TWI495510B - Fibrous membrane reaction device - Google Patents
Fibrous membrane reaction device Download PDFInfo
- Publication number
- TWI495510B TWI495510B TW102139060A TW102139060A TWI495510B TW I495510 B TWI495510 B TW I495510B TW 102139060 A TW102139060 A TW 102139060A TW 102139060 A TW102139060 A TW 102139060A TW I495510 B TWI495510 B TW I495510B
- Authority
- TW
- Taiwan
- Prior art keywords
- reaction
- line
- gas
- purge
- film
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/06—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
- C01B3/12—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
- C01B3/16—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J12/00—Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
- B01J12/007—Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0093—Microreactors, e.g. miniaturised or microfabricated reactors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
- B01J19/2415—Tubular reactors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
- B01J19/2415—Tubular reactors
- B01J19/2425—Tubular reactors in parallel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
- B01J19/2415—Tubular reactors
- B01J19/244—Concentric tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
- B01J19/2475—Membrane reactors
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/50—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
- C01B3/501—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
- C01B3/503—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
- C01B3/505—Membranes containing palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00783—Laminate assemblies, i.e. the reactor comprising a stack of plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00788—Three-dimensional assemblies, i.e. the reactor comprising a form other than a stack of plates
- B01J2219/00792—One or more tube-shaped elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00788—Three-dimensional assemblies, i.e. the reactor comprising a form other than a stack of plates
- B01J2219/00792—One or more tube-shaped elements
- B01J2219/00797—Concentric tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00819—Materials of construction
- B01J2219/00835—Comprising catalytically active material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00851—Additional features
- B01J2219/00858—Aspects relating to the size of the reactor
- B01J2219/0086—Dimensions of the flow channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00851—Additional features
- B01J2219/00869—Microreactors placed in parallel, on the same or on different supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00891—Feeding or evacuation
- B01J2219/00896—Changing inlet or outlet cross-section, e.g. pressure-drop compensation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00905—Separation
- B01J2219/00907—Separation using membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/19—Details relating to the geometry of the reactor
- B01J2219/194—Details relating to the geometry of the reactor round
- B01J2219/1941—Details relating to the geometry of the reactor round circular or disk-shaped
- B01J2219/1946—Details relating to the geometry of the reactor round circular or disk-shaped conical
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0283—Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0405—Purification by membrane separation
- C01B2203/041—In-situ membrane purification during hydrogen production
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1076—Copper or zinc-based catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Description
本發明係有關於一種薄膜反應裝置,其尤指一種反應管路之截面積由前端向末端遞增,使通入之原料氣體流速遞減而提升反應效能之漸擴式薄膜反應裝置。
用於化學反應的薄膜反應器主要利用結合了觸媒催化與薄膜分離的技術以促進反應器之效率,而兼具催化反應與分離產物的功能,相較於傳統的固定床反應器,薄膜反應器的產率與純度皆大幅提升。
薄膜反應器的特點包含:一、薄膜可透過選擇性擴散或吸附等方式將產物移出,依照勒沙特列原理( Le Chatelier’s principle )可知,化學平衡將因此向產物端移動,而提高反應的轉化率,尤其是傳統反應器無法突破的平衡限制反應,如氨合成反應(N 2 +3H 2 →2NH 3 )或水煤氣轉換反應(CO+H 2 O→CO 2 +H 2 )等;二、由於反應產物迅速離開反應系統,可避免副反應的發生與副產物的產生,而提高反應的選擇性;三、由於薄膜選擇性地移出產物,提高產物的純度,並且可以利用薄膜進行產物濃縮,提高產物的濃度;四、化學反應與產物分離等操作都可以在同一個薄膜反應器中進行,工藝簡化,而可降低成本以及設置空間;五、由於薄膜反應器中的催化劑可提高化學反應的轉化率,使反應較容易發生,而可以降低反應溫度、降低反應壓力等來改善反應的選擇性,並同時降低耗能。
習知之薄膜反應器其結構如第一圖所示,包含一反應管路10、一薄膜12以及一吹掃管路14,該薄膜12設置於該反應管路10之外側,該吹掃管路14設置於該薄膜12’ 之外側,該反應管路10之內部填充設置一催化層16,該吹掃管路14之外部並具有一外壁18,該反應管路10與該吹掃管路14之管徑分別為一定值,本圖中二原料氣體G0與G0’進入該反應管路10後受該催化層16催化而發生一反應,產生二生成氣體G2與G2’,該薄膜12對該生成氣體G2具有選擇性通透之能力,該生成氣體G2生成後即透過該薄膜12由該反應管路10進入該吹掃管路14,一吹掃氣體G1進入該吹掃管路14並將該生成氣體G2攜出,該生成氣體G2’則由該反應管路10之另一端離開。如前所述,依照勒沙特列原理,透過該吹掃氣體G1將該生成氣體G2移出可提升薄膜反應器之效能。
精益求精,為進一步薄膜反應器之效能,本發明之發明人構思研發一種漸擴式薄膜反應裝置,其透過使反應管路之截面積遞增,使得反應管路內部之原料氣體流速遞減,而延長原料氣體可滯留於反應管路內之時間,以增加原料氣體進行反應之比例,另一方面,透過使吹掃管路之截面積遞減,使得吹掃管路內部攜帶生成氣體之吹掃氣體流速遞增,而加快吹掃氣體移出生成氣體之速率,故,透過改變反應管路與吹掃管路之截面積,可更進一步提升本發明之漸擴式薄膜反應裝置之效能。
本發明之主要目的,係提供一種 漸擴式薄膜反應裝置,其反應管路之截面積由前端向末端遞增,使得原料氣體之流速由前端向末端遞減,延長原料氣體於反應管路中滯留之時間,而提升薄膜反應裝置之效能。
本發明之次要目的,係提供一種 漸擴式薄膜反應裝置,其吹掃管路之截面積由前端向末端遞減,使得吹掃氣體之流速由前端向末端遞增,連帶使得生成氣體之擴散速率遞增而改變反應之平衡,而可更進一步提升薄膜反應裝置之效能。
為了達到上述所指稱之各目的與功效,本發明係揭示了一種 漸擴式薄膜反應裝置,其包含一反應管路、一薄膜以及一吹掃管路,該反應管路之截面積由其前端向末端遞增,該吹掃管路設置於該反應管路外側,該薄膜則設置於該反應管路與該吹掃管路之間,將該反應管路與該吹掃管路隔開,一原料氣體於該反應管路內進行一反應生成一生成氣體,該生成氣體通過該薄膜而進入該吹掃管路,並由一吹掃氣體攜出。
本發明另揭示了一種 漸擴式薄膜反應裝置,亦包含一反應管路、一薄膜以及一吹掃管路,且該反應管路之截面積亦由其前端向末端遞增,與前述之漸擴式薄膜反應裝置不同之處在於,該反應管路設置於該吹掃管路外側,該薄膜仍設置於該反應管路與該吹掃管路之間而將該反應管路與該吹掃管路隔開,同樣地,一原料氣體於該反應管路內進行一反應生成一生成氣體,該生成氣體通過該薄膜而進入該吹掃管路,並由一吹掃氣體攜出。
前述兩種 漸擴式薄膜反應裝置皆具有本發明之主要結構特徵,即,該反應管路之截面積由其前端向末端遞增,此一特徵可使該原料氣體之流速由前端向末端遞減,延長該原料氣體於反應管路中滯留之時間,增加該原料氣體進行該反應之比例,而提升本發明之漸擴式薄膜反應裝置之效能。
此外, 前述兩種 漸擴式薄膜反應裝置皆可進一步具有本發明之次要結構特徵,即,使該吹掃管路之截面積由其前端向末端遞減,此一特徵可使該吹掃氣體之流速由前端向末端遞增,加速移出擴散至該吹掃管路之該生成氣體,使該生成氣體可以較高之擴散速率由該反應管路擴散至該吹掃管路,而改變該反應管路內之該反應之平衡,使該反應傾向由該原料氣體生成該生成氣體之反應方向,減少逆反應發生,而可進一步提升本發明之 兩種 漸擴式薄膜反應裝置之反應效能。
10‧‧‧反應管路
100‧‧‧前端
102‧‧‧末端
12‧‧‧薄膜
14‧‧‧吹掃管路
140‧‧‧前端
142‧‧‧末端
16‧‧‧催化層
18‧‧‧外壁
180‧‧‧前端
182‧‧‧末端
G0‧‧‧原料氣體
G0’‧‧‧原料氣體
G1‧‧‧吹掃氣體
G2‧‧‧生成氣體
G2’‧‧‧生成氣體
第一圖:其係為習知薄膜反應器之結構示意圖;
第二A圖:其係為本發明第一實施例之結構示意圖;
第二B圖:其係為本發明第一實施例之原料氣體轉化率變化圖;
第二C圖:其係為本發明第一實施例之生成氣體回收率變化圖;
第三圖:其係為本發明第二實施例之結構示意圖;
第四圖:其係為本發明第三實施例之結構示意圖;
第五圖:其係為本發明第四實施例之結構示意圖;
第六圖:其係為本發明第五實施例之結構示意圖;及
第七圖:其係為本發明第六實施例之結構示意圖。
為使 貴審查委員對本發明之特徵及所達成之功效有更進一步之瞭解與認識,謹佐以較佳之實施例及配合詳細之說明,說明如後:
本發明之漸擴式薄膜反應裝置之特色在於:其可透過反應管路截面積由前端向末端遞增之結構,使得原料氣體之流速由前端向末端遞減,延長原料氣體於反應管路中滯留之時間,同時透過吹掃管路之截面積由前端向末端遞減之結構,使得吹掃氣體之流速由前端向末端遞增,造成生成氣體之擴散速率遞增而改變反應之平衡,藉此提升薄膜反應裝置之效能。
請參閱第二A圖、第二B圖以及第二C圖,其係為本發明第一實施例之結構示意圖、原料氣體轉化率變化圖以及生成氣體回收率變化圖;如第二A圖所示,本發明之漸擴式薄膜反應裝置包含一反應管路10、一薄膜12以及一吹掃管路14,該吹掃管路14設置於該反應管路10之外側,且該薄膜12設置於該反應管路10與該吹掃管路14之間,隔開該反應管路10與該吹掃管路14,本實施例中,漸擴式薄膜反應裝置為管狀結構,該反應管路10之內徑由其前端100向末端102遞增,使得該反應管路10之截面積由其前端100向末端102遞增,另,該反應管路10內部並設置一催化層16,該催化層16具有複數孔隙,並填充於該反應管路10內部之空間。
使用本發明之漸擴式薄膜反應裝置時,一原料氣體G0進入該反應管路10,並由其前端100向其末端102流動,過程中受該催化層16催化而發生一反應,產生一生成氣體G2,該薄膜12對該生成氣體G2具有選擇性通透之能力,該生成氣體G2生成後即透過該薄膜12由該反應管路10進入該吹掃管路14,一吹掃氣體G1由該吹掃管路14之前端140進入並向其末端142流動,而攜出該生成氣體G2。
由於本發明中該反應管路10之截面積由其前端100向末端102遞增,將使得該原料氣體G0由該反應管路10之前端100向末端102流動時之流速遞減,而延長該原料氣體G0滯留於該反應管路10內之時間,該原料氣體G0滯留時間之延長,可增加其受該催化層16催化而發生該反應之機會,故,該反應管路10之截面積由其前端100向末端102遞增之結構可使該原料氣體G0發生該反應之比例增加,即,提升本發明之漸擴式薄膜反應裝置之反應效能。
此外,該吹掃管路14之外側進一步具有一外壁18,該吹掃管路14即利用該外壁18與該薄膜12間之空間設置,本實施例中,該外壁18之內徑由其前端180至末端182保持不變,使得該吹掃管路14之截面積(必須扣除該反應管路10與該薄膜12之截面積)由其前端140至末端142遞減。
由於本發明中該吹掃管路14之截面積由其前端140向末端142遞減,將使得該吹掃氣體G1由該吹掃管路14之前端140向末端142流動時之流速遞增,而加快該吹掃氣體G1將該生成氣體G2由該吹掃管路14內移出之速度,連帶使得該生成氣體G2由該反應管路10擴散進入該吹掃管路14之效率增加,而降低該反應管路10內殘餘之該生成氣體G2之濃度,使得該反應傾向由該原料氣體G0生成該生成氣體G2之方向進行,同時降低逆反應,故,該吹掃管路14之截面積由其前端140向末端142遞減之結構改變該反應管路10內該反應之平衡,提高該反應之速率,即,更進一步提升本發明之漸擴式薄膜反應裝置之反應效能。
本實施例中,該反應為一水煤氣轉換反應,以一氧化碳作為該原料氣體G0,並以水蒸氣作為另一原料氣體G0’,反應生成之氫氣為該生成氣體G2,同時生成之二氧化碳為另一生成氣體G2’,反應式如下:
一氧化碳+水蒸氣→二氧化碳+氫氣
配合該水煤氣轉換反應,該薄膜12可選用對該生成氣體G2氫氣具有選擇性擴散能力之薄膜,例如一鈀金屬膜,該催化層16則可選用可催化該水煤氣轉換反應者,例如鐵-鉻基觸媒、一銅-鋅基觸媒、一鈷-鉬基觸媒、一銅-鈰(鑭)基觸媒、一鎳-鈰(鑭)基觸媒、一鑪/氧化鋯觸媒、一金/氧化鈰觸媒或一銅-鈀/氧化鈰觸媒,另,以氮氣或水蒸氣做為該吹掃氣體G1。
如第二A圖中所示,該原料氣體G0一氧化碳與該原料氣體G0’水蒸氣由該反應管路10之前端100進入該反應管路10後,受該催化層16之催化而發生該水煤氣轉換反應,生成該生成氣體G2氫氣以及該生成氣體G2’二氧化碳,該薄膜12選擇性地允許該生成氣體G2氫氣通透而離開該反應管路10並進入該吹掃管路14,該吹掃氣體G1氮氣由該吹掃管路14之前端140進入該吹掃管路14,並攜帶該生成氣體G2氫氣由該吹掃管路14之末端142離開,另,該生成氣體G2’二氧化碳則由該反應管路10之末端102離開。
為證明本發明之漸擴式薄膜反應裝置具有增加該反應氣體G0一氧化碳反應率、提高該生成氣體G2氫氣回收率而達成整體反應效能提升之效果,發明人利用電腦建立本發明之漸擴式薄膜反應裝置之模型,模擬水煤氣轉換反應於其中發生之效果,此模型中,該反應管路10與該吹掃管路14之長度皆為8公分,該吹掃管路14之內徑由其前端140至末端142維持2公分不變,該反應管路10之內徑則由其前端100之0.5公分至末端102之0.5~1.95公分,該薄膜12之厚度則可忽略不計。
第二B圖顯示該原料氣體G0二氧化碳之轉化率,縱軸為相對轉化率,以該反應管路10內徑不變者(由前端100之0.5公分至末端之0.5公分)之該原料氣體G0二氧化碳轉化率作為基準,表示為百分比,橫軸為該反應管路10末端102之內徑,以公尺為單位。由第二B圖中之曲線可知,隨著該反應管路10末端102之內徑增加,該原料氣體G0二氧化碳之轉化率可隨之提升至增加5%,故,本發明之漸擴式薄膜反應裝置的確可以小幅度地提升該原料氣體G0進行該反應之比率。
第二C圖則顯示該生成氣體G2氫氣之回收率,縱軸為相對回收率,以該反應管路10內徑不變者(由前端100之0.5公分至末端之0.5公分)之該生成氣體G2氫氣回收率作為基準,表示為百分比,橫軸為該反應管路10末端102之內徑,以公尺為單位。由第二C圖中之曲線可知,隨著該反應管路10末端102之內徑增加,該生成氣體G2氫氣之回收率可隨之提升至增加約87%,將近該反應管路10內徑不變者之兩倍,故,本發明之漸擴式薄膜反應裝置的確可以提升該生成氣體G2生成之比率。
請配合第二A圖參閱第三圖,其係為本發明第二實施例之結構示意圖;如圖所示,本實施例與第一實施例之差別在於本實施例之漸擴式薄膜反應裝置中,該外壁18之內徑由其前端180至末端182遞減,使得該吹掃管路14之截面積(必須扣除該反應管路10與該薄膜12之截面積)由其前端140至末端142遞減之程度加劇,而使得該吹掃氣體G1於該吹掃管路14中流動至接近其末端142時,可達成較第一實施例中更快之流速,移出該生成氣體G2之效率提升,而達成效能更佳之薄膜反應裝置。
請配合第二A圖參閱第四圖,其係為本發明第三實施例之結構示意圖;如圖所示,本實施例與第一實施例之差別在於本實施例之漸擴式薄膜反應裝置為板狀結構,與第一實施例之管狀結構不同,除此之外,該反應管路10內設置該催化層16,該吹掃管路14位於該反應管路10之外側,該薄膜12隔開該反應管路10與該吹掃管路14,該外壁18限制該吹掃管路14,且該反應管路10之截面積由其前端100向末端102遞增,同時該吹掃管路14之截面積由其前端140向末端142遞減等結構特徵皆與第一實施例相似。
上述之結構特徵使該反應管路10內該原料氣體G0或G0’之流速由前端100向末端102遞減,該吹掃管路14內該吹掃氣體G1或該生成氣體G2之流速由前端140向末端142遞增,而同樣使得本實施例之漸擴式薄膜反應裝置可達成較佳之反應效能。
請配合第四圖參閱第五圖,其係為本發明第四實施例之結構示意圖;如圖所示,本實施例與第三實施例之差別在於本實施例之漸擴式薄膜反應裝置之板狀結構層數增加,使得複數反應管路10與複數吹掃管路14可由內向外交互設置,且該些反應管路10與該些吹掃管路14間分別以複數薄膜12隔開,最外層之該些吹掃管路14外側再設置二外壁18,另,於每一反應管路10內皆設置一催化層16以催化反應之發生。
藉由該些薄膜12與該些外壁18之構造,可造成每一反應管路10之截面積皆由其前端100向末端102遞增,且每一吹掃管路14之截面積皆由其前端140向末端142遞減,使該反應管路10內該原料氣體G0或G0’之流速由前端100向末端102遞減,該吹掃管路14內該吹掃氣體G1或該生成氣體G2之流速由前端140向末端142遞增,而使得本實施例之漸擴式薄膜反應裝置同樣可達成較佳之反應效能,且藉由將該些反應管路10與該些吹掃管路14交互設置,可增加反應之總量,提升整體之效率。
請配合第二A圖參閱第六圖,其係為本發明第五實施例之結構示意圖;如圖所示,本實施例中之漸擴式薄膜反應裝置亦包含一反應管路10、一薄膜12以及一吹掃管路14,與第一實施例不同之處在於,本實施例中該反應管路10設置於該吹掃管路14之外側,該薄膜12同樣設置於該反應管路10與該吹掃管路14之間,隔開該反應管路10與該吹掃管路14,該反應管路10內部之空間亦填充設置具有複數孔隙之一催化層16,一外壁18設置於該反應管路10外側,即,該反應管路10利用該薄膜12與該外壁18間之空間設置。
本實施例中,該吹掃管路14之內徑由其前端140向末端142遞減,使得該吹掃管路14之截面積由其前端140向末端142遞減,該外壁18之內徑由其前端180至末端182維持不變,而使得該反應管路10之截面積(需扣除該吹掃管路14與該薄膜12之截面積)由其前端100向末端102遞增。
同樣地,一原料氣體G0與另一原料氣體G0’進入該反應管路10,並由其前端100向其末端102流動,過程中受該催化層16催化而發生一反應,產生一生成氣體G2與另一生成氣體G2’,該薄膜12對該生成氣體G2具有選擇性通透之能力,該生成氣體G2生成後即透過該薄膜12由該反應管路10進入該吹掃管路14,一吹掃氣體G1由該吹掃管路14之前端140進入並向其末端142流動,而攜出該生成氣體G2,另一生成氣體G2’則由該反應管路10之末端102離開。
因此,本發明中該反應管路10之截面積由其前端100向末端102遞增,可透過使該原料氣體G0與G0’由該反應管路10之前端100向末端102流動時之流速遞減,延長該原料氣體G0與G0’滯留於該反應管路10內之時間,而增加其受該催化層16催化而發生該反應之機會,且,該吹掃管路14之截面積由其前端140向末端142遞減,可透過使該吹掃氣體G1由該吹掃管路14之前端140向末端142流動時之流速遞增,加速該生成氣體G2由該吹掃管路14移出及由該反應管路10擴散進入該吹掃管路14,降低該反應管路10內該生成氣體G2之濃度,改變該反應管路10內該反應之平衡,提高該反應之速率,而提升本發明之漸擴式薄膜反應裝置之反應效能。
請配合第六圖參閱第七圖,其係為本發明第六實施例之結構示意圖;如圖所示,本實施例與第五實施例之差別在於本實施例之漸擴式薄膜反應裝置為板狀結構,與第五實施例之管狀結構不同,除此之外,該反應管路10位於該吹掃管路14之外側,該薄膜12隔開該反應管路10與該吹掃管路14,該外壁18限制該反應管路10,該反應管路10內設置該催化層16,且該吹掃管路14之截面積由其前端140向末端142遞減,同時該反應管路10之截面積由其前端100向末端102遞增等結構特徵皆與第五實施例相似。
上述之結構特徵使該反應管路10內該原料氣體G0或G0’之流速由前端100向末端102遞減,該吹掃管路14內該吹掃氣體G1或該生成氣體G2之流速由前端140向末端142遞增,而同樣使得本實施例之漸擴式薄膜反應裝置可達成較佳之反應效能。
綜上所述,本發明 提供一種漸擴式薄膜反應裝置,其包含一反應管路、一薄膜及一吹掃管路,該反應管路、該薄膜及該吹掃管路可由內而外或由外而內依序設置,其特徵在於該反應管路之截面積由其前端向末端遞增,而使一原料氣體於該反應管路中之流速由前端向末端遞減,延長該原料氣體之滯留時間而提高該原料氣體進行反應之比率,並可進一步使該吹掃管路之截面積由其前端向末端遞減,而使一吹掃氣體於該吹掃管路之流速由前端向末端遞增,加速移出該原料氣體經該反應產生後通過該薄膜進入該吹掃管路之一生成氣體,提升該反應管路內之該反應之效率。
惟以上所述者,僅為本發明之較佳實施例而已,並非用來限定本發明實施之範圍,舉凡依本發明申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本發明之申請專利範圍內。
本發明係實為一具有新穎性、進步性及可供產業利用者,應符合我國專利法所規定之專利申請要件無疑,爰依法提出發明專利申請,祈 鈞局早日賜准專利,至感為禱。
10‧‧‧反應管路
100‧‧‧前端
102‧‧‧末端
12‧‧‧薄膜
14‧‧‧吹掃管路
140‧‧‧前端
142‧‧‧末端
16‧‧‧催化層
18‧‧‧外壁
180‧‧‧前端
182‧‧‧末端
G0‧‧‧原料氣體
G0’‧‧‧原料氣體
G1‧‧‧吹掃氣體
G2‧‧‧生成氣體
G2’‧‧‧生成氣體
Claims (6)
- 一種漸擴式薄膜反應裝置,係包含:
一反應管路,該反應管路之截面積係由該反應管路之前端向末端遞增,一反應氣體於該反應管路內進行一反應而產生一生成氣體;
一薄膜,係設置於該反應管路之外側;以及一吹掃管路,係設置於該薄膜之外側,該生成氣體由該反應管路穿透該薄膜而進入該吹掃管路,一吹掃氣體由該吹掃管路之前端向末端流動並攜出該生成氣體。 - 如申請專利範圍第1項所述之漸擴式薄膜反應裝置,其中該反應管路之內部進一步設有一催化層,該催化層催化該反應之發生,並具有複數孔隙,該反應氣體或該生成氣體係於該些孔隙間流通。
- 如申請專利範圍第1項所述之漸擴式薄膜反應裝置,其中該吹掃管路之截面積係由該吹掃管路之前端向末端遞減。
- 一種漸擴式薄膜反應裝置,係包含:
一吹掃管路;
一薄膜,係設置於該吹掃管路之外側;以及一反應管路,係設置於該薄膜之外側,該反應管路之截面積係由該反應管路之前端向末端遞增,一反應氣體於該反應管路內進行一反應而產生一生成氣體,該生成氣體由該反應管路穿透該薄膜而進入該吹掃管路,一吹掃氣體由該吹掃管路之前端向末端流動並攜出該生成氣體。 - 如申請專利範圍第4項所述之漸擴式薄膜反應裝置,其中該吹掃管路之截面積係由該吹掃管路之前端向末端遞減。
- 如申請專利範圍第4項所述之漸擴式薄膜反應裝置,其中該反應管路之內部進一步設有一催化層,該催化層催化該反應之發生,並具有複數孔隙,該反應氣體或該生成氣體係於該些孔隙間流通。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102139060A TWI495510B (zh) | 2013-10-29 | 2013-10-29 | Fibrous membrane reaction device |
US14/264,264 US20150118122A1 (en) | 2013-10-29 | 2014-04-29 | Membrane reactor with divergent-flow channel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102139060A TWI495510B (zh) | 2013-10-29 | 2013-10-29 | Fibrous membrane reaction device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201515708A TW201515708A (zh) | 2015-05-01 |
TWI495510B true TWI495510B (zh) | 2015-08-11 |
Family
ID=52995707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102139060A TWI495510B (zh) | 2013-10-29 | 2013-10-29 | Fibrous membrane reaction device |
Country Status (2)
Country | Link |
---|---|
US (1) | US20150118122A1 (zh) |
TW (1) | TWI495510B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG11201808111TA (en) * | 2016-03-28 | 2018-10-30 | Univ Nanyang Tech | Cross-flow membrane filtration with inclined filtration channel |
CN106732312A (zh) * | 2017-02-22 | 2017-05-31 | 安徽洛恩新材料科技有限公司 | 一种管式膜反应器及其使用方法 |
CN108479653B (zh) * | 2018-05-16 | 2019-02-22 | 绍兴东湖高科股份有限公司 | 一体式微通道反应装置及利用该装置制备二-(2-氯乙基)磷酸二酯的方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10259002A (ja) * | 1997-03-18 | 1998-09-29 | Ngk Insulators Ltd | メンブレンリアクタの操作方法及びそれに用いるメンブレンリアクタ |
JP2001146404A (ja) * | 1999-11-16 | 2001-05-29 | Daikin Ind Ltd | 水素ガス生成装置 |
CN1461730A (zh) * | 2002-05-16 | 2003-12-17 | 赫多特普索化工设备公司 | 一氧化碳变换工艺及反应器 |
US20040170557A1 (en) * | 2001-02-16 | 2004-09-02 | Asen Knut Ingvar | Method for manufacturing a hydrogen and nitrogen containing gas mixture |
JP2005281024A (ja) * | 2004-03-29 | 2005-10-13 | Noritake Co Ltd | 水素の製造方法及びそれに用いられる膜型リアクター |
US20090123364A1 (en) * | 2006-05-08 | 2009-05-14 | Jonathan Alec Forsyth | Process for Hydrogen Production |
US20090277326A1 (en) * | 2008-05-12 | 2009-11-12 | Membrane Technology And Research, Inc. | Gas separation processes using membrance with permeate sweep to recover reaction feedstocks |
US20120137878A1 (en) * | 2008-05-12 | 2012-06-07 | Membrane Technology And Research, Inc. | Gas-separation processes using membranes with permeate sweep to recover reaction feedstocks |
US20120195824A1 (en) * | 2009-09-04 | 2012-08-02 | Wouter David Van De Graaf | Process to prepare a diluted hydrogen gas mixture |
WO2012112046A1 (en) * | 2011-02-18 | 2012-08-23 | Stichting Energieonderzoek Centrum Nederland | Membrane reactor and process for the production of a gaseous product with such reactor |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8206667B2 (en) * | 2007-12-31 | 2012-06-26 | Chevron U.S.A. Inc. | Membrane reactor with in-situ dehydration and method for using the same |
-
2013
- 2013-10-29 TW TW102139060A patent/TWI495510B/zh not_active IP Right Cessation
-
2014
- 2014-04-29 US US14/264,264 patent/US20150118122A1/en not_active Abandoned
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10259002A (ja) * | 1997-03-18 | 1998-09-29 | Ngk Insulators Ltd | メンブレンリアクタの操作方法及びそれに用いるメンブレンリアクタ |
JP2001146404A (ja) * | 1999-11-16 | 2001-05-29 | Daikin Ind Ltd | 水素ガス生成装置 |
US20040170557A1 (en) * | 2001-02-16 | 2004-09-02 | Asen Knut Ingvar | Method for manufacturing a hydrogen and nitrogen containing gas mixture |
CN1461730A (zh) * | 2002-05-16 | 2003-12-17 | 赫多特普索化工设备公司 | 一氧化碳变换工艺及反应器 |
CN1247445C (zh) * | 2002-05-16 | 2006-03-29 | 赫多特普索化工设备公司 | 一氧化碳变换方法及反应器 |
US20060230680A1 (en) * | 2002-05-16 | 2006-10-19 | Thomas Rostrup-Nielsen | Carbon monoxide conversion process and reactor |
JP2005281024A (ja) * | 2004-03-29 | 2005-10-13 | Noritake Co Ltd | 水素の製造方法及びそれに用いられる膜型リアクター |
US20090123364A1 (en) * | 2006-05-08 | 2009-05-14 | Jonathan Alec Forsyth | Process for Hydrogen Production |
US20090277326A1 (en) * | 2008-05-12 | 2009-11-12 | Membrane Technology And Research, Inc. | Gas separation processes using membrance with permeate sweep to recover reaction feedstocks |
US20120137878A1 (en) * | 2008-05-12 | 2012-06-07 | Membrane Technology And Research, Inc. | Gas-separation processes using membranes with permeate sweep to recover reaction feedstocks |
US20120195824A1 (en) * | 2009-09-04 | 2012-08-02 | Wouter David Van De Graaf | Process to prepare a diluted hydrogen gas mixture |
WO2012112046A1 (en) * | 2011-02-18 | 2012-08-23 | Stichting Energieonderzoek Centrum Nederland | Membrane reactor and process for the production of a gaseous product with such reactor |
Also Published As
Publication number | Publication date |
---|---|
TW201515708A (zh) | 2015-05-01 |
US20150118122A1 (en) | 2015-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Ammonia decomposition in catalytic membrane reactors: Simulation and experimental studies | |
Saidi | Performance assessment and evaluation of catalytic membrane reactor for pure hydrogen production via steam reforming of methanol | |
TWI495510B (zh) | Fibrous membrane reaction device | |
US20070269356A1 (en) | Reactor of selective-permeation membrane type | |
MX2019002852A (es) | Tubo reformador que tiene un catalizador estructurado y un balance de calor mejorado. | |
US8486367B2 (en) | Method and device for generating hydrogen | |
CN103459010A (zh) | 膜反应器和用该反应器生产气态产物的方法 | |
JP2018512368A (ja) | Co2膜を含む改質装置 | |
Ghasemzadeh et al. | Hydrogen production via silica membrane reactor during the methanol steam reforming process: experimental study | |
Adrover et al. | Simulation of a membrane reactor for the WGS reaction: Pressure and thermal effects | |
BR112017014166A2 (pt) | processo para a produção de amônia. | |
Singh et al. | Steam reforming of methane and methanol in simulated macro & micro-scale membrane reactors: Selective separation of hydrogen for optimum conversion | |
WO2011138809A8 (en) | Process for the production of syngas and hydrogen starting from reagents comprising liquid hydrocarbons, gaseous hydrocarbons, and/or oxygenated compounds, also deriving from biomasses, by means of a non- integrated membrane reactor | |
JP2011195352A (ja) | 水素製造装置 | |
Jia et al. | Efficient H2 production via membrane-assisted ethanol steam reforming over Ir/CeO2 catalyst | |
RU2014129860A (ru) | Устройство и способ для риформинга природного газа | |
RU2010123683A (ru) | Улучшенный способ получения синильной кислоты посредством каталитической дегидратации газообразного формамида | |
Jiwanuruk et al. | Effect of flow arrangement on micro membrane reforming for H2 production from methane | |
Sheu et al. | Transient reaction phenomena of sorption-enhanced steam methane reforming in a fixed-bed reactor | |
WO2015128456A1 (en) | Process for producing synthesis gas | |
Yan et al. | Foam structured membrane reactor for distributed hydrogen production | |
Shelepova et al. | Modeling of ethylbenzene dehydrogenation in catalytic membrane reactor with porous membrane | |
Kleinert et al. | Compatibility of hydrogen transfer via Pd-membranes with the rates of heterogeneously catalysed steam reforming | |
Trujillo et al. | Catalytic decomposition of H2S in a double-pipe packed bed membrane reactor: Numerical simulation studies | |
JP2001213611A (ja) | 選択透過膜反応器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |