TWI459460B - 半導體微奈米柱的製作方法與應用 - Google Patents

半導體微奈米柱的製作方法與應用 Download PDF

Info

Publication number
TWI459460B
TWI459460B TW099140471A TW99140471A TWI459460B TW I459460 B TWI459460 B TW I459460B TW 099140471 A TW099140471 A TW 099140471A TW 99140471 A TW99140471 A TW 99140471A TW I459460 B TWI459460 B TW I459460B
Authority
TW
Taiwan
Prior art keywords
semiconductor
layer
epitaxial layer
manufacturing
epitaxial
Prior art date
Application number
TW099140471A
Other languages
English (en)
Other versions
TW201222652A (en
Inventor
Ching Fuh Lin
Original Assignee
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan filed Critical Univ Nat Taiwan
Priority to TW099140471A priority Critical patent/TWI459460B/zh
Priority to US13/041,142 priority patent/US20120129290A1/en
Publication of TW201222652A publication Critical patent/TW201222652A/zh
Application granted granted Critical
Publication of TWI459460B publication Critical patent/TWI459460B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3081Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Description

半導體微奈米柱的製作方法與應用
本發明係關於一種半導體微奈米柱的製作方法與其應用。
在光電產品的製造過程中,元件品質往往受到磊晶層的缺陷影響而降低。例如,習知技術中通常是以磊晶方式在基板上形成半導體微奈米柱陣列;由於半導體微奈米柱與基板的晶格常數不同,在磊晶時會產生差排(dislocation)缺陷,此一缺陷可隨半導體微奈米柱厚度增加而增加,對元件品質影響很大。
另外,以磊晶的方法形成微奈米柱陣列,例如氮化鎵(GaN)微奈米柱陣列,其形成的尺寸與高度不容易被精確控制。
因此,亟需發展一種新的製造方法,以製造半導體微奈米柱,並且可精確控制其尺寸與高度,以及據以製造低缺陷密度的磊晶層,應用於製造光電元件或電子元件。
本發明的目的之一在於提供一種新的方法用於製造半導 體微奈米柱,並且可精確控制其尺寸與高度,以及據以製造低缺陷密度的磊晶層,應用於製造光電元件或電子元件。
本發明實施例提供一種半導體微奈米柱的製造方法,包含:提供一基板;形成一第一半導體磊晶層於該基板上;形成一光阻層或一阻擋層於該基板上並定義複數個開口;分別形成一半導體微奈米柱遮罩於每個開口上;以該些半導體微奈米柱遮罩作為遮罩,蝕刻該第一半導體磊晶層,形成複數個半導體微奈米柱。
較佳地,該半導體微奈米柱遮罩與該第一半導體磊晶層具有相同或相似的晶體結構,亦即該半導體微奈米柱遮罩與該第一半導體磊晶層彼此晶格匹配(lattice-matched)。
藉由上述方法,所形成該半導體微奈米柱的尺寸、位置、高度,將分別由該半導體微奈米柱遮罩的尺寸、位置、高度所決定。
藉由上述方法,所形成的半導體微奈米柱具有完美結晶面,可作為晶種,進行下一階段的磊晶程序。例如,利用磊晶方法成長出低缺陷密度的第二半導體磊晶層,以及/或者氮化物半導體晶體或量子井磊晶結構,以製作其他光電或電子元件。
10‧‧‧基板
11‧‧‧第一氮化鎵層
12‧‧‧光阻層/阻擋層
13‧‧‧開口
14‧‧‧氧化鋅微奈米柱
15‧‧‧氮化鎵微奈米柱
16‧‧‧第二氮化鎵層
17‧‧‧磊晶層
18‧‧‧氮化鎵批覆層
19‧‧‧絕緣層
S‧‧‧氮化鎵表面
圖1A至圖1F(或1F’)顯示本發明較佳實施例半導體微奈米柱的形成方法;圖2A至2C顯示根據本發明一實施例,以圖1F’的結構為基礎,進行其他的磊晶程序;圖3A至3C顯示根據本發明一實施例,以圖1F的結構為基礎,進行 其他的磊晶程序;以及圖4A至4D顯示根據本發明一實施例,以圖1F的結構為基礎,進行其他的磊晶程序。
以下將詳述本案的各實施例,並配合圖式作為例示。除了這些詳細描述之外,本發明還可以廣泛地實行在其他的實施例中,任何所述實施例的輕易替代、修改、等效變化都包含在本案的範圍內,並以之後的專利範圍為準。在說明書的描述中,為了使讀者對本發明有較完整的了解,提供了許多特定細節;然而,本發明可能在省略部分或全部這些特定細節的前提下,仍可實施。此外,眾所周知的程序步驟或元件並未描述於細節中,以避免造成本發明不必要之限制。
圖1A至圖1F(或1F’)顯示本發明較佳實施例半導體微奈米柱的形成方法。於本文中,「半導體微奈米柱」指的是「具有微米或奈米級尺寸及間距的半導體柱狀物」。
如圖1A,提供一基板10,例如藍寶石基板。接著,如圖1B,進行磊晶程序,形成第一氮化鎵(GaN)層11,其結晶型態較佳為單晶或類單晶;磊晶的方法可包含有機金屬化學氣相沉積(Metal-Organic Chemical Vapor Deposition,MOCVD)、分子束磊晶(Molecular Beam Epitaxy,MBE)、原子遷移強化有機金屬化學氣相沉積(Migration-enhanced Metal-Organic Chemical Vapor Deposition,MOCVD),或其他適當方法。接著,如圖1C,在第一氮化 鎵層11上形成圖案化的光阻層12並定義開口(aperture)13。此步驟的形成方法不限,例如,以光學顯影(photolithography)或電子束顯影(E-beam lithography),先在第一氮化鎵層11上鍍上光阻12,形成預先設計好的圖案(pattern),並在光阻12上定義出開口13,使曝露第一氮化鎵層11。或者,不使用光阻層12,以陽極氧化鋁多孔模板(AAO)作為一阻擋層12,置放於第一氮化鎵層11上,使氮化鎵曝露於陽極氧化鋁多孔模板的開口13。接著,如圖1D,在開口13上,形成氧化鋅(ZnO)微奈米柱14。在本實施例,是以水熱法製作氧化鋅微奈米柱14,首先於開口13上塗佈氧化鋅種子層以固定成核點;接著,在密閉的反應器內,利用水為介質,控制適當壓力與溫度(可低於100℃),使反應物(例如,硝酸鋅六水合物(zinc nitratehexahydrate,Zn(NO3)2.6H2O)及四氮六甲圜(methenamiue,C6H12N4)的混合溶液)在氧化鋅種子層上成長氧化鋅微奈米柱14。接著,如圖1E,移除光阻層12,例如以丙酮或電漿移除。接著,如圖1F,以氧化鋅微奈米柱14為遮罩,以蝕刻方式形成氮化鎵微奈米柱15;蝕刻完成後,若有殘留的氧化鋅微奈米柱14,可利用蝕刻液,例如鹽酸,蝕刻去除。在另一實施例,如圖1F’所示,以氧化鋅微奈米柱14為遮罩,蝕刻形成氮化鎵微奈米柱15時,可控制蝕刻深度,保留一氮化鎵表面S,使基板10不被曝露。
在上述實施例,以水熱法使氧化鋅微奈米柱14成長於開口13內的第一氮化鎵層11上面,如此能大幅降低製作成本。其中,氧化鋅微奈米柱14的尺寸,可透過反應物的濃度、氧化鋅種子層的結晶面大小兩個因素控制;如果開口13的尺寸較大,則氧化鋅微奈米柱14的尺 寸會接近開口13的尺寸;如果開口13的尺寸較小,則氧化鋅微奈米柱14的尺寸會比開口13的尺寸大。另外,氧化鋅微奈米柱14可呈現任何規則或不規則排列的陣列或其他圖形。
由於氧化鋅與氮化鎵的晶體結構極相似,成長出來的氧化鋅微奈米柱14具有極好的方向性,其結晶方向與氮化鎵完全一致,成六角形的柱狀,並不會受到開口13形狀的影響。
接著,用氧化鋅微奈米柱14作為蝕刻遮罩,以蝕刻的方式形成氮化鎵微奈米柱15。蝕刻的方法不限,可以是任何習知的乾蝕刻、濕蝕刻方法,或兩種搭配使用。於本實施例,先利用反應離子蝕刻法(reactive ion etching,RIE)做乾蝕刻,再利用蝕刻液如氫氧化鉀(KOH)做濕蝕刻。在其他實施例,乾蝕刻與濕蝕刻的順序可以互換。藉此,所蝕刻出的氧化鋅微奈米柱15,與氧化鋅微奈米柱14一樣,呈現六角形柱狀,並且,曝露出來的晶格面完美,有利於後續磊晶程序。另外,所形成氮化鎵微奈米柱15的尺寸、位置、高度,將由氧化鋅微奈米柱14的尺寸、位置、高度所決定。如果所形成的氮化鎵微奈米柱15為規則排列的陣列,其週期,亦即兩相鄰氮化鎵微奈米柱中心的距離,可以在一百奈米(nm)至數千微米(μm)之間。值得注意的是,如果以傳統光罩法,用其他不是氧化鋅的物質作為蝕刻遮罩,之後再利用乾蝕刻或濕蝕刻形成氮化鎵微奈米柱,則不僅氮化鎵微奈米柱的尺寸高度不容易控制,且其曝露的晶格面不佳,如此會增加後續磊晶的困難度。
另外,上述實施例可有多種變化。除了以水熱法形成,氧化鋅微奈米柱14可由分子束磊晶(molecular beam epitaxy,MBE)、化學氣相沉積(CVD)、蒸鍍(evaporation)、濺鍍(sputtering)、原子 層沉積(atomic layer deposition)、電化學沉積(electrochemical deposition)、脈衝雷射沉積(pulsed laser deposition)、金屬有機物化學氣相沉積(metalorganic chemical vapor deposition),或其他習知方式形成。
另外,基板可包含半導體、金屬、石英、玻璃、軟性塑膠等等,其中半導體除了藍寶石外、,可包含矽(Si)、氮化鎵(GaN)、氮化鋁(AlN)、氮化鋁鎵(AlGaN)、碳化矽(SiC)等等;軟性塑膠例如聚乙烯對苯二甲酸酯(polyethylene terephthalate,PET)等等。
另外,在另一實施例,可先在基板10上形成一氮化鎵緩衝層(未圖示),再於氮化鎵緩衝層上形成第一氮化鎵層11。另外,作為遮罩的氧化鋅也可以是其他與氮化鎵具有相似或相同晶格結構的半導體材料。另外,可選用其他三族與五族元素組成的二元、三元、四元化合物,例如硒化鋅(ZnSe),取代上述氮化鎵。
接著,具有完美結晶面的氮化鎵微奈米柱15,可作為晶種,進行下一階段的磊晶程序。例如,以磊晶方式成長出新的氮化物半導體晶體或量子井磊晶結構,使氮化鎵微奈米柱15可應用於製作其他光電或電子元件。
圖2A至2C顯示根據本發明一實施例,以圖1F’的結構為基礎,進行其他的磊晶程序,相同的程序也可應用於圖1F的結構。如圖2A,以前述磊晶的方法,形成第二氮化鎵層16覆蓋氮化鎵微奈米柱15。其中,可控制橫向磊晶速率大於縱向磊晶速率。藉此,所形成的第二氮化鎵層16,其差排缺陷密度(dislocation density)相較於第一氮化 鎵層11,可降低至少一個量階(order)。
接著,如圖2B,可在第二氮化鎵層16上,以磊晶的方法,形成一磊晶層17,其可以是多重量子井磊晶層(multiple quantum well),例如InGaN/GaN,或是一或多層的氮化物磊晶結構;多重量子井磊晶層可作為發光二極體(LED)或雷射二極體(LD)的發光層,氮化物磊晶結構可用於光伏元件、電晶體、積體電路(IC)等之製作。接著,如圖2C,可在磊晶層17上,形成氮化鎵批覆層18。其中,如果第一氮化鎵層11與第二氮化鎵層16為n-type,則氮化鎵批覆層18為p-type,或相反。之後,可形成兩電極(未圖示),分別與第二氮化鎵層16及氮化鎵批覆層18接觸,構成一發光二極體或雷射二極體。
圖3A至3C顯示根據本發明一實施例,以圖1F的結構為基礎,進行其他的磊晶程序,相同的程序也可應用於圖1F’的結構。如圖3A,形成一絕緣層19,例如二氧化矽(SiO2)等氧化層,於氮化鎵微奈米柱15的上表面與基板10的曝露表面上(若為圖1F’,則絕緣層19形成於氮化鎵微奈米柱15的上表面與氮化鎵表面S,於本文中,兩者可通稱為「氮化鎵微奈米柱15的上表面」)。接著,如圖3B,利用前述磊晶的方法,以氮化鎵微奈米柱15的側壁作為長晶的中心,控制橫向磊晶速率大於縱向磊晶速率,使形成前述的磊晶層17,其可以是多重量子井磊晶層(multiple quantum well),例如InGaN/GaN,或是一或多層的氮化物磊晶結構;多重量子井磊晶層可作為發光二極體(LED)或雷射二極體(LD)的發光層,氮化物磊晶結構可用於光伏元件、電晶體、積體電路等之製作。接著,如圖3C,可在磊晶層17側壁,形成氮化鎵批覆層18。其中,如果氮化鎵微奈米柱15為n-type,則氮化鎵批覆層18為p-type, 或相反。之後,可形成兩電極(未圖示),分別與氮化鎵微奈米柱15及氮化鎵批覆層18接觸,構成一發光二極體或雷射二極體。
圖4A至4D顯示根據本發明一實施例,以圖1F的結構為基礎,進行其他的磊晶程序,相同的程序也可應用於圖1F’的結構。如圖4A,形成一絕緣層19,例如二氧化矽(SiO2)等氧化物層,於氮化鎵微奈米柱15的上表面與基板10的曝露表面上。接著,如圖4B,利用前述磊晶的方法,以氮化鎵微奈米柱15的側壁作為長晶的中心,並控制橫向磊晶速率大於縱向磊晶速率,使形成第二氮化鎵層16覆蓋氮化鎵微奈米柱15。藉此,所形成的第二氮化鎵層16,其差排缺陷密度相較於第一氮化鎵層11,可降低約三四個量階(order)。這是由於氮化鎵微奈米柱15的側壁為非極性的m-plane,相較於氮化鎵微奈米柱15的上表面為極性c-plane,由側壁長出的磊晶層會更完美。接著,如圖4C,可在第二氮化鎵層16上,以磊晶的方法,形成前述的磊晶層17,其可以是多重量子井磊晶層(multiple quantum well),例如InGaN/GaN,或是一或多層的氮化物磊晶結構;多重量子井磊晶層可作為發光二極體(LED)或雷射二極體(LD)的發光層,氮化物磊晶結構可用於光伏元件、電晶體、積體電路等之製作。接著,如圖4D,可在磊晶層17上,形成氮化鎵批覆層18。其中,如果第一氮化鎵層11與第二氮化鎵層16為n-type,則氮化鎵批覆層18為p-type,或相反。之後,可形成兩電極(未圖示),分別與第二氮化鎵層16及氮化鎵批覆層18接觸,構成一發光二極體或雷射二極體。
以上所述僅為本發明之較佳實施例而已,並非用以限定本 發明之申請專利範圍:凡其他未脫離發明所揭示之精神下所完成之等效改變或修飾,均應包含在下述之申請專利範圍內。
10‧‧‧基板
11‧‧‧第一氮化鎵層
12‧‧‧光阻層/阻擋層
13‧‧‧開口
14‧‧‧氧化鋅微奈米柱
15‧‧‧氮化鎵微奈米柱
S‧‧‧氮化鎵表面

Claims (26)

  1. 一種半導體微奈米柱的製造方法,包含:提供一基板;形成一第一半導體磊晶層於該基板上;形成一光阻層或一阻擋層於該第一半導體磊晶層上並於該光阻層或該阻擋層定義複數個開口:分別成長一半導體微奈米柱遮罩於每個該開口上;以該些半導體微奈米柱遮罩作為遮罩,蝕刻該第一半導體磊晶層,形成複數個半導體微奈米柱。
  2. 如申請專利範圍第1項的製造方法,其中該半導體微奈米柱遮罩與該第一半導體磊晶層彼此的晶格匹配(lattice-matched)。
  3. 如申請專利範圍第1項的製造方法,其中該半導體微奈米柱遮罩的材質包含氧化鋅。
  4. 如申請專利範圍第1項的製造方法,其中該第一半導體磊晶層的材質包含氮化鎵。
  5. 如申請專利範圍第1項的製造方法,其中所形成該半導體微奈米柱的尺寸、位置、高度,分別由該半導體微奈米柱遮罩的尺寸、位置、高度所決定。
  6. 如申請專利範圍第1項的製造方法,其中形成該半導體微奈米柱遮罩的方法包含水熱法。
  7. 如申請專利範圍第1項的製造方法,其中形成該半導體微奈米柱遮罩的方法包含分子束磊晶(molecular beam epitaxy,MBE)、化 學氣相沉積(CVD)、蒸鍍(evaporation)、濺鍍(sputtering)、原子層沉積(atomic layer deposition)、電化學沉積(electrochemical deposition)、脈衝雷射沉積(pulsed laser deposition)、金屬有機物化學氣相沉積(metalorganic chemical vapor deposition等方法。
  8. 如申請專利範圍第1項的製造方法,其中該些半導體微奈米柱遮罩呈現任何規則或不規則排列的陣列或圖形。
  9. 如申請專利範圍第1項的製造方法,其中蝕刻形成該複數個半導體微奈米柱的方法包含乾蝕刻、濕蝕刻,或兩者搭配使用。
  10. 如申請專利範圍第1項的製造方法,其中該基板的材質包含半導體、金屬、石英、玻璃、軟性塑膠等等。
  11. 申請專利範圍第10項的製造方法,其中該半導體包含藍寶石(sapphire)、矽(Si)、氮化鎵(GaN)、氮化鋁(AlN)、氮化鋁鎵(AlGaN)、碳化矽(SiC)等。
  12. 如申請專利範圍第1項的製造方法,尚包含以一磊晶方法,形成一第二半導體磊晶層,使其覆蓋該複數個半導體微奈米柱,該第二半導體磊晶層與該第一半導體磊晶層係相同材質,並且該第二半導體磊晶層的缺陷密度低於該第一半導體磊晶層的缺陷密度。
  13. 如申請專利範圍第12項的製造方法,其中該磊晶方法的橫向磊晶速率大於縱向磊晶速率。
  14. 如申請專利範圍第12項的製造方法,尚包含形成一多重量子井磊晶層於該第二半導體磊晶層上,該多重量子井磊晶層係作為一發光二極體或一雷射二極體的發光層。
  15. 如申請專利範圍第14項的製造方法,尚包含形成一半導 體批覆層於該多重量子井磊晶層上,以及形成兩電極分別接觸該半導體批覆層與該第二半導體磊晶層。
  16. 如申請專利範圍第12項的製造方法,尚包含形成一或多層的氮化物磊晶結構於該第二半導體磊晶層上,該構成結構被應用於光伏元件、電晶體、積體電路等之製作。
  17. 如申請專利範圍第1項的製造方法,尚包含:形成一絕緣層於該複數個半導體微奈米柱的上表面與該基板的曝露表面上;以一磊晶方法,控制橫向磊晶速率大於縱向磊晶速率,使分別形成一磊晶層於每個該複數個半導體微奈米柱的側壁上。
  18. 如申請專利範圍第17項的製造方法,其中該磊晶層包含一多重量子井磊晶層,該多重量子井磊晶層係作為一發光二極體或一雷射二極體的發光層。
  19. 如申請專利範圍第18項的製造方法,尚包含分別形成一半導體批覆層於該多重量子井磊晶層的側壁,以及形成兩電極分別接觸該半導體批覆層與該半導體微奈米柱。
  20. 如申請專利範圍第17項的製造方法,其中該磊晶層包含一或多層的氮化物磊晶結構,該構成結構被應用於光伏元件、電晶體、積體電路等之製作。
  21. 如申請專利範圍第1項的製造方法,尚包含:形成一絕緣層於該複數個半導體微奈米柱的上表面與該基板的曝露表面上; 以一磊晶方法,控制其橫向磊晶速率大於縱向磊晶速率,形成一第二半導體磊晶層覆蓋該複數個半導體微奈米柱,該第二半導體磊晶層與該第一半導體磊晶層係相同材質,並且該第二半導體磊晶層的缺陷密度低於該第一半導體磊晶層的缺陷密度。
  22. 如申請專利範圍第21項的製造方法,尚包含形成一多重量子井磊晶層於該第二半導體磊晶層上,該多重量子井磊晶層係作為一發光二極體或一雷射二極體的發光層。
  23. 如申請專利範圍第22項的製造方法,尚包含形成一半導體批覆層於該多重量子井磊晶層上,以及形成兩電極分別接觸該半導體批覆層與該第二半導體磊晶層。
  24. 如申請專利範圍第21項的製造方法,尚包含形成一或多層的氮化物磊晶結構於該第二半導體磊晶層上,該構成結構被應用於光伏元件、電晶體、積體電路等之製作。
  25. 如申請專利範圍第1項的製造方法,其中該複數個半導體微奈米柱為一規則排列的陣列,且兩相鄰該半導體微奈米柱中心的距離,在一百奈米(nm)至數千微米(μm)之間。
  26. 如申請專利範圍第1項的製造方法,在蝕刻該第一半導體磊晶層,形成複數個半導體微奈米柱之前,更可包含移除該光阻層或該阻擋層。
TW099140471A 2010-11-24 2010-11-24 半導體微奈米柱的製作方法與應用 TWI459460B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW099140471A TWI459460B (zh) 2010-11-24 2010-11-24 半導體微奈米柱的製作方法與應用
US13/041,142 US20120129290A1 (en) 2010-11-24 2011-03-04 Method for forming semiconductor nano-micro rods and applications thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099140471A TWI459460B (zh) 2010-11-24 2010-11-24 半導體微奈米柱的製作方法與應用

Publications (2)

Publication Number Publication Date
TW201222652A TW201222652A (en) 2012-06-01
TWI459460B true TWI459460B (zh) 2014-11-01

Family

ID=46064718

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099140471A TWI459460B (zh) 2010-11-24 2010-11-24 半導體微奈米柱的製作方法與應用

Country Status (2)

Country Link
US (1) US20120129290A1 (zh)
TW (1) TWI459460B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2997551B1 (fr) * 2012-10-26 2015-12-25 Commissariat Energie Atomique Procede de fabrication d'une structure semiconductrice et composant semiconducteur comportant une telle structure
KR102022266B1 (ko) 2013-01-29 2019-09-18 삼성전자주식회사 나노구조 반도체 발광소자 제조방법
KR102098250B1 (ko) 2013-10-21 2020-04-08 삼성전자 주식회사 반도체 버퍼 구조체, 이를 포함하는 반도체 소자 및 반도체 버퍼 구조체를 이용한 반도체 소자 제조방법
TWI609503B (zh) * 2014-01-09 2017-12-21 私立淡江大學 發光二極體之製造方法
CN107749437A (zh) * 2017-11-17 2018-03-02 广州市香港科大霍英东研究院 可挠性发光二极管制程及其结构

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6380108B1 (en) * 1999-12-21 2002-04-30 North Carolina State University Pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on weak posts, and gallium nitride semiconductor structures fabricated thereby
TW201020206A (en) * 2008-08-21 2010-06-01 Nanocrystal Corp Defect-free group III-nitride nanostructures and devices using pulsed and non-pulsed growth techniques

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1850580A (zh) * 2005-04-22 2006-10-25 清华大学 超晶格纳米器件及其制作方法
SG170094A1 (en) * 2006-03-10 2011-04-29 Stc Unm Pulsed growth of gan nanowires and applications in group iii nitride semiconductor substrate materials and devices
KR100767284B1 (ko) * 2006-03-27 2007-10-17 학교법인 포항공과대학교 산화아연계 미세 구조물 및 그 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6380108B1 (en) * 1999-12-21 2002-04-30 North Carolina State University Pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on weak posts, and gallium nitride semiconductor structures fabricated thereby
TW201020206A (en) * 2008-08-21 2010-06-01 Nanocrystal Corp Defect-free group III-nitride nanostructures and devices using pulsed and non-pulsed growth techniques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Chen, P. H. et al., "GaN-based light emitting diodes with pillar structures around the mesa region," IEEE Journal of Quantum Electronics, July 2010, Vol. 46 No. 7 p 1066-1071 *

Also Published As

Publication number Publication date
TW201222652A (en) 2012-06-01
US20120129290A1 (en) 2012-05-24

Similar Documents

Publication Publication Date Title
US9752252B1 (en) Cubic phase, nitrogen-based compound semiconductor films
TWI520206B (zh) 至少部分分離磊晶層的方法
US8895337B1 (en) Method of fabricating vertically aligned group III-V nanowires
KR101235239B1 (ko) 반도체 박막 구조 및 그 형성 방법
KR101169307B1 (ko) 나노구조체 및 그의 제조 방법
US9356187B2 (en) Method for separating semiconductor devices using nanoporous structure
TWI459460B (zh) 半導體微奈米柱的製作方法與應用
KR101209151B1 (ko) 양자점 제조방법 및 양자점을 포함하는 반도체 구조물
CN104993023A (zh) 一种利用化学腐蚀的方法剥离生长衬底的方法
US7666696B2 (en) Process for controlling indium clustering in ingan leds using strain arrays
US9355840B2 (en) High quality devices growth on pixelated patterned templates
CN101796212B (zh) Iii族氮化物结构体以及iii族氮化物半导体微细柱状晶体的制造方法
US20220336695A1 (en) Laser diodes, leds, and silicon integrated sensors on patterned substrates
JP2010521810A (ja) 半導体ヘテロ構造及びその製造
JP2009009978A (ja) 化合物半導体素子およびそれを用いる照明装置ならびに化合物半導体素子の製造方法
US20170194140A1 (en) Nanowire Fabrication Method and Structure Thereof
US20110175126A1 (en) Light-emitting diode structure
US9218965B2 (en) GaN epitaxial growth method
TWI718934B (zh) 形成氮化鎵層的方法
CN102593273A (zh) 发光二极管装置及基板结构的形成方法
US20170062655A1 (en) Sapphire Substrate with Patterned Structure
Mrad et al. Controlled SOI nanopatterning for GaN pendeo-epitaxy
KR20090048139A (ko) 질화물계 발광소자 및 그 제조방법
US8653500B1 (en) Volume-scalable high-brightness three-dimensional visible light source
TWI479688B (zh) 發光二極體裝置