TWI484014B - Printed circuit board subatrate and method for manufacturing the same - Google Patents
Printed circuit board subatrate and method for manufacturing the same Download PDFInfo
- Publication number
- TWI484014B TWI484014B TW099129160A TW99129160A TWI484014B TW I484014 B TWI484014 B TW I484014B TW 099129160 A TW099129160 A TW 099129160A TW 99129160 A TW99129160 A TW 99129160A TW I484014 B TWI484014 B TW I484014B
- Authority
- TW
- Taiwan
- Prior art keywords
- epoxy resin
- resin composite
- layer
- composite material
- circuit board
- Prior art date
Links
Landscapes
- Laminated Bodies (AREA)
Description
本發明涉及電路板技術領域,尤其涉及一種應用於電路板生產並具有電磁遮罩作用之電路板基板及其製作方法。 The present invention relates to the field of circuit board technology, and in particular, to a circuit board substrate which is applied to a circuit board and has an electromagnetic shielding function and a manufacturing method thereof.
隨著科學技術之進步,印刷電路板於電子領域得到之廣泛之應用。關於電路板之應用請參見文獻Takahashi,A.Ooki,N.Nagai,A.Akahoshi,H.Mukoh,A.Wajima,M.Res.Lab,High density multilayer printed circuit board for HITAC M-880,IEEE Trans.on Components,Packaging,and Manufacturing Technology,1992,14(4):418-425。 With the advancement of science and technology, printed circuit boards have been widely used in the field of electronics. For application of the circuit board, please refer to the literature Takahashi, A.Ooki, N.Nagai, A.Akahoshi, H.Mukoh, A.Wajima,M.Res.Lab,High density multilayer printed circuit board for HITAC M-880,IEEE Trans .on Components, Packaging, and Manufacturing Technology, 1992, 14(4): 418-425.
隨著電路板產品層數增加,電路板產品於實際工作時,往往會產生電磁干擾現象,影響電路板訊號傳送。這樣,於電路板產品中需要設置電磁遮罩層。目前,採用之電磁遮罩層通常採用厚度較小之不銹鋼片製作,將不銹鋼片設置於電路板產品相鄰之兩銅箔層之間,從而起到電磁遮罩之作用。然而,不銹鋼片之重量較大,從而增加電路板產品之重量。並且不銹鋼片之撓折性較差,採用不銹鋼片製作之電磁遮罩層影響柔性電路板撓折性能。由於不銹鋼片之價格較高,增加電路板之生產成本。 As the number of circuit board product layers increases, the circuit board products often generate electromagnetic interference when they are actually working, which affects the signal transmission of the circuit board. Thus, an electromagnetic mask layer needs to be provided in the circuit board product. At present, the electromagnetic shielding layer is usually made of a stainless steel sheet having a small thickness, and the stainless steel sheet is disposed between two copper foil layers adjacent to the circuit board product, thereby functioning as an electromagnetic mask. However, the weight of the stainless steel sheet is large, thereby increasing the weight of the board product. Moreover, the stainless steel sheet has poor flexibility, and the electromagnetic shielding layer made of stainless steel sheet affects the flexural performance of the flexible circuit board. Due to the higher price of stainless steel sheets, the production cost of the board is increased.
有鑑於此,提供一種能夠應用於電路板以起到電磁遮罩作用之電路板基板及其製造方法實屬必要。 In view of the above, it is necessary to provide a circuit board substrate that can be applied to a circuit board to function as an electromagnetic mask and a method of manufacturing the same.
一種電路板基板,其包括依次堆疊之第一銅箔層、第一絕緣層、環氧樹脂複合材料層、第二絕緣層及第二銅箔層。所述環氧樹脂複合材料層由環氧樹脂複合材料組成。所述環氧樹脂複合材料包括端羧基聚合物改性之環氧樹脂、奈米碳管及無機分散材料,所述奈米碳管於所述環氧樹脂複合材料中所佔之重量百分比為4.6%至16%。 A circuit board substrate comprising a first copper foil layer, a first insulating layer, an epoxy resin composite material layer, a second insulating layer and a second copper foil layer stacked in sequence. The epoxy resin composite layer is composed of an epoxy resin composite material. The epoxy resin composite material comprises a carboxyl group-modified epoxy resin, a carbon nanotube and an inorganic dispersion material, and the weight percentage of the carbon nanotube in the epoxy resin composite material is 4.6. % to 16%.
一種電路板基板之製作方法,包括步驟:製作環氧樹脂複合材料,所述環氧樹脂複合材料包括端羧基聚合物改性之環氧樹脂、奈米碳管及無機分散材料,所述奈米碳管於所述環氧樹脂複合材料所佔之重量百分比為4.6%至16%;採用所述環氧樹脂複合材料形成環氧樹脂複合材料層,並半固化所述環氧樹脂複合材料層;提供包括第一銅箔層及第一絕緣層之第一覆銅板;將環氧樹脂複合材料層設置於所述第一覆銅板之第一絕緣層表面;對所述環氧樹脂複合材料層進行軟化處理;提供包括第二銅箔層及第二絕緣層之第二覆銅板;將第二覆銅板設置於環氧樹脂複合材料層表面,並使得第二絕緣層與環氧樹脂複合材料層相接觸;以及採用滾輪壓合之方式對第一覆銅板、環氧樹脂複合材料層及第二覆銅板進行壓合,使得環氧樹脂複合材料層固化並黏接第一覆銅板及第二覆銅板,從而得到電路板基板。 A method for manufacturing a circuit board substrate, comprising the steps of: preparing an epoxy resin composite material comprising an epoxy resin modified with a terminal carboxyl group polymer, a carbon nanotube, and an inorganic dispersion material, wherein the nanometer The carbon tube accounts for 4.6% to 16% by weight of the epoxy resin composite material; the epoxy resin composite material is used to form an epoxy resin composite material layer, and the epoxy resin composite material layer is semi-cured; Providing a first copper clad plate including a first copper foil layer and a first insulating layer; disposing an epoxy resin composite material layer on a surface of the first insulating layer of the first copper clad laminate; performing the epoxy resin composite material layer Softening treatment; providing a second copper clad plate comprising a second copper foil layer and a second insulating layer; placing the second copper clad plate on the surface of the epoxy resin composite layer, and making the second insulating layer and the epoxy resin composite layer Contacting; and pressing the first copper clad laminate, the epoxy resin composite material layer and the second copper clad laminate by means of roller pressing, so that the epoxy resin composite material layer is cured and bonded to the first copper clad laminate and the first Two copper clad laminates to obtain a circuit board substrate.
相較於先前技術,本技術方案提供之電路板基板,由於相鄰之銅箔層之間設置有環氧樹脂複合材料層,所述環氧樹脂複合材料層中具有分散均勻之奈米碳管而具有電磁遮罩作用,當所述電路板 基板之兩銅箔層製作形成導電線路時,所述環氧樹脂複合材料層能夠起到電磁遮罩作用。並且,環氧樹脂複合材料層具有良好之柔韌性,相比於不銹鋼片,能夠增加柔性電路板之撓折性能,並且可降低電路板之生產成本。本技術方案提供之電路板基板之製作方法,僅需藉由滾輪壓合之方式即可實現環氧樹脂複合材料層之固化,從而可不必對環氧樹脂複合材料層進行熟化處理,節約電路板基板之成本,提高電路板基板之生產效率。 Compared with the prior art, the circuit board substrate provided by the technical solution has a uniformly dispersed carbon nanotube in the epoxy resin composite layer because an epoxy resin composite layer is disposed between adjacent copper foil layers. And have an electromagnetic masking effect when the circuit board When the two copper foil layers of the substrate are formed to form a conductive line, the epoxy resin composite material layer can function as an electromagnetic mask. Moreover, the epoxy resin composite layer has good flexibility, and the flexural performance of the flexible circuit board can be increased compared with the stainless steel sheet, and the production cost of the circuit board can be reduced. The method for manufacturing the circuit board substrate provided by the technical solution can realize the curing of the epoxy resin composite material layer by pressing the roller, so that the epoxy resin composite material layer does not need to be matured, thereby saving the circuit board. The cost of the substrate improves the production efficiency of the circuit board substrate.
100‧‧‧電路板基板 100‧‧‧Circuit board
101‧‧‧第一覆銅板 101‧‧‧First CCL
102‧‧‧第二覆銅板 102‧‧‧Second CCL
110‧‧‧第一銅箔層 110‧‧‧First copper foil layer
120‧‧‧第一絕緣層 120‧‧‧First insulation
130‧‧‧環氧樹脂複合材料層 130‧‧‧Epoxy composite layer
140‧‧‧第二絕緣層 140‧‧‧Second insulation
150‧‧‧第二銅箔層 150‧‧‧Second copper foil layer
20‧‧‧離型基材層 20‧‧‧ release substrate layer
210‧‧‧第一離型表面 210‧‧‧First release surface
31‧‧‧第一滾輪 31‧‧‧First wheel
32‧‧‧第二滾輪 32‧‧‧Second wheel
圖1係本技術方案實施方式提供之電路板基板之剖視圖。 1 is a cross-sectional view of a circuit board substrate provided by an embodiment of the present technical solution.
圖2係本技術方案實施例提供之離型基材層之剖視圖。 2 is a cross-sectional view of a release substrate layer provided by an embodiment of the present technical solution.
圖3係本技術方案實施例提供之於離型基材層表面形成環氧樹脂複合材料層後之剖視圖。 3 is a cross-sectional view showing the epoxy resin composite layer formed on the surface of the release substrate layer according to an embodiment of the present technical solution.
圖4係本技術方案實施例提供之第一覆銅板之剖視圖。 4 is a cross-sectional view of a first copper clad plate provided by an embodiment of the present technical solution.
圖5係本技術方案實施例提供之於第一絕緣層上設置環氧樹脂複合材料層後剖視圖。 FIG. 5 is a cross-sectional view showing an epoxy resin composite layer provided on a first insulating layer according to an embodiment of the present technical solution.
圖6係本技術方案實施例提供之第二覆銅板之剖視圖。 6 is a cross-sectional view of a second copper clad plate provided by an embodiment of the present technical solution.
圖7係本技術方案實施例提供之對第一覆銅板、環氧樹脂複合材料層及第二覆銅板進行滾壓時之示意圖。 FIG. 7 is a schematic view showing the first copper clad laminate, the epoxy resin composite material layer and the second copper clad laminate when the embodiment of the present technical solution is rolled.
下面結合實施例對本技術方案提供之具有電磁遮罩作用之電路板基板及其製作方法作進一步之詳細說明。 The circuit board substrate with electromagnetic shielding function provided by the technical solution and the manufacturing method thereof will be further described in detail below with reference to the embodiments.
請參閱圖1,本技術方案提供一種電路板基板100,其包括依次堆 疊之第一銅箔層110、第一絕緣層120、環氧樹脂複合材料層130、第二絕緣層140及第二銅箔層150。 Referring to FIG. 1 , the technical solution provides a circuit board substrate 100 including a stack in sequence. The first copper foil layer 110, the first insulating layer 120, the epoxy resin composite material layer 130, the second insulating layer 140, and the second copper foil layer 150 are stacked.
本實施例中,第一絕緣層120及第二絕緣層140之材質均為聚醯亞胺。電路板基板100由包括第一銅箔層110及第一絕緣層120之第一覆銅板101、環氧樹脂複合材料層130及包括第二銅箔層150及第二絕緣層140之第二覆銅板102組成。係第一銅箔層110及第二銅箔層150之材質可用其他可製作導電線路之金屬材料取代,如銀或鋁等。第一絕緣層120及第二絕緣層140之材質亦可為其他用於電路板中作為絕緣層之材料,如聚酯等。 In this embodiment, the materials of the first insulating layer 120 and the second insulating layer 140 are all polyimide. The circuit board substrate 100 includes a first copper clad plate 101 including a first copper foil layer 110 and a first insulating layer 120, an epoxy resin composite material layer 130, and a second cover including a second copper foil layer 150 and a second insulating layer 140. The copper plate 102 is composed. The material of the first copper foil layer 110 and the second copper foil layer 150 may be replaced by other metal materials capable of making conductive lines, such as silver or aluminum. The material of the first insulating layer 120 and the second insulating layer 140 may also be other materials used as an insulating layer in the circuit board, such as polyester.
環氧樹脂複合材料層130用於起到電磁遮罩作用並黏結第一絕緣層120及第二絕緣層140。環氧樹脂複合材料層130之厚度可根據實際需要遮罩之電磁干擾之強弱進行設定。環氧樹脂複合材料層130厚度約為8微米至12微米。環氧樹脂複合材料層130採用環氧樹脂複合材料製成,所述環氧樹脂複合材料包括端羧基聚合物改性之環氧樹脂、奈米碳管、無機分散材料、硬化劑、催化劑、溶劑及消泡劑。 The epoxy resin composite layer 130 is used to function as an electromagnetic mask and bond the first insulating layer 120 and the second insulating layer 140. The thickness of the epoxy resin composite layer 130 can be set according to the actual electromagnetic interference of the mask. The epoxy composite layer 130 has a thickness of between about 8 microns and 12 microns. The epoxy resin composite layer 130 is made of an epoxy resin composite material including a carboxyl group-modified epoxy resin, a carbon nanotube, an inorganic dispersion material, a hardener, a catalyst, and a solvent. And defoamer.
所述端羧基聚合物改性之環氧樹脂為環氧樹脂與端羧基聚合物發生共聚合反應後之產物,即環氧樹脂末端之環氧基與端羧基聚合物之末端之羧基發生反應而生成一個酯基,從而得到有包括交替之環氧樹脂重複單元及端羧基聚合物之重複單元之聚合物。其中,環氧樹脂可為雙酚A型環氧樹脂,端羧基聚合物可為液態聚丁二烯丙烯腈(CTBN)。本實施例中,採用之環氧樹脂於未改性前之環氧當量約為500,羧基聚合物改性後之環氧樹脂之環氧當量約為950至1100,優選約為1029。端羧基聚合物改性之環氧樹脂於 環氧樹脂複合材料中之重量百分比約為50%至60%,優選約為55%至57%。 The epoxy resin modified by the terminal carboxyl group is a product obtained by copolymerization of an epoxy resin and a terminal carboxyl group polymer, that is, an epoxy group at the terminal of the epoxy resin reacts with a carboxyl group at the terminal end of the terminal carboxyl polymer. An ester group is formed to obtain a polymer having repeating units including alternating epoxy repeating units and terminal carboxyl groups. Wherein, the epoxy resin may be a bisphenol A type epoxy resin, and the terminal carboxyl group polymer may be a liquid polybutadiene acrylonitrile (CTBN). In the present embodiment, the epoxy resin used before the unmodified epoxy resin has an epoxy equivalent of about 500, and the epoxy resin of the modified carboxyl group has an epoxy equivalent of about 950 to 1100, preferably about 1029. End carboxyl polymer modified epoxy resin The weight percentage in the epoxy resin composite is from about 50% to about 60%, preferably from about 55% to about 57%.
奈米碳管作為導電材料,其均勻分散於端羧基聚合物改性之環氧樹脂中,以起到電磁遮罩作用。奈米碳管於複合材料中所佔之重量百分比為4.6%至16%。複合材料中奈米碳管之含量多少可根據實際需要得到複合材料之導電性能進行確定。環氧樹脂複合材料中奈米碳管之含量越多,環氧樹脂複合材料之電阻越小,複合材料中奈米碳管之含量越少,環氧樹脂複合材料之電阻越大。 As a conductive material, the carbon nanotubes are uniformly dispersed in the epoxy resin modified with the terminal carboxyl group to function as an electromagnetic mask. The carbon nanotubes account for 4.6% to 16% by weight of the composite. The content of the carbon nanotubes in the composite material can be determined according to the actual needs of the electrical conductivity of the composite material. The more the content of the carbon nanotubes in the epoxy resin composite material, the smaller the electric resistance of the epoxy resin composite material, and the smaller the content of the carbon nanotubes in the composite material, the greater the electrical resistance of the epoxy resin composite material.
無機分散材料用於分散奈米碳管,以使得奈米碳管可均勻分佈於環氧樹脂複合材料中。所述無機分散材料為奈米黏土或者奈米雲母粉。所述奈米黏土為2:1之頁矽酸鹽,其具體可為蒙脫石(Montmorillonite,分子式為Mx(Al4-xMgx)Si8O20(OH)4)、鋰蒙脫石(Hectorite,分子式為Mx(Mg6-xLix)Si8O20(OH)4)或者皂石(Saponite,分子式為MxMg6(Si8-XAlx)O20(OH)4)等。其中,奈米碳管與無機分散材料之重量比為3至4比1。所述無機分散材料優選為奈米黏土。 The inorganic dispersion material is used to disperse the carbon nanotubes so that the carbon nanotubes can be uniformly distributed in the epoxy resin composite. The inorganic dispersion material is nano clay or nano mica powder. The nano clay is a 2:1 page citrate, which may specifically be montmorillonite (Molecular formula M x (Al 4-x Mg x )Si 8 O 20 (OH) 4 ), lithium montmorillonite Stone (Hectorite, molecular formula M x (Mg 6-x Li x )Si 8 O 20 (OH) 4 ) or saponite (Saponite, molecular formula M x Mg 6 (Si 8-X Al x )O 20 (OH) 4 ) Wait. Wherein, the weight ratio of the carbon nanotubes to the inorganic dispersion material is 3 to 4 to 1. The inorganic dispersion material is preferably a nano clay.
所述硬化劑用於對複合材料進行固化過程中起到硬化作用。本實施例中,採用之硬化劑為聚醚胺硬化劑,本實施例中採用之係聚醚胺D-230型硬化劑。所述硬化劑於環氧樹脂複合材料所佔之重量百分比約為3%至4%。硬化劑之用量應與端羧基聚合物改性之環氧樹脂相對應,其中端羧基聚合物改性之環氧樹脂與硬化劑之重量比約為18至20比1。 The hardener is used to harden the composite during curing. In the present embodiment, the hardener used is a polyether amine hardener, and the polyetheramine D-230 type hardener used in the present embodiment. The hardener is about 3% to 4% by weight of the epoxy resin composite. The amount of the hardener should correspond to the epoxy resin modified with the terminal carboxyl group polymer, wherein the weight ratio of the terminal carboxyl group-modified epoxy resin to the hardener is about 18 to 20 to 1.
所述催化劑為2-甲基咪唑(2-Methylimidazole),催化劑之含量與端羧基聚合物改性之環氧樹脂之含量相互對應。催化劑於環氧 樹脂複合材料中所佔之重量百分含量約為1%至2%,優選約為1.5%至1.6%。所述溶劑為二乙二醇單乙醚(Diethylene glycol monoethyl ether),所述溶劑於環氧樹脂複合材料中之含量約為25%至80%,優選約為28%。所述溶劑用於溶解上述其他組分,以形成均勻之液態分散體系。所述消泡劑用於消除上述環氧樹脂複合材料中之泡沫,所述消泡劑於環氧樹脂複合材料中之重量百分比約為0.5%至1%。所述消泡劑可為市售之臺灣淳政公司生產之2183H消泡劑。 The catalyst is 2-methylimidazole, and the content of the catalyst corresponds to the content of the epoxy resin modified with the terminal carboxyl group. Catalyst in epoxy The weight percentage of the resin composite is from about 1% to about 2%, preferably from about 1.5% to about 1.6%. The solvent is Diethylene glycol monoethyl ether, and the solvent is contained in the epoxy resin composite in an amount of about 25% to 80%, preferably about 28%. The solvent is used to dissolve the other components described above to form a uniform liquid dispersion. The antifoaming agent is used to eliminate the foam in the above epoxy resin composite material, and the defoaming agent is about 0.5% to 1% by weight in the epoxy resin composite material. The antifoaming agent may be a 2183H antifoaming agent produced by the commercially available Taiwan Yuzheng Company.
優選地,環氧樹脂複合材料中,端羧基聚合物改性之環氧樹脂之重量百分含量約為56.0%,奈米碳管之重量百分含量約為8.5%,無機分散材料之重量百分含量約為2.2%,硬化劑之重量百分含量約為3.1%、催化劑之重量百分含量約為1.6%,溶劑之重量百分含量約為28.0%,消泡劑之重量百分含量約為0.6%。無機分散材料選用奈米黏土。本實施例中之環氧樹脂複合材料之黏度可達到60000至75000厘泊,其可方便地與電路板中覆蓋膜或者其他環氧樹脂複合材料層相互黏合。優選地,環氧樹脂複合材料之黏度約為70000厘泊。 Preferably, in the epoxy resin composite material, the weight percentage of the epoxy resin modified by the terminal carboxyl group polymer is about 56.0%, the weight percentage of the carbon nanotubes is about 8.5%, and the weight of the inorganic dispersion material is 100%. The content of the component is about 2.2%, the weight percentage of the hardener is about 3.1%, the weight percentage of the catalyst is about 1.6%, the weight percentage of the solvent is about 28.0%, and the weight percentage of the antifoaming agent is about It is 0.6%. The inorganic dispersion material is selected from nano clay. The epoxy resin composite material in this embodiment can have a viscosity of 60,000 to 75,000 centipoise, which can be easily bonded to a cover film or other epoxy resin composite material layer in a circuit board. Preferably, the epoxy resin composite has a viscosity of about 70,000 centipoise.
本技術方案還提供一種所述具有電磁遮罩作用之電路板基板100之製作方法,所述製作方法包括如下步驟:第一步,製作所述環氧樹脂複合材料。 The technical solution also provides a manufacturing method of the circuit board substrate 100 having the electromagnetic shielding function, and the manufacturing method comprises the following steps: First, the epoxy resin composite material is prepared.
本實施例中述環氧樹脂複合材料可採用如下方法製作:首先,採用端羧基聚合物改性環氧樹脂以得到端羧基聚合物改性之環氧樹脂。 The epoxy resin composite material described in this embodiment can be produced by the following method: First, the epoxy resin is modified with a terminal carboxyl group polymer to obtain an epoxy resin modified with a terminal carboxyl group polymer.
將端羧基聚合物及環氧樹脂放置於共同放置於反應容器中,並維持反應溫度為120攝氏度,於攪拌之條件下反應約3小時,從而得到端羧基聚合物改性後環氧樹脂。本實施例中,採用之環氧樹脂之環氧當量約為500。採用之端羧基聚合物可為液態聚丁二烯丙烯腈(CTBN),反應後得到之改性後之環氧樹脂之環氧當量約為1029。經過上述反應,環氧樹脂末端之一個環氧基與端羧基聚合物末端之一個羧基相互結合,並脫除一個分子之水,從而得到一個酯基。從而相比於未進行改性之環氧樹脂,改性後之環氧樹脂具有良好之柔軟性。當然,採用之環氧樹脂不限於本實施例提供之雙酚A型環氧樹脂,其亦可為其他類型之環氧樹脂。採用之端羧基聚合物亦不限於本實施例中提供之液態聚丁二烯丙烯腈,其亦可為端羧基聚酯等聚合物。 The terminal carboxyl group polymer and the epoxy resin were placed together in a reaction vessel, and the reaction temperature was maintained at 120 ° C, and the reaction was carried out for about 3 hours under stirring to obtain an epoxy resin modified with a terminal carboxyl group polymer. In this embodiment, the epoxy resin used has an epoxy equivalent of about 500. The terminal carboxyl group polymer used may be liquid polybutadiene acrylonitrile (CTBN), and the epoxy resin modified after the reaction has an epoxy equivalent of about 1029. After the above reaction, one epoxy group at the end of the epoxy resin is bonded to one carboxyl group at the terminal of the terminal carboxyl group polymer, and one molecule of water is removed to obtain an ester group. Thus, the modified epoxy resin has good flexibility compared to the epoxy resin which has not been modified. Of course, the epoxy resin used is not limited to the bisphenol A type epoxy resin provided in the embodiment, and may be other types of epoxy resins. The terminal carboxyl group used is not limited to the liquid polybutadiene acrylonitrile provided in the present embodiment, and may be a polymer such as a terminal carboxyl group.
然後,將奈米碳管均勻分散於無機分散材料中以形成分散均勻之奈米碳管分散體。 Then, the carbon nanotubes were uniformly dispersed in the inorganic dispersion material to form a uniformly dispersed carbon nanotube dispersion.
採用物理方式將奈米碳管分散於無機分散材料中。所述無機分散材料可為層狀奈米黏土或者雲母粉。本實施例中,選用之無機分散材料為層狀奈米黏土。配置重量比3至4比1之奈米碳管與層狀奈米黏土,並藉由攪拌或者震盪之方式混合,使得奈米碳管均勻分散於所述層狀奈米黏土中。採用之層狀奈米黏土可為2:1之頁矽酸鹽,其具體可為蒙脫石、鋰蒙脫石或者皂石等。採用之奈米碳管可為單壁奈米碳管,亦可為多壁奈米碳管。 The carbon nanotubes are physically dispersed in the inorganic dispersion material. The inorganic dispersion material may be layered nano clay or mica powder. In this embodiment, the inorganic dispersion material selected is a layered nano clay. The carbon nanotubes and the layered nano-clay having a weight ratio of 3 to 4 to 1 are disposed and mixed by stirring or shaking, so that the carbon nanotubes are uniformly dispersed in the layered nano-clay. The layered nano-clay used may be a 2:1 page citrate, which may specifically be smectite, hectorite or saponite. The carbon nanotubes used may be single-walled carbon nanotubes or multi-walled carbon nanotubes.
最後,將端羧基聚合物改性之環氧樹脂、奈米碳管分散體、溶劑、硬化劑、催化劑及消泡劑進行混合並研磨分散,從而得到環氧樹脂複合材料。 Finally, the epoxy resin composite modified epoxy resin, carbon nanotube dispersion, solvent, hardener, catalyst and antifoaming agent are mixed and ground to obtain an epoxy resin composite material.
本實施例中,採用三滾筒式研磨分散機對所述之端羧基聚合物改性環氧樹脂、奈米碳管分散體、溶劑、硬化劑、催化劑及消泡劑進行研磨分散。將上述端羧基聚合物改性環氧樹脂、奈米碳管分散體、溶劑、硬化劑、催化劑及消泡劑按照上述各自之含量投入於三滾筒式研磨分散機中,啟動三滾筒式研磨分散機以進行研磨分散,從而使得上述各組成中固體成份均勻分散於液體成分中,從而形成分散均勻之環氧樹脂複合材料。本實施例中,於上述各成分中,端羧基聚合物改性之環氧樹脂之重量百分含量約為56.0%,奈米碳管之重量百分含量約為8.5%,無機分散材料之重量百分含量約為2.2%,硬化劑之重量百分含量約為3.1%、催化劑之重量百分含量約為1.6%,溶劑之重量百分含量約為28.0%,消泡劑之重量百分含量約為0.6%。 In this embodiment, the terminal carboxyl polymer-modified epoxy resin, the carbon nanotube dispersion, the solvent, the hardener, the catalyst, and the antifoaming agent are ground and dispersed by a three-roller type grinding and dispersing machine. The above-mentioned terminal carboxyl polymer-modified epoxy resin, carbon nanotube dispersion, solvent, hardener, catalyst, and antifoaming agent are put into a three-roll type grinding and dispersing machine according to the respective contents described above, and three-roller type grinding and dispersing is started. The machine is subjected to grinding and dispersion so that the solid components in the above respective compositions are uniformly dispersed in the liquid component, thereby forming a uniformly dispersed epoxy resin composite material. In the present embodiment, among the above components, the weight percentage of the epoxy resin modified with the terminal carboxyl group is about 56.0%, and the weight percentage of the carbon nanotube is about 8.5%, and the weight of the inorganic dispersion material. The percentage is about 2.2%, the weight percentage of the hardener is about 3.1%, the weight percentage of the catalyst is about 1.6%, the weight percentage of the solvent is about 28.0%, and the weight percentage of the antifoaming agent. It is about 0.6%.
為得到不同表面電阻率之環氧樹脂複合材料,可藉由改變投料時奈米碳管分散體之用量進行控制。當奈米碳管佔複合材料之重量百分比為4.6%至16%之間,環氧樹脂複合材料表面電阻率變化區間約為十萬歐姆至十歐姆之間。其中,環氧樹脂複合材料中奈米碳管之含量越大,環氧樹脂複合材料之表面電阻率越小。 In order to obtain an epoxy resin composite material having different surface resistivities, it can be controlled by changing the amount of the carbon nanotube dispersion at the time of feeding. When the carbon nanotubes account for 4.6% to 16% by weight of the composite material, the surface resistivity of the epoxy resin composite varies between about 100,000 ohms and ten ohms. Among them, the larger the content of the carbon nanotubes in the epoxy resin composite material, the smaller the surface resistivity of the epoxy resin composite material.
請一併參閱圖2及圖3,第二步,採用所述之環氧樹脂複合材料製作半固化之環氧樹脂複合材料層130。 Referring to FIG. 2 and FIG. 3 together, in the second step, the semi-cured epoxy resin composite material layer 130 is formed by using the epoxy resin composite material.
本實施例中,採用如下方法將所述環氧樹脂複合材料製作環氧樹脂複合材料層130。 In this embodiment, the epoxy resin composite material layer 130 is formed by using the epoxy resin composite material as follows.
首先,提供離型基材層20。 First, a release substrate layer 20 is provided.
本實施例中,離型基材層20為PET離型膜,其具有第一離型表面 210。 In this embodiment, the release substrate layer 20 is a PET release film having a first release surface. 210.
然後,將所述環氧樹脂複合材料塗佈於第一離型表面210以形成環氧樹脂複合材料層130。 The epoxy composite is then applied to the first release surface 210 to form an epoxy composite layer 130.
本實施例中,採用狹縫式塗佈機將液態之環氧樹脂複合材料塗佈於離型基材層20之第一離型表面210,以形成環氧樹脂複合材料層130。本實施例中由於採用狹縫式塗佈機進行塗佈,可控制形成之環氧樹脂複合材料層130之厚度滿足要求並且塗層均勻。本實施例中,形成之環氧樹脂複合材料層130之厚度約為8微米至12微米,優選為10微米。 In the present embodiment, a liquid epoxy resin composite material is applied to the first release surface 210 of the release substrate layer 20 by a slit coater to form an epoxy resin composite material layer 130. In the present embodiment, since the coating is performed by a slit coater, the thickness of the formed epoxy resin composite material layer 130 can be controlled to be satisfactory and the coating layer is uniform. In this embodiment, the epoxy resin composite layer 130 is formed to have a thickness of about 8 microns to 12 microns, preferably 10 microns.
最後,對離型基材層20之第一離型表面210上塗佈形成之環氧樹脂複合材料層130進行半固化處理,以使得環氧樹脂複合材料層130半固化。即,形成了半固化之環氧樹脂複合材料層130。 Finally, the epoxy resin composite layer 130 coated on the first release surface 210 of the release substrate layer 20 is subjected to a semi-curing treatment to semi-cure the epoxy resin composite layer 130. That is, the semi-cured epoxy resin composite material layer 130 is formed.
本實施例中,環氧樹脂複合材料層130半固化採用之方法為預烘烤處理。於對環氧樹脂複合材料層130進行預烘烤之持續之時間約為15分鐘,預烘烤時保持之溫度約為80攝氏度至90攝氏度。藉由進行預烘烤處理,使得環氧樹脂複合材料層130中之部分溶劑揮發,使得環氧樹脂複合材料層130處於半固化狀態。 In this embodiment, the epoxy resin composite material layer 130 is semi-cured by a prebaking treatment. The duration of prebaking of the epoxy resin composite layer 130 is about 15 minutes, and the temperature maintained during prebaking is about 80 degrees Celsius to 90 degrees Celsius. By performing the prebaking treatment, a part of the solvent in the epoxy resin composite layer 130 is volatilized, so that the epoxy resin composite material layer 130 is in a semi-cured state.
進行預烘烤持續時間及烘烤之溫度可根據實際之環氧樹脂複合材料層130之厚度進行確定,當環氧樹脂複合材料層130厚度較大時,可將烘烤之時間適當延長或烘烤之溫度適當調高,而當環氧樹脂複合材料層130厚度較小時,可將烘烤之時間適當縮短或烘烤之溫度適當降低,以保證環氧樹脂複合材料層130能夠形成半固化膜狀結構。 The prebaking duration and the baking temperature can be determined according to the thickness of the actual epoxy resin composite layer 130. When the thickness of the epoxy resin composite layer 130 is large, the baking time can be appropriately extended or baked. The baking temperature is appropriately adjusted, and when the thickness of the epoxy resin composite layer 130 is small, the baking time can be appropriately shortened or the baking temperature can be appropriately lowered to ensure that the epoxy resin composite layer 130 can be semi-cured. Membrane structure.
請參閱圖4,第三步,提供包括第一銅箔層110及第一絕緣層120之第一覆銅板101。 Referring to FIG. 4, the third step provides a first copper clad plate 101 including a first copper foil layer 110 and a first insulating layer 120.
請參閱圖5,第四步,將環氧樹脂複合材料層130對位疊放於第一絕緣層120上,環氧樹脂複合材料層130與第一絕緣層120相接觸。 Referring to FIG. 5, in the fourth step, the epoxy resin composite layer 130 is layered on the first insulating layer 120, and the epoxy resin composite layer 130 is in contact with the first insulating layer 120.
於進行後續步驟之前,需要將離型基材層20從環氧樹脂複合材料層130上去除。具體地。可於環氧樹脂複合材料層130對位疊放於第一絕緣層120上之前,先將離型基材層20從環氧樹脂複合材料層130上去除。亦可於環氧樹脂複合材料層130對位疊放於第一絕緣層120上之後,再將離型基材層20從環氧樹脂複合材料層130上去除。 The release substrate layer 20 needs to be removed from the epoxy composite layer 130 prior to subsequent steps. specifically. The release substrate layer 20 may be removed from the epoxy composite layer 130 prior to the epoxy resin composite layer 130 being overlaid on the first insulating layer 120. The release substrate layer 20 may be removed from the epoxy resin composite layer 130 after the epoxy resin composite layer 130 is placed on the first insulating layer 120.
第五步,對環氧樹脂複合材料層130進行軟化處理。 In the fifth step, the epoxy resin composite layer 130 is softened.
本實施例中,對環氧樹脂複合材料層130進行軟化處理之溫度為50攝氏度,持續之時間約為1分鐘。當然,軟化溫度及持續時間可根據環氧樹脂複合材料層130之厚度進行調整,當環氧樹脂複合材料層130之厚度較大時,可適當增加軟化溫度或延長軟化時間,當環氧樹脂複合材料層130之厚度較小時,可適當之降低軟化溫度或縮短軟化時間。藉由上述之軟化處理,使得環氧樹脂複合材料層130中之,於後續對環氧樹脂複合材料層130進行固化反應之進行反應之官能團能夠與硬化劑及催化劑等進一步相互靠近,從而方便後續之固化反應進行。 In the present embodiment, the temperature at which the epoxy resin composite material layer 130 is softened is 50 degrees Celsius for a period of about 1 minute. Of course, the softening temperature and duration can be adjusted according to the thickness of the epoxy resin composite layer 130. When the thickness of the epoxy resin composite layer 130 is large, the softening temperature or the softening time can be appropriately increased when the epoxy resin is compounded. When the thickness of the material layer 130 is small, the softening temperature or the softening time can be appropriately lowered. By the softening treatment described above, the functional group in the epoxy resin composite material layer 130 which is reacted in the subsequent curing reaction of the epoxy resin composite material layer 130 can further close to the hardener and the catalyst, thereby facilitating the subsequent operation. The curing reaction proceeds.
請參閱圖6,第六步,提供包括第二銅箔層150及第二絕緣層140之第二覆銅板102。 Referring to FIG. 6, the sixth step, a second copper clad plate 102 including a second copper foil layer 150 and a second insulating layer 140 is provided.
請參閱圖7,第七步,將第二覆銅板102疊放於環氧樹脂複合材料層130上,並使得第二絕緣層140與環氧樹脂複合材料層130相接觸。 Referring to FIG. 7, the seventh step, the second copper clad laminate 102 is stacked on the epoxy resin composite layer 130, and the second insulating layer 140 is brought into contact with the epoxy resin composite material layer 130.
請參閱圖7,第八步,採用滾輪壓合之方式對第一覆銅板101、環氧樹脂複合材料層130及第二覆銅板102進行壓合,使得環氧樹脂複合材料層130固化從而得到電路板基板100。 Referring to FIG. 7 and the eighth step, the first copper clad laminate 101, the epoxy resin composite material layer 130 and the second copper clad laminate 102 are pressed together by roller pressing, so that the epoxy resin composite material layer 130 is cured to obtain The circuit board substrate 100.
本實施例中,採用相互平行設置之第一滾輪31及第二滾輪32對第一覆銅板101、環氧樹脂複合材料層130及第二覆銅板102進行壓合。第一滾輪31及第二滾輪32可採用不銹鋼製成。第一滾輪31與第一銅箔層110相互接觸,第二滾輪32與第二銅箔層150相互接觸,第一滾輪31及第二滾輪32之間之距離略小於第一覆銅板101、環氧樹脂複合材料層130及第二覆銅板102之厚度之及。藉由驅動裝置(圖未示)驅動第一滾輪31及第二滾輪32產生相反方向之轉動,從而使得放置於第一滾輪31及第二滾輪32之間之堆疊放置之第一覆銅板101、環氧樹脂複合材料層130及第二覆銅板102被壓合。於進行壓合時,控制之壓合溫度約為200攝氏度,壓合速率為0.5米每分鐘,壓合時之壓強為4至5千克力每平方釐米。 In the present embodiment, the first copper clad laminate 101, the epoxy resin composite material layer 130, and the second copper clad laminate 102 are pressed together by using the first roller 31 and the second roller 32 disposed in parallel with each other. The first roller 31 and the second roller 32 may be made of stainless steel. The first roller 31 and the first copper foil layer 110 are in contact with each other, and the second roller 32 and the second copper foil layer 150 are in contact with each other. The distance between the first roller 31 and the second roller 32 is slightly smaller than the first copper clad plate 101 and the ring. The sum of the thicknesses of the oxy-resin composite material layer 130 and the second copper-clad laminate 102. The first roller 31 and the second roller 32 are driven to rotate in opposite directions by a driving device (not shown), so that the first copper clad plate 101 placed in a stack between the first roller 31 and the second roller 32, The epoxy resin composite layer 130 and the second copper clad laminate 102 are pressed together. For press-fitting, the controlled press-fit temperature is about 200 degrees Celsius, the press-fit rate is 0.5 meters per minute, and the pressure at the time of press-bonding is 4 to 5 kilograms per square centimeter.
並且,由於本技術方案中採用之環氧樹脂之環氧當量較大,其中含有之官能基團較少,並於之前之步驟中進行了軟化處理。於此壓合條件下,環氧樹脂複合材料層130中之官能基團與催化劑及硬化劑充分進行反應,從而使得環氧樹脂複合材料層130固化,並黏接第一絕緣層120及第二絕緣層140,從而得到作為一個整體之電路板基板100。本技術方案製作得到之電路板基板,能夠滿足IPC-TM-650中關於機械特性、化學特性、物理特性及電氣特性 之測試標準。 Moreover, since the epoxy resin used in the present technical solution has a large epoxy equivalent, it contains less functional groups and is softened in the previous step. Under this pressing condition, the functional groups in the epoxy resin composite material layer 130 are sufficiently reacted with the catalyst and the hardener to cure the epoxy resin composite material layer 130 and bond the first insulating layer 120 and the second layer. The insulating layer 140 is obtained to obtain the circuit board substrate 100 as a whole. The circuit board substrate produced by the technical solution can meet the mechanical, chemical, physical and electrical characteristics of IPC-TM-650. Test standard.
本技術方案提供之電路板基板,由於於相鄰之銅箔層之間設置有環氧樹脂複合材料層,所述環氧樹脂複合材料層中具有分散均勻之奈米碳管而具有電磁遮罩作用,當所述電路板基板之兩銅箔層製作形成導電線路時,所述環氧樹脂複合材料層能夠起到電磁遮罩作用。並且,環氧樹脂複合材料層具有良好之柔韌性,相較於先前技術中之不銹鋼片,能夠增加柔性電路板之撓折性能,並且可降低電路板之生產成本。本技術方案提供之電路板基板之製作方法,僅需藉由滾輪壓合之方式即可實現環氧樹脂複合材料層之固化,從而可不必對環氧樹脂複合材料層進行熟化處理,節約了電路板基板之成本,提高了電路板基板之生產效率。 The circuit board substrate provided by the technical solution has an epoxy resin composite material layer disposed between adjacent copper foil layers, and the epoxy resin composite material layer has a uniformly dispersed carbon nanotube tube and has an electromagnetic mask. For example, when the two copper foil layers of the circuit board substrate are formed to form a conductive line, the epoxy resin composite material layer can function as an electromagnetic mask. Moreover, the epoxy resin composite layer has good flexibility, and the flexural performance of the flexible circuit board can be increased compared with the prior art stainless steel sheet, and the production cost of the circuit board can be reduced. The method for manufacturing the circuit board substrate provided by the technical solution can realize the curing of the epoxy resin composite material layer by pressing the roller, so that the epoxy resin composite material layer does not need to be matured, thereby saving the circuit. The cost of the board substrate improves the production efficiency of the board substrate.
綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施方式,自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝之人士爰依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.
100‧‧‧電路板基板 100‧‧‧Circuit board
110‧‧‧第一銅箔層 110‧‧‧First copper foil layer
120‧‧‧第一絕緣層 120‧‧‧First insulation
130‧‧‧環氧樹脂複合材料層 130‧‧‧Epoxy composite layer
140‧‧‧第二絕緣層 140‧‧‧Second insulation
150‧‧‧第二銅箔層 150‧‧‧Second copper foil layer
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW099129160A TWI484014B (en) | 2010-08-30 | 2010-08-30 | Printed circuit board subatrate and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW099129160A TWI484014B (en) | 2010-08-30 | 2010-08-30 | Printed circuit board subatrate and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201209125A TW201209125A (en) | 2012-03-01 |
TWI484014B true TWI484014B (en) | 2015-05-11 |
Family
ID=46763451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW099129160A TWI484014B (en) | 2010-08-30 | 2010-08-30 | Printed circuit board subatrate and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI484014B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1890325A (en) * | 2003-12-15 | 2007-01-03 | 积水化学工业株式会社 | Thermosetting resin composition, material for substrate and film for substrate |
TW200745254A (en) * | 2006-03-31 | 2007-12-16 | Nano Proprietary Inc | Carbon nanotube-reinforced nanocomposites |
TW200950689A (en) * | 2008-05-23 | 2009-12-01 | Foxconn Advanced Tech Inc | PCB base film, PCB substrate having the PCB base film and PCB having the PCB substrate |
-
2010
- 2010-08-30 TW TW099129160A patent/TWI484014B/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1890325A (en) * | 2003-12-15 | 2007-01-03 | 积水化学工业株式会社 | Thermosetting resin composition, material for substrate and film for substrate |
TW200745254A (en) * | 2006-03-31 | 2007-12-16 | Nano Proprietary Inc | Carbon nanotube-reinforced nanocomposites |
TW200950689A (en) * | 2008-05-23 | 2009-12-01 | Foxconn Advanced Tech Inc | PCB base film, PCB substrate having the PCB base film and PCB having the PCB substrate |
Also Published As
Publication number | Publication date |
---|---|
TW201209125A (en) | 2012-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4677900B2 (en) | Mixed conductive powder and its use | |
KR101090561B1 (en) | Circuit connecting adhesive film, circuit member connecting structure and circuit member connecting method | |
WO2006129487A1 (en) | Conductive paste and multilayer printed wiring board using same | |
CN102378482B (en) | Circuit board substrate and manufacturing method thereof | |
JP5472279B2 (en) | Conductive paste, and prepreg, metal foil-clad laminate, and printed wiring board using the same | |
JP6277751B2 (en) | Copper particle dispersion paste and method for producing conductive substrate | |
WO2016088540A1 (en) | Conductive composition, wiring board and method for producing same | |
CN102378479A (en) | Circuit board substrate and manufacturing method thereof | |
JP2011108848A (en) | Metal foil with insulation function membrane, flexible metal cladded laminated plate, electronic component mounting module, and manufacturing method thereof | |
JPH1064331A (en) | Conductive paste, electric circuit using conductive paste, and manufacture of electric circuit | |
TWI484014B (en) | Printed circuit board subatrate and method for manufacturing the same | |
JP2016031888A (en) | Method for manufacturing anisotropic conductive film and connection structure | |
JP2009026700A (en) | Conductive paste, and multilayer printed wiring board using the same | |
TWI432101B (en) | Printed circuit board subatrate and method for manufacturing the same | |
CN102378561A (en) | Covering membrance with electromagnetic shielding function and manufacturing method of covering membrance | |
TWI500513B (en) | Bonding sheet,flexible substrate,flexible printed circuit board and method for manufacturing same | |
CN102387661A (en) | Circuit board substrate and manufacture method thereof | |
TW201343772A (en) | Epoxy resin composite material, adhesive sheet and circuit substrate | |
TWI406925B (en) | Printed circuit board subatrate and method for manufacturing the same | |
TWI537359B (en) | Adhesive sheet and method for manufacturing the same | |
TWI410189B (en) | Printed ciucuit board substrate and method for manufacturing the same | |
TW201343770A (en) | Epoxy resin composite material, adhesive sheet and circuit substrate | |
TW201209126A (en) | Printed circuit board subatrate and method for manufacturing the same | |
TW201209123A (en) | Coverlay used for electromagnetic shielding and method for manufacturing the same | |
CN102344645A (en) | Epoxy resin composite material and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |