TWI499043B - Method for forming a flash memory device - Google Patents

Method for forming a flash memory device Download PDF

Info

Publication number
TWI499043B
TWI499043B TW101125970A TW101125970A TWI499043B TW I499043 B TWI499043 B TW I499043B TW 101125970 A TW101125970 A TW 101125970A TW 101125970 A TW101125970 A TW 101125970A TW I499043 B TWI499043 B TW I499043B
Authority
TW
Taiwan
Prior art keywords
layer
flash memory
memory device
forming
conductive layer
Prior art date
Application number
TW101125970A
Other languages
Chinese (zh)
Other versions
TW201405780A (en
Inventor
Kao Hsiung Chih
Chia Hung Lu
Original Assignee
Winbond Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Winbond Electronics Corp filed Critical Winbond Electronics Corp
Priority to TW101125970A priority Critical patent/TWI499043B/en
Publication of TW201405780A publication Critical patent/TW201405780A/en
Application granted granted Critical
Publication of TWI499043B publication Critical patent/TWI499043B/en

Links

Description

快閃記憶體元件之製造方法Flash memory device manufacturing method

本發明係有關於一種半導體元件之製造方法,特別是有關於一種快閃記憶體元件之製造方法。The present invention relates to a method of fabricating a semiconductor device, and more particularly to a method of fabricating a flash memory device.

近來,快閃記憶體由於兼具高密度、低成本、可重複寫入及電可抹除性等優點,已成為非揮發性記憶體的主流,並被廣泛的應用於各式可攜式電子產品中。第1A~1F圖繪示一傳統NOR型快閃記憶體元件之製作方法。請參照第1A圖,提供一基底102,基底102例如是矽基底。形成氧化矽組成之淺溝槽隔離結構106於基底102中,其中淺溝槽隔離結構106之上部部分係突出於基底102表面,因此,淺溝槽隔離結構106間包括凹槽108。接著,形成穿隧氧化層104(tunnel oxide)於基底102上。請參照第1B圖,形成一多晶矽組成之浮置閘極層110於淺溝槽隔離結構106和基底102上方。請參照第1C圖,進行一化學機械研磨製程,移除部分浮置閘極層110,形成位於淺溝槽隔離結構106間的浮置閘極112。請參照第1D圖,進行一選擇性蝕刻製程,移除部分淺溝槽隔離結構106,使淺溝槽隔離結構106之頂部表面低於浮置閘極112之表面。請參照第1E圖,形成一包括第一氧化矽層、氮化矽層和第二氧化層之絕緣層114於淺溝槽隔離結構106和浮置閘極112上。請參照第1F圖,形成一控制閘極層116於絕緣層114上。Recently, flash memory has become a mainstream of non-volatile memory due to its high density, low cost, re-writable and erasable, and is widely used in various portable electronic devices. In the product. 1A~1F illustrate a method of fabricating a conventional NOR type flash memory device. Referring to Figure 1A, a substrate 102 is provided, such as a substrate. A shallow trench isolation structure 106 of tantalum oxide is formed in the substrate 102, wherein an upper portion of the shallow trench isolation structure 106 protrudes from the surface of the substrate 102, and thus the shallow trench isolation structure 106 includes a recess 108 therebetween. Next, a tunnel oxide 104 is formed on the substrate 102. Referring to FIG. 1B, a floating gate layer 110 of polysilicon is formed over the shallow trench isolation structure 106 and the substrate 102. Referring to FIG. 1C, a chemical mechanical polishing process is performed to remove portions of the floating gate layer 110 to form a floating gate 112 between the shallow trench isolation structures 106. Referring to FIG. 1D, a selective etching process is performed to remove a portion of the shallow trench isolation structure 106 such that the top surface of the shallow trench isolation structure 106 is lower than the surface of the floating gate 112. Referring to FIG. 1E, an insulating layer 114 including a first hafnium oxide layer, a tantalum nitride layer, and a second oxide layer is formed on the shallow trench isolation structure 106 and the floating gate 112. Referring to FIG. 1F, a control gate layer 116 is formed on the insulating layer 114.

隨著半導體製程的微縮,當製程演進至80nm以下時,上述傳統NOR型快閃記憶體之製作方法會發生以下問題:當填充多晶矽組成的浮置閘極層110時,由於多晶矽的晶粒太大,兩相鄰淺溝槽隔離結構106間的距離隨製程變小會導致浮置閘極層110中形成孔洞(void)或縫隙(seam),該孔洞於後續研磨浮置閘極時暴露出來,使得下方的穿隧氧化層104在後續清洗步驟中受到酸性或鹼性的溶液侵蝕,而導致電性及可靠度的問題。特別在進入80nm製程後,多晶矽的晶粒直徑甚至會大於兩相鄰淺溝槽隔離結構106間距離的一半,因此,孔洞所造成的問題變得更加重要。With the miniaturization of the semiconductor process, when the process progresses to below 80 nm, the above-mentioned conventional NOR-type flash memory fabrication method may have the following problem: when the floating gate layer 110 composed of polysilicon is filled, since the polycrystalline germanium grains are too Large, the distance between the two adjacent shallow trench isolation structures 106 decreases with the process, which may result in the formation of voids or seams in the floating gate layer 110, which are exposed when the floating gate is subsequently ground. The underlying oxide oxide layer 104 is eroded by an acidic or alkaline solution in a subsequent cleaning step, resulting in electrical and reliability problems. Especially after entering the 80 nm process, the crystal grain diameter of the polycrystalline silicon is even larger than half the distance between the two adjacent shallow trench isolation structures 106. Therefore, the problem caused by the holes becomes more important.

因此,業界需要一快閃記憶體元件之製作方法,可解決上述浮置閘極層110因為於晶粒太大造成空隙的問題。Therefore, the industry needs a method for fabricating a flash memory device, which can solve the problem that the floating gate layer 110 is void due to too large a crystal grain.

根據上述,本發明提供一種快閃記憶體元件之製造方法,包括:提供一基底;形成複數個淺溝槽隔離結構於基底中,其中上述淺溝槽隔離結構之上部部分突出基底之表面,使淺溝槽隔離結構間包括凹槽;形成一穿隧氧化層於基底上;及形成一浮置閘極層於基底上方,且填入上述凹槽中,其中形成浮置閘極層包括形成一第一導電層作為種晶層和形成一第二導電層於第一導電層上。According to the above, the present invention provides a method of fabricating a flash memory device, comprising: providing a substrate; forming a plurality of shallow trench isolation structures in the substrate, wherein an upper portion of the shallow trench isolation structure protrudes from a surface of the substrate Between the shallow trench isolation structures, including a recess; forming a tunneling oxide layer on the substrate; and forming a floating gate layer over the substrate and filling the recess, wherein forming the floating gate layer comprises forming a The first conductive layer acts as a seed layer and forms a second conductive layer on the first conductive layer.

為讓本發明之特徵能更明顯易懂,下文特舉實施例,並配合所附圖式,作詳細說明如下:In order to make the features of the present invention more comprehensible, the following detailed description of the embodiments and the accompanying drawings

以下詳細討論實施本發明之實施例。可以理解的是,實施例提供許多可應用的發明概念,其可以較廣的變化實施。所討論之特定實施例僅用來發明使用實施例的特定方法,而不用來限定發明的範疇。Embodiments embodying the invention are discussed in detail below. It will be appreciated that the embodiments provide many applicable inventive concepts that can be implemented in a wide variety of variations. The specific embodiments discussed are merely illustrative of specific ways to use the embodiments and are not intended to limit the scope of the invention.

第2A~2G圖顯示一本發明一實施例NOR型快閃記憶體元件之製作方法。請參照第2A圖,提供一基底202,基底202可以是絕緣層上有矽、矽上有聚合物基底、矽、應變矽、矽鍺、碳化矽和/或其它材料,基底202較佳為矽。形成淺溝槽隔離結構206於基底202中,其中淺溝槽隔離結構206之上部部分係突出於基底202表面,因此淺溝槽隔離結構206間包括凹槽208。形成淺溝槽隔離結構206之方法可包括以下步驟:以適合的微影和蝕刻技術於基底202中形成複數個溝槽,後續於溝槽中填入例如氧化物、氮化物或氮氧化物之介電材料。進行一化學機械研磨製程,移除超過基底202表面多餘的介電材料。接著,進行一選擇性蝕刻製程,使基底之頂部表面低於淺溝槽隔離結構206之表面,於淺溝槽隔離結構206間形成凹槽208。形成穿隧氧化層204(tunnel oxide)於基底202上,穿隧氧化層204可以熱氧化法、化學氣相沉積法形成,穿隧氧化層204較佳為氧化矽。2A to 2G are views showing a method of fabricating a NOR type flash memory device according to an embodiment of the present invention. Referring to FIG. 2A, a substrate 202 is provided. The substrate 202 may be an insulating layer having germanium, a polymer substrate thereon, germanium, strain enthalpy, germanium, tantalum carbide and/or other materials. The substrate 202 is preferably germanium. . A shallow trench isolation structure 206 is formed in the substrate 202, wherein the upper portion of the shallow trench isolation structure 206 protrudes from the surface of the substrate 202, such that the shallow trench isolation structure 206 includes a recess 208 therebetween. The method of forming the shallow trench isolation structure 206 can include the steps of forming a plurality of trenches in the substrate 202 with suitable lithography and etching techniques, followed by filling the trenches with, for example, oxides, nitrides, or oxynitrides. Dielectric material. A chemical mechanical polishing process is performed to remove excess dielectric material beyond the surface of the substrate 202. Next, a selective etching process is performed such that the top surface of the substrate is lower than the surface of the shallow trench isolation structure 206, and a recess 208 is formed between the shallow trench isolation structures 206. A tunnel oxide 204 is formed on the substrate 202. The tunnel oxide layer 204 can be formed by thermal oxidation or chemical vapor deposition. The tunnel oxide layer 204 is preferably hafnium oxide.

請參照第2B圖,形成浮置閘極層於淺溝槽隔離結構206和基底202上方。為改善習知技術因為多晶矽之浮置閘極層晶粒太大造成空隙的問題,本實施例採用多層的浮置閘極結構,以下將詳細描述:首先,以沉積第一導電層 212作為後續沉積之層的種晶層,第一導電層212可以為非晶矽或多晶矽,第一導電層212之厚度可以為3nm~40nm,形成第一導電層212之方法可以為化學氣相沉積法。由於本實施例第一導電層212之厚度相當薄,因此可形成晶粒尺寸較小之第一導電層212。後續可進行一退火製程,使非晶矽轉換成多晶矽,若沉積之第一導電層212後即為多晶矽,仍以進行一退火製程較佳。在本發明一實施例中,退火製程之溫度約為700℃~1100℃。若形成之第一導電層212有暴露在空氣下,則需進行一清洗製程,移除原生氧化層(native oxide)。後續,如第2C圖所示,可視需要(例如浮置閘極層218的厚度),依序於第一導電層212上形成第二導電層214和第三導電層216,以構成本實施例之浮置閘極層218。值得注意的是,雖然本實施例浮置閘極層218為包括三層導電層212、214、216之結構,本發明不限於此,浮置閘極層218可包括更多層(例如可更包括第四導電層、第五導電層、第六導電層...),或更少層(例如僅包括第一導電層和第二導電層)。Referring to FIG. 2B, a floating gate layer is formed over the shallow trench isolation structure 206 and the substrate 202. In order to improve the conventional technique, since the floating gate layer of the polysilicon is too large to cause voids, the present embodiment employs a plurality of floating gate structures, which will be described in detail below: first, to deposit a first conductive layer As a seed layer of the subsequently deposited layer, the first conductive layer 212 may be amorphous germanium or polycrystalline germanium, the first conductive layer 212 may have a thickness of 3 nm to 40 nm, and the first conductive layer 212 may be formed by a chemical vapor phase. Deposition method. Since the thickness of the first conductive layer 212 in the embodiment is relatively thin, the first conductive layer 212 having a small crystal grain size can be formed. Subsequently, an annealing process can be performed to convert the amorphous germanium into a polycrystalline germanium. If the first conductive layer 212 is deposited as a polycrystalline germanium, it is preferable to perform an annealing process. In an embodiment of the invention, the annealing process has a temperature of about 700 ° C to 1100 ° C. If the first conductive layer 212 is formed to be exposed to air, a cleaning process is performed to remove the native oxide. Subsequently, as shown in FIG. 2C, the second conductive layer 214 and the third conductive layer 216 are sequentially formed on the first conductive layer 212 as needed (for example, the thickness of the floating gate layer 218) to constitute the embodiment. Floating gate layer 218. It should be noted that although the floating gate layer 218 of the present embodiment is a structure including three conductive layers 212, 214, and 216, the present invention is not limited thereto, and the floating gate layer 218 may include more layers (for example, may be more A fourth conductive layer, a fifth conductive layer, a sixth conductive layer...), or fewer layers (eg, including only the first conductive layer and the second conductive layer).

請參照第2D圖,進行一研磨製程,移除部分浮置閘極層218,形成位於淺溝槽隔離結構206間的浮置閘極220。本實施例之研磨製程可以為化學機械研磨製程或其它適合之製程。如第2D圖所示,進行研磨製程後,浮置閘極220之頂部表面可與淺溝槽隔離結構206之頂部表面共面。請參照第2E圖,進行一選擇性蝕刻製程,移除部分淺溝槽隔離結構206,使淺溝槽隔離結構206之頂部表面低於浮置閘極220之表面。本實施例選擇性蝕刻製程可採用 例如浸泡HF的濕式蝕刻法。在一實施例中,蝕刻後淺溝槽隔離結構206之頂部表面可低於浮置閘極之表面50nm~500μm。請參照第2F圖,形成一絕緣層222於淺溝槽隔離結構206和浮置閘極220上。絕緣層222可以化學氣相沉積法或類似的方法形成,絕緣層222可為氧化矽、氮化矽、氮氧化矽或為包括第一氧化矽層、氮化矽層和第二氧化層之三層結構。後續,請參照第2G圖,形成一控制閘極層224於絕緣層222上。控制閘極層224可以化學氣相沉積法或類似的方法形成,控制閘極層224可以為多晶矽或其它的導電層。Referring to FIG. 2D, a polishing process is performed to remove portions of the floating gate layer 218 to form a floating gate 220 between the shallow trench isolation structures 206. The polishing process of this embodiment may be a chemical mechanical polishing process or other suitable process. As shown in FIG. 2D, after the polishing process, the top surface of the floating gate 220 may be coplanar with the top surface of the shallow trench isolation structure 206. Referring to FIG. 2E, a selective etching process is performed to remove a portion of the shallow trench isolation structure 206 such that the top surface of the shallow trench isolation structure 206 is lower than the surface of the floating gate 220. The selective etching process of this embodiment can be adopted. For example, a wet etching method of immersing HF. In one embodiment, the top surface of the shallow trench isolation structure 206 after etching may be lower than the surface of the floating gate by 50 nm to 500 μm. Referring to FIG. 2F, an insulating layer 222 is formed on the shallow trench isolation structure 206 and the floating gate 220. The insulating layer 222 may be formed by a chemical vapor deposition method or the like, and the insulating layer 222 may be tantalum oxide, tantalum nitride, tantalum oxynitride or three layers including a first tantalum oxide layer, a tantalum nitride layer and a second oxide layer. Layer structure. Subsequently, please refer to FIG. 2G to form a control gate layer 224 on the insulating layer 222. The control gate layer 224 can be formed by chemical vapor deposition or the like, and the control gate layer 224 can be a polysilicon or other conductive layer.

本發明上述實施例由於形成浮置閘極層是先行成晶格尺寸較小的種晶層,使得後續之浮置閘極層導電層可依種晶層之晶格長成晶格尺寸較小層,因此,在填入淺溝槽隔離結構間的凹槽時,較不會形成空隙,可改善因浮置閘極層之空隙造成產品電性和可靠度的問題。In the above embodiment of the present invention, since the floating gate layer is formed, the seed layer having a smaller lattice size is formed first, so that the subsequent floating gate conductive layer can be formed into a smaller lattice size according to the lattice length of the seed layer. The layer, therefore, does not form a void when filling the groove between the shallow trench isolation structures, and can improve the problem of product electrical reliability and reliability due to the gap of the floating gate layer.

雖然本發明之較佳實施例說明如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the preferred embodiments of the present invention are described above, it is not intended to limit the present invention, and those skilled in the art can make some modifications and refinements without departing from the spirit and scope of the present invention. The scope of protection is subject to the definition of the scope of the patent application attached.

102‧‧‧基底102‧‧‧Base

104‧‧‧穿隧氧化層104‧‧‧ Tunneling Oxidation Layer

106‧‧‧淺溝槽隔離結構106‧‧‧Shallow trench isolation structure

108‧‧‧凹槽108‧‧‧ Groove

110‧‧‧浮置閘極層110‧‧‧Floating gate layer

112‧‧‧浮置閘極112‧‧‧Floating gate

114‧‧‧絕緣層114‧‧‧Insulation

116‧‧‧控制閘極層116‧‧‧Control gate layer

202‧‧‧基底202‧‧‧Base

204‧‧‧穿隧氧化層204‧‧‧ Tunneling Oxidation Layer

206‧‧‧淺溝槽隔離結構206‧‧‧Shallow trench isolation structure

208‧‧‧凹槽208‧‧‧ Groove

212‧‧‧第一導電層212‧‧‧First conductive layer

214‧‧‧第二導電層214‧‧‧Second conductive layer

216‧‧‧第三導電層216‧‧‧ third conductive layer

218‧‧‧浮置閘極層218‧‧‧Floating gate layer

220‧‧‧浮置閘極220‧‧‧Floating gate

222‧‧‧絕緣層222‧‧‧Insulation

224‧‧‧控制閘極層224‧‧‧Control gate layer

第1A~1F圖顯示一傳統NOR型快閃記憶體元件之製作方法各製程階段的剖面圖。Figures 1A to 1F show cross-sectional views of various process stages in the fabrication of a conventional NOR type flash memory device.

第2A~2G圖顯示一本發明一實施例NOR型快閃記憶體元件之製作方法各製程階段的剖面圖。2A to 2G are cross-sectional views showing a process of manufacturing a NOR flash memory device according to an embodiment of the present invention.

202‧‧‧基底202‧‧‧Base

204‧‧‧穿隧氧化層204‧‧‧ Tunneling Oxidation Layer

206‧‧‧淺溝槽隔離結構206‧‧‧Shallow trench isolation structure

212‧‧‧第一導電層212‧‧‧First conductive layer

214‧‧‧第二導電層214‧‧‧Second conductive layer

216‧‧‧第三導電層216‧‧‧ third conductive layer

218‧‧‧浮置閘極層218‧‧‧Floating gate layer

Claims (10)

一種快閃記憶體元件之製造方法,包括:提供一基底;形成複數個淺溝槽隔離結構於該基底中,其中該些淺溝槽隔離結構之上部部分突出該基底之表面,使該些淺溝槽隔離結構之間包括凹槽;形成一穿隧氧化層於該基底上;及形成一浮置閘極層於該基底上方,且填入該些凹槽中,其中形成該浮置閘極層之步驟包括形成一第一導電層作為種晶層和形成一第二導電層於該第一導電層上,且該第一導電層鄰接該些淺溝槽隔離結構之上部部分的側壁。 A method of fabricating a flash memory device, comprising: providing a substrate; forming a plurality of shallow trench isolation structures in the substrate, wherein upper portions of the shallow trench isolation structures protrude from a surface of the substrate to make the shallow Between the trench isolation structures, including a recess; forming a tunneling oxide layer on the substrate; and forming a floating gate layer over the substrate and filling the recesses, wherein the floating gate is formed The step of forming includes forming a first conductive layer as a seed layer and forming a second conductive layer on the first conductive layer, and the first conductive layer abuts a sidewall of the upper portion of the shallow trench isolation structures. 如申請專利範圍第1項所述之快閃記憶體元件之製造方法,其中形成該浮置閘極層之步驟尚包括形成至少一導電層於該第二導電層上。 The method of fabricating a flash memory device according to claim 1, wherein the step of forming the floating gate layer further comprises forming at least one conductive layer on the second conductive layer. 如申請專利範圍第1項所述之快閃記憶體元件之製造方法,其中該第一導電層是非晶矽或多晶矽。 The method of manufacturing a flash memory device according to claim 1, wherein the first conductive layer is amorphous germanium or polycrystalline germanium. 如申請專利範圍第1項所述之快閃記憶體元件之製造方法,其中在形成該第二導電層前,尚包括進行一退火製程。 The method of manufacturing a flash memory device according to claim 1, wherein before the forming the second conductive layer, an annealing process is performed. 如申請專利範圍第4項所述之快閃記憶體元件之製造方法,其中該退火製程之溫度約為700℃~1100℃。 The method of manufacturing a flash memory device according to claim 4, wherein the annealing process has a temperature of about 700 ° C to 1100 ° C. 如申請專利範圍第4項所述之快閃記憶體元件之製造方法,尚包括進行一清洗製程。 The method for manufacturing a flash memory device according to claim 4, further comprising performing a cleaning process. 如申請專利範圍第1項所述之快閃記憶體元件之製造方法,尚包括研磨該浮置閘極層,形成複數個浮置閘極。 The method of manufacturing a flash memory device according to claim 1, further comprising: grinding the floating gate layer to form a plurality of floating gates. 如申請專利範圍第7項所述之快閃記憶體元件之製造方法,尚包括:選擇性蝕刻該些淺溝槽隔離結構;形成一絕緣層於該些淺溝槽隔離結構和該些浮置閘極上;及形成一控制閘極層於該絕緣層上。 The method for manufacturing a flash memory device according to claim 7, further comprising: selectively etching the shallow trench isolation structures; forming an insulating layer on the shallow trench isolation structures and the floating And a control gate layer is formed on the insulating layer. 如申請專利範圍第8項所述之快閃記憶體元件之製造方法,其中該絕緣層包括一第一氧化矽層、一氮化矽層和一第二氧化矽層。 The method of manufacturing a flash memory device according to claim 8, wherein the insulating layer comprises a first tantalum oxide layer, a tantalum nitride layer and a second tantalum oxide layer. 如申請專利範圍第1項所述之快閃記憶體元件之製造方法,其中該第一導電層之厚度為3nm~40nm。The method of manufacturing a flash memory device according to claim 1, wherein the first conductive layer has a thickness of 3 nm to 40 nm.
TW101125970A 2012-07-19 2012-07-19 Method for forming a flash memory device TWI499043B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101125970A TWI499043B (en) 2012-07-19 2012-07-19 Method for forming a flash memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101125970A TWI499043B (en) 2012-07-19 2012-07-19 Method for forming a flash memory device

Publications (2)

Publication Number Publication Date
TW201405780A TW201405780A (en) 2014-02-01
TWI499043B true TWI499043B (en) 2015-09-01

Family

ID=50550124

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101125970A TWI499043B (en) 2012-07-19 2012-07-19 Method for forming a flash memory device

Country Status (1)

Country Link
TW (1) TWI499043B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW517351B (en) * 2001-11-28 2003-01-11 Winbond Electronics Corp Manufacturing method and structure of flash memory
TW200522278A (en) * 2003-12-30 2005-07-01 Hynix Semiconductor Inc Method for manufacturing flash memory device
TW200744163A (en) * 2006-05-25 2007-12-01 Promos Technologies Inc Semiconductor device with L-shape spacer and method of fabricating the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW517351B (en) * 2001-11-28 2003-01-11 Winbond Electronics Corp Manufacturing method and structure of flash memory
TW200522278A (en) * 2003-12-30 2005-07-01 Hynix Semiconductor Inc Method for manufacturing flash memory device
TW200744163A (en) * 2006-05-25 2007-12-01 Promos Technologies Inc Semiconductor device with L-shape spacer and method of fabricating the same

Also Published As

Publication number Publication date
TW201405780A (en) 2014-02-01

Similar Documents

Publication Publication Date Title
EP2455967B1 (en) A method for forming a buried dielectric layer underneath a semiconductor fin
CN107833891A (en) Semiconductor devices and its manufacture method
CN108091562B (en) ONO etching method of SONOS memory
US9406784B1 (en) Method of manufacturing isolation structure and non-volatile memory with the isolation structure
KR100673228B1 (en) Method of manufacturing a nand flash memory device
TW201546983A (en) Semiconductor device and method for fabricating the same
TWI713978B (en) Semiconductor device and manufacturing method thereof
US10381449B2 (en) Method of manufacturing memory device
TWI499043B (en) Method for forming a flash memory device
CN107527858B (en) Method for fabricating shallow trench in flash memory
TWI395290B (en) Flash memory and method of fabricating the same
TWI508232B (en) Non-volatile memory cell and method of the same
CN104752358B (en) Flush memory device and forming method thereof
KR101914038B1 (en) Manufacture method of three dimensional memory device
CN107437547B (en) Manufacturing method of semiconductor device
TWI559456B (en) Manufacturing method of floating gate and non-volatile memory cell
US9466605B2 (en) Manufacturing method of non-volatile memory
TWI565035B (en) Memory cell and fabricating method thereof
US20240147726A1 (en) Method of forming memory structure
TWI786813B (en) Method of manufacturing floating gate
TWI559455B (en) Method for manufacturing non-volatile memory
CN103579122B (en) The manufacture method of flash memory component
TWI474484B (en) Semiconductor process
TW202107683A (en) Memory devices and methods for forming the same
KR20070078274A (en) Nonvolatible memory device and method for fabricating the same