TWI504161B - 數位類比轉換系統與方法 - Google Patents

數位類比轉換系統與方法 Download PDF

Info

Publication number
TWI504161B
TWI504161B TW102130975A TW102130975A TWI504161B TW I504161 B TWI504161 B TW I504161B TW 102130975 A TW102130975 A TW 102130975A TW 102130975 A TW102130975 A TW 102130975A TW I504161 B TWI504161 B TW I504161B
Authority
TW
Taiwan
Prior art keywords
signal
digital
frequency band
analog
input
Prior art date
Application number
TW102130975A
Other languages
English (en)
Other versions
TW201424276A (zh
Inventor
Martin Kinyua
Eric Soenen
Original Assignee
Taiwan Semiconductor Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/597,291 external-priority patent/US8698662B2/en
Application filed by Taiwan Semiconductor Mfg Co Ltd filed Critical Taiwan Semiconductor Mfg Co Ltd
Publication of TW201424276A publication Critical patent/TW201424276A/zh
Application granted granted Critical
Publication of TWI504161B publication Critical patent/TWI504161B/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/661Improving the reconstruction of the analogue output signal beyond the resolution of the digital input signal, e.g. by interpolation, by curve-fitting, by smoothing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/50Digital/analogue converters using delta-sigma modulation as an intermediate step
    • H03M3/508Details relating to the interpolation process
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/50Digital/analogue converters using delta-sigma modulation as an intermediate step
    • H03M3/502Details of the final digital/analogue conversion following the digital delta-sigma modulation
    • H03M3/504Details of the final digital/analogue conversion following the digital delta-sigma modulation the final digital/analogue converter being constituted by a finite impulse response [FIR] filter, i.e. FIRDAC
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • H03M7/3002Conversion to or from differential modulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Amplifiers (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Description

數位類比轉換系統與方法
本發明有關於一種數位類比轉換器,特別有關一種具有D類放大器的數位類比轉換器。
由於數位電路元件具有許多已知的優點,因此許多電子電路是以數位資料操作。然而,在本質上類比訊號比數位訊號更適合被接收和解釋,在一些應用中需要將數位電路的輸出轉換至類比領域,使得輸出可以更容易被人們察覺。因此,仍然需要將數位訊號轉換成為一類比輸出,例如對於音頻設備、視訊設備以及其他設備而言類比訊號是有利的。
將數位訊號有效率且準確地轉換為已放大的類比訊號(尤其是在高速資料傳輸時)依然存在一些問題,例如由於輸出類比訊號未匹配的上升/下降時間、時序抖動(clock jitter)的限制、碼間干擾(intersymbol interference),以及相對高階的諧振失真(high harmonic distortion)等等問題所引起的轉換效能降低。再者,目前的數位類比轉換器(digital-to-analog converter“DAC”)有時會使用多位元的截斷數位類比轉換器(truncation DAC),截斷數位類比轉換器需要動態元件匹配設計(dynamic element matching scheme),用以消除靜態非線性轉換誤差。
傳統上,一數位類比轉換器不是以離散時間就是 以連續時間來實現,然而每個方式都有其自身的缺點。舉例而言,以離散時間來實現時,則存在著動態範圍(dynamic range)被熱雜訊(thermal noise)所限制的切換式電容(switched capacitor),對重建放大器/低通濾波器而言需要較寬的頻寬,並且由於需要大量電荷轉移電容,因此通常在電路中需要更多的面積。以連續時間來實現則會因為不匹配的上升/下降時間以及碼間干擾而產生失真(distortion)和頻段內(in-banc)雜訊,並且對時序抖動非常敏感的,另外多位元的截斷以及雜訊濾波器都會降低靈敏度。
因此,需要一種有效率和精確的數位類比轉換器,用以克服目前數位類比轉換器所存在的這些以及其它問題並且用以驅動一D類放大器。
本發明係提供一種數位類比轉換系統,用以放大一數位輸入訊號,以產生一類比輸出訊號。數位類比轉換系統包括一內差濾波器、一雜訊整形濾波器、一數位類比轉換器以及一類比輸入型的D類放大。內差濾波器包括一輸入端,用以接收數位輸入訊號。數位類比轉換器包括一有限脈衝響應型的濾波器、一積分器以及一比較器。類比輸入型的D類放大器包括一輸出端,用以輸出一類比訊號。
本發明亦提供另一種數位類比轉換系統,用以放大一數位輸入訊號,以產生一類比輸出訊號。數位類比轉換系統包括一內差濾波器、一雜訊整形濾波器、一數位類比轉換器以及一類比輸入型的D類放大器。
內差濾波器包括一輸入端,用以接收數位輸入訊號;以及一輸出端,用以輸出一內差訊號,其中數位輸入訊號分布在一第一預設頻段中,內差訊號分布在一第二預設頻段中,第二預設頻段比第一預設頻段寬,並且包括第一預設頻段。
雜訊整形濾波器包括一輸入端,用以接收上述內差訊號;一第一電路,用以消除內差訊號在第一預設頻段內的誤差;以及一輸出端,用以輸出一脈衝寬度調變訊號,其中脈衝寬度調變訊號為一一位元編碼訊號。
數位類比轉換器包括一輸入端,用以接收上述脈衝寬度調變訊號;一有限脈衝響應型的濾波器,具有N階及N階權重,用以轉換脈衝寬度調變訊號為一已轉換訊號,其中已轉換訊號為一多準位平行訊號,其中N為一預設值,每一N階係以數位化方式實現,並且每一N階權重係使用複數電阻以非數位化方式實現;第三電路用以轉換已轉換訊號為一第一類比訊號;輸出端,用以輸出第一類比訊號。
類比輸入型的D類放大器包括一輸入端,用以接收第一類比訊號;以及一輸出端,用以輸出一類比訊號。
本發明亦提供一種數位類比轉換方法用以放大一數位輸入訊號,以產生一類比輸出訊號。數位類比轉換方法包括接收分布在一第一預設頻段的一數位輸入訊號;升頻取樣數位輸入訊號,用以產生分布在一第二預設頻段的一第一濾波訊號,其中第二預設頻段包括第一預設頻段,並且第二預設頻段比第一預設頻段寬;消除第一濾波訊號位於第一預設頻段內的雜訊;由已消除雜訊的第一濾波訊號產生一第二濾波訊號;使 用一有限脈衝響應型的濾波器以及一積分器,將第二濾波訊號轉換成一第一類比訊號;以及使用一D類放大器放大第一類比訊號。
其中有限脈衝響應型的濾波器具有N階以及N階權重,N為一預設值,N階每一者是以數位化方式實現,N階權重是使用電阻以非數位化方式實現。
100、200‧‧‧功能區塊圖
300‧‧‧線性模組
n‧‧‧數位輸入訊號
fs ‧‧‧取樣頻率
110‧‧‧內差濾波器
m‧‧‧數位訊號
k*fs ‧‧‧頻率
120‧‧‧雜訊整形器
a‧‧‧數位訊號
fclock ‧‧‧頻率
130‧‧‧數位類比轉換器
b‧‧‧類比訊號
140‧‧‧類比輸入D類放大器
c‧‧‧輸出訊號
x(z)、In(z)‧‧‧輸入訊號
w(z)‧‧‧回授訊號
221、225、321、325‧‧‧加法器
e(z)‧‧‧誤差訊號
222‧‧‧數位△Σ區塊
q(z)‧‧‧誤差訊號
224、324、524‧‧‧補償濾波器
p(z)‧‧‧量化誤差訊號
u(z)‧‧‧脈衝寬度調變訊號
226‧‧‧量化器
y(z)‧‧‧數位訊號
227、327‧‧‧數位低通濾波器
301‧‧‧方程式
322‧‧‧雜訊整形截斷器
223、323、523‧‧‧迴路濾波器
Out(z)、IN 1 IN 2 ‧‧‧訊號
400‧‧‧功能示意圖
431-1、432-1、433-1、431-2、432-2、433-2‧‧‧延遲元件
VREF ‧‧‧電壓
d 0d 1d n ‧‧‧訊號
sd 0sd 1sd n ‧‧‧開關
Rd0,1 、Rd1,1 、Rdn,1 、Rd0,2 、Rd1,2 、Rdn,2 、RFP 、RFN 、R1P 、R1N ‧‧‧電阻
IDP 、IDN ‧‧‧輸出訊號
I1N 、I1P 、I3 、I4 、I5 、I6 、IFP 、IFN 、VOP 、VON 、x、‧‧‧訊號
CF,1 、CF,2 ‧‧‧電容
A1 ‧‧‧積分器
A2 ‧‧‧比較器
A3 ‧‧‧放大器區塊
525‧‧‧數位脈衝寬度調變區塊
530‧‧‧預先驅動器
531、532‧‧‧功率電晶體
533‧‧‧輸出元件
500‧‧‧功能電路示意圖
700、800‧‧‧圖表
701、801‧‧‧峰值
702‧‧‧圖形線
703、803‧‧‧圖式的資料
第1圖為根據本發明一實施例的功能區塊圖;第2圖為根據本發明一實施例的另一功能區塊圖;第3圖為根據本發明一實施例的另一功能區塊圖;第4圖為根據本發明一實施例的另一功能示意圖;第5圖為根據本發明一實施例的另一電路功能示意圖;第6圖為根據本發明一實施例的一流程圖;第7圖為根據本發明一實施例的輸入及輸出頻譜圖;第8圖為根據本發明一實施例的另一輸入及輸出頻譜圖。
本發明揭露了一種數位類比轉換系統和方法,為了便於了解,圖示中相同的元件被賦予相同的數字。為了更全面地了解,一些合適的電路和簡要的說明將會有所幫助。
本發明揭露了一種用於一數位輸入D類放大器(digital input class D amplifier)的數位類比轉換系統和方法,數位輸入D類放大器包括一內差濾波器(interpolation filter)用以升頻取樣一數位訊號;一雜訊整形調變器(noise shaping modulator)用以消除由於數位脈衝寬度調變(digital pulse width modulation)和截斷誤差(truncation errors)所引起的頻段內的量化誤差(quantization error),以及一混合式的有限脈衝響應型的濾波器(hybrid finite impulse response filter)/數位類比轉換器耦接至一類比輸入D類脈衝寬度調變型的控制迴路(analog input class D pulse width modulation control loop)。
參考第1圖,第1圖顯示本發明中一數位輸入D類放大器電路之一實施例的高階(high-level)的功能區塊圖100。一數位輸入訊號n輸入至內差濾波器110。在某些實施例中,數位輸入訊號n為數位音頻訊號(digital audio signal),如本領域中所熟知的,數位音頻訊號包含任何規格的位元數(例如16,20或24位元),並且此位元數係由一類比訊號在一特定取樣頻率fs取樣所形成。在某些實施例中,取樣頻率可以是48、96或192千赫茲(kHz)。然而,如同本領域所熟知的,取樣頻率可以包含其它的頻率範圍。舉例而言,本發明的取樣頻率為16至400千赫茲。此外,在某些實施例中的數位輸入訊號n為脈衝編碼調變(Pulse code modulation”PCM”)數位訊號。
內差濾波器110藉由一預設值k升頻取樣數位輸入訊號n,其中升頻取樣係數k之典型值介於64-1024之間,但並不限於此。在本發明中亦可採用其它範圍的升頻取樣係數,例如介於32-2048之間。如圖所示,內差濾波器110的數位輸出訊號的頻率為k*fs的數位訊號m。數位訊號m被傳遞至數位脈衝寬度調變型的雜訊整形器(digital pulse width modulation noise shaper)120。數位脈衝寬度調變型的雜訊整形器120過濾掉大部 分的轉換雜訊(例如,位於所需頻段(the band of interest)之外的截斷誤差以及脈衝寬度調變(PWM)的量化誤差)。在某些實施例中,舉例而言,當數位輸入訊號為數位音頻訊號時,則所需頻段為音頻頻段(如本領域所熟知的,一般而言為20Hz到20KHz)。雜訊整形器120用以改變由截斷誤差和量化誤差等雜訊所產生的頻譜形狀,使得在所需頻段內雜訊能量較小,在所需頻段外的雜訊能量較大。於第2圖以及第3圖中雜訊整形器120將會更詳細地描述。舉例而言,雜訊能量會被分布在由k*fs所定義的頻段(頻率)中。如第1圖所示,雜訊整形器120會在頻率fclock 上輸出1位元的脈衝寬度調變(PWM)型的數位訊號a。
數位訊號a被輸入至有限脈衝響應(finite impulse response“FIR”)型的數位類比轉換器130(亦可簡稱FIR DAC 130)。有限脈衝響應型的數位類比轉換器130用以轉換1位元的脈衝寬度調變數位訊號a為多準位(multi-level)的低通的類比訊號b(簡稱類比訊號b)。於第4圖以及第5圖中有限脈衝響應型的數位類比轉換器130將會更詳細地描述。在某些實施例中類比訊號b為一已濾波的音頻訊號(filtered audio signal)。如以下第4、5圖所描述,類比訊號b係被輸入至類比輸入D類放大器140,並輸出第1圖所示之類比的輸出訊號c。
請參考第2圖,第2圖係為第1圖的數位脈衝寬度調變(DPWM)型的雜訊整形器120的功能區塊圖200。輸入訊號x(z)(對應於第1圖中位於頻率k*fs 的數位訊號m)被輸入至加法器(summing junction)221。輸入訊號x(z)通常為一多準位數位訊號(multilevel digital signal)。在某些實施例中,輸入訊號x(z) 為一數位編碼調變(亦可稱脈衝編碼調變數位訊號PCM)訊號。回授訊號w(z)亦會輸入加法器221,回授訊號w(z)將於之後描述。加法器221的輸出為一誤差訊號e(z),誤差訊號e(z)將輸入至數位△Σ區塊222,而數位△Σ區塊222係為一雜訊整形截斷器。數位截斷的誤差訊號q(z)亦輸入至數位△Σ區塊222,數位截斷的誤差訊號q(z)用以表示數位截斷誤差,如本領域所熟知的,數位截斷誤差係由於數位訊號的捨入及/或截斷操作所產生。數位△Σ區塊222操作在頻率k*fS 。數位△Σ區塊222的輸出被施加至迴路濾波器(loop filter)223,迴路濾波器223的輸出又被施加至數位的補償濾波器224。如本領域中所熟知的,數位的補償濾波器224用以改善迴路的相位邊限(phase margin)。
數位的補償濾波器224的輸出被施加至加法器225。數位脈衝寬度調變的量化誤差訊號p(z)亦被施加至加法器225。加法器225操作在頻率fclock (fclock 的頻率高於k*fs ),並且用以表示將數位的補償濾波器224的輸出編碼成為一脈衝寬度調變訊號u(z)的一數位脈衝寬度調變操作。脈衝寬度調變訊號u(z)具有頻率fPWM 。脈衝寬度調變訊號u(z)被輸入至操作在頻率fclock 的量化器226。如本領域所熟知的,量化器226用以執行一多對少的映射(many-to-few mapping)。量化器226的輸出為一位元的脈衝寬度調變型的數位訊號y(z)(簡稱數位訊號y(z)),脈衝寬度調變型的數位訊號y(z)係對應第1圖中頻率為fclock 的數位訊號a。數位訊號y(z)亦經由數位低通濾波器227回授,用以產生回授訊號w(z)。其中數位低通濾波器227用以執行抗混疊濾波(anti aliasing filtering)和取樣數位訊號y(z),使 得頻率回到k*fs (其中k*fs <fclock )。回授信號w(z)通常為一多準位數位訊號。
請參閱第3圖,第3圖的線性模組300為一Z領域(z-domain)的線性模組用以表示第2圖中的數位脈衝寬度調變型的雜訊整形器的一迴路分析。加法器321係對應至第2圖的加法器221,加法器321結合輸入訊號In(z)以及回授訊號w(z)用以產生誤差訊號e(z),誤差訊號e(z)將被輸入雜訊整形截斷器322(雜訊整形截斷器322係對應至第2圖的數位△Σ區塊222)。如第2圖所示,雜訊整形截斷器322亦用以接收數位截斷的誤差訊號q(z)。雜訊整形截斷器322根據以下公式,對誤差訊號e(z)以及q(z)進行處理e (z )+q (z )*(1-Z -1 ) N (式1)
其中N是雜訊轉移函數的階數雜訊整形截斷器322的輸出被輸入到迴路濾波器323,其中迴路濾波器323對應到第2圖中的迴路濾波器223。在一實施例中,迴路濾波器323根據以下公式,對它的輸入訊號進行處理
其中G1 為直流(DC)增益值。
迴路濾波器323的輸出被輸入到數位的補償濾波器324,數位的補償濾波器324對應第2圖中的數位的補償濾波器224。在一實施例中,數位的補償濾波器324係根據下面之公式,對它的輸入訊號進行處理
其中G 2 為直流(DC)增益值,ab 以及c 為常數。
經由選擇ab 以及c 之值,將使得a 表示濾波器的零點頻率位置,並且bc 表示濾波器之極點頻率位置。
數位的補償濾波器324的輸出被輸入至加法器325,加法器325對應於第2圖的加法器225。根據一線性訊號處理分析(a linearized signal processing analysis),脈衝寬度調變的量化誤差訊號p(z)亦被施加至加法器325。加法器325的輸出為訊號Out(z)。需注意的是,由於量化器226對第3圖所表示的z領域線性模型並不會產生作用,因此,在第3圖中並沒有任何區塊對應到第2圖中的量化器226。
輸出的訊號Out(z)經由數位低通濾波器327回授,數位低通濾波器327對應於第2圖中的數位低通濾波器227。在一實施例中,數位低通濾波器327係根據下面之公式,對它的輸入訊號進行處理
其中G 3 為直流(DC)增益值,d 為一濾波器的極點位置。
d值的選擇係根據適用以該電路的設計規範,使得數位低通濾波器327對干擾訊號頻率(undesired signal frequency)進行低通濾波。在一非定限性的例子中,所選擇的d值將使得在音頻範圍(例如,在20Hz之上)的訊號可以通過,超過20千赫的訊號則被消除。數位低通濾波器327的輸出為回授訊號w(z),如上所描述的,回授訊號w(z)被施加到加法器321。
如本領域所熟知的,分析z領域的線性模組300將得到以下方程式301:
第1圖中數位脈衝寬度調變型的雜訊整形器120的操作係如上式5所示,輸入訊號在所需頻段所受的影響應盡可能的小。因此,有必要藉由內差濾波器110將在頻率fs 的數位輸入訊號n轉換為在頻率k*fs 的數位訊號m來過取樣(oversample)輸入訊號(以上操作係對應第3圖的輸入訊號In (z )以及式5的操作)。分析式5,在右邊三個項式的每一分母項1+H (z )D (z )B (z ),理想上應該要夠大,使得誤差項能減少。然而,如在本領域中是熟知的,如果分母過大則迴路將變得不穩定。對於高保真度系統之分母項的典型值可以是>100dB,然而在本發明之實施例中其它值亦可。
接著,考量式5之右側的第一項,第一項用以表示輸入訊號In (z ),因此亦表示訊號In (z )落在所需的頻段。理想上,z領域的線性模組(z-domain linear model)300對此項的響應(response)是平坦的。為了做到這一點,之值應大約為單位增益(意即在所需的頻段其作用如一低通濾波器)。接著,考量式5之右側的第二以及第三項,這些項分別用以表示誤差訊號q(z)以及p(z),並且理想上z領域的線性模組300將消除這些項在所需的頻段內的訊號並且整形誤差訊號q(z)以及p(z)的能量,使得這些訊號在所需頻段內不會出現。在第二項中,表示式(1-z -1 ) N 為一微分器(differentiator),其作用如同一高通濾波器,用以衰減低頻訊號,但允許高頻訊號通過。在這樣方法下,將會改變輸入訊號的頻譜,使得低頻訊號被消除並且被移至所需頻段 以外的較高頻區域。因此,經由選擇式5的值(例如G1、G2、G3、a、b、c 以及d )將使得在數位脈衝寬度調變型的雜訊整形器120中所使用的過濾器H (z )、D (z )以及B (z )在z領域的線性模組300的操作係如上所述(即用以消除在所需頻段內的雜訊)。
上述裝置設計藉由回授將大部分由所需頻段之外的誤差所產生的能量頻譜整形,使得截斷誤差和數位脈衝寬度調變量化誤差這兩種誤差可以被消除。再者,第3圖所示之z領域的線性模組300可以很容易地藉由包含數位濾波器D (z )而被補償,並且迴路動態響應(loop dynamic response)亦可經由數位濾波器D (z )而被最佳化。
第4圖為根據本發明中合併有限脈衝響應型的數位類比轉換器的前端以及類比輸入型的D類放大器之一功能示意圖400,功能示意圖400係對應於第1圖中的有限脈衝響應型的數位類比轉換器130以及部分的類比輸入D類放大器140。在第4圖中,輸入訊號IN 1 為第1圖所示之雜訊整形器120的輸出訊號a,輸入訊號IN 1 為頻率fclock 的1位元的脈衝寬度調變數位訊號。輸入訊號IN 1 係藉由任何已知的方法加以反向(invert)產生訊號IN 2 ,訊號IN 2 亦為頻率fclock 的一位元的脈衝寬度調變數位訊號。如第4圖所示,在本實施例之功能示意圖400中,有限脈衝響應型的數位類比轉換器為一N階的有限脈衝響應型的濾波器,其中濾波係數為類比的,然而延遲元件(移位暫存器)431-1、431-2到433-1以及431-2、432-2到433-2係由移位暫存器以數位方式實現。在第4圖中的濾波係數係如下所描述,係分別經由流經電阻Rd0,1 、Rd1,1 到Rdn,1 之間以及電阻Rd0,2 、Rd1,2 到Rdn,2 之間的電流來實現。如本領域中所熟知的,功能示意圖400中有限脈衝響應型的數位類比轉換器的其他實現方式包括以一連續時間的方式或以離散時間的方式來實現。
在操作上,移位暫存器的每一輸出端控制一組開關,該組開關用以控制與濾波係數相關的電阻。對移位暫存器431-1而言,輸出訊號d 0 用以操作位於電阻Rd0,1 之輸入端的開關(意即被標示為sd 0的開關)。當訊號d 0 為高準位時,開關sd 0 為導通(開關為截止),使得電阻Rd0,1 連接至VREF 。當訊號d 0 為低準位時,開關為導通(開關sd 0 為截止),使得電阻Rd0,1 連接至地。相同地,對移位暫存器432-1而言,輸出訊號d 1 用以操作位於電阻Rd1,1 之輸入端的開關(例如,被標示為sd 1的開關)。當訊號d 1 為高準位時,開關sd 1 為導通(開關為截止),使得電阻Rd1,1 連接至VREF 。當訊號d 1 為低準位時,開關為導通(開關sd 1 為截止),使得電阻Rd0,1 連接至地。剩下的移位暫存器一直到移位暫存器433-1的每一者皆操作在相似的情況。如下所描述,來自電阻Rd0,1 、Rd1,1 至Rdn,1 的全部輸出(標示為IDP )將提供給放大器區塊A3
同樣地,用以接收訊號IN 2 (訊號IN 2 為訊號IN 1 的反向訊號)的移位暫存器亦以相同的方式操作。對移位暫存器432-1而言,輸出訊號用以操作位於電阻Rd0,2 之輸入端的開關(例如,被標示為的開關)。當訊號為高準位時,開關為導通(開關為截止),使得電阻Rd0,2 連接至地。當訊號為低準位時,開關為導通(開關為截止),使得電阻Rd0,2 連接至VREF 。相同地,對移位暫存器432-2而言,輸出訊號用以操作位於電阻Rd1,2 之輸入端的開關(例如,被標示為的開關)。當訊號為高準位時,開關為導通(開關為截止),使得電阻Rd1,2 連接至地。當訊號為低準位時,開關為導通(開關為截止),使得電阻Rd1,2 連接至VREF 。剩下的移位暫存器一直到移位暫存器433-2的每一者皆操作在相似的情況。來自電阻Rd0,2 、Rd1,2 至Rdn,2 的全部輸出(被標示為IDN ),將如下所描述的提供給放大器區塊A3
在功能示意圖400中,有限脈衝響應型的數位類比轉換器之轉移函數(transfer function)為:
如第4圖所示,在功能示意圖400中有限脈衝響應型的數位類比轉換器將一位元的串列的輸入訊號IN 1 IN 2 分別轉換為一多準位(multi-level)連續時間的輸出訊號IDP 和IDN 。由於使用線性的延遲元件431-1、432-1到433-1以及431-2、432-2到433-2來實現數位化,在類比係數元件Rd0,1 、Rd1,1 到Rdn,1 以及Rd0,2 、Rd1,2 ,到Rdn,2 之間的不匹配(不管是以電流源或是以功能示意圖400的電阻來實現),將只會降低截止區的增益響應以及相位響應。因此,上面所提到的裝置其中之一的優點為,有限脈衝響應型的數位類比轉換器本質上即為線性。由於輸入訊號IN 1 以及IN 2 每一者皆為脈衝寬度調變訊號,故有限脈衝響應型的數位類比轉換器另一優點為有限脈衝響應型的數位類比轉換器可用以對抗碼間干擾(inter-symbol interference)。
在功能示意圖400中之有限脈衝響應型的數位類 比轉換器的另一優點為有限脈衝響應型的數位類比轉換器係由來自同一輸入訊號(訊號IN 1 以及IN 2 )的延遲版本所控制。因為訊號IN 1 IN 2 都是一位元的訊號,因此不會因為多位元的輸入訊號而產生諧波失真誤差(harmonic distortion errors)。舉例而言,當輸入訊號IN 1 IN 2 都為多位元的脈衝編碼調變(pulse code modulation)訊號(例如為8位元並聯的訊號)時,其中一位元發生錯誤將使輸入訊號產生失真。在具有一脈衝編碼調變輸入訊號的一有限脈衝響應型的數位類比轉換器中,複數控制訊號被包含在脈衝編碼調變訊號的不同位元中,將使得在正弦的輸入中包含了諧波。所產生的誤差將引起諧波失真,諧波失真將使得有限脈衝響應型的數位類比轉換器的線性度降低。為了克服諧波失真誤差,具有一脈衝編碼調變(或是其它多位元)的輸入訊號之有限脈衝響應型的數位類比轉換器將需要線性化電路(例如動態元件匹配(dynamic element matching)),使得線性度能達到一足夠的程度。
功能示意圖400中的△Σ用以接收有限脈衝響應型的數位類比轉換器的輸出訊號IDP 以及IDN 。輸出訊號IDP 以及IDN 分別與回授訊號I1P 以及I1N 結合用以形成訊號I3 以及I4 。回授訊號I1P 以及I1N 是多準位(multilevel)的類比訊號。回授訊號I1P 為來自第5圖中的功率電晶體531的輸出。回授訊號I1N 為來自第5圖中的功率電晶體532的輸出。
如第4圖所示,訊號I3 以及I4 分別為放大器的回授訊號IFP 以及IFN 結合,以形成訊號I5 以及I6 。回授訊號IFP 以及IFN 係由比較器A2 的輸出端所產生(意即分別為輸出判斷訊號xx )。訊號I5 以及I6 被輸入積分器A1 ,並且經過積分器A1 的運算之後輸出電壓訊號VOP 以及VON 。電壓訊號VOP 以及VON 輸入比較器A2 ,比較器A2 用以比較訊號VOP 以及VON ,藉以產生輸出判斷訊號以及x
第5圖為本發明所提供之電路功能示意圖。如第5圖所示,電路功能示意圖500係由功能示意圖400(第4圖)中的有限脈衝響應型的數位類比轉換器(使用切換電阻實現類比係數)結合類比輸入D類放大器140(第1圖)所得到。如本領域一般技術人員所熟知的,第5圖只是本發明的一個實施例,本發明之概念亦可用以其它實施例。
在第5圖中,放大器區塊A3 與第4圖所示的放大器區塊A3 相同。放大器區塊A3 的輸出被輸入至迴路濾波器523,迴路濾波器523的輸出被輸入至補償濾波器524,補償濾波器524的輸出被輸入至數位脈衝寬度調變(DPWM)區塊525。迴路濾波器523與第2圖中的迴路濾波器223不同,但操作的方式相同。同樣地,數位的補償濾波器524與第2圖的中數位的補償濾波器224不同,但操作的方式相同。(如本領域一般技術人員所熟知的,第2圖所描述的為訊號處理電路,然而第5圖所描述的為使用區塊圖表示的電路)數位脈衝寬度調變(DPWM)區塊525與第2圖中的加法器225不同,但操作的方式相同。在本實施例中,數位脈衝寬度調變區塊525的輸出被輸入至預先驅動器(pre-drivers)530。如圖所示,預先驅動器530的輸出被輸入至功率電晶體531和532。如本領域所熟知的,功率電晶體的輸出被施加至輸出元件533,在本實施例中,輸出元件533為一音頻 擴音器。
功率電晶體531以及532的輸出亦分別作為回授訊號I1P 以及I1N 回授至電阻R1P 以及R1N 。回授訊號I1P 以及I1N 為如第4圖所提到之具有兩個準位的類比訊號。
請參考第6圖,第6圖中之流程圖600表示一種接收一數位輸入訊號的方法,用以將數位輸入訊號轉換為一類比訊號,並在一D類放大器中放大該類比訊號。在步驟601中,接收一數位輸入訊號。在步驟602中,升頻取樣該數位輸入訊號,用以產生一第一濾波訊號,其中該第一濾波訊號為數位訊號。在步驟603中,消除第一濾波訊號在第一預設頻段內的雜訊。上述雜訊為數位截斷誤差雜訊及/或量化誤差雜訊。在步驟604中,由已消除雜訊的第一濾波訊號產生一第二濾波訊號,其中該第二濾波訊號為數位訊號。在步驟605中,將第二濾波訊號轉換為一類比訊號。在步驟606中,使用一D類放大器放大該類比訊號。
第7圖中之圖表700為一數位類比轉換器的模擬輸入/輸出頻譜。如第7圖所示,輸入頻率為1KHz,fclock =400 MHz,fPWM =2 MHz以及fs=51 MHz。輸出頻譜分布在頻率20Hz到20KHz的音頻頻段範圍中。所圖式的資料703為輸出頻譜,並且顯示出輸入訊號為峰值701。圖形線702顯示出輸出雜訊訊號的增加。由第7圖可以得知,輸出的雜訊訊號遠低於輸入訊號(超過100dB信躁比(SNR))並且輸出雜訊訊號亦被整形過,使得輸出雜訊訊號隨著頻率遠離輸入訊號而增加。
第8圖中之圖表800用以表示一數位類比轉換器的 輸入/輸出頻譜。如第8圖所示,輸入頻率=1KHz,fclock =400 MHz,fPWM =2 MHz以及fs=51 MHz(上述係數與第7圖相同)。輸出頻譜位於頻率20Hz到500KHz的頻段範圍(比第7圖的頻段範圍還寬)中。所圖式的資料803為輸出頻譜,並且顯示出輸入訊號為峰值801。第8圖與第7圖相似地顯示出雜訊訊號遠低於輸入訊號,並且輸出雜訊訊號亦被整形,使得輸出雜訊訊號落在所需的頻段之外並且隨著頻率遠離輸入訊號而增加。
如上所討論,本發明之一實施例包括一數位類比轉換系統,用以放大一數位訊號為一類比訊號,其中數位類比轉換系統包括一內差濾波器,具有一輸入端用以接收一數位輸入訊號;一脈衝寬度調變型的雜訊整形濾波器;以及一混合式的數位類比轉換器,具有一有限脈衝響應型的濾波器;一積分器;以及一輸出端用以輸出一類比訊號。
本發明揭露一種數位類比轉換系統,用以放大一數位訊號為一類比訊號,其中數位類比轉換系統包括一內差濾波器,具有一輸入端用以接收一數位訊號以及一輸出端用以輸出一內差訊號。數位訊號位於在一第一預設頻段中,並且內差訊號位於在一第二預設頻段中,第二預設頻段比第一預設頻段寬,並且包括第一預設頻段。數位類比轉換系統更包括一雜訊整形濾波器,具有一輸入端用以接收內差訊號,一第一電路用以消除內差訊號在第一預設頻段內的誤差,以及一輸出端用以輸出一脈衝寬度調變訊號,其中脈衝寬度調變訊號為一位元編碼訊號。數位類比轉換系統亦包括一數位類比轉換器,具有一輸入端用以接收脈衝寬度調變訊號;一第二電路,用以轉換脈 衝寬度調變訊號為一已轉換訊號,其中已轉換訊號為一多準位的平行訊號。再者,數位類比轉換系統更包括一輸出端,用以輸出已轉換訊號;以及一重建放大器(reconstruction amplifier),具有一輸入端用以接收已轉換訊號;一第三電路(數位類比轉換電路),用以將已轉換訊號改變為一類比訊號;以及一輸出端,用以輸出一類比訊號。
本發明亦揭露一種數位類比轉換方法,用以放大一數位輸入訊號為一類比輸出訊號。數位類比轉換方法的步驟包括接收位於一第一預設頻段的一數位輸入訊號;升頻取樣數位輸入訊號,用以產生位於一第二預設頻段的一第一濾波訊號,其中第二預設頻段包括第一預設頻段並且比第一預設頻段寬;消除第一濾波訊號位於第一預設頻段內的雜訊;由已消除雜訊的第一濾波訊號產生一第二濾波訊號;以及使用一有限脈衝響應型的濾波器以及一積分器將第二濾波訊號轉換為一類比訊號。
本發明揭露一種脈衝寬度調變型的數位類比轉換系統,用以放大一數位訊號為一類比訊號,該數位類比轉換系統包括下列特徵之一者或多者:一內差濾波器,用以升頻取樣一輸入數位訊號;一數位脈衝寬度調變型的雜訊整形調變器,用以消除由於數位脈衝寬度調變的截斷誤差所產生在所需頻段的量化誤差;一有限脈衝響應型的數位類比轉換器,用以轉換一位元數位脈衝寬度調變訊號為一類比訊號,並且沒有動態元件匹配(DEM)及/或碼間干擾所產生的複雜問題;以及一類比輸入型的D類放大器整合至有限脈衝響應型的數位類比轉換器 的輸出端用以產生一放大的輸出類比訊號。
雖然本發明已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
100‧‧‧功能區塊圖
n‧‧‧數位輸入訊號
fs ‧‧‧取樣頻率
110‧‧‧內差濾波器
m‧‧‧數位訊號
k*fs ‧‧‧頻率
120‧‧‧雜訊整形器
a‧‧‧數位訊號
fclock ‧‧‧頻率
130‧‧‧數位類比轉換器
b‧‧‧類比訊號
140‧‧‧類比輸入D類放大器
c‧‧‧類比輸出訊號

Claims (10)

  1. 一種數位類比轉換系統,用以放大一數位輸入訊號,以產生一類比輸出訊號,上述數位類比轉換系統包括:一內差濾波器,包括一輸入端用以接收上述數位輸入訊號;一數位脈衝寬度調變型的雜訊整形器,耦接至上述內差濾波器之一輸出端;一數位類比轉換器,耦接至上述數位脈衝寬度調變型的雜訊整形器之一輸出端,上述數位類比轉換器包括一有限脈衝響應型的濾波器;一積分器;以及一比較器;以及一類比輸入型的D類放大器,包括一輸出端,用以輸出一類比訊號。
  2. 如申請專利範圍第1項所述之數位類比轉換系統,其中上述數位輸入訊號位於一第一預設頻段中,並且上述內差濾波器藉由一預設值升頻取樣上述數位輸入訊號,並且輸出位於一第二預設頻段中的一第一濾波訊號,上述第二預設頻段包括上述第一預設頻段,並且上述第二預設頻段比上述第一預設頻段寬,上述數位脈衝寬度調變型的雜訊整形器接收上述第一濾波訊號,消除在上述第一預設頻段內的雜訊,以及輸出一數位脈衝寬度調變訊號,其中上述數位脈衝寬度調變訊號位於上述第二預設頻段中。
  3. 如申請專利範圍第2項所述之數位類比轉換系統,其中上述數位類比轉換器接收上述數位脈衝寬度調變訊號,並且輸 出一已轉換訊號,上述類比輸入型的D類放大器接收上述已轉換訊號,並且輸出上述類比訊號至用以產生一音頻輸出的一音頻擴音器。
  4. 如申請專利範圍第2項所述之數位類比轉換系統,其中上述預設值介於32至2048之間。
  5. 如申請專利範圍第1項所述之數位類比轉換系統,其中上述數位輸入訊號為一脈衝編碼調變訊號或一數位音頻訊號。
  6. 一種數位類比轉換系統,用以放大一數位輸入訊號,以產生一類比輸出訊號,上述數位類比轉換系統包括:一內差濾波器,包括:一輸入端,用以接收上述數位輸入訊號;以及一輸出端,用以輸出一內差訊號,其中上述數位輸入訊號位於一第一預設頻段中,上述內差訊號位於一第二預設頻段中,上述第二預設頻段比上述第一預設頻段寬,並且包括上述第一預設頻段;以及一雜訊整形器,包括:一輸入端,用以接收上述內差訊號;一第一電路,用以消除上述內差訊號在上述第一預設頻段內的誤差;以及一輸出端,用以輸出一脈衝寬度調變訊號,其中上述脈衝寬度調變訊號為一一位元編碼訊號;一數位類比轉換器,包括:一輸入端,用以接收上述脈衝寬度調變訊號; 一有限脈衝響應型的濾波器,具有N階及N階權重,用以轉換上述脈衝寬度調變訊號為一已轉換訊號,其中上述已轉換訊號為一多準位平行訊號,其中N為一預設值,每一上述N階係以數位化方式實現,並且上述每一N階權重係使用複數電阻以非數位化方式實現;一第三電路,用以轉換上述已轉換訊號為一第一類比訊號;以及一輸出端,用以輸出上述第一類比訊號;以及一類比輸入型的D類放大器,包括:一輸入端,用以接收上述第一類比訊號;以及一輸出端,用以輸出一類比訊號。
  7. 如申請專利範圍第6項所述之數位類比轉換系統,其中上述數位輸入訊號為一脈衝編碼調變訊號,而上述誤差包括量化誤差以及截斷誤差。
  8. 如申請專利範圍第6項所述之數位類比轉換系統,其中上述第一電路包括一雜訊整形截斷器(truncator)、一迴路濾波器、一補償濾波器以及一數位低通濾波器,而上述第三電路包括一積分器以及一比較器。
  9. 一種數位類比轉換方法,用以放大一數位輸入訊號,以產生一類比輸出訊號,上述數位類比轉換方法包括:接收位於一第一預設頻段的一數位輸入訊號;升頻取樣上述數位輸入訊號,用以產生位於一第二預設頻段的一第一濾波訊號,其中上述第二預設頻段包括上述第 一預設頻段,並且上述第二預設頻段比上述第一預設頻段寬;消除上述第一濾波訊號位於上述第一預設頻段內的雜訊,以提供已消除雜訊的上述第一濾波訊號;由上述已消除雜訊的上述第一濾波訊號產生一數位脈衝寬度調變訊號;使用一有限脈衝響應型的濾波器以及一積分器,將上述數位脈衝寬度調變訊號轉換成一第一類比訊號;以及使用一D類放大器放大上述第一類比訊號;其中上述有限脈衝響應型的濾波器具有N階以及N階權重,N為一預設值,上述N階每一者是以數位化方式實現,上述N階權重是使用電阻以非數位化方式實現。
  10. 如申請專利範圍第9項所述之數位類比轉換方法,其中上述數位脈衝寬度調變訊號為一位元編碼訊號而上述數位輸入訊號為一脈衝編碼調變訊號或一數位音頻訊號。
TW102130975A 2012-08-29 2013-08-29 數位類比轉換系統與方法 TWI504161B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/597,291 US8698662B2 (en) 2012-08-29 2012-08-29 System and method for a high resolution digital input class D amplifier with feedback
US13/685,185 US8766840B2 (en) 2012-08-29 2012-11-26 System and method for a high resolution digital input class D amplifier with feedback

Publications (2)

Publication Number Publication Date
TW201424276A TW201424276A (zh) 2014-06-16
TWI504161B true TWI504161B (zh) 2015-10-11

Family

ID=50186774

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102130975A TWI504161B (zh) 2012-08-29 2013-08-29 數位類比轉換系統與方法

Country Status (2)

Country Link
US (1) US8766840B2 (zh)
TW (1) TWI504161B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11477060B2 (en) * 2019-04-16 2022-10-18 Motorola Solutions, Inc. Systems and methods for modulation classification of baseband signals using attention-based learned filters
US12047086B2 (en) * 2021-11-03 2024-07-23 Cirrus Logic Inc. Finite impulse response input digital-to-analog converter
WO2023081296A1 (en) * 2021-11-03 2023-05-11 Cirrus Logic International Semiconductor Ltd. Finite impulse response input digital-to-analog converter
KR20240097907A (ko) * 2021-11-03 2024-06-27 시러스 로직 인터내셔널 세미컨덕터 리미티드 유한 임펄스 응답 입력 디지털-아날로그 컨버터

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5323157A (en) * 1993-01-15 1994-06-21 Motorola, Inc. Sigma-delta digital-to-analog converter with reduced noise
US20100239102A1 (en) * 2009-03-19 2010-09-23 Qualcomm Incorporated Digital filtering in a class d amplifier system to reduce noise fold over

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8813162D0 (en) * 1988-06-03 1988-07-06 British Telecomm Digital-to-analogue conversion
DE69934924T2 (de) * 1998-02-03 2007-06-28 Texas Instruments Inc., Dallas Hybrides FIR/IIR-Analogfilter
KR100298455B1 (ko) * 1998-03-13 2001-08-07 김영환 오버샘플링(oversampling)디지탈/아날로그컨버터
US6531973B2 (en) * 2000-09-11 2003-03-11 Broadcom Corporation Sigma-delta digital-to-analog converter
JP2004194054A (ja) * 2002-12-12 2004-07-08 Rohm Co Ltd デルタシグマ変調器の出力フィルタ及び該出力フィルタを備えたディジタル信号処理装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5323157A (en) * 1993-01-15 1994-06-21 Motorola, Inc. Sigma-delta digital-to-analog converter with reduced noise
US20100239102A1 (en) * 2009-03-19 2010-09-23 Qualcomm Incorporated Digital filtering in a class d amplifier system to reduce noise fold over

Also Published As

Publication number Publication date
US8766840B2 (en) 2014-07-01
US20140062745A1 (en) 2014-03-06
TW201424276A (zh) 2014-06-16

Similar Documents

Publication Publication Date Title
US7058464B2 (en) Device and method for signal processing
JP4221302B2 (ja) パルス幅変調信号を発生する方法および装置
US9065471B1 (en) Delta-sigma modulator
US8299946B2 (en) Noise shaping for digital pulse-width modulators
US7557744B2 (en) PWM driver and class D amplifier using same
US9166615B2 (en) System and method for cascaded PWM digital-to-analog converter with hybrid DAC interface
JP2010526496A (ja) 積分回路への直接出力接続のある内部安定器経路を持つデルタシグマ変調を使用した信号処理システム
TWI523413B (zh) 用於放大一數位輸入訊號以產生一類比輸出訊號之系統及方法
TWI504161B (zh) 數位類比轉換系統與方法
TWI538412B (zh) 轉換電路及其轉換方法
US7200187B2 (en) Modulator for digital amplifier
CN100514858C (zh) 字长减少电路
US8773297B2 (en) System and method for pulse width modulation digital-to-analog converter
CN114301464A (zh) 具备抑制混叠功能的Sigma-Delta模数转换器
US10951229B1 (en) Digital filter
JPWO2007094255A1 (ja) D/a変換器
JP6217736B2 (ja) パルス幅変調器およびそのプログラム
AU2004223010B2 (en) Digital pulse width controlled oscillation modulator
WO2009034494A1 (en) Adjustable-resistor array type circuit of a semi-digital ratiometric finite impulse response digital-to-analog converter (firdac)
TWI520499B (zh) 數位類比轉換系統與方法
CN100502234C (zh) 数字脉冲宽度调制装置及方法
US8698661B2 (en) System and method for pulse width modulation digital-to-analog converter
US11706062B1 (en) Digital filter
WO2020175581A1 (ja) デルタシグマ変調装置及び通信機器
JP2004007827A (ja) A/d変換装置およびそのa/d変換方法