TWI458288B - 經縮放與旋轉之Alamouti編碼 - Google Patents

經縮放與旋轉之Alamouti編碼 Download PDF

Info

Publication number
TWI458288B
TWI458288B TW097105762A TW97105762A TWI458288B TW I458288 B TWI458288 B TW I458288B TW 097105762 A TW097105762 A TW 097105762A TW 97105762 A TW97105762 A TW 97105762A TW I458288 B TWI458288 B TW I458288B
Authority
TW
Taiwan
Prior art keywords
symbols
channel
input
block
symbol
Prior art date
Application number
TW097105762A
Other languages
English (en)
Other versions
TW200901666A (en
Inventor
Franciscus Maria Joannes Willems
Semih Serbetli
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW200901666A publication Critical patent/TW200901666A/zh
Application granted granted Critical
Publication of TWI458288B publication Critical patent/TWI458288B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0668Orthogonal systems, e.g. using Alamouti codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Radio Transmission System (AREA)
  • Error Detection And Correction (AREA)

Description

經縮放與旋轉之Alamouti編碼
本發明係關於一種編碼器及對應編碼方法,其用於將一輸入資料流之輸入符號編碼成一頻道資料流之頻道符號,以便在一傳輸頻道上傳輸。
另外,本發明係關於一種解碼器及對應解碼方法,其係調適成用於逐區塊解碼一頻道資料流之已接收頻道符號,該等符號尤其已藉由根據本發明之一編碼器從一輸入資料流之輸入符號加以編碼,而且在一傳輸頻道上加以傳輸。
本發明亦關於一種發射器與接收器、藉由根據本發明之一編碼器加以編碼的一資料信號,及將該編碼方法與該解碼方法實施於軟體中的一電腦程式。
WO 99/14871揭示一種簡單區塊編碼配置,其中符號係結合編碼而在複數個傳輸頻道上加以傳輸,該編碼僅包括例如否定及共軛之簡單算術運算。該發射器所產生之分集利用空間分集以及可能時間或頻率分集。空間分集係藉由在複數個天線上冗餘傳輸而生效,時間分集係藉由在不同時間冗餘傳輸而生效,以及頻率分集係藉由在不同頻率冗餘傳輸而生效。為了說明,使用二個傳輸天線及一單一接收天線,揭示之具體實施例之一提供與最大比率接收器組合(MRRC)方案相同之分集增益,該方案具有一傳輸天線及二個接收天線。
技術中將揭示於WO 99/14871之編碼方案稱為Alamouti 編碼方案,而且亦已描述於S.M.Alamouti之"一種用於無線通信之簡單傳輸分集技術",見於IEEE J.Sel. Areas.Comm.第16卷,第1451至1458頁,1998年10月。
本發明之一目的係提供一種編碼方案,尤其一種編碼器及解碼器,以及對應方法,其具有較該已知Alamouti編碼方案更佳的一效能。
該目的係藉由如請求項1之編碼器而根據本發明所達成,該編碼器包括:-映射構件,其用於將輸入符號逐區塊映射至成對頻道符號,一區塊包括二個輸入符號,該映射構件係配置成用於將該區塊映射至二對頻道符號,使該二對頻道符號包含該二個輸入符號及/或該二個輸入符號之至少一者之複數共軛之經縮放版本,該等經縮放版本係藉由應用一縮放函數所獲得,該縮放函數具有一絕對值不等於一的一縮放因數,而且為具有至少二個片段之片段式線性,以及-輸出構件,其用於輸出該等頻道符號。
該目的係藉由如請求項15之解碼器而根據本發明進一步達成。
該解碼器之一較佳具體實施例係定義於請求項16中,其包括:-選擇構件,其用於選擇輸入符號之一對可能函數值或輸入符號之一經縮放版本的一對可能函數值,以便解碼已接收頻道符號的一目前區塊,其中一區塊包括一對已接收頻 道符號,-估計構件,其用於決定選定之該對輸入符號的一估計,-計算構件,其用於計算該已接收信號與該估計間之歐基里德(Euclidian)距離,-截割構件,其用於截割該估計,以及-控制構件,其用於以可能輸入符號之其他對可能函數值或輸入符號之一經縮放版本之其他對可能函數值重複該等步驟,直到符合一預定停止條件,或者直到找到一最小歐基里德距離,並且用於輸出導致該最小歐基里德距離之可能輸入符號之已截割估計或可能輸入符號之經縮放版本之該對已截割估計。
本發明亦關於如另一獨立項中所定義的一種編碼方法、解碼方法、發射器、接收器、已編碼資料信號及電腦程式。將瞭解,此等主題具有與分別在該編碼器及解碼器之附屬項中所定義類似及/或同樣之較佳具體實施例。
尤其,除了縮放輸入符號及/或輸入符號之複數共軛,為了進一步改良該效能,較佳者根據本發明,如請求項7中所定義將(相同及/或其他)輸入符號及/或(相同及/或其他)輸入符號之複數共軛以一旋轉角加以旋轉。對應地,該編碼方法、該解碼器、該解碼方法及該已編碼信號因此根據本發明之較佳具體實施例加以調適。
首先將考慮在如圖1中所示之一單輸入單輸出(SISO)加成性白高斯(Gaussian)雜訊(AWGN)頻道上之傳輸,而且將 引入經縮放重複再傳輸。其證明於正常重複再傳輸時,經縮放重複獲得改良。
首先,將討論某種資訊理論。參見圖1,傳輸k =1,2,...,K 之實數值輸出y k 滿足y k x k n k , (1) 其中x k 係傳輸k 之實數值頻道輸入,而且n k 係具有平均值E [N k ]=0、變異數的一實數值高斯雜訊樣本,其與所有其他雜訊樣本無關。該發射器功率受到限制,亦即要求吾人熟知具有平均值0及變異數P 的一高斯之X 達成容量。該基本容量(以位元/傳輸計)等於
當再傳輸(重複)碼字時,實際上將來自此一碼字(x 1 x 2 ,...,x K )之每一符號x k 傳輸及接收兩次,亦即x k 1x k 2x k ,而且 一最佳接收器可形成
現在該雜訊變數(N k 1N k 2 )/2之變異數係σ2 /2。因此以位元/傳輸計之一單一重複之重複容量係
圖3將該基本容量C 及重複容量C r 顯示成該信號對雜訊比 SNR的一函數,該SNR係定義成
很容易看見始終為對於大SNR,可寫成然而對於小SNR,獲得
其次,將討論4-PAM(脈衝振幅調變)之正常及經縮放重複。當使用4-PAM調變時,該等頻道輸入x k 假設為來自A 4 -PAM ={-3,-1,+1,+3}之值,各具有機率1/4。參見(3),正常重複導致信號點(x 1 ,x 2 )=(x ,x ),其對於x A 4 -PAM ,參見圖2之左部分。對於此情況,圖3中顯示該最大傳輸率Ia (XY 1Y 2 )。應注意,此最大傳輸率稍微小於該等對應容量C r ,主要因為使用均勻輸入取代高斯。
Benelli之方法(G.Benelli之"一種用於一ARQ協定中之調變及頻道編碼之整合之新方法",見於IEEE Trans .Commun .,第COM-40卷,第1594至1606頁,1992年10月)可於正常重複再傳輸時用以改良,亦即藉由不同地調變該再傳輸符號。可例如採用 其中若α>0,則M 2 (α)=2α-5,而且對於α<0,M 2 (α)=2α+5。此方法稱為經縮放重複,因為一符號係藉由一因數(此處為2)加以縮放,而且然後補償(加-5或+5),以便獲得一來自A 4-PAM 之符號。此導致該等信號點(x ,M 2 (x )),其對於x A 4-PAM ,參見圖2、右部分。同時對於該經縮放重複之情 況,圖3中顯示該最大傳輸率I b (XY 1Y 2 )。應注意,此最大傳輸率僅稍微小於該基本容量C 。然而若該SNR並未非常小,則正常重複確定在該基本傳輸以下。
其次,將討論該調變複雜度。經縮放重複勝過正常重複,但亦具有一缺點。在一正常重複系統中,將該輸出y k =(y k 1y k 2 )/2簡單地截割。在一使用經縮放重複之系統中,僅可在區別二個情況後截割。較精確者,請注意x k 2M 2 (x k )=2x k D 2 (x k ), (8) 其中若α>0,則D 2 (α)=5,而且若α<0,則D 2 (α)=-5。現在可將一截割器用於
假設x k {-3,-1},則獲得:D 2 (x k )=-5,而且此隱含將於0處放置一臨界值,以區別-3與-1。類似地,假設x k {+1,+3},則獲得D 2 (x k )=5,而且再次必須以於0處的一臨界值截割y k 1 +2y k 2 。然後藉由最大化而在該二個候選者中找到該最佳總體候選者
其次,將描述該2×2 MIMO頻道之基本性質,而且將引入一模型描述。圖4中顯示一2×2 MIMO頻道。該發射器T及該接收器R兩者使用二個天線。在傳輸k 處之輸出向量(y 1k ,y 2k )係關於該對應輸入向量(x 1k ,x 2k ),如給定為 其中(n 1k ,n 2k )係一對獨立零平均值循環對稱複數高斯,兩 者具有變異數σ2 (每二維)。不同傳輸中之雜訊變數對係獨立。
假設該四個頻道係數h 11h 12h 21h 22 係獨立零平均值循環對稱複數高斯,各具有變異數1(每二維)。該等頻道係數係於K 傳輸的一區塊前選出,並且在該區塊上保持恆定。該等複數已傳輸符號(x k 1 ,x k 2 )必須滿足一功率限制,亦即
若該等頻道輸入變數係獨立零平均值循環對稱複數高斯,兩者具有變異數P /2,則所得之相互資訊(此處稱為Telatar容量,參見I.E.Telatar之"多天線高斯頻道之容量",見於European Trans.Telecommunications,第10卷,第585至595頁,1999。(原始公開於AT&T Technical Memorandum,1995))係 其中 亦即該實際頻道係數矩陣及I 2 :該2×2單位矩陣(此處表示H之Hermitian轉置。其牽涉轉置及複數共軛兩者)。同時在該2×2 MIMO情況中,該信號對雜訊比係定義成
顯示(參見例如H.Yao之"MIMO通信系統之有效信號、 碼及接收器設計",見於Ph.D.thesis,M.I.T.,2003年6月,第36頁)對於固定R 及夠大之SNR 其對於某常數γ。
現在將描述該最不良情況之錯誤機率。考慮M個K ×2碼矩陣 c 1 , c 2 ,..., c M (各用於每一訊息),導致一單位平均能量碼。則Tarokh、Seshadri及Calderbank之"高資料率無線通信之時空碼:效能準則及碼建構",見於IEEE Trans.Inform.Theory,第44卷,第744至765頁,1998年3月,其顯示對於大SNR 其對於某一γ' 並且若差分矩陣 c c ' 之秩係2,而且傳輸若對於所有差分矩陣此成立,則所謂該分集之階係4。因此合理地最大化所有碼矩陣差之行列式之最小模數。
S.M.Alamouti之"用於無線通信的一簡單傳輸分集技術",見於IEEE J.Sel.Areas.Comm.第16卷,第1451至1458頁,1998年10月,其建議該2×2 MIMO頻道的一調變方案(時空碼),其允許一非常簡單之偵測器。二個複數符號s 1s 2 係於該第一傳輸(一奇數傳輸)中及該第二傳輸(該下一偶數傳輸)中加以傳輸,此等符號係些許重複。較精確者 該已接收信號現在為 重寫此導致 或者較緊密者 y s 1 a s 2 b n ,(20) 其中
由於 a b 係正交,該等符號估計可藉由分別簡單地截割( y )/( a )與( b )/( b )而決定。
該Alamouti方法之另一優點在於 a b 之密度係(同樣的並且)以8個自由度開平方。此導致一4之分集階,亦即
其對於固定速率及夠大SNR。
該Alamouti方法的一缺點係每二個傳輸僅傳輸二個複數符號,但較重要者,該第二傳輸中所傳輸之符號係些許重複該第一傳輸中之符號。然而以上提議可改良正常重複。
經縮放Alamouti方法
其次,將描述如根據本發明之一具體實施例所建議之經縮放Alamouti方法。以上已見到在該SISO情況中,於正常重複時,經縮放重複獲得改良,在該標準Alamouti方案,此概念可用以改良MIMO傳輸。
取代僅重複該第二傳輸中之符號而將其縮放(模數化該信號星象圖之大小)。較精確者,當s 1s 2之元素時,可傳輸 其中若β A 64-QAM ,則M (α)=β並且D (α)=16γ,而且存在具有整數分量的一複數數字γ,使α=β+16γ。
為了看見該經縮放Alamouti方法之觀點為何,已實現一蒙地卡羅(Monte Carlo)模擬。僅考慮來自A 64-QAM 之符號。已隨機產生2×2 MIMO頻道,而且對於每一樣本頻道,計算有關s 1s 2 之標準Alamouti及經縮放Alamouti情況之頻道輸入與輸出間之相互資訊,s 1s 2A 64-QAM 之元素。再者,已判定每一樣本頻道之Telatar相互資訊。基於此等相互資訊已計算故障容量。由此模擬,可推斷對於速率R <5位元/頻道之使用,該經縮放Alamouti方法並未不比Telatar差很多。Telatar假設高斯輸入分佈,而且在該Alamouti情況中已應用一均勻A 64-QAM 分佈。此損失很小(約略0.1位元/維度),因為以位元/維度計之速率很小(大約1位元/維度)。
此外,該經縮放Alamouti方法之速率顯著大於標準Alamouti方法之速率(在14dB接近於1位元/頻道使用,並且具有1%之故障)。標準Alamouti係比經縮放Alamouti差了約略2dB。為了實現在約略相同故障機率之某一速率,該標準Alamouti方法需要比經縮放Alamouti多2dB之信號功率,如以下表中所示:
推斷可謂從故障容量之觀點,經縮放Alamouti係較標準Alamouti更佳。經縮放Alamouti之缺點在於其較大之解碼複雜度。此將討論於後。
在該經縮放Alamouti情況中,該已接收向量係
可將此寫成 y s 1 a s 2 b D (3s 1 ) c D (3s 2 ) d n ,其中
重要的係應注意,恰如該標準Alamouti之情況, b =0,因此 a b 係正交。
一最佳偵測器決定
對於小於0.01之訊息錯誤率,經縮放Alamouti較標準Alamouti更佳約略3dB。對於較小訊息錯誤率,該差變得較小。
其次,解釋該經縮放Alamouti方法之解碼方法。
該第一建議演算法現在檢查所有可能偏移組合D (3s 1 )及D (3s 2 )。應注意,兩者偏移可假設數值dd'jd" ,其中d' {-16,0,+16}而且d" {-16,0,+16}。此隱含可能有81個偏移組合,而且必須加以檢查。檢查一組合要求偏移校正,亦即計算 z y D (3s 1 ) c D (3s 2 ) d
然後以一限制方式截割 z / a z / b 兩者,亦即僅考慮具有假設之D (3)及D (3)之。此導致所有81個替代的一距離度量,將從該81個替代中選擇最佳者。
一第一改良出自以下事實:無論如何若該已接收向量至 一信號點之距離將太大,則不需要截割。此距離的一下界可藉由考慮以下而獲得 亦即垂直於 a b 兩者之 z 之部分。則 而且若| z |2 大於(或等於)對於前面之一偏移組合所觀察之最小之距離平方,則無需截割。
另外注意, z y D (3s 1 ) c D (3s 2 ) d , (26)其中 因此 z y c d 的一簡單線性組合,而且若D (3s 1 )及D (3s2 )變動,則可輕鬆地加以計算。
在該第二方法中,若該第一已檢查偏移組合已產出一小的距離平方,則運作量較小。此可藉由基於 y 進行D(3s 1 )及D (3s 2 )兩者的一估計而達成。因此考慮 而且假設該第二及第三項係雜訊項。則可計算 而得s 1 並且實質上D (3s 1 )的一估計。此處 類似地,考慮 現在可計算 而得s 2 並且實質上D (3s 2 )的一估計。此處
現在使用D(3s 1 )及D(3s 2 )之初始猜測獲得該信號對(s 1 ,s 2 )的一初始估計。該關聯之距離平方用於該解碼程序之剩餘部分。
經旋轉與縮放之Alamouti方法
其次,將描述如根據本發明之另一具體實施例所建議之 經旋轉與縮放之Alamouti方法。以上已見到在該SISO情況中,於正常重複時,經縮放重複獲得改良,在該標準Alamouti方案,此概念用以改良MIMO傳輸。取代僅重複該第二傳輸中之符號而將其縮放。較精確者,當s 1s 2之元素時,對於某θ 值,該等信號 將傳輸其中M 2 (α)=2α-D 2 (α)而D 2 (α)=5β,當β係α之複數記號時,定義成β=sign(Re(α))+j sign(Im(α))。
一第一問題係決定一良好θ 值。因此對於0 θ π/2,該行列式之最小模數mindet(θ ) 將決定其中 係該碼矩陣。作為θ 之一函數之行列式之最小模數可見於圖5中。該最小行列式之最大值(亦即7.613)出現於θ opt . =1.028。 (35)
θ 值將用於以下解釋之步驟中。
其次,將討論該硬式判斷效能。數個R =4時空碼之訊息錯誤率已在圖6中加以比較。訊息錯誤率指機率應注意,對於每一"測試",已準備一新訊息(8位元)及一新頻道矩陣。對於所有碼,該解碼器係最佳,其執行ML 解碼(徹底搜尋)。已考慮之方法有:.未編碼(B):傳輸 其中x 11x 12x 21x 22 係來自A 4-QAM 之符號。
.Alamouti(C):參見(17),其中s 1s 2 係來自A 16-QAM 之符號。
.傾斜QAM(E):建議於H.Yao及G.W.Wornell之"使用以旋轉為主之時空碼達成該全MIMO分集多工邊界",見於Proc.Allerton Conf.Commun.Control,及ComPut.,Monticello,IL,2003年10月。令s a s b s c s d 符號來自A 4-QAM 。則傳輸 其對於
.經旋轉與縮放之Alamouti(D):參見(32),其對於θ =1.028,且其中s 1s 2 來自A 16-QAM
.黃金碼(F):建議於J.-C.Belfiore、G.Rekaya、E.Viterbo之"黃金碼:具有非消失行列式的一2×2全速率時空碼",見於IEEE Trans.Inform.Theory,第IT-51卷,第4號,第1432至1436頁,2005年四月。現在 其中α=1+j 以及而且其中z 1z 2z 3z 4A 4-QAM 符號。
.Telatar(A):此係該頻道之Telatar容量小於4之機率。
清楚地,從圖6可得:該黃金碼顯示該最佳結果。然而經旋轉與縮放之Alamouti僅稍微不良約略0.2 dB。重要的係,Alamouti編碼較該黃金碼更不良約略2 dB。
其次將討論該解碼複雜度。清楚地,該黃金碼較經旋轉與縮放之Alamouti更佳。然而,該黃金碼原則上要求該解碼器檢查全部256個替代碼字。此處將研究一次佳經旋轉與縮放Alamouti解碼器之複雜度及效能。註:=exp( opt. )。
在該經旋轉與縮放之Alamouti情況中,該已接收向量係
可將此寫成 y s 1 a s 2 b D 2 (s 1 ) c D 2 (s 2 ) d n ,其中
對於 a b 間之角度,可將其寫成
取代解碼(s 1 ,s 2 ),亦可能解碼(t 1 ,t 2 )=(M 2 (s 1 ),M 2 (s 2 )),其與(s 1 ,s 2 )等值。因此重寫(32)而獲得 由於tM 2 (s ),隱含s =-M 2 (t )。
可將此寫成 y t 1 a '+t 2 b '-D 2 (t 1 ) c '-D 2 (t 2 ) d '+ n ,其中 而且對於 a ' b ' 間之角度,可將其寫成
現在從不等式(其中r 1r 2 係實數)可得 否則
因此合理地,當(46)成立時解碼(s 1 ,s 2 ),而且當(46)不成立時解碼(t 1 ,t 2 )。使用迫零進行解碼,則該雜訊增強至多1/(1-0.3932 )=1.183,其係0.729dB。以下將見到將證明雜訊增強在實務上並不值得注意。
該解碼程序係直截了當。關注解碼(s 1 ,s 2 )之情況片刻。 對於(D 2 (s 1 ),D 2 (s 2 ))之全部16個替代,該向量 z y D 2 (s 1 ) c D 2 (s 2 ) d s 1 a s 2 b n (49) 並且加以決定。然後該充分統計
其次該倒置矩陣 將加以使用,其中D =( a )( b )-( a )( b ),以獲得
其次截割兩者,其限制為:僅有與該等假設值D 2 (s 1D 2 (s 2 )匹配之替代才為可能結果。此對於全部16個替代(D 2 (s 1 ),D 2 (s 2 ))加以進行。現在選擇就歐基里德距離方面之最佳結果。
在考慮所有替代(D 2 (s 1 ),D 2 (s 2 ))中,僅要求截割當 之長度小於目前為止已觀察之最近距離。此縮減截割步驟之數目。此途徑將稱為方法1。
若解碼係以最有希望之替代(D 2 (s 1 ),D 2 (s 2 ))開始,則甚至可進一步減少截割步驟之數目。此途徑稱為方法2。因此,應注意,X中之"直接"s 1信號分量係
因此可截割( y )/( e 1 ),以便尋找D 2 (s 1 )的一良好猜測。類似地截割( y )/( e 2 ),以尋找D 2 (s 2 )的一良好第一猜測。 此處
然後考慮其他15個替代,而且僅於必要時加以截割。應注意,若將解碼(t 1 ,t 2 ),則應用類似方法。
已實現模擬,首先找出:相對於ML解碼,根據方法1及方法2之次佳解碼器之降級為何。圖7中顯示該結果。該結論係該等次佳解碼器並未展現一效能降級。
亦已考慮方法1及方法2兩者之平均截割數目。其顯示於圖8中。可觀察方法1導致平均約略7個截割(與16相反)。方法2將平均截割數目進一步減少至約略3.5。
如以下所解釋,該經旋轉與縮放之Alamouti亦可基於9-PAM。該等前面章節中所考慮之碼之速率係每頻道使用4位元。為了增加此速率,其證明重要的係從具有一平方數目之點的一PAM星象圖開始。因此下一星象圖係9-PAM。已考慮之映射係M 3 (.),其係如所更新加以定義 重要的係,此映射滿足M 3 (M 3 (x ))=-x ,參見圖9。存在三個間隔,各含有三個點。
更一般而言,M 3 (x )=3 xD 3 (x ) 在以上範例中,其對於子函數成立。
現在,可設計基於對來自之符號s 1s 2 之此映射及操作的一經旋轉與縮放Alamouti方法。θ 之最佳值=1.308。現在可再次比較此方法與對應之未編碼、Alamouti、傾斜QAM及黃金碼方法。圖10中顯示該等結果。再次清楚地,該黃金碼具有最佳效能。經旋轉與縮放Alamouti再次較不良約略0.5dB,但Alamouti較該黃金碼不良約略4dB。
再次,進行模擬,以找出相對於ML解碼,根據方法1及方法2之次佳解碼器之降級為何。圖11中顯示該結果。再次,該結論係該等次佳解碼器並未展現一效能降級。圖12中顯示方法1及方法2兩者之截割數目。可觀察方法1導致平均約略21個截割(與81相反)。方法2將平均截割數目進一步減少至約略10。應注意,此處徹底搜尋要求檢查812 =6561個碼字。
該結論係如根據本發明所建議之經旋轉與縮放Alamouti方法具有一硬式判斷效能,其僅較該黃金碼之效能稍微不良,但可以一可接受複雜度進行解碼。
圖13及14顯示根據本發明之發射器及接收器之二個特定具體實施例之方塊圖。此等發射器及接收器之一般功能及運作已描述於WO 99/14871(此處對其進行明確之解釋參考),因而此處將不詳細解釋。調適此等發射器及接收 器,使其元件可實現如上述之本發明之方法之步驟。
圖13顯示一具體實施例的一方塊圖,其中二個(一般而言k個)發射器天線(提供空間分集)利用多重時間間隔,而且利用一個接收器天線。具體言之,發射器10說明性包括天線11及12,而且其處置2個(一般而言k個)符號之區塊中之輸入資料,其中k係發射器天線之數目。每一區塊採用2個(一般而言k個)符號間隔進行傳輸。亦為說明性,該圖1配置包含一接收器20,其包括一單一天線21。
於任何給定時間,由一發射器天線所傳送的一信號經驗由該傳輸鏈、該空中鏈路及該接收鏈組成之遍歷之頻道之干擾效應。該頻道可藉由一量值回應及一相位回應所構成的一複數相乘性失真因數加以模型化。來自干擾及其他來源之雜訊被加至該二個已接收信號,亦即在任何時間接收並由接受及放大區段25輸出之所得基頻信號包含該等已傳輸信號以外之此類雜訊。
該已接收信號係施加於頻道估計器22,該頻道估計器提供代表該等頻道特徵之信號,抑或其最佳估計。
該等信號係施加於組合器23及最大可能性偵測器24。
由頻道估計器22所發展之估計可藉由傳送頻道估計器22所恢復的一已知調校信號並且基於該已恢復信號計算該等頻道估計而獲得。此係一熟知途徑。
組合器23於該第一時間間隔中接收該信號,將其緩衛、於該下一時間間隔接收該信號,而且組合該二個已接收信號,以發展該等已傳輸信號之估計。
此等信號估計係傳送至最大可能性偵測器24,其以來自估計器22之輔助頻道估計發展該等已傳輸信號。
圖14呈現一具體實施例,其中使用二個傳輸天線31、32及二個接收天線51、52。由天線51接收之信號係施加於頻道估計器53及組合器55,而且由天線52接收之信號係施加於頻道估計器54及組合器55。從該等傳輸天線31、32至該接收天線51之頻道轉移功能之估計係由頻道估計器53施加於組合器55及最大可能性偵測器56。類似地,從該等傳輸天線31、32至該接收天線52之頻道轉移功能之估計係由頻道估計器54施加至組合器55及最大可能性偵測器56。此處,已恢復該等已傳輸信號。
以上已參照具體實施例(指2×2 MIMO系統)而解釋本發明。然而在大部分一般意義中,在本發明下面之想法指建立一區塊碼,用以將一k符號向量映射至一n符號向量,其中該n個符號係該k個符號或該k個符號之複數共軛之經縮放(且較佳者經旋轉)版本,而其中至少一縮放函數係具有至少二個片段之片段式線性。
然後對於具有k個傳輸天線的一MIMO系統建立該碼。因此,譬如像該申請專利範圍中提到之"對"亦可為使用一適當已調適映射的三位元組或元組,而且可將本發明應用於任何MIMO系統。譬如,可使用縮放(及旋轉)將三個複數符號(一三位元組)映射至2、3或更多符號三位元組。另外,較佳者有關經縮放重複之本發明之具體實施例用於ARQ SISO系統,其中該再傳輸係該原始已傳輸符號的一 經縮放版本。
又另外,取代一MIMO發射器,一分佈式發射器亦可使用一經旋轉與縮放Alamouti方法之本發明。然後成對分佈式發射器必需可使用經旋轉與縮放Alamouti將一訊息編碼。該虛擬(或分佈式)發射器出現於例如中繼通信中。該真實發射器將一訊息傳送至二個繼電器,然後此等二個繼電器充當一分佈式發射器。換言之,該編碼及傳輸可在不同位置進行。所以取代具有二個天線的一發射器,可存在各具有一天線之二個(合作)發射器。
與以上範例不同,可將該縮放函數及/或該旋轉函數應用於與其在此等範例中所應用之符號不同之符號。可將該縮放函數及/或該旋轉函數譬如應用於所有符號。根據本發明,應使該映射為片段式線性。該縮放函數以一常數縮放該輸入信號,該常數通常為2、3、4等,但亦可能例如2+j之複數縮放因數。
另外,根據本發明,亦可使用一單一接收天線。
如以上所解釋,該解碼方法係與該Alamouti解碼器/接收器不同。根據該Alamouti方法,該等已接收信號係正交,所以可將不具有雜訊增強之符號估計分離,而且非常簡單地實施該最佳解碼(ML)。在該經縮放重複碼中,此並非該情況,而且該最佳解碼較複雜。然而,給定該選定縮放函數之性質,根據本發明導出一簡單次佳解碼方法,其基本上如同該最佳解碼般執行良好。
在一般意義中,該解碼必須匹配該編碼。所以,若該碼 改變,該解碼亦將因此改變。然而,只要滿足有關該縮放M(M(x))=-x之條件,該解碼具有類似之可能次佳而且簡單之結構。
簡言之,根據本發明之解碼一般而言由下列步驟所組成:1)檢查(46)並且決定解碼(s 1 ,s 2 )或其經縮放版本(t 1 ,t 2 )。
2)對於(D 2 (s 1 ),D 2 (s 2 ))之每一替代(此檢查來自具有至少二個片段之片段式線性之若干雙。存在16雙可能之(D 2 (s 1 ),D 2 (s 2 )),因為D 2 () 返回可具有下列四個數值(+1+j,+1-j,-1-j,-1+j)之引數之複數記號。對於D 3 () ,取代該記號函數,定義該實數維度之3個區域,及虛數維度之3個區域(參見(56))。因此獲得可能3*3×3*3=81雙。):
2a)使用方程式(49)至(52)導出該雙(s 1 ,s 2 )的一估計(,)。(該等向量cdc'd' 仍然同樣與該星象圖大小無關。該向量aba'b' 稍微改變。使用M 2 ,其在某些元素中具有該因數2。使用M 3 ,取代該因數2,其具有該因數3。)
2b)計算並且保存該已接收向量 z 與該估計( a b )間之歐基里德距離(參見(53))
2c)截割(s 1 ,s 2 )之估計並且保存該等已截割結果
3)(s 1 ,s 2 )之最終估計係對應於該最小歐基里德距離之已截割結果。
在方法1及方法2中,該步驟2c)僅於目前歐基里德距離係目前為止遇到之最小者時執行。
方法2進一步縮減截割步驟之數目,其係藉由從y 開始研 究(D 2 (s 1 ),D 2 (s 2 ))對,y係(D 2 (s 1 ),D 2 (s 2 ))的一良好猜測,其係藉由將方程式(49)之已接收向量z 投影至由(55)之e 1 e2 所定義之空間而獲得。(e 1 e 2 亦取決於該縮放函數而改變。使用M 2 ,其係定義於(55)中。使用M 3 e 1 e 2 中之1/2因數變成一1/3因數。)
如同在一正規通信系統中,該截割器取決於該星象圖大小。一4QAM及一16-QAM具有不同截割器。
在本發明之另一具體實施例中,已注意目前系統使用M-QAM星象圖,其採用整數值,而且並非設計成用於分集傳輸。
其係設計成用以增加該最小歐基里德距離(用以決定該SER之主要因數),但不考慮該最小乘積距離。根據其他具體實施例,建議新星象圖。此等星象圖不需採用整數值,而且應考慮該最小乘積距離作為該設計準則。
亦考慮相同頻道之最不良情況情節之最小歐基里德距離。該歐基里德距離準則隱含一重複結構(Co-Re),其應看似分集分支維度中之QAM狀星象圖。2個分支維度中之習知M-QAM星象圖之任何經旋轉版本達成相同歐基里德距離。
分支維度中之最佳旋轉應最大化該最小乘積距離。該要求係n個位元/實數維度。一習知星象圖係2^(2n)-QAM/複數維度。
根據此新星象圖,建議以下:-步驟1:以分集分支維度中之2^n-QAM星象圖開始(x =分支1中之已傳輸值,y=分支2中之已傳輸值,z=x+j*y2^n QAM);-步驟2:以θ=1/2*tan-1 (2)旋轉2^n QAM,而且z2^n QAM,因此x=Real(z*exp(j θ)),y=Imag(z*exp(j θ)),x或y設定將形成該新PAM星象圖/實數維度(T),而且x及y將形成Co-Re方案之映射結構,其對於每一實數維度。
-步驟3:藉由使用由T所獲得之二個PAM形成該複數星象圖,其對於每一維度。
s1新星象圖:Cnew={s1=x1+j*x2|x1,x2T},其對於該第一傳輸。
s2新星象圖:Cnew={s2=y1+j*y2|y1,y2T},其對於該第一傳輸。
在此具體實施例的一範例中,最大化該最小乘積距離之最佳旋轉角係θ=1/2*tan-1(2)。因此,2個分支分集系統之此等新星象圖設計致能一改良式最小乘積距離,導致使用Co-Re的一較低SER。再者,在較高星象圖大小中,此改良較高。此可應用於任何2分支分集方案,例如,WLAN、蜂巢式、廣播或感測器網路,及譬如用於(無線)系統中之頻道估計。該tx信號包含某些已知前導序列,所以該rx可估計由該頻道已如何訛誤該信號。DVB-T亦執行一頻道估計,但於一SFN存在時,並且使用OFDM調變。SFN使該頻道非常長。OFDM允許在該時間頻率柵格中插入前導。
此具體實施例具有數個優點,如:一良好最小乘積距離、一良好符號錯誤率效能、容易縮放至較高星象圖大小、以習知QAM星象圖開始,及以該最佳角度旋轉。然而,該等新星象圖並未在該柵格上,而且難以得到該等正確值。因此,每一星象圖點要求較多記憶體,而且使該截割操作較複雜。在此具體實施例的一變體中,建議不同星象圖。該等星象圖點係在該柵格上,亦即,採用整數值作為習知QAM,而且可為非均勻分佈,亦即,並非該星象圖中之所有點彼此等距。根據一種按照此變體之方法,第一步驟係考慮每一星象圖大小之所有可能整數值。然後,正規化該平均功率,並且就最小乘積距離方面比較該等星象圖。譬如,一4-PAM星象圖設計(正常4-PAM dproduct=64,最佳4-PAM dproduct=80.17)選項:a)[-2-1 1 2]->[-2-1 1 2]*squareroot(10)/squareroot(5)->dproduet=36。
b)[-4-1 1 4]->[-4-1 1 4]*squareroot(10)/squareroot(17)->dproduct=77.85 c)[-5-1 1 5]->[-5 -1 1 5]*squareroot(10)/squareroot(26)->dproduct=59.17 d)[-5-2 2 5]->[-5-2 2 5]*squareroot(10)/squareroot(29)->dproduct=52.44...[-4-1 1 4]4-PAM星象圖看似一良好選擇,其具有一高的最小乘積距離,而且其在該柵格上。複數星象圖可藉由使用在實數及虛數軸兩者之新PAM星象圖而想出。4-PAM-> 新16 QAM複數星象圖。對於較大星象圖大小:選項1:可應用相同途徑,亦即,搜尋考慮該最小乘積距離當作該準則之每一可能性選項2:使用該等新4-PAM星象圖之一之基本結構,並將其重複。
選項2看似較實際 譬如,藉由複製該[-4-1 1 4]結構以獲得一新16-PAM而設計新16-PAM(256 QAM)星象圖。用於2個分支分集系統之柵格上之此等星象圖致能良好最小乘積距離->使用Co-Re之低MER。在較高星象圖大小中,該改良較高,其仍然在該柵格上,亦即,採用在該接收器中要求較少記憶體之整數值。此改良可應用於任何2分支分集方案,例如,WLAN、蜂巢式、廣播或感測器網路、STBC、時空交織碼、OTD。
在本發明之另一具體實施例中,建議一種用於2個傳輸天線系統之新時空區塊編碼(STBC),其使用經縮放重複及旋轉之概念,但並未如Alamouti編碼中具有任何符號之共軛。特別在高星象圖大小中,該新STBC結構提供較STBC更佳之符號錯誤率效能,而且達成與該等黃金碼相同之最小行列式及一類似SER效能。RSA係基於Alamouti編碼中之經縮放重複。Alamouti編碼提供一已簡化接收器結構,用於正常重複。若吾人不限於Alamouti結構,則可達成較佳效能複雜度折衷。
最小行列式準則(c及c'係任何可能之STBC碼對) 最小行列式係高度取決於該星象圖重配置方案之最小乘積距離,因此使用具有該前面具體實施例中所定義之星象圖之經縮放重複方案。新方案可藉由修改該現存STBC結構而幫助增加該最小行列式。
由於該等串流之乘積距離受到該新STBC結構影響,已改變最大化該最小行列式之最佳旋轉角。
最佳旋轉係θ=π/2,其對於所有星象圖大小。與該黃金碼相同之最小行列式,其對於所有星象圖大小。對於16 QAM,行列式之最小絕對值係8.9443。使用此速率之黃金碼之最小行列式亦為8.9443。
對於R=6.34位元/傳輸之星象圖大小增加之最小行列式->與該黃金碼類似之MER較例如Alamouti、未編碼、傾斜QAM或RSA之其他競爭者更佳之效能。2個傳輸天線系統的一新STBC結構此結構准許一較高之最小行列式、一較有效之時空區塊碼、較RSA編碼更佳的一SER,在設計STBC中較佳利用經縮放重複途徑。與該等黃金碼類似的一SER效能。
根據本發明之另一變體,建議將經旋轉及縮放Alamouti編碼(RSA)的一新時空區塊編碼結構用於二個傳輸天線系統。其顯示該新STBC勝過該熟知Alamouti編碼,而且提供 一穩健傳輸方案,不致要求一非常複雜之接收器結構。亦提到存在某些其他競爭者時空區塊碼,亦即,黃金碼,其亦勝過該Alamouti編碼。相較於該黃金碼,建議之RSA編碼之執行稍微不良。然而,其享有較使用徹底ML搜尋進行解碼之黃金碼更間單的一解碼機制。此變體針對藉由提供一新重複結構而改良該RSA編碼之效能,該新重複結構利用設計成用於前面建議之2分支分集系統之新星象圖及星象圖重配置方案。藉由應用一適當旋轉,該新重複結構提供該RSA編碼較目前重複結構更佳的一符號錯誤率效能,而且縮減RSA編碼與黃金碼間之效能間隙。對於某些星象圖大小,其完全消除該效能間隙。根據本發明,該RSA編碼仍然享有該簡單接收器結構。
經縮放重複方案係基於習知Co-Re方案。在本發明之前面變體中,吾人顯示習知Co-Re方案之效能可藉由使用新星象圖及新Co-Re結構而改良。此等新星象圖及Co-Re結構可用以增加決定該STBC之符號錯誤率之最小行列式準則:最小行列式準則(c及c’係任何可能之STBC碼對)。
最小行列式係高度取決於該星象圖重配置方案(以RSA之經縮放重複方案)之最小乘積距離對於RSA, 新星象圖及星象圖重配置方案可藉由修改該現存經縮放重複方案而幫助增加該最小行列式。RSA編碼之新經縮放重複方案使用新星象圖及星象圖重配置其僅改變該重複結構,而非該縮放概念。發現最大化該最小乘積距離之最佳旋轉角為δ=1/2*tan-1 (2)。縮放因數=tan(δ)=(1-root5)/2。對於所有星象圖大小,此縮放因數係固定。
由於該串流之乘積距離受到該新經縮放重複方案影響,已改變最大化該最小行列式之最佳旋轉角。
對於16-QAM(每一實數維度係4-PAM),最佳旋轉係θ=tan-1 (2)。
行列式之最小絕對值係8.9443>7.613使用此速率之黃金碼之最小行列式亦為8.9443。
對於R=4位元/發射器之星象圖大小。一增加之最小行列式導致與該黃金碼類似之SER。其仍然享有簡單接收器機制及較例如Alamouti、未編碼、傾斜QAM之其他競爭者更佳之效能。
對於較高星象圖大小,黃金碼與RSA間之效能間隙將藉由使用該新重複結構而縮減,同時RSA將仍然享有較簡單之解碼結構。
最近,建議將黃金碼用於二個傳輸天線系統。其顯示此新時空區塊碼勝過該熟知Alamouti編碼,而且提供一穩健傳輸方案。然而,其要求一非常複雜之接收器結構,亦即,徹底ML搜尋。本發明之此變體建議一次佳低複雜度接收器結構,以便解碼該黃金碼,其係藉由使用根據本發 明用於偵測該RSA編碼之相同途徑。特別在高星象圖大小中,該新接收器結構提供該計算複雜度的一實質縮減,同時提供接近於該ML偵測之符號錯誤率的一可接受位準。
黃金碼結構[1] 其中, -abcd 係M-QAM符號 黃金碼可視為基於經縮放重複之時空編碼方案經縮放重複提供該已傳輸信號之兩個不同解譯不同解譯意謂不同空間簽章選擇最佳解釋(空間簽章之集),以應用迫零(ZF)接收器:使用ZF接收器之最低雜訊增強,而且檢查每一子區域之歐基里德距離。
該黃金碼之解譯: 對於給定aaj 同樣地,對於給定bbi 存在該黃金碼之四個不同解譯: 導致4個不同空間簽章集在2×2 MIMO系統中的該已接收信號係在第一時槽中在第二時槽中因此, 因此建議一種次佳接收器結構:黃金碼可以4個不同方式解譯 4個不同空間簽章集接收器之最簡單形式係迫零(ZF)將該ZF接收器應用於該最佳解譯搜尋最低雜訊增強由於ZF接收器而損失之信號功率% 根據一種按照此範例之方法,一第一步驟係尋找最小化該損失之Si,然後應用Si之ZF接收器,並且檢查所有可能偏移值,亦即,M。
此處給定下列表,用於此等系統之複雜度之比較。
建議的一低複雜度黃金碼解碼器係基於該黃金碼之不同解譯。該接收器較ML偵測更簡單,但較ZF接收器更複雜。因此,其係複雜度與SER效能間的一良好折衷。
雖然本發明已在該等圖式及前述說明中詳細說明及描述,此類說明及敘述視為說明性或示範性,而非限制;本 發明不限於揭示之具體實施例。
熟諳此技術者從該等圖式、揭示內容及隨附之申請專利範圍之一探討並且在實行請求之發明中可瞭解及完成揭示之具體實施例之其他變動。
在該申請專利範圍中,文字"包括"不排除其他元件或步驟,而且不定冠詞"一"或"一個"不排除複數個。一單一單元可履行該申請專利範圍中所陳述之數個項目之功能。在互不相同的附屬項中對特定度量加以陳述之僅有事實,並不指示不能有利地使用該些度量之組合。
可將一電腦程式儲存/分佈於一合適之媒體,例如一光學儲存媒體,或者與其他硬體一起供應或當作其部分的一固態媒體,但亦可以其他形式加以分佈,例如經由網際網路或其他有線或無線電信系統。
不應將該申請專利範圍中之任何參考記號解釋成該範疇之限制。
10‧‧‧發射器
11‧‧‧天線
12‧‧‧天線
20‧‧‧接收器
21‧‧‧天線
22‧‧‧頻道估計器
23‧‧‧組合器
24‧‧‧最大可能性偵測器
25‧‧‧接受及放大區段
31‧‧‧傳輸天線
32‧‧‧傳輸天線
50‧‧‧接收器
51‧‧‧接收天線
52‧‧‧接收天線
53‧‧‧頻道估計器
54‧‧‧頻道估計器
55‧‧‧組合器
56‧‧‧最大可能性偵測器
R‧‧‧接收器
T‧‧‧發射器
現在將參考圖式而更詳細解釋本發明,其中圖1顯示一種其中將雜訊加入一已傳輸信號之一般頻道的一方塊圖,圖2顯示從x k1 x k2 之二個映射,右邊顯示該經縮放重複映射,左邊係正常重複映射,圖3顯示一圖式,其說明該基本容量C 、該重複容量C r 、在該正常重複情況Ia中使用4-PAM可達成之最大傳輸率,及使用經縮放重複映射Ib可達成之最大速率, 圖4顯示一2×2 MIMO頻道的一模型,圖5顯示一圖式,其說明經旋轉與縮放Alamouti之行列式之最小模數當作水平上之θ 的一函數,圖6顯示一圖式,其說明數個R=4時空碼之訊息錯誤率,圖7顯示一圖式,其說明三個經旋轉經縮放Alamouti解碼器(R =4)之訊息錯誤率(水平係SNR),圖8顯示一圖式,其說明二個經旋轉經縮放Alamouti解碼器(R =4)之截割之數目(水平係SNR),圖9說明使用經縮放重複映射M 3 (.)之另一具體實施例,圖10顯示一圖式,其說明數個R=6.34時空碼之訊息錯誤率(水平係以dB計之SNR),圖11顯示一圖式,其說明三個經旋轉經縮放Alamouti解碼器(R=6.34)之訊息錯誤率(水平係SNR),圖12顯示一圖式,其說明二個經旋轉經縮放Alamouti解碼器(R=6.34)之截割之數目(水平係SNR),圖13顯示本發明之一具體實施例的一方塊圖,其中利用二個發射器天線及一接收器天線,以及圖14顯示本發明之一具體實施例的一方塊圖,一具體實施例係使用二個發射器天線,並且利用二個接收器天線。
(無元件符號說明)

Claims (24)

  1. 一種編碼器,其用於將一輸入資料流之輸入符號編碼成一頻道資料流之頻道符號以用於在一傳輸頻道上傳輸,該編碼器包括:映射構件,其用於將輸入符號逐區塊地映射至成對頻道符號,一區塊包括二個輸入符號,該映射構件係配置成將該區塊映射至二對頻道符號,而使該二對頻道符號包含該二個輸入符號之經縮放版本及/或該二個輸入符號之至少一者之複數共軛之經縮放版本,該等經縮放版本係藉由應用一縮放函數而獲得,該縮放函數具有一絕對值不等於一的一縮放因數,而且為具有至少二個片段之片段式線性,以及輸出構件,其用於輸出該等頻道符號。
  2. 如請求項1之編碼器,其中該映射構件係調適成應用一縮放函數以用於縮放該等輸入符號,該縮放函數係取決於該二個輸入符號之一者之正負號,尤其係該第二輸入符號之正負號。
  3. 如請求項1之編碼器,其中該映射構件係調適成應用一縮放函數以用於縮放該等輸入符號,該縮放函數係取決於該二個輸入符號之星象圖。
  4. 如請求項1之編碼器,其中該映射構件係調適成應用一縮放函數M(s)以用於縮放該等輸入符號s,選擇該縮放函數M而使M(M(s))=-s。
  5. 如請求項1之編碼器,其中該映射構件係調適成應用一縮放函數M2 (s)以用於縮放該等輸入符號s,該縮放函數M2 (s)係選定為M2 (s)=2s-D2 (s),其中D(s)=5b,且b係s之複數記號,定義成b =sign(Re(s ))+j sign(Im(s ))。
  6. 如請求項1之編碼器,其中該映射構件係調適成應用一縮放函數M3 (s)以用於縮放該等輸入符號s,該縮放函數M3 (s)係選定為M3 (s)=3s+D3 (s),其中該子函數D3 (s)=X用於s的大正值,D3 (s)=-X用於s的大負值,而D3 (s)=0用於s的小正值或小負值及用於s=0,X係一整數常數。
  7. 如請求項1之編碼器,其中該映射構件係調適成應用一旋轉函數以用於以一旋轉角旋轉該二個輸入符號之至少一者及/或該二個輸入符號之至少一者之該複數共軛之至少一者,而使該二對頻道符號包含該二個輸入符號之至少一者的一經旋轉版本或該二個輸入符號之至少一者之該複數共軛的一經旋轉版本,其中該旋轉角不等於0及180度。
  8. 如請求項7之編碼器,其中該映射構件係調適成應用一旋轉函數以用於以一預定旋轉角旋轉該二個輸入符號之至少一者,該預定旋轉角經選定以最大化碼矩陣之行列式之最小模數。
  9. 如請求項7之編碼器, 其中該映射構件係調適成應用一旋轉函數以用於以一固定預定旋轉角旋轉該二個輸入符號之至少一者。
  10. 如請求項7之編碼器,其中該映射構件係調適成應用一旋轉函數以用於以一旋轉角旋轉該二個輸入符號之第一者,而使該第一對頻道符號包含該第一輸入信號之該經旋轉版本。
  11. 如請求項7之編碼器,其中該映射構件係調適成將二個輸入符號逐區塊地映射至二對頻道符號,而使該第一對頻道符號包含該二個輸入信號之一者的一經旋轉版本,及另一輸入信號的一經縮放版本,以及該第二對頻道符號包含該二個輸入信號之該一者的一經縮放版本,及該另一輸入信號的一否定且複數共軛之版本。
  12. 如請求項1之編碼器,其中該輸出構件係調適成將該等頻道符號輸出至二個傳輸構件,尤其至二個傳輸天線,以用於在該傳輸頻道上傳輸該等頻道符號。
  13. 一種用於在一傳輸頻道上傳輸一頻道資料流之頻道符號之發射器,其包括:請求項1之編碼器,其用於將一輸入資料流之輸入符號編碼成該頻道資料流之頻道符號,以及傳輸構件,尤其二個傳輸天線,其用於接收來自該編碼器之該等頻道符號,及用於在該傳輸頻道上傳輸該等 頻道符號。
  14. 一種用於將一輸入資料流之輸入符號編碼成一頻道資料流之頻道符號以用於在一傳輸頻道上傳輸之編碼方法,其包括以下步驟:將輸入符號逐區塊地映射至成對頻道符號,一區塊包括二個輸入符號並且被映射至二對頻道符號,而使該二對頻道符號包含該二個輸入符號之經縮放版本及/或該二個輸入符號之至少一者之複數共軛之經縮放版本,該等經縮放版本係藉由應用一縮放函數而獲得,該縮放函數具有一絕對值不等於一的一縮放因數,而且為具有至少二個片段之片段式線性,以及輸出該等頻道符號。
  15. 一種解碼器,其係調適成逐區塊地解碼一頻道資料流之已接收頻道符號,該等已接收頻道符號尤其已藉由如請求項1之編碼器從一輸入資料流之輸入符號加以編碼並且在一傳輸頻道上傳輸,其中於編碼期間已將輸入符號逐區塊地映射至成對頻道符號,一區塊包括二個輸入符號並且被映射至二對頻道符號,而使該二對頻道符號包含該二個輸入符號之經縮放版本及/或該二個輸入符號之至少一者之複數共軛之經縮放版本,該等經縮放版本係藉由應用一縮放函數而獲得,該縮放函數具有一絕對值不等於一的一縮放因數,而且為具有至少二個片段之片段式線性。
  16. 如請求項15之解碼器,其包括: 選擇構件,其用於選擇輸入符號之一對可能函數值或輸入符號之一經縮放版本的一對可能函數值以用於解碼已接收頻道符號的一目前區塊,其中一區塊包括一對已接收頻道符號,估計構件,其用於判定選定之該對輸入符號的一估計,計算構件,其用於計算該已接收信號與該估計之間之歐基里德(Euclidian)距離,截割構件,其用於截割該估計,以及控制構件,其用於以可能輸入符號之其他對可能函數值或輸入符號之一經縮放版本之其他對可能函數值重複該等步驟,直到符合一預定停止條件,或者直到找到一最小歐基里德距離,而且用於輸出導致該最小歐基里德距離之可能輸入符號之該對已截割估計或可能輸入符號之該經縮放版本之該對已截割估計。
  17. 如請求項15之解碼器,其包括:選擇構件,其用於選擇輸入符號s的一對可能函數值,以用於解碼包括一對已接收頻道符號y之已接收頻道符號的一目前區塊,以及減法構件,其用於藉由應用一子函數D2 而判定該等選定輸入符號s之第一中間經縮放版本D2 (s),並且用於從該對已接收頻道符號y減去包含該等選定輸入符號s之該等第一中間經縮放版本D2 (s)之項,以獲得該等選定輸入符號s之第二中間版本z, 偵測構件,其用於藉由應用一迫零偵測而偵測該等選定輸入符號s之第三中間版本,計算構件,其用於計算該已接收信號與該等已估計符號之間之該歐基里德距離,截割構件,其用於截割該估計、該等選定輸入符號s之第三中間版本,以獲得該等選定輸入符號s之估計,以及控制構件,其用於以其他對可能輸入符號s重複該等步驟,直到符合一預定停止條件,或者直到找到一最小歐基里德距離,而且用於輸出導致該最小歐基里德距離之該對可能輸入符號s。
  18. 如請求項17之解碼器,其中該減法構件係調適成應用一子函數D2 ,該函數D2 (s)=5b,其中b係s之複數記號。
  19. 如請求項16之解碼器,其進一步包括決策構件,用於決定解碼包括二個已接收頻道符號之已接收頻道符號的一區塊或者解碼包括二個已接收頻道符號之已接收頻道符號之經縮放版本的一區塊,該經縮放版本已藉由應用該縮放函數而縮放,該決策係基於該傳輸頻道之頻道轉移函數之絕對值之頻道估計所作成。
  20. 如請求項19之解碼器,其中該決策構件係調適成決定:若符合以下條件則解碼包括二個已接收頻道符號之已接收頻道符號的一區塊 而且若未符合該條件,則解碼包括二個已接收頻道符號之已接收頻道符號之經縮放版本的一區塊,該經縮放版本已藉由應用該縮放函數而縮放,其中該等參數h 12h 22h 11h 21 係該傳輸頻道之該等頻道轉移函數之該等估計。
  21. 一種調適成逐區塊地解碼一頻道資料流之已接收頻道符號之解碼方法,該等已接收頻道符號尤其已藉由如請求項1之編碼器從一輸入資料流之輸入符號加以編碼並且在一傳輸頻道上傳輸,其中於編碼期間已將輸入符號逐區塊地映射至成對頻道符號,一區塊包括二個輸入符號並且被映射至二對頻道符號,而使該二對頻道符號包含該二個輸入符號之經縮放版本及/或該二個輸入符號之至少一者之複數共軛之經縮放版本,該等經縮放版本係藉由應用一縮放函數而獲得,該縮放函數具有一絕對值不等於一的一縮放因數,而且為具有至少二個片段之片段式線性。
  22. 一種用於在一傳輸頻道上接收一頻道資料流之頻道符號之接收器,其包括:接收構件,尤其一個或二個接收天線,用於在該傳輸頻道上接收該頻道資料流,而且用於將該等頻道符號該頻道資料信號輸出至一解碼器,以及如請求項15之解碼器,用於逐區塊地解碼該頻道資料流之該等已接收頻道符號。
  23. 一種編碼資料結構產品,其用於在承載一頻道資料流之頻道符號的一傳輸頻道上傳輸已編碼資料信號,其已從一輸入資料流之輸入符號加以編碼,其中於編碼期間,已將輸入符號逐區塊地映射至成對頻道符號,一區塊包括二個輸入符號並且被映射至二對頻道符號,而使該二對頻道符號包含該二個輸入符號之經縮放版本及/或該二個輸入符號之至少一者之複數共軛之經縮放版本,該等經縮放版本係藉由應用一縮放函數而獲得,該縮放函數具有一絕對值不等於一的一縮放因數,而且為具有至少二個片段之片段式線性。
  24. 一種電腦程式,其包括程式碼構件,當在一電腦上實現該電腦程式時,其用於使一電腦實現如請求項14或21之該方法之該等步驟。
TW097105762A 2007-02-21 2008-02-19 經縮放與旋轉之Alamouti編碼 TWI458288B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07102772 2007-02-21

Publications (2)

Publication Number Publication Date
TW200901666A TW200901666A (en) 2009-01-01
TWI458288B true TWI458288B (zh) 2014-10-21

Family

ID=39638921

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097105762A TWI458288B (zh) 2007-02-21 2008-02-19 經縮放與旋轉之Alamouti編碼

Country Status (8)

Country Link
US (1) US8588320B2 (zh)
EP (1) EP2113147B1 (zh)
JP (1) JP4800423B2 (zh)
KR (1) KR101449400B1 (zh)
CN (1) CN101617491B (zh)
TR (1) TR201809150T4 (zh)
TW (1) TWI458288B (zh)
WO (1) WO2008102305A2 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8018985B2 (en) * 2008-03-26 2011-09-13 Telefonaktiebolaget Lm Ericsson (Publ) CDMA receivers for the golden code
WO2010021598A1 (en) * 2008-08-18 2010-02-25 Agency For Science, Technology And Research Cyclic prefix schemes
US10606676B2 (en) * 2014-04-23 2020-03-31 Comcast Cable Communications. LLC Data interpretation with modulation error ratio analysis
JP6355221B2 (ja) * 2015-11-25 2018-07-11 株式会社日立国際電気 無線通信システム及び受信装置
US10177937B2 (en) 2015-11-27 2019-01-08 Cohda Wireless Pty Ltd. Adaptive channel estimation
US10142145B2 (en) 2015-11-27 2018-11-27 Cohda Wireless Pty Ltd. Wireless receiver
EP4307623A3 (en) * 2018-01-05 2024-04-10 ZTE Corporation Data transmission method and device, storage medium, and electronic device
CN110011948B (zh) 2018-01-05 2023-09-22 中兴通讯股份有限公司 数据传输方法及装置、存储介质、电子装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040018855A1 (en) * 2002-07-26 2004-01-29 Mark Wallace Transmission diversity systems

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6185258B1 (en) 1997-09-16 2001-02-06 At&T Wireless Services Inc. Transmitter diversity technique for wireless communications
ATE533245T1 (de) * 2003-08-28 2011-11-15 Motorola Solutions Inc Ofdm kanalschätzung und -nachführung unter verwendung mehrere sendeantennen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040018855A1 (en) * 2002-07-26 2004-01-29 Mark Wallace Transmission diversity systems

Also Published As

Publication number Publication date
US20100020896A1 (en) 2010-01-28
TR201809150T4 (tr) 2018-07-23
CN101617491A (zh) 2009-12-30
US8588320B2 (en) 2013-11-19
CN101617491B (zh) 2014-02-26
JP4800423B2 (ja) 2011-10-26
EP2113147A2 (en) 2009-11-04
WO2008102305A3 (en) 2008-11-06
JP2010519828A (ja) 2010-06-03
TW200901666A (en) 2009-01-01
KR20090116801A (ko) 2009-11-11
EP2113147B1 (en) 2018-04-18
WO2008102305A2 (en) 2008-08-28
KR101449400B1 (ko) 2014-10-15

Similar Documents

Publication Publication Date Title
TWI458288B (zh) 經縮放與旋轉之Alamouti編碼
JP4436415B2 (ja) 性能向上のための時空間周波数ブロック符号化装置及び方法
KR100640349B1 (ko) 3개의 송신 안테나들을 가지는 무선통신 시스템을 위한송수신 장치
US7483476B2 (en) Method and system for utilizing space-time and space-frequency codes for multi-input multi-output frequency selective fading channels
KR100721068B1 (ko) 차분 시공간 블럭 코딩
KR101341524B1 (ko) 수신신호를 처리하는 장치, 방법 및 매핑 구조를 선택하는 방법
EP1608081A2 (en) Apparatus and method for space-frequency block coding/decoding in a communication system
WO2006049426A1 (en) Apparatus and method for transmitting and receiving data using space-time block coding
US20070064826A1 (en) Space-time trellis code for orthogonal frequency division multiplexing (OFDM)
KR100720872B1 (ko) 성능 향상위한 시공간 블록 부호화 장치 및 방법을 구현하는 송수신 장치 및 방법
MXPA06014848A (es) Codificacion por bloque de espoacio-tiempo en sistemas de comunicacion de division por frecuencia ortogonal.
KR20060043800A (ko) 성능 향상위한 시공간 주파수 블록 부호화 장치 및 방법
KR100605860B1 (ko) 4개의 송신 안테나를 사용하는 무선통신 시스템의 송신 장치 및 방법
JP4377435B2 (ja) 2個の送信アンテナ使用する最大ダイバーシチと最大送信率の時空間ブロック符号化装置及び方法
He et al. A new full-rate full-diversity orthogonal space-time block coding scheme
Shah et al. Performance of CR-QOSTBC for Multiple Receive Antennas in MIMO Systems
Hashem Ali Khan et al. Signal Constellations of Quasi-Orthogonal Space–Time Codes for MIMO Systems
Lubisi A new automatic repeat request protocol based on Alamouti space-time block code over Rayleigh fading channels.
Hamdan et al. Quasi Orthogonal Space Time Block Codes Using Various Sub-Block Matrices
Holden Perfect Space-Time Block Codes
Olivieri et al. State-based Spatial Multiplexing (SBSM)

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent