TWI505375B - 自我對準沉積之場效電晶體通道之閘極的磊晶源/汲接觸 - Google Patents

自我對準沉積之場效電晶體通道之閘極的磊晶源/汲接觸 Download PDF

Info

Publication number
TWI505375B
TWI505375B TW100121192A TW100121192A TWI505375B TW I505375 B TWI505375 B TW I505375B TW 100121192 A TW100121192 A TW 100121192A TW 100121192 A TW100121192 A TW 100121192A TW I505375 B TWI505375 B TW I505375B
Authority
TW
Taiwan
Prior art keywords
cnts
gate
self
source
forming
Prior art date
Application number
TW100121192A
Other languages
English (en)
Other versions
TW201214579A (en
Inventor
Josephine B Chang
Paul Chang
Vijay Narayanan
Jeffrey W Sleight
Original Assignee
Ibm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibm filed Critical Ibm
Publication of TW201214579A publication Critical patent/TW201214579A/zh
Application granted granted Critical
Publication of TWI505375B publication Critical patent/TWI505375B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/191Deposition of organic active material characterised by provisions for the orientation or alignment of the layer to be deposited
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/472Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising only inorganic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • H10K19/10Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00 comprising field-effect transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

自我對準沉積之場效電晶體通道之閘極的磊晶源/汲接觸
本發明之諸方面有關自我對準運用奈米碳管之場效電晶體(CNTFET)之閘極的磊晶源/汲接觸。
運用奈米碳管(CNT)的開關裝置由於CNT的薄主體造成的高載子移動率及良好短通道效應而具有極大的潛力。例如,CNTFET已被提出作為密集邏輯應用的潛在後矽互補金氧半導體(CMOS)解決方案。為了能夠實現此潛力,必須使用以密集間距(pitch)建立CNTFET的方法。理想CNTFET的高移動率能夠使寬度尺度縮小(scaling),及理想CNTFET的良好短通道效應能夠使閘極長度尺度縮小。然而,運用CNTFET的技術所必須克服的許多額外挑戰之一是,與目前為傳統矽CMOS技術所支援之高佈線密度的相容性。尤其,為了高佈線密度佈局之故,必須精確定位圍繞每個CNT建立之開關裝置的源/汲極及閘極接觸。
閘極間距尺度縮小需要使用其中源/汲極自我對準閘極的可製造裝置結構。此種自我對準可消除由源/汲極與閘極的欠對準(misalignment)所引起的寄生電阻及電容變化性,且其亦可消除必須包括用於佈局中欠對準之餘裕的面積損失。在矽CMOS中,藉由使用閘極遮蔽界定植入接面輪廓及利用自我對準矽化製程,可實現此精確定位。對於CNTFET,這些方法通常不可行。
已使用方向性蒸發(directional evaporation)、化學摻雜及靜電摻雜展示具有自我對準閘極之源/汲接觸的CNTFET(SA CNTFET)。然而,在每個製程中,問題還是存在。例如,方向性蒸發的製程窗口對於可製造性過於狹窄,CNT源/汲接觸的化學摻雜仍屬積極研究中的領域但其成果仍無法再現且又不一致,及靜電摻雜進行得相當不錯但因靜電摻雜所需的後閘極需要額外佈局面積並引起較大寄生電容而不理想。
根據本發明之一方面,提供一種形成自我對準裝置的方法,包括:沈積奈米碳管(CNT)於一結晶介電基板上;隔離包圍該等CNT之位置之該結晶介電基板的一部分;形成閘極介電質及閘極電極閘極堆疊於該等CNT上並維持其結構完整性;及形成與在該結晶介電基板上自該等閘極介電質及閘極電極閘極堆疊暴露之該等CNT的部分接觸的磊晶源/汲區。
根據本發明之另一方面,提供一種形成自我對準磊晶源/汲接觸的製程,包括:沈積奈米碳管(CNT)於一結晶介電底層上;利用一硬光罩遮蔽場區;用一在該等CNT頂部上的硬光罩圖案化一閘極堆疊;用間隔物包封該閘極堆疊;及磊晶生長鄰接該等間隔物的源/汲區以提供自我對準源/汲極。
根據本發明之一方面,提供一種自我對準裝置,包括:複數個奈米碳管(CNT),其佈置於一結晶介電基板上;一場光罩,其佈置於該結晶介電基板上作為該等CNT的一矩形平面圍蔽;複數個絕緣閘極堆疊,其形成於該等CNT上且維持其結構完整性;及磊晶源/汲區,其設置與為該等絕緣閘極堆疊所暴露之該等CNT的部分接觸。
本文揭示的自我對準磊晶源/汲接觸製程提供從沈積的奈米結構(諸如奈米碳管或半導體奈米線)建立自我對準裝置的方案。假設奈米結構已經沈積在絕緣結晶底層(諸如氧化鏑釔(LaYO))上。場區以硬光罩遮蔽,在奈米結構頂部用硬光罩圖案化閘極堆疊,及接著用間隔物包封閘極堆疊。非絕緣材料,諸如矽,接著磊晶生長於源/汲區中以提供自我對準源/汲極。
參考圖1,提供矽基板10,且其具有其上佈置一層結晶介電質20的頂面。結晶介電質20可包括LaYO或某個其他相似的結晶介電質,其上可播種矽磊晶的晶種並可磊晶生長矽。此處,特別使用LaYO作為結晶介電質20以促使矽磊晶生長,因為已知矽磊晶的結晶結構實質上相似於LaYO的結晶結構,其相似程度致使即使沒有矽或矽鍺次結構,也能進行矽磊晶生長。
複數個奈米結構,諸如奈米碳管(CNT) 30或奈米線,係沈積於表面21上,諸如結晶介電質20的頂面。CNT 30實質上互相對準及實質上互相平行而沈積,但這並非必要。CNT 30沈積可根據各種已知方法完成,且因此省略其說明。
現在參考圖2,為了隔離包圍CNT 30之位置之結晶介電質20的部分,將包括二氧化矽(SiO2 )或某個其他相似材料的場光罩40放在結晶介電質20上作為CNT 30的實質上矩形平面圍蔽。以此方式,場光罩可包括形成圍繞CNT 30之周圍的邊緣41。當然,應明白,可以各種形狀及大小形成場光罩40,只要CNT 30視需要針對特定應用而被隔離,及圖2所示矩形形狀僅為例示性。
作為使用場光罩40的替代選項,亦可藉由蝕刻圍繞CNT 30的結晶介電質20以形成溝槽,隔離包圍CNT 30之位置之結晶介電質20的部分。接著使溝槽及/或基板10的暴露表面氧化。
參考圖3及圖4,將閘極介電質及閘極電極閘極堆疊50圖案化於CNT 30、結晶介電質20及場光罩40上。閘極堆疊50實質上互相平行及實質上垂直於CNT 30的定向,但這並非必要。閘極堆疊50可以各種配置由各種材料形成,各種配置諸如一層閘極介電質51(如,氧化鉿(HfO2 ))、一層閘極堆疊材料52(如,氮化鈦(TiN),或鎢(W))及一次級層的閘極光罩材料53(如,氮化矽(SiN))。
在不會損壞CNT 30之結構完整性的情況下完成圖案化。例如,閘極介電質51可利用原子層沈積(ALD)加以沈積,尤其可利用預期不會損壞CNT 30的旋塗沈積加以沈積。閘極堆疊50由次級層的閘極光罩材料53進行絕緣。接著使用微影界定閘極,及使用例如計時以終止於接近CNT 30附近的部分反應性離子蝕刻(RIE)圖案化閘極。部分閘極介電質51可留下以保護CNT。
接著使用間隔物材料的等形沈積及其後經執行以免損壞CNT 30的非等向性蝕刻製程,沿著閘極側壁形成間隔物60。也就是說,間隔物60的非等向性蝕刻在一暴露剩餘的閘極介電質51後即在端點處停止,或計時以恰好在蝕刻劑(即,運用電漿的蝕刻劑)將到達CNT 30的時間之前終止。無論是哪一種情況,一旦蝕刻製程停止,接著即進行從源/汲區70實質上完全移除所有間隔物60及閘極介電質51材料的等向性濕式蝕刻。
如圖4所示,此製程的結果是間隔物60、或間隔物60及閘極介電質51將在軸向及圓周方向上接觸及實質上環繞CNT 30,致使源/汲區70(說明如下)可與閘極堆疊50隔離。尤其,間隔物60、或間隔物60及閘極介電質51沿著橫跨間隔物60厚度的接觸表面及CNT 30的幾乎整個曲面(即,幾乎360°圍繞CNT 30)接觸CNT 30,且不會使CNT 30從結晶介電質20脫離。
參考圖5及圖6,在形成絕緣閘極堆疊50及間隔物60後,磊晶生長源/汲區70以與為絕緣閘極堆疊50所暴露之CNT 30的部分接觸。如圖6所示,在磊晶源/汲區70與CNT 30之間的接觸圍繞CNT 30幾乎整個圓周延伸,結果形成可靠的接觸表面80。因此,如上述,源/汲區70沿著橫跨源/汲區70厚度的接觸表面及CNT 30幾乎整個曲面(即,同樣地,幾乎360°圍繞CNT 30)接觸CNT 30,且不會使CNT 30從結晶介電質20脫離。
如上述,結晶介電質20的存在可促進源/汲區70的磊晶生長,結晶介電質20由於其結晶結構與磊晶矽的結晶結構相似而可播下晶種且之後允許磊晶生長矽。所產生的磊晶源/汲區70為自我對準,因為採用了單一步驟微影界定兩個絕緣閘極區。
可根據各種已知方法完成磊晶生長源/汲區70的製程,且在稍後完成全部或局部矽化。例如,可藉由使用原位摻雜矽磊晶,添加摻雜硼或磷的矽於暴露的CNT 30,形成源/汲區70。或者,源/汲區70可未摻雜而生長及稍後用離子物種(諸如硼(B)、砷(As)或磷(P))植入,接著進行快速熱退火以活化植入的摻雜物。
可使用在微電子領域中熟知的自我對準矽化製程,將磊晶源/汲區轉化成金屬矽化物。
雖然本發明已參考例示性具體實施例進行說明,但熟習本技術者應明白,在不脫離本發明的範疇下,可進行各種改變,並可以同等物取代其中元件。此外,在不脫離本發明的基本範疇下,可對本發明的說明內容進行許多修改以適應特別情況或材料。因此,預計本發明並不受限於揭露為執行本發明所設想之最佳模式的特定例示性具體實施例;而是預計本發明將包括所有落在隨附申請專利範圍之範疇內的具體實施例。
10...矽基板
20...結晶介電質
21...表面/結晶介電質的頂面
30...奈米碳管(CNT)
40...場光罩
41...邊緣
50...閘極介電質及閘極電極閘極堆疊
51...閘極介電質
52...閘極堆疊材料
53...閘極光罩材料
60...間隔物
70...源/汲區
80...接觸表面
在說明書結尾處的申請專利範圍中,將具體點明並清楚主張被視為本發明的標的。在結合附圖的「實施方式」中,顯示本發明上述及其他方面、特徵、及優點,圖式中:
圖1圖解具有結晶介電層及沈積之奈米碳管的矽基板;
圖2圖解圍繞奈米碳管形成的場光罩;
圖3圖解圖案化於奈米碳管上的閘極堆疊;
圖4圖解圍繞閘極堆疊形成的絕緣體;
圖5圖解源/汲區的磊晶生長;及
圖6顯示與磊晶源/汲材料接觸之奈米碳管的視圖。
10...矽基板
20...結晶介電質
40...場光罩
50...閘極介電質及閘極電極閘極堆疊
60...間隔物
70...源/汲區

Claims (15)

  1. 一種形成一自我對準裝置的方法,包含:沈積奈米碳管(CNT)於一結晶介電基板上;隔離包圍該等CNT之位置之該結晶介電基板的一部分;形成閘極介電質、閘極電極及閘極堆疊於該等CNT上並維持其結構完整性;及形成與在該結晶介電基板上自該等閘極介電質、閘極電極及閘極堆疊暴露之該等CNT的部分接觸的磊晶源/汲區。
  2. 如申請專利範圍第1項所述之方法,其中該CNT沈積包含平行沈積該等CNT。
  3. 如申請專利範圍第1項所述之方法,其中該隔離包含形成一場光罩作為該結晶介電基板之該部分的一圍蔽(enclosure)。
  4. 如申請專利範圍第1項所述之方法,其中該形成閘極介電質、閘極電極及閘極堆疊於該等CNT上並維持其結構完整性包含相對於該等CNT平行及垂直形成絕緣閘極堆疊,或包含計時反應性離子蝕刻(RIE),或包含計時非等向性蝕刻及其後的濕式等向性蝕刻。
  5. 如申請專利範圍第1項所述之方法,其中該形成與在該結晶介電基板上自該等閘極介電質、閘極電極及閘極堆疊暴露之該等CNT的部分接觸的磊晶源/汲區包含未摻雜磊晶生長,或包含原位摻雜磊晶生長,包含退火。
  6. 一種形成自我對準磊晶源/汲接觸的製程,包含: 沈積奈米碳管(CNT)於一結晶介電底層上;利用一硬光罩遮蔽場區;用一在該等CNT頂部上的硬光罩圖案化一閘極堆疊;用間隔物包封(encapsulating)該閘極堆疊;及磊晶生長鄰接該等間隔物的源/汲區以提供自我對準源/汲極。
  7. 如申請專利範圍第6項所述之製程,其中該CNT沈積包含平行沈積該等CNT,或其中遮蔽包含形成其中沈積該等CNT之該結晶介電底層之一部分的一圍蔽。
  8. 如申請專利範圍第6項所述之製程,其中該圖案化包含相對於該等CNT平行及垂直圖案化多個閘極堆疊,或包含計時反應性離子蝕刻(RIE)該閘極堆疊。
  9. 如申請專利範圍第6項所述之製程,其中該包封包含計時非等向性蝕刻該等間隔物,繼而濕式等向性蝕刻該等間隔物。
  10. 如申請專利範圍第6項所述之製程,其中該磊晶生長包含未摻雜磊晶生長,或包含原位摻雜磊晶生長。
  11. 如申請專利範圍第6項所述之製程,另外包含在該等源/汲區退火。
  12. 一種自我對準裝置,包含:複數個奈米碳管(CNT),其佈置於一結晶介電基板上;一場光罩,其佈置於該結晶介電基板上作為圍繞該等CNT且 不接觸該等CNT的一矩形平面圍蔽;複數個絕緣閘極堆疊,其形成於該等CNT上且維持其結構完整性;及磊晶源/汲區,其設置與為該等絕緣閘極堆疊所暴露之該等CNT的部分接觸。
  13. 如申請專利範圍第12項所述之自我對準裝置,其中該等CNT實質上互相平行佈置,及該等閘極堆疊相對於該等CNT實質上垂直佈置。
  14. 如申請專利範圍第12項所述之自我對準裝置,其中該結晶介電基板包含氧化鑭釔(LaYO),或該場光罩包含二氧化矽(SiO2 )。
  15. 如申請專利範圍第12項所述之自我對準裝置,其中該等閘極堆疊包含一閘極介電質、一閘極堆疊材料及一絕緣材料,及其中該閘極介電質包含二氧化鉿(HfO2 ),該閘極堆疊材料包含氮化鈦(TiN)或鎢(W),及該絕緣材料包含氮化矽(SiN)。
TW100121192A 2010-06-17 2011-06-17 自我對準沉積之場效電晶體通道之閘極的磊晶源/汲接觸 TWI505375B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/817,733 US8513099B2 (en) 2010-06-17 2010-06-17 Epitaxial source/drain contacts self-aligned to gates for deposited FET channels

Publications (2)

Publication Number Publication Date
TW201214579A TW201214579A (en) 2012-04-01
TWI505375B true TWI505375B (zh) 2015-10-21

Family

ID=44626338

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100121192A TWI505375B (zh) 2010-06-17 2011-06-17 自我對準沉積之場效電晶體通道之閘極的磊晶源/汲接觸

Country Status (7)

Country Link
US (2) US8513099B2 (zh)
JP (1) JP5852643B2 (zh)
CN (1) CN102906893B (zh)
DE (1) DE112011101023B4 (zh)
GB (1) GB2494012B (zh)
TW (1) TWI505375B (zh)
WO (1) WO2011157487A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9024310B2 (en) * 2011-01-12 2015-05-05 Tsinghua University Epitaxial structure
KR20120100630A (ko) * 2011-03-04 2012-09-12 삼성전자주식회사 반도체소자와 그 제조방법 및 반도체소자를 포함하는 전자장치
US8492748B2 (en) * 2011-06-27 2013-07-23 International Business Machines Corporation Collapsable gate for deposited nanostructures
CN103730366B (zh) * 2012-10-16 2018-07-31 中国科学院微电子研究所 堆叠纳米线mos晶体管制作方法
US8778768B1 (en) 2013-03-12 2014-07-15 International Business Machines Corporation Non-replacement gate nanomesh field effect transistor with epitixially grown source and drain
CN103715097B (zh) * 2013-12-27 2019-03-19 上海集成电路研发中心有限公司 利用外延工艺制备垂直沟道的围栅型mosfet的方法
US9203041B2 (en) * 2014-01-31 2015-12-01 International Business Machines Corporation Carbon nanotube transistor having extended contacts
US9502673B2 (en) * 2015-03-31 2016-11-22 International Business Machines Corporation Transistor devices with tapered suspended vertical arrays of carbon nanotubes
US9543535B1 (en) 2015-06-29 2017-01-10 International Business Machines Corporation Self-aligned carbon nanotube transistor including source/drain extensions and top gate
US10276698B2 (en) 2015-10-21 2019-04-30 International Business Machines Corporation Scalable process for the formation of self aligned, planar electrodes for devices employing one or two dimensional lattice structures
US10319926B2 (en) 2015-11-05 2019-06-11 International Business Machines Corporation End-bonded metal contacts on carbon nanotubes
US9472773B1 (en) 2015-12-09 2016-10-18 International Business Machines Corporation Stacked carbon nanotube multiple threshold device
CN105609636B (zh) * 2016-02-17 2018-05-08 上海交通大学 定向单壁碳纳米管阵列为沟道的场效应晶体管及制作方法
US11165032B2 (en) * 2019-09-05 2021-11-02 Taiwan Semiconductor Manufacturing Co., Ltd. Field effect transistor using carbon nanotubes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI248677B (en) * 2003-07-28 2006-02-01 Intel Corp Method of fabricating an ultra-narrow channel semiconductor device
JP2008235752A (ja) * 2007-03-23 2008-10-02 Toshiba Corp 半導体装置およびその製造方法
US20080308831A1 (en) * 2001-07-05 2008-12-18 International Business Machines Corporation Semiconductor structure including mixed rare earth oxide formed on silicon
TW200915482A (en) * 2007-05-25 2009-04-01 Amol M Kalburge CMOS compatible method of forming source/drain contacts for self-aligned nanotube devices
TW201104836A (en) * 2009-04-30 2011-02-01 Ibm Threshold voltage adjustment through gate dielectric stack modification

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360153A (ja) * 1986-08-29 1988-03-16 株式会社日立製作所 ムライト系セラミツク絶縁基板
JPH0357228A (ja) * 1989-07-25 1991-03-12 Nec Corp 化合物半導体装置
US5166771A (en) 1990-01-12 1992-11-24 Paradigm Technology, Inc. Self-aligning contact and interconnect structure
JP2839018B2 (ja) * 1996-07-31 1998-12-16 日本電気株式会社 半導体装置の製造方法
KR100376197B1 (ko) * 1999-06-15 2003-03-15 일진나노텍 주식회사 탄소 소오스 가스 분해용 촉매금속막을 이용한탄소나노튜브의 저온 합성 방법
US6891227B2 (en) 2002-03-20 2005-05-10 International Business Machines Corporation Self-aligned nanotube field effect transistor and method of fabricating same
US7358121B2 (en) * 2002-08-23 2008-04-15 Intel Corporation Tri-gate devices and methods of fabrication
US7135728B2 (en) * 2002-09-30 2006-11-14 Nanosys, Inc. Large-area nanoenabled macroelectronic substrates and uses therefor
AU2003250225A1 (en) * 2003-04-22 2004-11-19 Commissariat A L'energie Atomique A process for modifying at least one electrical property of a nanotube or a nanowire and a transistor incorporating it.
US7018873B2 (en) * 2003-08-13 2006-03-28 International Business Machines Corporation Method of making a device threshold control of front-gate silicon-on-insulator MOSFET using a self-aligned back-gate
JP2005126323A (ja) * 2004-11-15 2005-05-19 Nec Corp 触媒担持基板、それを用いたカーボンナノチューブの成長方法及びカーボンナノチューブを用いたトランジスタ
US7582534B2 (en) * 2004-11-18 2009-09-01 International Business Machines Corporation Chemical doping of nano-components
US7598516B2 (en) 2005-01-07 2009-10-06 International Business Machines Corporation Self-aligned process for nanotube/nanowire FETs
US7262991B2 (en) * 2005-06-30 2007-08-28 Intel Corporation Nanotube- and nanocrystal-based non-volatile memory
US7279375B2 (en) * 2005-06-30 2007-10-09 Intel Corporation Block contact architectures for nanoscale channel transistors
US7452759B2 (en) * 2005-11-29 2008-11-18 Micron Technology, Inc. Carbon nanotube field effect transistor and methods for making same
US7772071B2 (en) * 2006-05-17 2010-08-10 Chartered Semiconductor Manufacturing Ltd. Strained channel transistor and method of fabrication thereof
US7678672B2 (en) * 2007-01-16 2010-03-16 Northrop Grumman Space & Mission Systems Corp. Carbon nanotube fabrication from crystallography oriented catalyst
US20080296562A1 (en) 2007-05-31 2008-12-04 Murduck James M Methods and apparatus for fabricating carbon nanotubes and carbon nanotube devices
JP2009010140A (ja) * 2007-06-27 2009-01-15 Oki Electric Ind Co Ltd 半導体ウェハ
US7858454B2 (en) 2007-07-31 2010-12-28 Rf Nano Corporation Self-aligned T-gate carbon nanotube field effect transistor devices and method for forming the same
US7534675B2 (en) 2007-09-05 2009-05-19 International Business Machiens Corporation Techniques for fabricating nanowire field-effect transistors
US20090236675A1 (en) 2008-03-21 2009-09-24 National Tsing Hua University Self-aligned field-effect transistor structure and manufacturing method thereof
US20100038715A1 (en) 2008-08-18 2010-02-18 International Business Machines Corporation Thin body silicon-on-insulator transistor with borderless self-aligned contacts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080308831A1 (en) * 2001-07-05 2008-12-18 International Business Machines Corporation Semiconductor structure including mixed rare earth oxide formed on silicon
TWI248677B (en) * 2003-07-28 2006-02-01 Intel Corp Method of fabricating an ultra-narrow channel semiconductor device
JP2008235752A (ja) * 2007-03-23 2008-10-02 Toshiba Corp 半導体装置およびその製造方法
TW200915482A (en) * 2007-05-25 2009-04-01 Amol M Kalburge CMOS compatible method of forming source/drain contacts for self-aligned nanotube devices
TW201104836A (en) * 2009-04-30 2011-02-01 Ibm Threshold voltage adjustment through gate dielectric stack modification

Also Published As

Publication number Publication date
GB2494012B (en) 2014-07-23
DE112011101023B4 (de) 2015-07-02
JP2013528952A (ja) 2013-07-11
US20120292598A1 (en) 2012-11-22
CN102906893B (zh) 2015-08-12
US8513099B2 (en) 2013-08-20
US8754403B2 (en) 2014-06-17
DE112011101023T5 (de) 2013-01-17
CN102906893A (zh) 2013-01-30
GB2494012A (en) 2013-02-27
GB201209073D0 (en) 2012-07-04
JP5852643B2 (ja) 2016-02-03
WO2011157487A1 (en) 2011-12-22
US20110309332A1 (en) 2011-12-22
TW201214579A (en) 2012-04-01

Similar Documents

Publication Publication Date Title
TWI505375B (zh) 自我對準沉積之場效電晶體通道之閘極的磊晶源/汲接觸
US8536563B2 (en) Nanowire field effect transistors
US10032915B2 (en) Non-planar transistors and methods of fabrication thereof
US10170608B2 (en) Internal spacer formation from selective oxidation for fin-first wire-last replacement gate-all-around nanowire FET
US10170550B2 (en) Stressed nanowire stack for field effect transistor
US9257545B2 (en) Stacked nanowire device with variable number of nanowire channels
US8455334B2 (en) Planar and nanowire field effect transistors
US8558219B2 (en) Nanowire field effect transistors
US10170634B2 (en) Wire-last gate-all-around nanowire FET
CN102820230A (zh) 后形成鳍的置换型金属栅极finfet
US10121853B2 (en) Structure and process to tuck fin tips self-aligned to gates
WO2013130298A1 (en) Gate-all around semiconductor nanowire fet's on bulk semiconductor wafers
US8658461B2 (en) Self aligned carbide source/drain FET
US9059021B2 (en) FinFET device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees