TWI462488B - 類比數位轉換裝置與方法 - Google Patents

類比數位轉換裝置與方法 Download PDF

Info

Publication number
TWI462488B
TWI462488B TW101102901A TW101102901A TWI462488B TW I462488 B TWI462488 B TW I462488B TW 101102901 A TW101102901 A TW 101102901A TW 101102901 A TW101102901 A TW 101102901A TW I462488 B TWI462488 B TW I462488B
Authority
TW
Taiwan
Prior art keywords
input signal
analog
data stream
conversion curve
digital
Prior art date
Application number
TW101102901A
Other languages
English (en)
Other versions
TW201332299A (zh
Inventor
Yen Chien Cheng
Yung Chi Yang
Chien Yi Wu
Original Assignee
Sunplus Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunplus Technology Co Ltd filed Critical Sunplus Technology Co Ltd
Priority to TW101102901A priority Critical patent/TWI462488B/zh
Priority to US13/746,312 priority patent/US8749411B2/en
Publication of TW201332299A publication Critical patent/TW201332299A/zh
Application granted granted Critical
Publication of TWI462488B publication Critical patent/TWI462488B/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/1235Non-linear conversion not otherwise provided for in subgroups of H03M1/12
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/18Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging
    • H03M1/181Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging in feedback mode, i.e. by determining the range to be selected from one or more previous digital output values

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Analogue/Digital Conversion (AREA)

Description

類比數位轉換裝置與方法
本發明是有關於一種轉換裝置與方法,且特別是有關於一種類比數位轉換裝置與方法。
在光學儲存系統中,光學讀取頭將偵測由光碟表面所反射回來的射頻(Radio Frequency,簡稱RF)訊號和伺服(Servo)訊號。此外,射頻訊號和伺服訊號將經由類比前端(Analog Front-End,簡稱AFE)處理,並通過類比數位轉換器(Analog-to-Digital Converter,簡稱ADC)轉換成數位化的資訊,以供讀取通道與數位前端(Digital Front-End,簡稱DFE)做處理,其中讀取通道例如是部分響應最大可能(Partial Response Maximum Likelihood,簡稱PRML)電路。在上述過程中,類比數位轉換器為一關鍵元件。倘若轉換過程產生失真,將會影響到後級PRML電路與數位前端的處理結果。
圖1A繪示為類比數位轉換器之理想轉換曲線的示意圖。如圖1A所示,隨著類比電壓由低至高的上升,類比數位轉換器所轉換出來的數位碼將呈現單調性(Monotonic)的遞增。更嚴格的來說,類比數位轉換器的積分非線性(Integral Nonlinearity,簡稱INL)誤差與差分非線性(Differential Nonlinearity,簡稱DNL)誤差也必需為零,才稱得上是理想的類比數位轉換器。藉此,在理想的類比數位轉換上,當輸入一類比弦波時,所轉出的數位碼也將呈現趨近於弦波的曲線。
然而,在實際應用上,類比數位轉換器的轉換曲線可能會呈現非單調性(Non-monotonic)的遞增。例如,圖1B繪示為類比數位轉換器之非理想轉換曲線的示意圖。如圖1B所示,當輸入一類比弦波時,所轉出的數位碼已經失真,進而無法呈現趨近於弦波的曲線。此時,失真的數位碼將影響光學儲存系統的讀碟性能,亦或使糾錯能力變差。嚴重的話,則有可能造成伺服控制的失敗,甚至導致光學儲存系統無法讀取碟片。
本發明提供一種類比數位轉換裝置,利用線性區間偵測單元偵測轉換曲線的線性區,以將輸入訊號調整至轉換曲線的線性區。藉此,將可避免訊號產生變形與失真的問題。
本發明提供一種類比數位轉換方法,利用偏移控制資訊先將輸入訊號調整至轉換曲線的線性區,之後再對輸入訊號進行轉換。藉此,將可確保由輸入訊號轉換而來的輸出資料流不會引發訊號變形與失真的問題。
本發明提出一種類比數位轉換裝置,包括第一位準調整單元、類比數位轉換器以及線性區間偵測單元。第一位準調整單元在調整模式下傳送測試訊號,並在操作模式下傳送第一輸入訊號。類比數位轉換器轉換測試訊號或是第一輸入訊號,以產生測試資料流或是第一輸出資料流。在調整模式下,線性區間偵測單元利用測試資料流取得類比數位轉換器的轉換曲線,並依據轉換曲線的線性區而決定是否調整偏移控制資訊。此外,在操作模式下,線性區間偵測單元持續輸出偏移控制資訊。其中,在傳送第一輸入訊號之前,第一位準調整單元更依據偏移控制資訊調整第一輸入訊號的直流位準,以致使第一輸入訊號位在轉換曲線的線性區內。
在本發明之一實施例中,上述之線性區間偵測單元包括區間偵測器、控制器以及偏移調整器。在調整模式下,區間偵測器依據對應於測試訊號的多個類比電壓記錄測試資料流中的多個數位碼以取得轉換曲線,並偵測轉換曲線的線性區以產生區域資訊。控制器在調整模式下依據區域資訊而決定是否產生調整資訊,並在操作模式下產生操作資訊。偏移調整器在調整模式下依據調整資訊的產生與否而決定是否調整偏移控制資訊,並在操作模式下依據操作資訊持續輸出偏移控制資訊。
在本發明之一實施例中,上述之線性區間偵測單元更包括數位波形產生器。其中,數位波形產生器在調整模式下產生參考資料流,且第一位準調整單元接收參考資料流,並將參考資料流轉換成測試訊號。
在本發明之一實施例中,上述之類比數位轉換裝置更包括第二位準調整單元與多工器。在操作模式下,第二位準調整單元依據偏移控制資訊調整第二輸入訊號的直流位準,以致使第二輸入訊號位在轉換曲線的線性區內,並傳送第二輸入訊號。在操作模式下,多工器從第一輸入訊號與第二輸入訊號中擇一輸出。其中,當多工器輸出第一輸入訊號時,類比數位轉換器將第一輸入訊號轉換成第一輸出資料流。當多工器輸出第二輸入訊號時,類比數位轉換器將第二輸入訊號轉換成第二輸出資料流。
從另一觀點來看,本發明提出一種類比數位轉換方法,適用於類比數位轉換裝置,且所述類比數位轉換方法包括下列步驟:在調整模式下,傳送測試訊號,並將測試訊號轉換成測試資料流;利用測試資料流取得轉換曲線,並依據轉換曲線的線性區而決定是否調整偏移控制資訊;在操作模式下,依據偏移控制資訊調整第一輸入訊號的直流位準,以致使第一輸入訊號位在轉換曲線的線性區內;以及,傳送第一輸入訊號,並將第一輸入訊號轉換成第一輸出資料流。
基於上述,本發明是先偵測出轉換曲線的線性區,並依據轉換曲線的線性區據以控制偏移控制資訊。藉此,當輸入訊號要進行轉換時,將可先利用偏移控制資訊將輸入訊號調整至轉換曲線的線性區內,之後再對輸入訊號進行轉換。如此一來,將可確保由輸入訊號轉換而來的輸出資料流不會引發訊號變形與失真的問題。
為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
圖2為依據本發明之一實施例之類比數位轉換裝置的示意圖。參照圖2,類比數位轉換裝置200包括位準調整單元211~212、多工器220、類比數位轉換器230與線性區間偵測單元240。其中,多工器220電性連接在位準調整單元211~212與類比數位轉換器230之間,並用以將來自位準調整單元211~212的訊號擇一輸出至類比數位轉換器230。此外,線性區間偵測單元240電性連接在類比數位轉換器230與位準調整單元211~212之間,並用以提供一偏移控制資訊DF。
在操作上,類比數位轉換裝置200具有一調整模式與一操作模式。其中,在調整模式下,可透過位準調整單元211~212傳送相同或是相異的兩測試訊號ST至多工器220,其中測試訊號ST可例如是斜波、三角波、鋸齒波或是弦波。藉此,多工器220將從兩測試訊號ST中擇一輸至類比數位轉換器230。此外,類比數位轉換器230會將測試訊號ST轉換成一測試資料流DST。在調整模式下,線性區間偵測單元240會利用測試資料流DST取得類比數位轉換器230的轉換曲線,並依據轉換曲線的線性區而決定是否調整偏移控制資訊DF。換言之,在調整模式下,類比數位轉換裝置200主要是透過線性區間偵測單元240,來偵測類比數位轉換器230之轉換曲線的線性區,並據以控制偏移控制資訊DF。
另一方面,在操作模式下,線性區間偵測單元240會停止偵測的動作,並持續地輸出在調整模式下所取得的偏移控制資訊DF。此外,此時的位準調整單元211~212將接收輸入訊號S11~S12,並傳送輸入訊號S11~S12至多工器220。值得注意的是,在傳送輸入訊號S11~S12之前,位準調整單元211~212皆會依據偏移控制資訊DF調整輸入訊號S11~S12的直流位準,以致使輸入訊號S11~S12位在類比數位轉換器230之轉換曲線的線性區內。再者,多工器220會從輸入訊號S11~S12中擇一輸出至類比數位轉換器230。
當輸入訊號S11被選取時,類比數位轉換器230會將輸入訊號S11轉換成相應的輸出資料流DS11。反之,當輸入訊號S12被選取時,類比數位轉換器230則會將輸入訊號S12轉換成相應的輸出資料流DS12。值得一提的是,由於輸入訊號S11~S12皆被調整至類比數位轉換器230之轉換曲線的線性區內,因此類比數位轉換器230所輸出的輸出資料流DS11與DS12將不會產生失真的情況。換言之,在操作模式下,類比數位轉換裝置200主要是利用偏移控制資訊DF來調整輸入訊號S11~S12的直流位準,以致使類比數位轉換器230所產生的輸出資料流不會失真。
為了致使本領域具有通常知識者能更加了解本發明,以下將針對線性區間偵測單元240的內部結構作更進一步的說明。參照圖2,線性區間偵測單元240包括區間偵測器241、控制器242、數位波形產生器243與偏移調整器244。其中,區間偵測器241電性連接類比數位轉換器230。控制器242電性連接區間偵測器241。此外,數位波形產生器243與偏移調整器244電性連接位準調整單元211~212。
在操作上,關於測試訊號ST所對應的多個類比電壓已預先儲存在區間偵測器241中。此外,在調整模式下,區間偵測器241會依據上述多個類比電壓逐一記錄測試資料流DST中的多個數位碼,進而取得類比數位轉換器230的轉換曲線。在實際應用上,類比數位轉換器230的轉換曲線可能會出現非理想的狀況,因此區間偵測器241會更進一步地偵測出轉換曲線的線性區。
舉例來說,圖3A至圖3C分別為依據本發明之一實施例之轉換曲線的示意圖,其中X軸為測試訊號ST所對應的多個類比電壓,且Y軸為測試資料流DST中的多個數位碼。如圖3A至圖3C所示,一般常見之非理想的轉換曲線包括三種情況:缺碼(missing code)、不良的積分/差分非線性誤差以及非單調性曲線。
參照圖3A,在缺碼的情況下,類比數位轉換器230所輸出的某個數位碼會完全不會出現。例如,在圖3A中,當類比電壓固定在2.1伏特時,數位碼有可能會在63或65之間一直跳動,進而產生突波(glitch)的現象。為了避免上述情況,區間偵測器241會判別所述多個數位碼中是否有至少一特定數位碼並未出現。倘若有至少一特定數位碼並未出現時,區間偵測器241將利用該至少一特定數位碼劃分出轉換曲線的非線性區域,並進而利用非線性區域劃分出轉換曲線的線性區域。
參照圖3B,在不良的積分/差分非線性誤差下,所有的數位碼皆會出現,但會有多個類比電壓對應到同樣的數位碼。例如,在圖3B中,類比電壓在1.9和2.0伏特時皆對應到數位碼(66)。為了避免上述情況,區間偵測器241會判別所述多個數位碼中是否有至少一特定數位碼停留超過一預設時間。倘若有至少一特定數位碼停留超過預設時間時,區間偵測器241將利用該至少一特定數位碼劃分出轉換曲線的非線性區域,並進而利用非線性區域劃分出轉換曲線的線性區域。
參照圖3C,在非單調性曲線的情況下,可以看到一個數位碼可能會對應到多個類比電壓。例如,在圖3C中,數位碼(70)有可能會對應到3個類比電壓-亦即1.9伏特、2.0伏特、2.1伏特。為了避免上述情況,區間偵測器241會判別轉換曲線是否有出現一負斜率。當轉換曲線出現負斜率時,區間偵測器241會利用所述多個數位碼中用以形成負斜率的數位碼來劃分出轉換曲線的非線性區域,並進而利用非線性區域劃分出轉換曲線的線性區域。
換言之,在調整模式下,區間偵測器241會判別是否有至少一特定數位碼並未出現或是停留超過一預設時間,並判別轉換曲線是否有出現負斜率,以藉此偵測出轉換曲線的線性區。此外,區間偵測器241會依據所偵測到的線性區產生相應的區域資訊DA,以致使控制器242可以依據區域資訊DA而決定是否產生一調整資訊DT1。其中,控制器242可依據區域資訊DA來判別轉換曲線是否呈現單調性的遞增。此外,當判別結果為轉換曲線並非是呈現單調性的遞增時,控制器242將產生調整資訊DT1。相對地,當判別結果為轉換曲線是呈現單調性的遞增時,控制器242將不會產生調整資訊DT1。
舉例來說,圖4A與圖4B分別為依據本發明之另一實施例之轉換曲線的示意圖。如圖4A與圖4B所示,透過區間偵測器241將可取得轉換曲線410或是420,並進而偵測出轉換曲線410的線性區AL41或是轉換曲線420的線性區AL42,且AN41與AN42分別是轉換曲線410與420的非線性區。在此,控制器242可依據區域資訊DA而判別出轉換曲線410或是420的線性區並未涵蓋整個轉換曲線,進而判定轉換曲線410或是420並非是呈現單調性的遞增。因此,控制器242將產生相應的調整資訊DT1。
藉此,在調整模式下,當調整資訊DT1被產生時,偏移調整器244將依據調整資訊DT1調整偏移控制資訊DF。反之,當調整資訊DT1不被產生時,偏移調整器244會將偏移控制資訊DF維持在一初始值。例如,偏移控制資訊DF的初始值是依據轉換曲線的中心點來予以設定。另一方面,在操作模式下,區間偵測器241則會停止偵測轉換曲線的線性區,且控制器242會產生一操作資訊DT2。藉此,在操作模式下,偏移調整器244將依據操作資訊DT2持續地輸出在調整模式下所取得的偏移控制資訊DF。
值得一提的是,在圖2實施例中,測試訊號ST的來源主要是由線性區間偵測單元240中的數位波形產生器243來產生。其中,在調整模式下,控制器242會產生一致能資訊EN給數位波形產生器243。藉此,數位波形產生器243將產生參考資料流DSF。此外,位準調整單元211與位準調整單元212將接收參考資料流DSF,並將數位形式的參考資料流DSF轉換成類比形式的測試訊號ST。再者,在調整模式下,位準調整單元211與位準調整單元212更傳送測試訊號ST至多工器220。
此外,測試訊號ST也可直接由類比波形產生器或是外部波形產生器來直接提供。舉例來說,圖5為依據本發明之另一實施例之類比數位轉換裝置的示意圖。請同時參照圖2與圖5來看,兩者最大不同之處在於,圖5中的類比數位轉換裝置200更包括類比波形產生器250,且線性區間偵測單元240中並未設置數位波形產生器。藉此,在圖5實施例中,類比波形產生器250會在調整模式下,直接供應測試訊號ST給位準調整單元211與位準調整單元212,以致使位準調整單元211與位準調整單元212可以傳送測試訊號ST至多工器220。
在實際應用上,類比數位轉換裝置200可應用至光學儲存系統,並用以針對來自光學儲存系統之讀取通道的射頻訊號與來自伺服通道的伺服訊號進行轉換。其中,在光學儲存系統初始化的過程中,可先關閉系統內的雷射二極體,並將光學讀取頭移至底端,避免受到光學系統的反射訊號所干擾,且將類比數位轉換裝置200切換至調整模式。藉此,在光學儲存系統初始化的過程中,類比數位轉換裝置200也將偵測出其內部類比數位轉換器230之轉換曲線的線性區。
藉此,當光學儲存系統正常運作時,類比數位轉換裝置200將相應地切換至操作模式,以透過位準調整單元211~212分別接收射頻訊號和伺服訊號。亦即,此時的射頻訊號和伺服訊號相當於之前所述的輸入訊號S11~S12。換言之,當光學儲存系統正常運作時,位準調整單元211~212將會把射頻訊號和伺服訊號分別調整至類比數位轉換器230之轉換曲線的線性區。藉此,光學儲存系統利用類比數位轉換裝置200所轉換出的輸出資料流將不會引發訊號變形與失真的問題,進而提升光學儲存系統的讀碟能力以及伺服控制訊號的品質。
此外,在實際應用上,倘若類比數位轉換裝置200只需針對單一通道的訊號進行轉換,本領域具有通常知識者也可依據設計所需將類比數位轉換裝置200中的位準調整單元212與多工器220予以移除。此時,類比數位轉換裝置200依舊可將來自單一通道的訊號調整至轉換曲線的線性區,並進而對來自單一通道的訊號進行轉換。換言之,圖2與圖5實施例所列舉的類比數位轉換裝置200並非用以限定本發明,本領域具有通常知識者可依設計所需選擇性地移除位準調整單元212與多工器220。
從另一觀點來看,圖6為依據本發明之一實施例之類比數位轉換方法的流程圖,其中所述類比數位轉換方法適用於一類比數位轉換裝置。參照圖6,如步驟S610所示,在調整模式下,將傳送測試訊號,並將測試訊號轉換成測試資料流。接著,如步驟S620所示,利用測試資料流取得轉換曲線,並依據轉換曲線的線性區而決定是否調整偏移控制資訊。換言之,在調整模式下,將可偵測出轉換曲線的線性區,並據以控制偏移控制資訊。另一方面,如步驟S630所示,在操作模式下,依據偏移控制資訊調整輸入訊號的直流位準,以致使輸入訊號位在轉換曲線的線性區內。此外,如步驟S640所示,傳送輸入訊號,並將輸入訊號轉換成輸出資料流。換言之,在操作模式下,將可利用偏移控制資訊調整輸入訊號,以確保輸出資料流不會產生失真的問題。至於本實施例之類比數位轉換方法的細部說明已包含在上述各實施例中,故在此不予贅述。
綜上所述,本發明是先偵測出轉換曲線的線性區,並依據轉換曲線的線性區來據以控制偏移控制資訊。藉此,當輸入訊號要進行轉換時,本發明可先利用偏移控制資訊將輸入訊號調整至轉換曲線的線性區內,之後再對輸入訊號進行轉換。如此一來,將可確保由輸入訊號轉換而來的輸出資料流不會引發訊號變形與失真的問題。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。
200...類比數位轉換裝置
211~212...位準調整單元
220...多工器
230...類比數位轉換器
240...線性區間偵測單元
DF...偏移控制資訊
ST...測試訊號
S11~S12...輸入訊號
DST...測試資料流
DS11~DS12...輸出資料流
241...區間偵測器
242...控制器
243...數位波形產生器
244...偏移調整器
DA...區域資訊
DT1...調整資訊
DT2...操作資訊
EN...致能資訊
DSF...參考資料流
410~420...轉換曲線
AL41~AL42...線性區
AN41~AN42...非線性區
250...類比波形產生器
S610~S640...用以說明圖6實施例的各步驟流程
圖1A繪示為類比數位轉換器之理想轉換曲線的示意圖。
圖1B繪示為類比數位轉換器之非理想轉換曲線的示意圖。
圖2為依據本發明之一實施例之類比數位轉換裝置的示意圖。
圖3A至圖3C分別為依據本發明之一實施例之轉換曲線的示意圖。
圖4A與圖4B分別為依據本發明之另一實施例之轉換曲線的示意圖。
圖5為依據本發明之另一實施例之類比數位轉換裝置的示意圖。
圖6為依據本發明之一實施例之類比數位轉換方法的流程圖。
200...類比數位轉換裝置
211~212...位準調整單元
220...多工器
230...類比數位轉換器
240...線性區間偵測單元
ST...測試訊號
S11~S12...輸入訊號
DST...測試資料流
DS11~DS12...輸出資料流
DF...偏移控制資訊
241...區間偵測器
242...控制器
243...數位波形產生器
244...偏移調整器
DA...區域資訊
DT1...調整資訊
DT2...操作資訊
EN...致能資訊
DSF...參考資料流

Claims (12)

  1. 一種類比數位轉換裝置,包括:一第一位準調整單元,在一調整模式下傳送一測試訊號,並在一操作模式下傳送一第一輸入訊號;一類比數位轉換器,轉換該測試訊號或是該第一輸入訊號,以產生一測試資料流或是一第一輸出資料流;以及一線性區間偵測單元,在該調整模式下,利用該測試資料流取得該類比數位轉換器的一轉換曲線,並依據該轉換曲線的線性區而決定是否調整一偏移控制資訊,且在該操作模式下,持續輸出該偏移控制資訊,其中,在傳送該第一輸入訊號之前,該第一位準調整單元更依據該偏移控制資訊調整該第一輸入訊號的直流位準,以致使該第一輸入訊號位在該轉換曲線的線性區內。
  2. 如申請專利範圍第1項所述之類比數位轉換裝置,其中該線性區間偵測單元包括:一區間偵測器,在該調整模式下,依據對應於該測試訊號的多個類比電壓記錄該測試資料流中的多個數位碼以取得該轉換曲線,並偵測該轉換曲線的線性區以產生一區域資訊;一控制器,在該調整模式下,依據該區域資訊而決定是否產生一調整資訊,並在該操作模式下,產生一操作資訊;以及一偏移調整器,在該調整模式下,依據該調整資訊的產生與否而決定是否調整該偏移控制資訊,並在該操作模式下,依據該操作資訊持續輸出該偏移控制資訊。
  3. 如申請專利範圍第2項所述之類比數位轉換裝置,其中該區間偵測器判別該些數位碼中是否有至少一特定數位碼並未出現或是停留超過一預設時間,並判別該轉換曲線是否有出現一負斜率,以藉此偵測出該轉換曲線的線性區。
  4. 如申請專利範圍第2項所述之類比數位轉換裝置,其中該線性區間偵測單元更包括:一數位波形產生器,在該調整模式下產生一參考資料流,其中該第一位準調整單元接收該參考資料流,並將該參考資料流轉換成該測試訊號。
  5. 如申請專利範圍第1項所述之類比數位轉換裝置,更包括:一類比波形產生器,在該調整模式下,產生該測試訊號。
  6. 如申請專利範圍第1項所述之類比數位轉換裝置,更包括:一第二位準調整單元,在該操作模式下,依據該偏移控制資訊調整一第二輸入訊號的直流位準,以致使該第二輸入訊號位在該轉換曲線的線性區內,並傳送該第二輸入訊號;以及一多工器,在該操作模式下,從該第一輸入訊號與該第二輸入訊號中擇一輸出,其中,當該多工器輸出該第一輸入訊號時,該類比數位轉換器將該第一輸入訊號轉換成該第一輸出資料流,當該多工器輸出該第二輸入訊號時,該類比數位轉換器將該第二輸入訊號轉換成一第二輸出資料流。
  7. 一種類比數位轉換方法,適用於一類比數位轉換裝置,且該類比數位轉換方法包括:在一調整模式下,傳送一測試訊號,並將該測試訊號轉換成一測試資料流;利用該測試資料流取得一轉換曲線,並依據該轉換曲線的線性區而決定是否調整一偏移控制資訊;在一操作模式下,依據該偏移控制資訊調整一第一輸入訊號的直流位準,以致使該第一輸入訊號位在該轉換曲線的線性區內;以及傳送該第一輸入訊號,並將該第一輸入訊號轉換成一第一輸出資料流。
  8. 如申請專利範圍第7項所述之類比數位轉換方法,其中利用該測試資料流取得該轉換曲線,並依據該轉換曲線的線性區而決定是否調整該偏移控制資訊的步驟包括:依據對應於該測試訊號的多個類比電壓記錄該測試資料流中的多個數位碼,以取得該轉換曲線;偵測該轉換曲線的線性區,以產生一區域資訊;依據該區域資訊而決定是否產生一調整資訊;當該調整資訊被產生時,依據該調整資訊調整該偏移控制資訊;以及當該調整資訊不被產生時,將該偏移控制資訊維持在一初始值。
  9. 如申請專利範圍第8項所述之類比數位轉換方法,其中偵測該轉換曲線的線性區的步驟包括:判別該些數位碼中是否有至少一特定數位碼並未出現或是停留超過一預設時間;當有該至少一特定數位碼並未出現或是停留超過該預設時間時,利用該至少一特定數位碼劃分出該轉換曲線的一第一非線性區域;判別該轉換曲線是否有出現一負斜率;當該轉換曲線出現該負斜率時,利用該些數位碼中用以形成該負斜率的數位碼劃分出該轉換曲線的一第二非線性區域;以及利用該第一非線性區域與該第二非線性區域劃分出該轉換曲線的線性區。
  10. 如申請專利範圍第7項所述之類比數位轉換方法,更包括:在該調整模式下,產生一參考資料流;以及將該參考資料流轉換成該測試訊號。
  11. 如申請專利範圍第7項所述之類比數位轉換方法,更包括:在該調整模式下,產生該測試訊號。
  12. 如申請專利範圍第7項所述之類比數位轉換方法,更包括:在該操作模式下,依據該偏移控制資訊調整一第二輸入訊號的直流位準,以致使該第二輸入訊號位在該轉換曲線的線性區內;傳送該第二輸入訊號;從該第一輸入訊號與該第二輸入訊號中擇一輸出;以及當該第一輸入訊號被輸出時,將該第一輸入訊號轉換成該第一輸出資料流;以及當該第二輸入訊號被輸出時,將該第二輸入訊號轉換成一第二輸出資料流。
TW101102901A 2012-01-30 2012-01-30 類比數位轉換裝置與方法 TWI462488B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW101102901A TWI462488B (zh) 2012-01-30 2012-01-30 類比數位轉換裝置與方法
US13/746,312 US8749411B2 (en) 2012-01-30 2013-01-22 Analog-to-digital conversion device and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101102901A TWI462488B (zh) 2012-01-30 2012-01-30 類比數位轉換裝置與方法

Publications (2)

Publication Number Publication Date
TW201332299A TW201332299A (zh) 2013-08-01
TWI462488B true TWI462488B (zh) 2014-11-21

Family

ID=48869743

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101102901A TWI462488B (zh) 2012-01-30 2012-01-30 類比數位轉換裝置與方法

Country Status (2)

Country Link
US (1) US8749411B2 (zh)
TW (1) TWI462488B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9515672B2 (en) 2013-10-28 2016-12-06 Texas Instruments Incorporated Analog-to-digital converter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196851A (en) * 1991-05-24 1993-03-23 Samsung Electronics Co., Ltd. Linearizing non-linear analog-to-digital process and circuit
US5248970A (en) * 1991-11-08 1993-09-28 Crystal Semiconductor Corp. Offset calibration of a dac using a calibrated adc
US7414553B1 (en) * 2006-11-17 2008-08-19 Zilog, Inc. Microcontroller having in-situ autocalibrated integrating analog-to-digital converter (IADC)
TWI353721B (en) * 2007-12-31 2011-12-01 Ind Tech Res Inst Comparison device and analog-to-digital converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196851A (en) * 1991-05-24 1993-03-23 Samsung Electronics Co., Ltd. Linearizing non-linear analog-to-digital process and circuit
US5248970A (en) * 1991-11-08 1993-09-28 Crystal Semiconductor Corp. Offset calibration of a dac using a calibrated adc
US7414553B1 (en) * 2006-11-17 2008-08-19 Zilog, Inc. Microcontroller having in-situ autocalibrated integrating analog-to-digital converter (IADC)
TWI353721B (en) * 2007-12-31 2011-12-01 Ind Tech Res Inst Comparison device and analog-to-digital converter

Also Published As

Publication number Publication date
TW201332299A (zh) 2013-08-01
US20130194119A1 (en) 2013-08-01
US8749411B2 (en) 2014-06-10

Similar Documents

Publication Publication Date Title
US20170201700A1 (en) Photoelectric conversion element, image reading device, image forming apparatus, image reading method, and computer-readable recording medium
US9166614B2 (en) Ramp-signal generator circuit, and image sensor and imaging system including the same
KR101911374B1 (ko) 이미지 센서용의 열 병렬 싱글-슬로프 아날로그-디지털 변환기의 디지털 교정을 위한 자동 오프셋 조정
KR100871828B1 (ko) 히스테리시스 특성을 이용한 싱글 슬로프 adc와 그 변환 방법, 및 상기 싱글 슬로프 adc를 구비하는 cmos 이미지 센서
KR101182402B1 (ko) 순차 접근 아날로그-디지털 변환기
US9483028B1 (en) Hybrid analog-to-digital converter
US7554476B2 (en) Ad conversion method, apparatus thereof, solid-state imaging device, driving method thereof, and imaging apparatus
US8659460B2 (en) Successive approximation register ADC circuits and methods
US10574919B2 (en) High-speed and low-power analog-to-digital converter and CMOS image sensor using the same
US9071778B2 (en) Ad converting circuit, photoelectric converting apparatus, image pickup system, and driving method for ad converting circuit
CN114641935A (zh) 模/数转换器
US9683866B2 (en) Device and method for correcting a sensor signal
US9806731B2 (en) Signal calibration circuit and signal calibration device
TWI462488B (zh) 類比數位轉換裝置與方法
CN109084814B (zh) 具有调整比较器的阈值的功能的编码器及编码器控制方法
US10693484B1 (en) Pipelined analog-to-digital converter calibration
KR102100969B1 (ko) 싱글 슬로프 아날로그-디지털 변환 장치
US11075640B1 (en) Analog to digital converter device and method for calibrating clock skew
CN103247307B (zh) 模拟数字转换装置与方法
CN112448719B (zh) 模拟数字转换器装置与时脉偏斜校正方法
EP2662983A1 (en) Analogue-to-digital converter
KR101232620B1 (ko) 램프 신호의 보정 기능을 갖는 램프 신호 발생기 및 이를 포함하는 이미지 센서
CN113708762B (zh) 模拟数字转换器装置以及时脉偏斜校正方法
KR20200082099A (ko) 시분할 아날로그-디지털 변환기의 타임 스큐 보상 장치 및 방법
CN113271100B (zh) 模拟数字转换器装置以及时脉偏斜校正方法