雜層148與摻雜接觸區150之間。於一實施例中,摻雜接觸區152具有第一導電型例如N導電型。舉例來說,摻雜接觸區152是重摻雜的(N+)。The doped contact region 152 is disposed between the doping well 146 of the sixth doped region 140, the second doped layer 148, and the doped contact region 150. In one embodiment, the doped contact region 152 has a first conductivity type, such as an N conductivity type. For example, the doped contact region 152 is heavily doped (N+).

第二閘結構154配置在摻雜接觸區138與摻雜接觸區152之間的摻雜井114、摻雜井136與摻雜井146上。The second gate structure 154 is disposed on the doping well 114, the doping well 136, and the doping well 146 between the doped contact region 138 and the doped contact region 152.

頂摻雜層156可配置在隔離層158與第一摻雜區102的摻雜井104之間。於一實施例中,頂摻雜層156具有第二導電型例如P導電型。導電層162可配置在隔離層158上。導電層162可包括多晶矽。隔離層160可配置在第二摻雜區108的摻雜井110上。隔離層158與隔離層160並不限於第1圖所示的場氧化物(FOX),也可使用其他合適的絕緣結構,例如淺溝槽隔離等。The top doped layer 156 can be disposed between the isolation layer 158 and the doping well 104 of the first doped region 102. In one embodiment, the top doped layer 156 has a second conductivity type, such as a P conductivity type. Conductive layer 162 can be disposed on isolation layer 158. Conductive layer 162 can include polysilicon. The isolation layer 160 can be disposed on the doping well 110 of the second doped region 108. The isolation layer 158 and the isolation layer 160 are not limited to the field oxide (FOX) shown in FIG. 1, and other suitable insulation structures such as shallow trench isolation may be used.

於實施例中,第三摻雜區120、摻雜接觸區138與第二摻雜區108的摻雜接觸區118可耦接電極168例如陰極,電壓可為0V例如接地。第四摻雜區122、導電層162與第五摻雜區126的摻雜接觸區128可耦接至電極164例如陽極,電壓可介於0V~700V。第一閘結構124可耦接至提供例如0V~15V偏壓的電極166。第二閘結構154可耦接至提供0V~15V偏壓的電極170。摻雜接觸區152與第六摻雜區140的摻雜接觸區150可耦接至電極172例如陰極,電壓可為0V例如接地。In an embodiment, the doped contact region 118 of the third doped region 120, the doped contact region 138, and the second doped region 108 may be coupled to an electrode 168, such as a cathode, and the voltage may be 0V, such as ground. The doped contact region 128 of the fourth doped region 122, the conductive layer 162 and the fifth doped region 126 may be coupled to the electrode 164 such as an anode, and the voltage may be between 0V and 700V. The first gate structure 124 can be coupled to an electrode 166 that provides a bias voltage of, for example, 0V~15V. The second gate structure 154 can be coupled to an electrode 170 that provides a bias voltage of 0V~15V. The doped contact region 150 of the doped contact region 152 and the sixth doped region 140 may be coupled to an electrode 172, such as a cathode, and the voltage may be 0V, such as ground.

於實施例中,半導體結構是用作絕緣閘雙極電晶體 (IGBT)裝置。舉例來說,第一閘結構124是用作IGBT的閘極,第四摻雜區122是耦接至IGBT的陽極例如電極164,第三摻雜區120是耦接至IGBT的陰極例如電極168。摻雜井114耦接至位在摻雜井104下方的埋摻雜層112與位在摻雜井130與摻雜井106之間的摻雜井110。高壓操作IGBT裝置過程中,電極164(陽極)抬壓形成反轉層,反轉層造成的電洞流能侷限在第二導電型例如P導電型的埋摻雜層112與摻雜井110中,避免電洞流通過基底142而影響附近的其他裝置例如低壓(LV)裝置。In an embodiment, the semiconductor structure is used as an insulating gate bipolar transistor (IGBT) device. For example, the first gate structure 124 is a gate used as an IGBT, the fourth doping region 122 is an anode coupled to the IGBT, such as the electrode 164, and the third doping region 120 is a cathode coupled to the IGBT, such as the electrode 168. . The doping well 114 is coupled to the buried doped layer 112 below the doping well 104 and the doping well 110 positioned between the doping well 130 and the doping well 106. During high voltage operation of the IGBT device, the electrode 164 (anode) is lifted to form an inversion layer, and the hole current caused by the inversion layer is limited to the second conductivity type, for example, the P conductivity type buried doping layer 112 and the doping well 110. The hole flow is prevented from passing through the substrate 142 to affect other nearby devices such as low voltage (LV) devices.

第二閘結構154可用作雙重擴散金氧半場效電晶體(DMOS)的閘極,用以控制通道形成在鄰近於摻雜接觸區152的摻雜井146中,與鄰近於摻雜接觸區138的摻雜井114中。於實施例中,IGBT裝置可藉由第二閘結構154形成通道而導通的摻雜接觸區152、摻雜接觸區138、摻雜井136、埋摻雜層134、摻雜井132、摻雜井130、摻雜接觸區128來提供額外的電流通道,亦即IGBT裝置具有多個電流通道(multi-channel),以提升IGBT裝置的陽極(電極164)電流。此外,第一導電型例如N導電型的摻雜井136、埋摻雜層134、摻雜井132、摻雜井130、摻雜接觸區128與第二導電型例如P導電型的摻雜井114、埋摻雜層112、摻雜井110之間的PN界面能進一步將高壓操作IGBT裝置過程中,反轉層造成的電洞流能侷限在埋摻雜層112與摻雜井110中,避免電洞流通過基底142而影響附近的其他裝置例如低壓(LV)裝置。於實施例中,IGBT裝置具有低的開啟電壓(turn on voltage),並具有低的開啟 電阻(turn on resistance;Rdson-sp)。The second gate structure 154 can be used as a gate of a double diffused gold oxide half field effect transistor (DMOS) for controlling the formation of a channel in the doping well 146 adjacent to the doped contact region 152, adjacent to the doped contact region. 138 is doped in well 114. In an embodiment, the IGBT device can be doped by the second gate structure 154 to form a via doped contact region 152, doped contact region 138, doping well 136, buried doped layer 134, doped well 132, doped Well 130, doped contact region 128 to provide additional current paths, that is, the IGBT device has multiple multi-channels to boost the anode (electrode 164) current of the IGBT device. In addition, the first conductivity type, such as the N conductivity type doping well 136, the buried doped layer 134, the doping well 132, the doping well 130, the doped contact region 128, and the second conductivity type, such as the P conductivity type doping well 114, the PN interface between the buried doping layer 112 and the doping well 110 can further limit the hole flow energy caused by the inversion layer in the buried doped layer 112 and the doping well 110 during the high voltage operation of the IGBT device. Avoiding hole flow through substrate 142 affects other nearby devices such as low voltage (LV) devices. In an embodiment, the IGBT device has a low turn on voltage and has a low turn-on Turn on resistance (Rdson-sp).

位在摻雜接觸區118、第三摻雜區120、摻雜接觸區138與摻雜井114之間的第一摻雜層116,以及位在摻雜接觸區150、摻雜接觸區152與摻雜井146之間的第二摻雜層148能避免操作裝置過程中發生穿隧效應(punch through)。a first doped layer 116 between the doped contact region 118, the third doped region 120, the doped contact region 138 and the doping well 114, and the doped contact region 150, the doped contact region 152 and The second doped layer 148 between the doped wells 146 can avoid punch through during operation of the device.

第2圖的半導體結構與第1圖的半導體結構的差異在於,第1圖中的隔離層174是由包圍主動區域的深溝槽隔離276所取代。舉例來說,深溝槽隔離276可位在摻雜接觸區128、摻雜井130、摻雜井132與埋摻雜層134的側邊上,並可延伸至埋摻雜層134下方的基底142中。此外,深溝槽隔離276可位在摻雜井146與埋摻雜區144的側邊上,並可延伸至埋摻雜區144下方的基底142中。深溝槽隔離276可抑制(suppress)HV IGBT裝置與其他例如CMOS裝置之間的基底電流。深溝槽隔離276可由介電材料形成。The difference between the semiconductor structure of FIG. 2 and the semiconductor structure of FIG. 1 is that the isolation layer 174 in FIG. 1 is replaced by a deep trench isolation 276 surrounding the active region. For example, deep trench isolation 276 may be on the sides of doped contact region 128, doping well 130, doping well 132, and buried doped layer 134, and may extend to substrate 142 under buried doped layer 134. in. Additionally, deep trench isolation 276 may be on the sides of doped well 146 and buried doped region 144 and may extend into substrate 142 below buried doped region 144. Deep trench isolation 276 can suppress the substrate current between the HV IGBT device and other, for example, CMOS devices. Deep trench isolation 276 may be formed from a dielectric material.

第3圖的半導體結構與第2圖的半導體結構的差異在於,埋絕緣層378配置在第五摻雜區126的埋摻雜層134下方。摻雜接觸區128、摻雜井130、摻雜井132與埋摻雜層134之側邊上的深溝槽隔離376與埋摻雜區144與摻雜井146之側邊上的深溝槽隔離376鄰接在埋絕緣層378上。於一些實施例中,深溝槽隔離376可延伸至埋絕緣層378中。深溝槽隔離376與埋絕緣層378可由介電材料形成。深溝槽隔離376與埋絕緣層378可抑制IGBT裝置與其他例如CMOS裝置之間的基底電流。The difference between the semiconductor structure of FIG. 3 and the semiconductor structure of FIG. 2 is that the buried insulating layer 378 is disposed under the buried doped layer 134 of the fifth doped region 126. The deep trench isolation 376 on the side of the doped contact region 128, the doping well 130, the doping well 132 and the buried doped layer 134, and the deep trench isolation on the side of the buried doped region 144 and the doping well 146 Adjacent to the buried insulating layer 378. In some embodiments, deep trench isolation 376 can extend into buried insulating layer 378. Deep trench isolation 376 and buried insulating layer 378 may be formed of a dielectric material. Deep trench isolation 376 and buried insulating layer 378 can inhibit substrate current between the IGBT device and other, for example, CMOS devices.

第4圖的半導體結構與第1圖的半導體結構的差異在 於,第五摻雜區426A包括鄰接的摻雜井136與埋摻雜層434A。第五摻雜區426B包括鄰接的摻雜接觸區128、摻雜井130、摻雜井132、埋摻雜層434B。摻雜井136、埋摻雜層434A、摻雜接觸區128、摻雜井130、摻雜井132、埋摻雜層434B具有第一導電型例如N導電型。埋摻雜層434A與埋摻雜層434B藉由鄰接之第二摻雜區108的埋摻雜層112與第六摻雜區140的基底142互相分開。於一實施例中,基底142可接地,而操作IGBT裝置過程中反轉層造成的電洞流可穿過埋摻雜層434A與埋摻雜層434B之間的埋摻雜層112中而收集至基底142。The difference between the semiconductor structure of Fig. 4 and the semiconductor structure of Fig. 1 is The fifth doped region 426A includes adjacent doped wells 136 and buried doped layers 434A. The fifth doped region 426B includes adjacent doped contact regions 128, doping wells 130, doping wells 132, and buried doped layers 434B. The doping well 136, the buried doped layer 434A, the doped contact region 128, the doping well 130, the doping well 132, and the buried doped layer 434B have a first conductivity type such as an N conductivity type. The buried doped layer 434A and the buried doped layer 434B are separated from each other by the buried doped layer 112 of the adjacent second doped region 108 and the base 142 of the sixth doped region 140. In one embodiment, the substrate 142 can be grounded, and the hole flow caused by the inversion layer during operation of the IGBT device can be collected through the buried doping layer 112 between the buried doped layer 434A and the buried doped layer 434B. To the substrate 142.

第5圖的半導體結構與第4圖的半導體結構的差異在於,第4圖中的隔離層174是由包圍主動區域的深溝槽隔離576所取代。舉例來說,深溝槽隔離576可位在摻雜接觸區128、摻雜井130、摻雜井132與埋摻雜層434B的側邊上,並可延伸至埋摻雜層434B下方的基底142中。此外,深溝槽隔離576可位在摻雜井146與埋摻雜區144的側邊上,並可延伸至埋摻雜區144下方的基底142中。深溝槽隔離576可抑制(suppress)HV IGBT裝置與其他例如CMOS裝置之間的基底電流。The semiconductor structure of FIG. 5 differs from the semiconductor structure of FIG. 4 in that the isolation layer 174 in FIG. 4 is replaced by a deep trench isolation 576 surrounding the active region. For example, deep trench isolation 576 can be on the sides of doped contact region 128, doping well 130, doping well 132, and buried doped layer 434B, and can extend to substrate 142 under buried doped layer 434B. in. Additionally, deep trench isolation 576 can be on the sides of doped well 146 and buried doped region 144 and can extend into substrate 142 below buried doped region 144. Deep trench isolation 576 can suppress the substrate current between the HV IGBT device and other, for example, CMOS devices.

第6圖的半導體結構與第5圖的半導體結構的差異在於,埋絕緣層678配置在第五摻雜區426B的埋摻雜層434B下方。摻雜接觸區128、摻雜井130、摻雜井132與埋摻雜層434B之側邊上的深溝槽隔離676與埋摻雜區144與摻雜井146之側邊上的深溝槽隔離676鄰接在埋絕緣層678上。於一些實施例中,深溝槽隔離676可延伸至埋絕 緣層678中。深溝槽隔離676與埋絕緣層678可抑制IGBT裝置與其他例如CMOS裝置之間的基底電流。The semiconductor structure of FIG. 6 differs from the semiconductor structure of FIG. 5 in that the buried insulating layer 678 is disposed under the buried doped layer 434B of the fifth doped region 426B. The deep trench isolation 676 on the side of the doped contact region 128, the doping well 130, the doping well 132 and the buried doped layer 434B, and the deep trench isolation on the side of the buried doped region 144 and the doping well 146 are 676 Adjacent to the buried insulating layer 678. In some embodiments, deep trench isolation 676 can be extended to bury In the edge layer 678. Deep trench isolation 676 and buried insulating layer 678 can inhibit substrate current between the IGBT device and other, for example, CMOS devices.

第7圖的半導體結構與第1圖的半導體結構的差異在於,省略了第1圖中的第二閘結構154、摻雜接觸區138、摻雜接觸區152與第二摻雜層148。第五摻雜區726可包括鄰接的摻雜接觸區128、摻雜井130、摻雜井132、埋摻雜層134與摻雜井136與摻雜接觸區780。於一實施例中,摻雜接觸區128、摻雜井130、摻雜井132、埋摻雜層134與摻雜井136與摻雜接觸區780具有第一導電型例如N導電型。舉例來說,摻雜接觸區780是重摻雜的(N+)。於一實施例中,第五摻雜區726的摻雜接觸區128、摻雜井130、摻雜井132、埋摻雜層134與摻雜井136與摻雜接觸區780是圍住第二摻雜區108,如第7圖所示。The semiconductor structure of FIG. 7 differs from the semiconductor structure of FIG. 1 in that the second gate structure 154, the doped contact region 138, the doped contact region 152, and the second doped layer 148 in FIG. 1 are omitted. The fifth doped region 726 can include adjacent doped contact regions 128, doped wells 130, doped wells 132, buried doped layers 134 and doped wells 136 and doped contact regions 780. In one embodiment, the doped contact region 128, the doping well 130, the doping well 132, the buried doped layer 134, and the doping well 136 and the doped contact region 780 have a first conductivity type, such as an N conductivity type. For example, the doped contact region 780 is heavily doped (N+). In one embodiment, the doped contact region 128 of the fifth doped region 726, the doping well 130, the doping well 132, the buried doped layer 134, and the doping well 136 and the doped contact region 780 are surrounded by the second Doped region 108 is as shown in FIG.

請參照第7圖,於實施例中,摻雜井146上的摻雜接觸區150是耦接至電極172例如陰極,電壓可為0V例如接地。摻雜接觸區780是耦接至電極782例如陰極,電壓可介於0V~15V。第一摻雜層116上的摻雜接觸區118與第三摻雜區120是耦接至電極168例如陰極,電壓可為0V例如接地。第一閘結構124可耦接至提供例如0V~15V偏壓的電極166。第四摻雜區122、導電層162與第五摻雜區726的摻雜接觸區128可耦接至電極164例如陽極,電壓可介於0V~700V。Referring to FIG. 7, in an embodiment, the doped contact region 150 on the doping well 146 is coupled to an electrode 172, such as a cathode, and the voltage can be 0V, such as ground. The doped contact region 780 is coupled to the electrode 782, such as a cathode, and the voltage can be between 0V and 15V. The doped contact region 118 and the third doped region 120 on the first doped layer 116 are coupled to an electrode 168, such as a cathode, and the voltage can be 0V, such as ground. The first gate structure 124 can be coupled to an electrode 166 that provides a bias voltage of, for example, 0V~15V. The doped contact region 128 of the fourth doped region 122, the conductive layer 162 and the fifth doped region 726 can be coupled to the electrode 164 such as an anode, and the voltage can be between 0V and 700V.

於實施例中,半導體結構是用作絕緣閘雙極電晶體(IGBT)裝置。舉例來說,第一閘結構124是用作IGBT的閘極,第四摻雜區122是耦接至IGBT的陽極例如電極 164,第三摻雜區120是耦接至IGBT的陰極例如電極168。摻雜井114耦接至位在摻雜井104下方的埋摻雜層112與位在摻雜井130與摻雜井106之間的摻雜井110。高壓操作IGBT裝置過程中,電極164(陽極)抬壓形成反轉層,反轉層造成的電洞流能侷限在第二導電型例如P導電型的埋摻雜層112與摻雜井110中,避免電洞流通過基底142而影響附近的其他裝置例如低壓(LV)裝置。In an embodiment, the semiconductor structure is used as an insulated gate bipolar transistor (IGBT) device. For example, the first gate structure 124 is a gate used as an IGBT, and the fourth doping region 122 is an anode, such as an electrode, coupled to the IGBT. 164, the third doping region 120 is coupled to a cathode of the IGBT, such as the electrode 168. The doping well 114 is coupled to the buried doped layer 112 below the doping well 104 and the doping well 110 positioned between the doping well 130 and the doping well 106. During high voltage operation of the IGBT device, the electrode 164 (anode) is lifted to form an inversion layer, and the hole current caused by the inversion layer is limited to the second conductivity type, for example, the P conductivity type buried doping layer 112 and the doping well 110. The hole flow is prevented from passing through the substrate 142 to affect other nearby devices such as low voltage (LV) devices.

於實施例中,IGBT裝置可藉由相對末端分別耦接至陽極例如電極164與陰極例如電極782的第五摻雜區726來提供額外的電流通道,亦即IGBT裝置具有多個電流通道(multi-channel),以提升IGBT裝置的陽極(電極164)電流。此外,第一導電型例如N導電型的第五摻雜區726與第二導電型例如P導電型的第二摻雜區108之間的PN界面能進一步將高壓操作IGBT裝置過程中,反轉層造成的電洞流能侷限在埋摻雜層112與摻雜井110中,避免電洞流通過基底142而影響附近的其他裝置例如低壓(LV)裝置。於實施例中,IGBT裝置具有低的開啟電壓(turn on voltage),並具有低的開啟電阻(turn on resistance;Rdson-sp)。In an embodiment, the IGBT device can provide an additional current path by the opposite ends respectively coupled to the anode, such as the electrode 164 and the cathode, such as the fifth doped region 726 of the electrode 782, that is, the IGBT device has multiple current channels (multi -channel) to boost the anode (electrode 164) current of the IGBT device. In addition, the PN interface between the fifth conductivity region 726 of the first conductivity type, such as the N conductivity type, and the second dopant region 108 of the second conductivity type, such as the P conductivity type, can further reverse the process of operating the IGBT device at a high voltage. The hole flow caused by the layer can be confined in the buried doped layer 112 and the doping well 110 to prevent the hole flow from passing through the substrate 142 to affect other nearby devices such as low voltage (LV) devices. In an embodiment, the IGBT device has a low turn-on voltage and a low turn-on resistance (Rdson-sp).

第8圖的半導體結構與第7圖的半導體結構的差異在於,第7圖中的隔離層174是由包圍主動區域的深溝槽隔離876所取代。舉例來說,深溝槽隔離876可位在摻雜接觸區128、摻雜井130、摻雜井132與埋摻雜層134的側邊上,並可延伸至埋摻雜層134下方的基底142中。此外,深溝槽隔離876可位在摻雜井146與埋摻雜區144的側邊 上,並可延伸至埋摻雜區144下方的基底142中。深溝槽隔離876可抑制(suppress)HV IGBT裝置與其他例如CMOS裝置之間的基底電流。The difference between the semiconductor structure of FIG. 8 and the semiconductor structure of FIG. 7 is that the isolation layer 174 of FIG. 7 is replaced by a deep trench isolation 876 surrounding the active region. For example, deep trench isolation 876 can be on the sides of doped contact region 128, doping well 130, doping well 132, and buried doped layer 134, and can extend to substrate 142 under buried doped layer 134. in. In addition, deep trench isolation 876 can be located on the sides of doped well 146 and buried doped region 144. Above, and may extend into the substrate 142 below the buried doped region 144. Deep trench isolation 876 can suppress the substrate current between the HV IGBT device and other, for example, CMOS devices.

第9圖的半導體結構與第8圖的半導體結構的差異在於,埋絕緣層978配置在第五摻雜區726的埋摻雜層134下方。摻雜接觸區128、摻雜井130、摻雜井132與埋摻雜層134之側邊上的深溝槽隔離876與埋摻雜區144與摻雜井146之側邊上的深溝槽隔離876鄰接在978上。於一些實施例中,深溝槽隔離876可延伸至埋絕緣層978中。深溝槽隔離876與埋絕緣層978可抑制IGBT裝置與其他例如CMOS裝置之間的基底電流。The semiconductor structure of FIG. 9 differs from the semiconductor structure of FIG. 8 in that the buried insulating layer 978 is disposed under the buried doped layer 134 of the fifth doped region 726. The deep trench isolation 876 on the side of the doped contact region 128, the doping well 130, the doping well 132 and the buried doped layer 134, and the deep trench isolation 876 on the side of the buried doped region 144 and the doping well 146 Adjacent to 978. In some embodiments, deep trench isolation 876 can extend into buried insulating layer 978. Deep trench isolation 876 and buried insulating layer 978 can inhibit substrate current between the IGBT device and other, for example, CMOS devices.

第10圖的半導體結構與第8圖的半導體結構的差異在於,第五摻雜區1026A包括鄰接的摻雜井136與埋摻雜層1034A。第五摻雜區1026B包括鄰接的摻雜接觸區128、摻雜井130、摻雜井132、埋摻雜層1034B。摻雜井136、埋摻雜層1034A、摻雜接觸區128、摻雜井130、摻雜井132、埋摻雜層1034B具有第一導電型例如N導電型。埋摻雜層1034A與埋摻雜層1034B藉由鄰接之108的埋摻雜層112與第六摻雜區140的基底142互相分開。於一實施例中,基底142可接地,而操作IGBT裝置過程中反轉層造成的電洞流可穿過埋摻雜層1034A與埋摻雜層1034B之間的埋摻雜層112中而收集至基底142。The semiconductor structure of FIG. 10 differs from the semiconductor structure of FIG. 8 in that the fifth doped region 1026A includes adjacent doped wells 136 and buried doped layers 1034A. The fifth doped region 1026B includes adjacent doped contact regions 128, doping wells 130, doping wells 132, and buried doped layers 1034B. The doping well 136, the buried doped layer 1034A, the doped contact region 128, the doping well 130, the doping well 132, and the buried doped layer 1034B have a first conductivity type such as an N conductivity type. The buried doped layer 1034A and the buried doped layer 1034B are separated from each other by the buried doped layer 112 adjacent to the 108 and the substrate 142 of the sixth doped region 140. In one embodiment, the substrate 142 can be grounded, and the hole flow caused by the inversion layer during operation of the IGBT device can be collected through the buried doped layer 112 between the buried doped layer 1034A and the buried doped layer 1034B. To the substrate 142.

第11圖的半導體結構與第10圖的半導體結構的差異在於,埋絕緣層1178配置在第五摻雜區1026B的埋摻雜層1034B下方。摻雜接觸區128、摻雜井130、摻雜井132 與埋摻雜層1034B之側邊上的深溝槽隔離1176與埋摻雜區144與摻雜井146之側邊上的深溝槽隔離1176鄰接在埋絕緣層1178上。於一些實施例中,深溝槽隔離1176可延伸至埋絕緣層1178中。深溝槽隔離1176與埋絕緣層1178可抑制IGBT裝置與其他例如CMOS裝置之間的基底電流。The semiconductor structure of FIG. 11 differs from the semiconductor structure of FIG. 10 in that the buried insulating layer 1178 is disposed under the buried doped layer 1034B of the fifth doped region 1026B. Doped contact region 128, doping well 130, doping well 132 The deep trench isolation 1176 on the side of the buried doped layer 1034B and the deep trench isolation 1176 on the side of the doped well 146 are adjacent to the buried trench 1178. In some embodiments, deep trench isolation 1176 can extend into buried insulating layer 1178. Deep trench isolation 1176 and buried insulating layer 1178 can inhibit substrate currents between the IGBT device and other, for example, CMOS devices.

在實施例中,半導體結構可操作為IBGT,電性可如第12圖所示,崩潰電壓約900伏。第13圖的結果顯示,一般IGBT(比較例)在低壓狀況下的基底漏電流大,這會影響鄰近裝置例如低壓裝置。實施例之單通道(single channel)(亦即沒有使用用作DMOS之閘極的第二閘結構)的半導體結構在低陽極電流的情況下具有低的基底漏電流。實施例中多通道(亦即具有用作DMOS之閘極的第二閘結構)的半導體結構在沒有提高基底漏電流的情況下能具有較高的陽極電流。第14圖的結果顯示,實施例中多通道(亦即具有用作DMOS之閘極的第二閘結構)的半導體結構在沒有提高基底漏電流的情況下能具有較高的陽極電流。實施例之IGBT半導體結構可用以提供高的輸出電流,可應用至馬達驅動器,如第15圖所示。In an embodiment, the semiconductor structure can operate as an IBGT, and the electrical properties can be as shown in FIG. 12 with a breakdown voltage of about 900 volts. The results of Fig. 13 show that the general IGBT (Comparative Example) has a large substrate leakage current under low voltage conditions, which affects adjacent devices such as low voltage devices. The semiconductor structure of the single channel of the embodiment (i.e., the second gate structure that does not use the gate used as the DMOS) has a low substrate leakage current at low anode currents. The semiconductor structure of the multi-channel (i.e., the second gate structure having the gate used as the DMOS) in the embodiment can have a higher anode current without increasing the substrate leakage current. The results of Fig. 14 show that the semiconductor structure of the multi-channel (i.e., the second gate structure having the gate used as the DMOS) in the embodiment can have a higher anode current without increasing the substrate leakage current. The IGBT semiconductor structure of an embodiment can be used to provide a high output current that can be applied to a motor driver as shown in FIG.

實施例揭露如上,然其並非用以限定本發明,任何熟悉此項技藝者,在不脫離本發明之精神和範圍內,當可做些許更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。The embodiments are disclosed above, but are not intended to limit the present invention. Any one skilled in the art can make some modifications and retouchings without departing from the spirit and scope of the present invention. The scope of the patent application is subject to change.

102‧‧‧第一摻雜區102‧‧‧First doped area

104‧‧‧摻雜井104‧‧‧Doped well

106‧‧‧摻雜井106‧‧‧Doped well

108‧‧‧第二摻雜區108‧‧‧Second doped area

110‧‧‧摻雜井110‧‧‧Doped well

112‧‧‧埋摻雜層112‧‧‧ buried doped layer

114‧‧‧摻雜井114‧‧‧Doped well

116‧‧‧第一摻雜層116‧‧‧First doped layer

118‧‧‧摻雜接觸區118‧‧‧Doped contact area

120‧‧‧第三摻雜區120‧‧‧ Third doped area

122‧‧‧第四摻雜區122‧‧‧fourth doping zone

124‧‧‧第一閘結構124‧‧‧First gate structure

126、426A、426B、726、1026A、1026B‧‧‧第五摻雜區126, 426A, 426B, 726, 1026A, 1026B‧‧‧ fifth doped area

128‧‧‧摻雜接觸區128‧‧‧Doped contact area

130‧‧‧摻雜井130‧‧‧Doped well

132‧‧‧摻雜井132‧‧‧Doped well

134、434A、434B、1034A、1034B‧‧‧埋摻雜層134, 434A, 434B, 1034A, 1034B‧‧‧ buried layer

136‧‧‧摻雜井136‧‧‧Doped well

138‧‧‧摻雜接觸區138‧‧‧Doped contact area

140‧‧‧第六摻雜區140‧‧‧ sixth doping area

142‧‧‧基底142‧‧‧Base

144‧‧‧埋摻雜區144‧‧‧ Buried doped area

146 ‧‧‧摻雜井146 ‧‧‧Doped well

148‧‧‧第二摻雜層148‧‧‧Second doped layer

150‧‧‧摻雜接觸區150‧‧‧Doped contact area

152‧‧‧摻雜接觸區152‧‧‧Doped contact area

154‧‧‧第二閘結構154‧‧‧Second gate structure

156‧‧‧頂摻雜層156‧‧‧ top doped layer

158‧‧‧隔離層158‧‧‧Isolation

160‧‧‧隔離層160‧‧‧Isolation

162‧‧‧導電層162‧‧‧ Conductive layer

164‧‧‧電極164‧‧‧electrode

166‧‧‧電極166‧‧‧electrode

168‧‧‧電極168‧‧‧electrode

170‧‧‧電極170‧‧‧ electrodes

172‧‧‧電極172‧‧‧electrode

174‧‧‧隔離層174‧‧‧Isolation

276、376、576、676、876、1176‧‧‧深溝槽隔離276, 376, 576, 676, 876, 1176‧‧ ‧ deep trench isolation

378、678‧‧‧埋絕緣層378, 678‧‧‧ buried insulation

780‧‧‧摻雜接觸區780‧‧‧Doped contact area

782‧‧‧電極782‧‧‧electrode

978‧‧‧埋絕緣層978‧‧‧ buried insulation

第1圖繪示根據一實施例之半導體結構的剖面圖。1 is a cross-sectional view of a semiconductor structure in accordance with an embodiment.

第2圖繪示根據一實施例之半導體結構的剖面圖。2 is a cross-sectional view of a semiconductor structure in accordance with an embodiment.

第3圖繪示根據一實施例之半導體結構的剖面圖。3 is a cross-sectional view of a semiconductor structure in accordance with an embodiment.

第4圖繪示根據一實施例之半導體結構的剖面圖。4 is a cross-sectional view of a semiconductor structure in accordance with an embodiment.

第5圖繪示根據一實施例之半導體結構的剖面圖。FIG. 5 is a cross-sectional view of a semiconductor structure in accordance with an embodiment.

第6圖繪示根據一實施例之半導體結構的剖面圖。Figure 6 is a cross-sectional view of a semiconductor structure in accordance with an embodiment.

第7圖繪示根據一實施例之半導體結構的剖面圖。FIG. 7 is a cross-sectional view of a semiconductor structure in accordance with an embodiment.

第8圖繪示根據一實施例之半導體結構的剖面圖。8 is a cross-sectional view of a semiconductor structure in accordance with an embodiment.

第9圖繪示根據一實施例之半導體結構的剖面圖。Figure 9 is a cross-sectional view of a semiconductor structure in accordance with an embodiment.

第10圖繪示根據一實施例之半導體結構的剖面圖。Figure 10 is a cross-sectional view of a semiconductor structure in accordance with an embodiment.

第11圖繪示根據一實施例之半導體結構的剖面圖。11 is a cross-sectional view of a semiconductor structure in accordance with an embodiment.

第12圖繪示根據一實施例之半導體結構的剖面圖。Figure 12 is a cross-sectional view of a semiconductor structure in accordance with an embodiment.

第13圖顯示半導體結構的電性。Figure 13 shows the electrical properties of the semiconductor structure.

第14圖顯示實施例之半導體結構的電性。Figure 14 shows the electrical properties of the semiconductor structure of the embodiment.

第15圖繪示應用實施例之半導體結構的電路圖。Fig. 15 is a circuit diagram showing a semiconductor structure of an application embodiment.

102‧‧‧第一摻雜區102‧‧‧First doped area

104‧‧‧摻雜井104‧‧‧Doped well

106‧‧‧摻雜井106‧‧‧Doped well

108‧‧‧第二摻雜區108‧‧‧Second doped area

110‧‧‧摻雜井110‧‧‧Doped well

112‧‧‧埋摻雜層112‧‧‧ buried doped layer

114‧‧‧摻雜井114‧‧‧Doped well

116‧‧‧第一摻雜層116‧‧‧First doped layer

118‧‧‧摻雜接觸區118‧‧‧Doped contact area

120‧‧‧第三摻雜區120‧‧‧ Third doped area

122‧‧‧第四摻雜區122‧‧‧fourth doping zone

124‧‧‧第一閘結構124‧‧‧First gate structure

126‧‧‧第五摻雜區126‧‧‧ fifth doping area

128‧‧‧摻雜接觸區128‧‧‧Doped contact area

130‧‧‧摻雜井130‧‧‧Doped well

132‧‧‧摻雜井132‧‧‧Doped well

134‧‧‧埋摻雜層134‧‧‧ buried doped layer

136‧‧‧摻雜井136‧‧‧Doped well

138‧‧‧摻雜接觸區138‧‧‧Doped contact area

140‧‧‧第六摻雜區140‧‧‧ sixth doping area

142‧‧‧基底142‧‧‧Base

144‧‧‧埋摻雜區144‧‧‧ Buried doped area

146‧‧‧摻雜井146‧‧‧Doped well

148‧‧‧第二摻雜層148‧‧‧Second doped layer

150‧‧‧摻雜接觸區150‧‧‧Doped contact area

152‧‧‧摻雜接觸區152‧‧‧Doped contact area

154‧‧‧第二閘結構154‧‧‧Second gate structure

156‧‧‧頂摻雜層156‧‧‧ top doped layer

158‧‧‧隔離層158‧‧‧Isolation

160‧‧‧隔離層160‧‧‧Isolation

162‧‧‧導電層162‧‧‧ Conductive layer

164‧‧‧電極164‧‧‧electrode

166‧‧‧電極166‧‧‧electrode

168‧‧‧電極168‧‧‧electrode

170‧‧‧電極170‧‧‧ electrodes

172‧‧‧電極172‧‧‧electrode

174‧‧‧隔離層174‧‧‧Isolation

Claims (10)

一種半導體結構,包括:一第一摻雜區,具有一第一導電型;一第二摻雜區,圍住該第一摻雜區並具有相反於該第一導電型的一第二導電型;一第三摻雜區,具有該第一導電型;一第四摻雜區,具有該第二導電型;一第一閘結構,位在該第二摻雜區上,其中該第三摻雜區與該第四摻雜區分別位在該第一閘結構之相反側上的該第二摻雜區與該第一摻雜區中。 一第五摻雜區,具有該第一導電型;一第六摻雜區,具有該第二導電型;以及一接觸摻雜區,具有該第一導電型並位於該第六摻雜區中。 A semiconductor structure comprising: a first doped region having a first conductivity type; a second doped region surrounding the first doped region and having a second conductivity type opposite to the first conductivity type a third doped region having the first conductivity type; a fourth doped region having the second conductivity type; a first gate structure on the second doped region, wherein the third doping region The impurity region and the fourth doping region are respectively located in the second doping region and the first doping region on opposite sides of the first gate structure. a fifth doped region having the first conductivity type; a sixth doped region having the second conductivity type; and a contact doping region having the first conductivity type and located in the sixth doping region . 如申請專利範圍第1項所述之半導體結構,其中該第五摻雜區包圍該第二摻雜區。 The semiconductor structure of claim 1, wherein the fifth doped region surrounds the second doped region. 如申請專利範圍第1項所述之半導體結構,其中該第五摻雜區位在該第二摻雜區之相對側上的部分是分別耦接至一陽極與一陰極。 The semiconductor structure of claim 1, wherein the portion of the fifth doped region on the opposite side of the second doped region is coupled to an anode and a cathode, respectively. 如申請專利範圍第1項所述之半導體結構,更包括:一摻雜接觸區,具有該第一導電型,其中該第二摻雜區介於該第五摻雜區與該摻雜接觸區之間;以及一第二閘結構,位於該第五摻雜區鄰近與該第五摻雜 區夾有該第二摻雜區的該摻雜接觸區的部分上。 The semiconductor structure of claim 1, further comprising: a doped contact region having the first conductivity type, wherein the second doped region is between the fifth doped region and the doped contact region And a second gate structure located adjacent to the fifth doping region and the fifth doping The region is sandwiched by the portion of the doped contact region of the second doped region. 如申請專利範圍第1項所述之半導體結構,更包括數個第五摻雜區,具有該第一導電型,其中位在該第二摻雜區之相反側上的該些第五摻雜區是分別耦接至一陽極與一陰極。 The semiconductor structure of claim 1, further comprising a plurality of fifth doped regions having the first conductivity type, wherein the fifth dopings on opposite sides of the second doped region The zones are coupled to an anode and a cathode, respectively. 一種半導體結構的操作方法,其中該半導體結構包括:一第一摻雜區,具有一第一導電型;一第二摻雜區,圍住該第一摻雜區並具有相反於該第一導電型的一第二導電型;一第三摻雜區,具有該第一導電型;一第四摻雜區,具有該第二導電型;一第一閘結構,位在該第二摻雜區上,其中該第三摻雜區與該第四摻雜區分別位在該第一閘結構之相反側上的該第二摻雜區與該第一摻雜區中 一第五摻雜區,具有該第一導電型;一第六摻雜區,具有該第二導電型;以及一接觸摻雜區,具有該第一導電型並位於該第六摻雜區中;該半導體結構的操作方法包括:施加一第一偏壓至該第一閘結構;將該第四摻雜區是耦接至一第一電極,該第一電極是一陽極與一陰極其中之一;以及將該第二摻雜區與該第三摻雜區耦接至一第二電 極,該第二電極是該陽極與該陰極其中之另一。A method of operating a semiconductor structure, wherein the semiconductor structure comprises: a first doped region having a first conductivity type; a second doped region surrounding the first doped region and having a opposite opposite to the first conductive region a second conductivity type; a third doped region having the first conductivity type; a fourth doped region having the second conductivity type; and a first gate structure located in the second doped region The third doped region and the fourth doped region are respectively located in the second doped region and the first doped region on the opposite side of the first gate structure ; a fifth doped region Having the first conductivity type; a sixth doped region having the second conductivity type; and a contact doping region having the first conductivity type and located in the sixth doping region; operation of the semiconductor structure The method includes: applying a first bias to the first gate structure; coupling the fourth doped region to a first electrode, the first electrode being one of an anode and a cathode; and the first The second doped region and the third doped region are coupled to a second electrode, the second electrode being the anode and the cathode Of another. 如申請專利範圍第6項所述之半導體結構的操作方法,其中該第五摻雜區包圍該第二摻雜區,其中該半導體結構的操作方法更包括將該第五摻雜區位在該第二摻雜區之相對側上的部分分別耦接至該第一電極與該第二電極。 The method of operating a semiconductor structure according to claim 6, wherein the fifth doped region surrounds the second doped region, wherein the method of operating the semiconductor structure further comprises: Portions on opposite sides of the two doped regions are coupled to the first electrode and the second electrode, respectively. 如申請專利範圍第6項所述之半導體結構的操作方法,其中該半導體結構更包括:一摻雜接觸區,具有該第一導電型,其中該第二摻雜區介於該第五摻雜區與該摻雜接觸區之間;以及一第二閘結構,位於該第五摻雜區鄰近與該第五摻雜區夾有該第二摻雜區的該摻雜接觸區的部分上,其中該半導體結構的操作方法更包括:施加一第二偏壓至該第二閘結構;將該第五摻雜區耦接至該第一電極;以及將該摻雜接觸區耦接至該第二電極。 The method of operating a semiconductor structure according to claim 6, wherein the semiconductor structure further comprises: a doped contact region having the first conductivity type, wherein the second doping region is between the fifth doping a region between the region and the doped contact region; and a second gate structure on a portion of the fifth doped region adjacent to the doped contact region of the fifth doped region with the second doped region The operating method of the semiconductor structure further includes: applying a second bias voltage to the second gate structure; coupling the fifth doping region to the first electrode; and coupling the doped contact region to the first Two electrodes. 如申請專利範圍第6項所述之半導體結構的操作方法,其中該半導體結構更包括:一第二閘結構,位在該第五摻雜區與該摻雜接觸區之間的該第六摻雜區上,其中該半導體結構的操作方法更包括:施加一第二偏壓至該第二閘結構;將該第五摻雜區耦接至該第一電極;以及將該摻雜接觸區與該第六摻雜區耦接該第二電極。 The method of operating a semiconductor structure according to claim 6, wherein the semiconductor structure further comprises: a second gate structure, the sixth doping between the fifth doped region and the doped contact region The operating region of the semiconductor structure further includes: applying a second bias voltage to the second gate structure; coupling the fifth doping region to the first electrode; and the doping contact region The sixth doping region is coupled to the second electrode. 如申請專利範圍第6項所述之半導體結構的操作方法,其中該半導體結構更包括數個第五摻雜區,具有該第一導電型,並分別位在位在該第二摻雜區之相反側上,其中該半導體結構的操作方法更包括將該些第五摻雜區分別耦接至該第一電極與該第二電極。 The method of operating a semiconductor structure according to claim 6, wherein the semiconductor structure further comprises a plurality of fifth doped regions having the first conductivity type and respectively located in the second doped region On the opposite side, the method of operating the semiconductor structure further includes coupling the fifth doped regions to the first electrode and the second electrode, respectively.
TW101146020A 2012-12-07 2012-12-07 Semiconductor device and operating method for the same TWI469342B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101146020A TWI469342B (en) 2012-12-07 2012-12-07 Semiconductor device and operating method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101146020A TWI469342B (en) 2012-12-07 2012-12-07 Semiconductor device and operating method for the same

Publications (2)

Publication Number Publication Date
TW201423986A TW201423986A (en) 2014-06-16
TWI469342B true TWI469342B (en) 2015-01-11

Family

ID=51394155

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101146020A TWI469342B (en) 2012-12-07 2012-12-07 Semiconductor device and operating method for the same

Country Status (1)

Country Link
TW (1) TWI469342B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI738198B (en) * 2020-01-30 2021-09-01 旺宏電子股份有限公司 Semiconductor device and method of manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020066906A1 (en) * 1999-02-16 2002-06-06 Wolfgang Werner IGBT with PN insulation and production method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020066906A1 (en) * 1999-02-16 2002-06-06 Wolfgang Werner IGBT with PN insulation and production method

Also Published As

Publication number Publication date
TW201423986A (en) 2014-06-16

Similar Documents

Publication Publication Date Title
KR101128716B1 (en) Semiconductor device
US7361955B2 (en) High-voltage MOS device with dummy diffusion region
US9496382B2 (en) Field effect transistor, termination structure and associated method for manufacturing
CN102231390B (en) Vertical double-diffused metal oxide semiconductor power device with super junction structure
US8482066B2 (en) Semiconductor device
TWI447912B (en) Semiconductor device and manufacturing method for the same
JP2008124421A (en) Semiconductor device and method for fabricating it
US9041142B2 (en) Semiconductor device and operating method for the same
KR20150044803A (en) Semiconductor device
TWI469342B (en) Semiconductor device and operating method for the same
US8952744B1 (en) Semiconductor device and operating method for the same
JP5610930B2 (en) Semiconductor device
TWI509792B (en) Semiconductor device and operating method for the same
KR102030464B1 (en) Lateral typed power semiconductor device
TWI429073B (en) Semiconductor structure and method for forming the same
KR20120004954A (en) Semiconductor device
JP2012028451A (en) Semiconductor integrated circuit
JP2017073410A (en) Semiconductor device and semiconductor device manufacturing method
CN103872112A (en) Semiconductor structure and operation method thereof
CN104347691B (en) Semiconductor device and operation method thereof
KR20140067445A (en) Power semiconductor device
TWI546961B (en) High voltage metal-oxide-semiconductor transistor device
JP5309428B2 (en) Semiconductor device
JP4846400B2 (en) Semiconductor device
KR102030463B1 (en) Lateral typed power semiconductor device