TWI453649B - 觸控顯示裝置 - Google Patents
觸控顯示裝置 Download PDFInfo
- Publication number
- TWI453649B TWI453649B TW100115301A TW100115301A TWI453649B TW I453649 B TWI453649 B TW I453649B TW 100115301 A TW100115301 A TW 100115301A TW 100115301 A TW100115301 A TW 100115301A TW I453649 B TWI453649 B TW I453649B
- Authority
- TW
- Taiwan
- Prior art keywords
- touch
- display device
- point
- output
- signal intensity
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0416—Control or interface arrangements specially adapted for digitisers
- G06F3/0418—Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/045—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Input By Displaying (AREA)
- User Interface Of Digital Computer (AREA)
Description
本發明涉及一種觸控顯示裝置,尤其涉及一種電阻式觸控顯示裝置。
近年來,隨著觸摸式電子設備如帶有觸摸屏的手機、平板電腦等的使用越來越普及,觸摸檢測技術也不斷發展,藉由觸摸屏進行輸入極大的提高了使用者的體驗感。然而目前的觸控檢測技術皆為檢測何處被按壓或碰觸,接著執行動作,但對於需要體現筆觸的應用則無法藉由現行的檢測方式來表現,也無法對觸摸的壓力進行區別。
如,傳統的手寫輸入裝置大多記錄手寫筆或觸摸物在觸摸屏的觸摸軌跡,然後藉由手寫識別系統對觸摸軌跡進行識別,並根據預先的設定顯示對應字型的文字。這種文字的檢測識別方式無法體現使用者的個人字跡風格。另,先前技術中的手寫方式為藉由檢測筆跡中觸摸點的位置座標,並根據位置座標來對應顯示該筆跡,然而,該種檢測方式無法檢測使用者筆觸以及力度的大小,從而也無法實現傳統書法中的“側、勒、努、趯、策、掠、啄、磔”等筆法,在電子親筆簽名以及繪畫等功能受到了限制。
有鑒於此,提供一種可體現筆觸和壓力的触控显示裝置實為必要
。
一種觸控顯示裝置,至少包括:觸控裝置,用於接收藉由對該觸控裝置的觸摸而產生的觸摸軌跡,該觸摸軌跡包括至少一個觸摸點;驅動感測電路,用於驅動所述觸控裝置並感測所述至少一個觸摸點的實際訊號強度值(Vi);資料記憶體,至少用於存儲一查詢表,該查詢表包括所述觸控裝置上的複數位置座標,以及使該複數位置座標的具有基準接觸面積(A0)的觸摸點的實際訊號強度值(V0i)換算為統一的標準訊號強度值(Vs)的校準方法f,即滿足f(V0i)=Vs;處理器,至少用於計算該觸摸軌跡中至少一觸摸點的位置座標以及將所述至少一觸摸點的實際訊號強度值(Vi)藉由所述校準方法f對該實際訊號強度值(Vi)進行校準得到校準後訊號強度值(V’i),即f(Vi)=V’i;以及顯示裝置,用於接收所述處理器計算出的觸摸點的位置座標以及校準後訊號強度值(V’i)顯示所述觸摸軌跡。
相較於先前技術,本發明所述觸控顯示裝置藉由檢測所述觸摸軌跡中觸摸點的位置座標,並同時檢測觸摸點的訊號強度值,並建立該訊號強度值與該觸摸點接觸面積之間的關係,即用觸摸點的訊號強度值來表示觸摸點的觸摸面積,使相同面積的觸摸點具有相同的訊號強度值,不同面積的觸摸點具有不同的訊號強度值,從而利用觸摸軌跡中每個觸摸點的訊號強度值來確定該點的顯示直徑,實現了線條粗細不同的觸摸軌跡的顯示。可廣泛應用於電子簽名以及電子繪畫,提高了使用者的體驗感。
100‧‧‧觸控顯示裝置
102‧‧‧輸入裝置
104‧‧‧觸控裝置
106‧‧‧驅動感測電路
108‧‧‧模數轉換器
110‧‧‧資料記憶體
112‧‧‧處理器
114‧‧‧顯示裝置
10‧‧‧電阻式觸摸屏
12‧‧‧第一電極板
120‧‧‧第一基體
122‧‧‧第一導電層
124‧‧‧第一電極
14‧‧‧第二電極板
140‧‧‧第二基體
142‧‧‧第二導電層
144‧‧‧第二電極
18‧‧‧絕緣層
圖1為本發明實施例提供的觸控顯示裝置的功能結構框圖。
圖2為本發明實施例提供的觸控顯示裝置中用於觸控裝置所適用的電阻式觸摸屏的俯視結構示意圖。
圖3為圖2電阻式觸摸屏的側視結構示意圖。
圖4為圖3電阻式觸摸屏中第一導電層以及第二導電層空間示意圖。
圖5為本發明實施例奈米碳管膜的透射電鏡照片。
圖6為本發明實施例中作為觸控裝置的電阻式觸摸屏與顯示裝置的集成結構側視示意圖。
圖7為本發明實施例提供的基於觸控顯示裝置的觸摸軌跡檢測方法的流程圖。
圖8為本發明實施例提供的觸控顯示裝置中適用的電阻式觸摸屏相同接觸面積不同位置觸摸點的訊號強度值示意圖。
圖9為本發明實施例提供的觸控顯示裝置中適用的電阻式觸摸屏不同接觸面積且相同觸摸位置的觸摸點的訊號強度值示意圖。
圖10為本發明實施例提供的觸控顯示裝置中基準接觸面積A0觸摸點的實際訊號強度值(V0ix)校準為標準訊號強度值(Vsx)的具體過程示意圖。
圖11為本發明實施例提供的觸控顯示裝置中基準接觸面積A0觸摸點的實際訊號強度值(V0iy)校準為標準訊號強度值(Vsy)的具體過程示意圖。
圖12為本發明實施例提供的在觸控顯示裝置形成的觸摸軌跡示意圖。
圖13為圖12中觸摸軌跡中的某一觸摸點B處的實際訊號強度值校準過程示意圖。
以下將結合附圖詳細說明本發明實施例所述觸控顯示裝置。
請參閱圖1,本發明實施例提供一種觸控顯示裝置100,至少包括:一觸控裝置104,用於接收藉由對該觸控裝置104的觸摸而產生的觸摸軌跡,該觸摸軌跡包括至少一個觸摸點;驅動感測電路106,至少用於驅動所述觸控裝置104,並感測所述至少一個觸摸點的實際訊號強度值(Vi);一資料記憶體110,至少用於存儲一查詢表,該查詢表包括所述觸控裝置104上的複數位置座標,以及使該複數位置座標的具有的基準接觸面積(A0)的觸摸點的實際訊號強度值(V0i)換算為統一的標準訊號強度值(Vs)的校準方法f,即滿足f(V0i)=Vs;一處理器112,至少用於計算該觸摸軌跡中至少一觸摸點的位置座標以及將所述至少一觸摸點的實際訊號強度值(Vi)藉由所述校準方法f對該實際訊號強度值(Vi)進行校準得到校準後訊號強度值(V’i),即f(Vi)=V’i;以及一顯示裝置114,用於接收所述處理器計算出的觸摸點的位置座標以及校準後訊號強度值(V’i)顯示所述觸摸軌跡。
所述觸控裝置104可實現觸摸檢測。請一併參閱圖2、圖3以及圖4,本發明實施例中選取電阻式觸摸屏10作為所述觸控裝置104。該電阻式觸摸屏10包括一第一電極板12,一第二電極板14以及設置在該第一電極板12以及與第二電極板14之間的複數透明點狀隔離物16。
該第一電極板12包括一第一基體120,一第一導電層122以及複數
第一電極124。該第一基體120為平面結構,該第一導電層122與複數第一電極124均設置在第一基體120靠近所述點狀隔離物16的表面。該複數第一電極124分別設置在第一導電層122沿第一方向的至少一端並分別與第一導電層122電連接。
該第二電極板14包括一第二基體140,一第二導電層142以及複數第二電極144。該第二基體140為平面結構,該第二導電層142與複數第二電極144均設置在第二基體140靠近所述點狀隔離物16的表面。該複數第二電極144分別設置在第二導電層142沿第二方向的至少一端並分別與第二導電層142電連接。該第一方向垂直於該第二方向,即複數該第一電極124與複數該第二電極144正交設置。本發明實施例中定義該第一方向為x方向,第二方向為y方向。進一步地,在所述觸摸屏10中,該第二電極板14靠近第一電極板12的表面週邊可設置有一絕緣層18,該絕緣層18可使該第一導電層122以及該第二導電層142在無觸摸時間隔而實現電絕緣。
所述第一導電層122以及第二導電層142可為一透明的導電異向性膜。具體地,該導電異向性膜在一個方向上的電導率遠大於其他方向的電導率。當應用於該第一導電層122時,該最大電導率的方向為所述第一方向。當應用於該第二導電層142時,該最大電導率的方向為所述第二方向。該導電異向性膜可一奈米碳管膜。該奈米碳管膜包括複數奈米碳管,該複數奈米碳管基本上沿相同方向定向延伸,從而使該奈米碳管膜在該複數奈米碳管的延伸方向上具有遠大於其他方向的電導率。該奈米碳管膜可藉由從一奈米碳管陣列中拉取形成。所述從奈米碳管陣列中拉取形成的奈米碳管膜中大多數奈米碳管的整體延伸方向基本朝同一方向且平行
於該奈米碳管膜的表面。並且,所述從奈米碳管陣列中拉取獲得的奈米碳管膜中,基本朝同一方向延伸的大多數奈米碳管中每一奈米碳管與在延伸方向上相鄰的奈米碳管藉由凡得瓦力(van der waal’s force)首尾相連,從而使該奈米碳管膜能夠實現自支撐。所述自支撐指奈米碳管膜不需要大面積的載體支撐,而只要相對兩邊提供支撐力即能整體上懸空而保持自身膜狀狀態。所述自支撐主要藉由奈米碳管膜中存在連續的藉由凡得瓦力首尾相連延伸排列的奈米碳管而實現。
該從奈米碳管陣列中拉取獲得的奈米碳管膜的奈米碳管之間形成有均勻的間隙,該間隙的距離為1奈米至10微米。由於該奈米碳管膜中的奈米碳管沿同一方向延伸且間隙較小,將該奈米碳管膜作為該電阻式觸摸屏10的第一導電層122或第二導電層142,當不同觸摸面積的觸摸物觸摸該電阻式觸摸屏10時,所述驅動感測電路106檢測到的訊號強度值變化較明顯,從而可較好地區分不同接觸面積觸摸點的訊號強度值。
請參閱圖5,本發明實施例中所述第一導電層122以及第二導電層142均採用單層由奈米碳管陣列中拉取獲得的所述奈米碳管膜。該第一導電層122中的大多數奈米碳管沿所述第一方向延伸,從而使該第一導電層122在該第一方向的電導率遠大於其他方向的電導率。該第二導電層142中的奈米碳管沿所述第二方向定向延伸,從而使該第二導電層142在該第二方向的電導率遠大於其他方向的電導率。
所述電阻式觸摸屏10的第一基體120與第二基體140均為透明的絕緣薄膜或薄板。該第一基體120以及第二基體140的材料可為玻璃
、石英、金剛石、聚碳酸酯(PC)、聚甲基丙烯酸甲酯(PMMA)、聚對苯二甲酸乙二醇酯(PET)等聚酯材料,以及聚醚碸(PES)、纖維素酯、聚氯乙烯(PVC)、苯並環丁烯(BCB)及丙烯酸樹脂等材料。該第一基體120和第二基體140的厚度為0.1毫米~1釐米。本實施例中,該第一基體120及第二基體140的材料均為PET,厚度均為2毫米。可以理解,形成所述第一基體120及第二基體140的材料並不限於上述列舉的材料,只要能使第一基體120及第二基體140起到支撐的作用,並具有較好的透明度,且至少形成第一基體120的材料具有一定柔性,都在本發明保護的範圍內。
該絕緣層18與點狀隔離物16均可採用絕緣樹脂或其他絕緣材料製成,並且,該點狀隔離物16應為一透明材料製成。設置絕緣層18與點狀隔離物16可使得第一電極板12與第二電極板14在無觸摸時電絕緣。可以理解,當觸摸屏10尺寸較小時,點狀隔離物16為可選擇的結構,只需確保第一電極板12與第二電極板14在無觸摸時電絕緣即可。該電阻式觸摸屏10可支持多點觸摸。
進一步地,該觸控顯示裝置100可包括一輸入裝置102,用於在所述觸控裝置104上產生所述包括至少一個觸摸點的觸摸軌跡。所述輸入裝置102可使該所述觸控裝置104如觸摸屏10的第一導電層122以及第二導電層142之間產生不同的接觸面積。該輸入裝置102可為具硬質筆頭的手寫筆、手指或具柔性筆頭的手寫筆。當所述具硬質筆頭的手寫筆或手指在觸摸屏上滑動時,由於力度的不同會使該電阻式觸摸屏第一導電層與第二導電層之間的接觸面積不同,從而可產生不同觸摸面積的觸摸點。同樣地,該具有柔性筆頭的手寫筆可類似於傳統的毛筆,當用力不同時會使觸摸屏
第一導電層與第二導電層具有不同的接觸面積。可以理解,該手寫筆不要求導電或具有磁性,材料不限,可完全由塑膠、樹脂、玻璃或纖維等絕緣材料製成。當然,該手寫筆也可由導電材料,如金屬製成。總之,該手寫筆能夠對該觸摸屏進行按壓使第一導電層與第二導電層在觸摸點相接觸即可。本發明實施例中該輸入裝置102為一具有圓錐形柔性筆頭的手寫筆。
本發明實施例中將導通的觸摸點的面積定義為接觸面積,該接觸面積隨輸入裝置102的大小以及壓力的變化而變化,即接觸面積的變化可體現筆觸和壓力。
所述驅動感測電路106可給所述觸控裝置104提供驅動訊號以及讀取感測訊號從而獲得觸摸點的實際訊號強度值(Vi),本發明所述驅動訊號以及感測訊號可為電壓或電流等訊號,本發明實施例中該驅動訊號以及感測訊號均為電壓訊號,所述觸摸點的訊號強度值均為檢測到的該點的電壓變化值。
所述觸控顯示裝置100可進一步包括一模數轉換器108,用於將感測到的所述觸摸點的電訊號形式的實際訊號強度值(Vi)進行採集,並以數位訊號的形式提供給所述處理器112處理,本發明實施例所述訊號強度值均為數位訊號值。
所述顯示裝置114藉由所述處理器112計算獲得的所述觸摸軌跡中觸摸點的位置座標,以及校準後訊號強度值來顯示該觸摸軌跡。該顯示裝置114可與所述觸控裝置間隔設置或集成設置。請參閱圖6,本發明實施例中,所述顯示裝置114與所述電阻式觸摸屏10集成設置,具體地,所述顯示裝置114正對且靠近所述電阻式觸摸屏10的第二基體140,並設置於該第二基體140遠離第二導電層
142的表面。該顯示裝置可為液晶顯示器、場發射顯示器、等離子顯示器、電致發光顯示器、真空螢光顯示器以及陰極射線管等顯示裝置中的一種。
此外,該觸控顯示裝置100還可包括其他元件,以使該觸控顯示裝置100更好的工作。
該觸控裝置104在使用時,使用者藉由輸入裝置102觸摸該觸控裝置104,具體地,如觸摸所述觸摸屏10的第一電極板12,使第一電極板12發生形變,從而使第一導電層122與第二導電層142在至少一個觸摸點處接觸導通,所述驅動感測電路藉由驅動該複數第一電極124,並同時讀取該複數第二電極144的感測訊號強度的變化值較大或最大的值來判斷該至少一個觸摸點在x方向上的位置座標;同樣地,藉由驅動該複數第二電極144,並同時讀取該複數第一電極124的感測訊號強度變化值較大或最大的值來判斷該觸摸點在y方向上的位置座標。
請參閱圖7,本發明實施例進一步提供一種基於上述觸控顯示裝置100的觸摸軌跡檢測方法,本發明所述觸控裝置104採用所述電阻式觸摸屏10。該方法包括如下步驟:S1,建立查詢表,該查詢表包括觸摸屏的複數位置座標,及與該複數位置座標一一對應的校準方法f,該校準方法f使該複數位置座標的基準接觸面積觸摸點的實際訊號強度值(V0i)換算為統一的標準訊號強度值(Vs),即滿足f(V0i)=Vs;S2,接收觸摸軌跡,該觸摸軌跡包括至少一個觸摸點;S3,判斷該至少一個觸摸點的位置座標,並根據該至少一觸摸點
的實際接觸面積讀取該至少一個觸摸點的實際訊號強度值(Vi);以及S4,從查詢表中查詢與該位置座標對應的校準方法f,藉由該校準方法f對該實際訊號強度值(Vi)進行校準得到校準後訊號強度值(V’i),即f(Vi)=V’i,藉由校準後訊號強度值(V’i)體現該至少一觸摸點的實際接觸面積。
請參閱圖8,實際應用時,在該電阻式觸摸屏10的不同位置形成相同接觸面積的觸摸點時,所檢測到的訊號強度值不同。具體地,在x或y方向上越靠近電極的觸摸點的訊號強度值越大,在x或y方向上越遠離電極的觸摸點的訊號強度值越小。如圖8所示,在電阻式觸摸屏10的四個不同位置形成相同接觸面積的觸摸點I、II、III以及IV,在x以及y方向上靠電極最近的觸摸點I具有最大的訊號強度值,而在x以及y方向上離電極最遠的觸摸點IV具有最小的訊號強度值。同樣地,不同接觸面積的觸摸點在相同位置所檢測到的訊號強度也不相同。請參閱圖9,觸摸點V與VI處於電阻式觸摸屏的相同位置,但觸摸點V的接觸面積大於觸摸點VI的接觸面積,檢測到的觸摸點V的訊號強度值大於觸摸點VI的訊號強度值。本發明基於該事實,建立所述查詢表藉由後續校準獲得觸摸點的校準訊號強度值。用該校準後訊號強度值的大小直接反映觸摸點接觸面積的大小,使該校準後的訊號強度值僅與接觸面積的大小有關,而與觸摸點的位置無關。
本發明所述相同位置係指檢測到的觸摸點的位置座標相同,相反地,不同位置係指觸摸點的位置座標不同。
請一併參閱圖10以及圖11,上述步驟S1中所述查詢表可藉由如下
步驟來建立:S11,設定一基準接觸面積A0;S12,獲取所述複數位置座標下具有該基準接觸面積A0的觸摸點的訊號強度值V01,其中V01=(V0ix,V0iy);S13,設定所述統一的標準訊號強度值Vs,其中Vs=(Vsx,Vsy);以及S14,建立將該V0i換算為該Vs的運算方法f,使f(V0ix)=Vsx,f(V0iy)=Vsy。
上述符號i代表所述觸摸軌跡中的某個觸摸點。如可表示:按觸摸軌跡中觸摸點形成的次序中第i個觸摸點,i=1,2,3……(i0)。
在上述步驟S11中,該基準接觸面積A0的大小不限,只要相對該觸摸屏面積大小適中即可。
在上述步驟S12中,可逐一在所述電阻式觸摸屏10的所有座標位置形成所有接觸面積為A0的觸摸點,並利用所述驅動感測電路106讀取該每一個觸摸點的訊號強度值V0i,也可取樣形成有限個接觸面積為A0的觸摸點,並讀取該有限個觸摸點的位置座標以及訊號強度值V0i,然後再根據觸摸點之間的位置關係利用插值的方法獲得其他位置觸摸點的訊號強度值V0i。本發明實施例中僅在檢測該觸摸面積A0下有限個觸摸點的訊號強度值V0i,並利用觸摸點之間的位置關係,用插值計算的方式獲得其他位置觸摸點的訊號強度值V0i。
在上述步驟S13中,該標準訊號強度Vs選取方式不限,僅作為調整所述接觸面積A0下觸摸點的訊號強度值V0i相等的標準,如該Vs可設定為該接觸面積A0下觸摸點的訊號強度值V0i中的最大值。該標準訊號強度Vs也可做為該接觸面積A0的顯示標準。
在上述步驟S14中,利用該運算方法f使該每個接觸面積A0下觸摸點的訊號強度值V0i都調整為等於Vs。該運算方法f建立的目的在於,定義該接觸面積A0下觸摸點的訊號強度值為Vs,從而使觸摸點的接觸面積僅與該觸摸點的運算後的訊號強度值有關,即用該觸摸點的運算後的訊號強度值來反映該點的接觸面積。
該運算方法f的建立可有多種方式,只需滿足f(V0i)=Vs。本發明實施例中,該運算方法f為該標準訊號強度值Vs與該訊號強度值V0i的比值關係,即L0i×V0i=Vs,其中L0i為將V0i換算為Vs需要乘的係數,且L0i=(L0ix,L0iy)。具體地,本發明實施例中該運算方法f滿足:L0ix×V0ix=Vsx,且L0iy×V0iy=Vsy。
在上述步驟S2中,該觸摸軌跡可為一個單獨的點,也可由一觸摸物在該電阻式觸摸屏10上的滑動的過程中形成複數觸摸點。請參閱圖12,本發明實施例用一具有柔性筆頭的手寫筆在該多點電阻式觸摸屏上的筆跡。
在上述步驟S3中,利用所述驅動感測電路獲得的訊號檢測該觸摸軌跡中每個觸摸點在其實際的接觸面積下的實際訊號強度值(Vi)以及並藉由所述處理器計算位置座標。該實際訊號強度值Vi=(Vix,Viy)。該實際訊號強度值(Vi)可為該觸摸點對應的一個或相鄰的複數所述電極處檢測到的訊號強度值。藉由讀取複數相鄰的電極檢測到的訊號強度值,後續藉由校準,可使得觸摸點接觸
面積的變化隨訊號強度值的變化更明顯,從而利於更好地體現不同接觸面積觸摸點形成的觸摸軌跡。本發明實施例中該實際訊號強度值為電壓的變化值,即檢測觸摸點所對應電極附近電壓變化值較大的複數電極的實際訊號強度值,該觸摸點的位置座標可利用多種檢測方法獲得。本發明實施例中該觸摸點的位置座標可藉由如下方法獲得:S31,驅動該複數第一電極124,同時讀取該複數第二電極144感測的實際訊號強度值Vix,類比出由該複數實際訊號強度值Vix構成的第一曲線,藉由該第一曲線的最大值判斷所述至少一個觸摸點在x方向上的座標;以及S32,驅動該複數第二電極144,同時讀取該複數第一電極124感測的實際訊號強度值Viy,類比出由該複數實際訊號強度值Viy構成的第二曲線,藉由該第二曲線的最大值判斷所述至少一個觸摸點在y方向上的座標。
所述複數第二電極144以及第一電極124感測的實際訊號強度值Vix和Viy均為訊號強度的變化值,本發明實施例中為電壓的變化值。由於有觸摸事件發生,該觸摸點處的訊號強度值變化較大,故藉由該第一曲線尋找訊號強度值變化最大處的一個或複數第二電極144,根據該第二電極144與該觸摸屏在x方向上的距離關係計算出該至少一個觸摸點在x方向上的座標。同樣地,用上述方法根據第二曲線以及第一電極124與觸摸屏在y方向上的距離關係計算出該至少一個觸摸點在y方向上的座標。
在上述步驟S4中,該實際訊號強度值(Vi)可為與該觸摸點對應的一個或相鄰的複數所述電極處檢測到的訊號強度值,故,該校準
可同時對相鄰的複數所述電極處檢測到的實際訊號強度進行校準。
所述一個校準後訊號強度值V’i=(V’ix,V’iy)。本發明實施例中該一個或複數校準後訊號強度V’i滿足:V’ix=L0ix×Vix且Viy=L0iy×Viy。
在上述步驟S4中,由於該V’i為一個二維值(包括V’ix以及V’iy),為更直觀地反映所述觸摸軌跡中觸摸點的校準後訊號強度值V’i的大小,可進一步定義一運算方法g來體現該校準後訊號強度值,即定義g(V’ix,V’iy)=V’i-total,其中V’i-total為一維值,其為該觸摸點在x方向以及y方向綜合的校準後強度值。運算方法g為V’ix與V’iy之間的運算關係。本發明實施例中該V’i-total為該觸摸點校準後訊號強度值V’i在x方向以及y方向的校準後訊號強度值的和。即:V’i-total=V’ix+V’iy。該運算方法g也可有其他方式,如V’i-total=V’ix×V’iy等。
請參閱圖13,本發明實施例就所述觸摸軌跡中的一觸摸點B進行說明。本發明實施例中首先判斷觸摸點B的位置座標在x方向電極M9及y方向電極N4對應的位置,並讀取該觸摸點B所對應x方向電極M9,以及相鄰電極M8和M10處的實際訊號強度值,同樣地,在y方向,讀取電極N4,以及相鄰電極N3和N5處的實際訊號強度值,為提高最後校準的準確度也可讀取更多電極處的實際訊號強度值一併校準。請參閱圖13,該點B的實際訊號強度值校準過程為:B41,利用運算方法f分別校準該點B位置座標對應電極以及相鄰電極在x方向上的訊號強度值為V’Bx=L0Bx×VBx、V’(B-1)x=L0(B-1)x×V(B-1)x、V’(B+1)x=L0(B+1)x×V(B+1)x;
B42,利用運算方法f分別校準該點B位置座標對應電極以及相鄰電極在x方向上的訊號強度值為V’By=L0By×VBy、V’(B-1)y=L0(B-1)y×V(B-1)y、V’(B+1)y=L0(B+1)y×V(B+1)y;以及B43,計算該點校準訊號強度值為V’B-total=V’Bx+V’By+V’(B-1)x+V’(B-1)y+V’(B+1)x+V’(B+1)y。
為節省該觸摸屏資料存儲的空間,可對某一觸摸點的校準後訊號強度值V’i-total輸出的值大小進一步進行限定,具體包括如下步驟:B431,定義輸出強度範圍(Vdown,Vup)以及輸出位數t,其中t為自然數;B432,判斷該校準訊號強度值V’i-total是否在該在輸出強度範圍內,如果在,則輸出該點的訊號強度值為Vi-output=(V’i-total-Vdown)/(Vup-Vdown)×2t,如果小於Vdown,則輸出該點的訊號強度值為Vi-output=0;如果大於Vup,則輸出該點的訊號強度值為Vi-output=2t-1。
在上述步驟B431中,該輸出位數t限定了該觸摸點的輸出訊號強度值Vi-output在(0~2t-1)範圍內。本發明實施例中t=8。
本發明實施例所述觸摸軌跡的檢測方法可進一步包括依據所述觸摸軌跡中每個觸摸點的位置座標藉由所述顯示裝置114顯示所述觸摸軌跡的路徑,依據每個觸摸點的校準後訊號強度值顯示所述觸摸軌跡的粗細。
本發明實施例所述觸摸軌跡的路徑僅體現觸摸點的位置,並不體現觸摸點的接觸面積大小。該觸摸軌跡可為點或線。如果該觸摸
軌跡包括複數觸摸點,則該路徑表示該複數觸摸點形成的線條,如果該觸摸軌跡僅包括一個觸摸點,則該路徑表示單個點。所述觸摸軌跡的粗細即表示該觸摸軌跡中觸摸點的顯示直徑的大小(或顯示的圖元點數),所述體現所述觸摸點的顯示直徑大小的強度值可為該較準後強度值(V’i)本身,也可為V’i對應的所述一維化的值(V’i-total)或所述訊號強度值(Vi-output),只要建立所述校準後訊號強度值與所述觸摸點的顯示大小的對應關係即可。本發明實施例採用該觸摸點的校準後訊號強度值進行換算後的輸出訊號強度值(Vi-output)以體現該觸摸點顯示直徑的大小。
如,可預先定義所述標準訊號強度值(Vs)對應所述基準接觸面積A0觸摸點的顯示直徑的大小為D0。然後比較獲得該觸摸軌跡中觸摸點的輸出訊號強度值(Vi-output)與該標準信號強度值(Vs)的關係,從而確立該觸摸點的顯示直徑Di的大小。如,可定義一對應關係k,使:Di=k(Vi-output,Vs,D0)。本發明實施例中該對應關係k滿足:Di=k(Vi-output,Vs,D0)=(Vi-output/Vs)×D0。通過計算該觸摸軌跡中所有觸摸點的顯示直徑Di來確定所述觸摸軌跡的粗細。可以理解,也可有其他計算方法獲得所述觸摸軌跡中觸摸點的顯示直徑的大小。
由於該觸摸軌跡中的每個觸摸點的資訊中除了位置座標外,還包括與該觸摸點的接觸面積對應的輸出訊號強度值,該輸出訊號強度值可作為該觸摸點顯示直徑的標準,從而實現了筆觸粗細不同的觸摸軌跡,該觸摸軌跡可藉由圖片的方式存儲於所述資料記憶體110作為電子簽名等。
相較於先前技術,本發明所述觸控顯示裝置藉由檢測所述觸摸軌
跡中觸摸點的位置座標,並同時檢測觸摸點的訊號強度值,並建立該訊號強度值與該觸摸點接觸面積之間的關係,即用觸摸點的訊號強度值來表示觸摸點的觸摸面積,使相同面積的觸摸點具有相同的訊號強度值,不同面積的觸摸點具有不同的訊號強度值,從而利用觸摸軌跡中每個觸摸點的訊號強度值來確定該點的顯示直徑,實現了線條粗細不同的觸摸軌跡的顯示。可廣泛應用於電子簽名以及電子繪畫,提高了使用者的體驗感。
綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。
100‧‧‧觸控顯示裝置
102‧‧‧輸入裝置
104‧‧‧觸控裝置
106‧‧‧驅動感測電路
108‧‧‧模數轉換器
110‧‧‧資料記憶體
112‧‧‧處理器
114‧‧‧顯示裝置
Claims (21)
- 一種觸控顯示裝置,至少包括:觸控裝置,用於接收藉由對該觸控裝置的觸摸而產生的觸摸軌跡,該觸摸軌跡包括至少一個觸摸點;驅動感測電路,用於驅動所述觸控裝置並感測所述至少一個觸摸點的實際訊號強度值(Vi);資料記憶體,至少用於存儲一查詢表,該查詢表包括所述觸控裝置上的複數位置座標,以及使該複數位置座標的具有基準接觸面積(A0)的觸摸點的實際訊號強度值(V0i)換算為統一的標準訊號強度值(Vs)的校準方法f,即滿足f(V0i)=Vs;處理器,至少用於計算該觸摸軌跡中至少一觸摸點的位置座標以及將所述至少一觸摸點的實際訊號強度值(Vi)藉由所述校準方法f對該實際訊號強度值(Vi)進行校準得到校準後訊號強度值(V’i),即f(Vi)=V’i;以及顯示裝置,用於接收所述處理器計算出的觸摸點的位置座標以及校準後訊號強度值(V’i)顯示所述觸摸軌跡。
- 如請求項1所述的觸控顯示裝置,其中,進一步包括一輸入裝置,該輸入裝置用於在所述觸控裝置上產生所述觸摸軌跡。
- 如請求項2所述的觸控顯示裝置,其中,所述輸入裝置為具硬質筆頭的手寫筆、手指或具柔性筆頭的手寫筆。
- 如請求項3所述的觸控顯示裝置,其中,所述輸入裝置為具柔性筆頭的手寫筆,所述柔性筆頭為圓錐形結構。
- 如請求項1所述的觸控顯示裝置,其中,進一步包括一模數轉換器,用於 將感測到的電訊號形式的所述實際訊號強度值(Vi)轉化為數位訊號。
- 如請求項1所述的觸控顯示裝置,其中,所述觸控裝置為一多點電阻式觸摸屏。
- 如請求項6所述的觸控顯示裝置,其中,所述電阻式觸摸屏包括至少一第一電極板,一第二電極板以及設置在該第一電極板以及與第二電極板之間的複數透明點狀隔離物;該第一電極板包括一第一導電層及複數第一電極,該第二電極板包括一第二導電層及複數第二電極,該第一導電層以及第二導電層為透明導電異向性膜。
- 如請求項7所述的觸控顯示裝置,其中,所述透明導電異向性膜包括奈米碳管膜。
- 如請求項8所述的觸控顯示裝置,其中,所述奈米碳管膜藉由從一奈米碳管陣列中拉取形成。
- 如請求項9所述的觸控顯示裝置,其中,所述奈米碳管膜中的大多數奈米碳管的整體延伸方向基本朝同一方向且平行於該奈米碳管膜的表面。
- 如請求項10所述的觸控顯示裝置,其中,所述大多數奈米碳管中每一奈米碳管與在延伸方向上相鄰的奈米碳管藉由凡得瓦力首尾相連。
- 如請求項11所述的觸控顯示裝置,其中,所述奈米碳管之間形成有均勻的間隙,該間隙的距離為1奈米至10微米。
- 如請求項7所述的觸控顯示裝置,其中,所述複數第一電極分別設置在所述第一導電層沿第一方向的至少一端並分別與所述第一導電層電連接;所述複數第二電極分別設置在所述第二導電層沿第二方向的至少一端並分別與所述第二導電層電連接,所述第一方向與第二方向正交設置;用於所述第一導電層的奈米碳管膜中的大多數奈米碳管整體沿第一方向延伸,並分別與所述複數第一電極電連接;用於所述第二導電層的奈米碳管膜中的大多數奈米碳管整體沿第二方向延伸,並分別與所述複數第二 電極電連接。
- 如請求項1所述的觸控顯示裝置,其中,該V0i包括x方向的訊號強度值(V0ix)及y方向的訊號強度值(V0iy),即V0i=(V0ix,V0iy);該Vs包括x方向的標準訊號強度值(Vsx)及y方向的標準訊號強度值(Vsy),即Vs=(Vsx,Vsy);該f(V0i)=Vs包括f(V0ix)=Vsx及f(V0iy)=Vsy。
- 如請求項14所述的觸控顯示裝置,其中,所述運算方法f滿足:f(V0i)=L0i×V0i=Vs,其中L0i為將V0i換算為Vs需要乘的係數,且L0i=(L0ix,L0iy),即該L0i包括x方向的係數(L0ix)及y方向的係數(L0iy)。
- 如請求項1所述的觸控顯示裝置,其中,所述處理器進一步藉由所述校準方法f對所述觸摸點位置座標對應的相鄰的複數電極處檢測的實際訊號強度值(Vi)分別進行校準。
- 如請求項1所述的觸控顯示裝置,其中,所述資料記憶體進一步存儲運算方法g對所述校準後訊號強度值(V’i)進行一維化校準,使g(V’ix,V’iy)=V’i-total,其中所述V’i=(V’ix,V’iy),即該V’i包括在x方向的校準後訊號強度值(V’ix)及y方向的校準後訊號強度值(V’iy)。
- 如請求項17所述的觸控顯示裝置,其中,所述V’i-total=V’ix+V’iy。
- 如請求項18所述的觸控顯示裝置,其中,對所述校準訊號強度值V’i-total大小進一步進行限定,具體包括以下步驟:定義輸出強度範圍(Vdown,Vup)以及輸出位數t,其中t為自然數;判斷該校準訊號強度值V’i-total是否在該輸出強度範圍內,如果在,則輸出該點的訊號強度值為Vi-output=(V’i-total-Vdown)/(Vup-Vdown)×2t,如果小於Vdown,則輸出該點的訊號強度值為Vi-output=0;如果大於Vup,則輸出該點的訊號強度值為Vi-output=2t-1。
- 如請求項19所述的觸控顯示裝置,其中,利用所述輸出訊號強度值(Vi-output)體現所述觸摸軌跡的粗細,包括: 設定所述標準訊號強度值(Vs)對應所述基準接觸面積A0觸摸點的顯示直徑的大小為D0;比較所述觸摸軌跡中觸摸點的輸出訊號強度值(Vi-output)以及所述標準訊號強度值(Vs),從而建立該觸摸點的顯示直徑Di與D0的對應關係k,使Di=k(Vi-output,Vs,D0),該對應關係k為所述輸出訊號強度值(Vi-output)、所述標準訊號強度值(Vs)以及所述D0之間的換算關係。
- 如請求項20所述的觸控顯示裝置,其中,所述對應關係k滿足:Di=k(Vi-output,Vs,D0)=(Vi-output/Vs)×D0。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100115301A TWI453649B (zh) | 2011-05-02 | 2011-05-02 | 觸控顯示裝置 |
CN201110134059.6A CN102768593B (zh) | 2011-05-02 | 2011-05-12 | 触控显示装置 |
US13/248,492 US8952937B2 (en) | 2011-05-02 | 2011-09-29 | Resistive touch panel display device using carbon nanotubes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100115301A TWI453649B (zh) | 2011-05-02 | 2011-05-02 | 觸控顯示裝置 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201246042A TW201246042A (en) | 2012-11-16 |
TWI453649B true TWI453649B (zh) | 2014-09-21 |
Family
ID=47089938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100115301A TWI453649B (zh) | 2011-05-02 | 2011-05-02 | 觸控顯示裝置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8952937B2 (zh) |
CN (1) | CN102768593B (zh) |
TW (1) | TWI453649B (zh) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8487759B2 (en) | 2009-09-30 | 2013-07-16 | Apple Inc. | Self adapting haptic device |
US9152270B2 (en) * | 2012-01-20 | 2015-10-06 | Standard Microsystems Corporation | Methods and systems for improving touch sensitivity of touch-based devices |
US10236760B2 (en) | 2013-09-30 | 2019-03-19 | Apple Inc. | Magnetic actuators for haptic response |
US9317118B2 (en) | 2013-10-22 | 2016-04-19 | Apple Inc. | Touch surface for simulating materials |
US10276001B2 (en) | 2013-12-10 | 2019-04-30 | Apple Inc. | Band attachment mechanism with haptic response |
DE112014006608B4 (de) * | 2014-04-21 | 2024-01-25 | Apple Inc. | Verfahren, Systeme und elektronische Vorrichtungen zum Bestimmen der Kräfteaufteilung für Multi-Touch-Eingabevorrichtungen elektronischer Vorrichtungen |
US9830782B2 (en) | 2014-09-02 | 2017-11-28 | Apple Inc. | Haptic notifications |
JP6437775B2 (ja) * | 2014-09-30 | 2018-12-12 | エルジー ディスプレイ カンパニー リミテッド | タッチパネル装置およびタッチパネルのタッチ位置座標算出方法 |
US10353467B2 (en) | 2015-03-06 | 2019-07-16 | Apple Inc. | Calibration of haptic devices |
AU2016100399B4 (en) | 2015-04-17 | 2017-02-02 | Apple Inc. | Contracting and elongating materials for providing input and output for an electronic device |
WO2017044618A1 (en) | 2015-09-08 | 2017-03-16 | Apple Inc. | Linear actuators for use in electronic devices |
CN105869194A (zh) * | 2015-11-13 | 2016-08-17 | 乐视移动智能信息技术(北京)有限公司 | 手写输入方法及装置、移动设备 |
US10039080B2 (en) | 2016-03-04 | 2018-07-31 | Apple Inc. | Situationally-aware alerts |
US10268272B2 (en) | 2016-03-31 | 2019-04-23 | Apple Inc. | Dampening mechanical modes of a haptic actuator using a delay |
US10622538B2 (en) | 2017-07-18 | 2020-04-14 | Apple Inc. | Techniques for providing a haptic output and sensing a haptic input using a piezoelectric body |
TWI638300B (zh) * | 2017-09-28 | 2018-10-11 | 義隆電子股份有限公司 | 電腦系統及其輸入方法 |
KR102553409B1 (ko) * | 2018-06-14 | 2023-07-10 | 엘지디스플레이 주식회사 | 터치표시장치, 터치센싱회로 및 구동방법 |
US10691211B2 (en) | 2018-09-28 | 2020-06-23 | Apple Inc. | Button providing force sensing and/or haptic output |
US10599223B1 (en) | 2018-09-28 | 2020-03-24 | Apple Inc. | Button providing force sensing and/or haptic output |
US11380470B2 (en) | 2019-09-24 | 2022-07-05 | Apple Inc. | Methods to control force in reluctance actuators based on flux related parameters |
CN111949157B (zh) * | 2020-07-30 | 2024-07-19 | 通彩视听科技(上海)有限公司 | 仿真书写笔迹处理方法、计算机设备及存储介质 |
US11977683B2 (en) | 2021-03-12 | 2024-05-07 | Apple Inc. | Modular systems configured to provide localized haptic feedback using inertial actuators |
US11809631B2 (en) | 2021-09-21 | 2023-11-07 | Apple Inc. | Reluctance haptic engine for an electronic device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030076307A1 (en) * | 2001-10-19 | 2003-04-24 | Krajewski Thomas G. | Enhanced touch-screen display system |
US20040207606A1 (en) * | 1999-11-08 | 2004-10-21 | Atwood Stephen P. | Sensing the size of a touch point in a touch-sensitive panel employing resistive membranes |
JP2008146580A (ja) * | 2006-12-13 | 2008-06-26 | Wacom Co Ltd | 座標入力装置 |
US20080296073A1 (en) * | 2007-04-25 | 2008-12-04 | Mcdermid William J | Method and apparatus for determining coordinates of simultaneous touches on a touch sensor pad |
TW200917947A (en) * | 2007-10-05 | 2009-04-16 | Hon Hai Prec Ind Co Ltd | Composite for electromagnetic shielding and method for making the same |
CN201242735Y (zh) * | 2008-07-14 | 2009-05-20 | 联想移动通信科技有限公司 | 一种手写移动终端 |
TW201102906A (en) * | 2009-07-15 | 2011-01-16 | Innolux Display Corp | Electronic device with touch panel disposed thereon |
TW201108057A (en) * | 2009-08-28 | 2011-03-01 | Justtec Corp | Load cell touch device |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5880411A (en) * | 1992-06-08 | 1999-03-09 | Synaptics, Incorporated | Object position detector with edge motion feature and gesture recognition |
GB0319714D0 (en) * | 2003-08-21 | 2003-09-24 | Philipp Harald | Anisotropic touch screen element |
US7973778B2 (en) * | 2007-04-16 | 2011-07-05 | Microsoft Corporation | Visual simulation of touch pressure |
KR20100036850A (ko) * | 2008-09-30 | 2010-04-08 | 삼성전기주식회사 | 접촉 감지 센서를 이용한 터치 패널 장치 |
US20110157083A1 (en) * | 2009-12-31 | 2011-06-30 | Nuvoton Technology Corporation | Resistive touch apparatus |
CN102214021B (zh) * | 2010-04-02 | 2013-05-29 | 北京富纳特创新科技有限公司 | 触摸式显示装置 |
US8963874B2 (en) * | 2010-07-31 | 2015-02-24 | Symbol Technologies, Inc. | Touch screen rendering system and method of operation thereof |
CN102402319B (zh) * | 2010-09-09 | 2014-09-24 | 群康科技(深圳)有限公司 | 触控面板的驱动方法与装置 |
KR101749676B1 (ko) * | 2010-09-29 | 2017-06-22 | 삼성디스플레이 주식회사 | 터치 좌표 검출 방법 및 이를 수행하기 위한 터치 패널 어셈블리 |
US9454268B2 (en) * | 2010-10-12 | 2016-09-27 | Parade Technologies, Ltd. | Force sensing capacitive hybrid touch sensor |
US8866758B2 (en) * | 2011-02-23 | 2014-10-21 | Honeywell International Inc. | Resistive touch screen displays and systems |
CN102502587B (zh) * | 2011-11-08 | 2013-06-05 | 北京富纳特创新科技有限公司 | 碳纳米管膜及其制备方法 |
-
2011
- 2011-05-02 TW TW100115301A patent/TWI453649B/zh not_active IP Right Cessation
- 2011-05-12 CN CN201110134059.6A patent/CN102768593B/zh active Active
- 2011-09-29 US US13/248,492 patent/US8952937B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040207606A1 (en) * | 1999-11-08 | 2004-10-21 | Atwood Stephen P. | Sensing the size of a touch point in a touch-sensitive panel employing resistive membranes |
US20030076307A1 (en) * | 2001-10-19 | 2003-04-24 | Krajewski Thomas G. | Enhanced touch-screen display system |
JP2008146580A (ja) * | 2006-12-13 | 2008-06-26 | Wacom Co Ltd | 座標入力装置 |
US20080296073A1 (en) * | 2007-04-25 | 2008-12-04 | Mcdermid William J | Method and apparatus for determining coordinates of simultaneous touches on a touch sensor pad |
TW200917947A (en) * | 2007-10-05 | 2009-04-16 | Hon Hai Prec Ind Co Ltd | Composite for electromagnetic shielding and method for making the same |
CN201242735Y (zh) * | 2008-07-14 | 2009-05-20 | 联想移动通信科技有限公司 | 一种手写移动终端 |
TW201102906A (en) * | 2009-07-15 | 2011-01-16 | Innolux Display Corp | Electronic device with touch panel disposed thereon |
TW201108057A (en) * | 2009-08-28 | 2011-03-01 | Justtec Corp | Load cell touch device |
Also Published As
Publication number | Publication date |
---|---|
TW201246042A (en) | 2012-11-16 |
US8952937B2 (en) | 2015-02-10 |
CN102768593A (zh) | 2012-11-07 |
US20120280945A1 (en) | 2012-11-08 |
CN102768593B (zh) | 2015-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI453649B (zh) | 觸控顯示裝置 | |
TWI454978B (zh) | 觸控輸入裝置 | |
TWI447635B (zh) | 電阻式觸摸屏的觸摸軌跡檢測方法 | |
US10901565B2 (en) | Portable computer | |
US9983710B2 (en) | Carbon nanotube based flexible mobile phone | |
JP5697923B2 (ja) | タッチパネル及びそのタッチ点の定位方法 | |
US20100073322A1 (en) | Desktop computer | |
TW201508603A (zh) | 基於電容式觸控裝置的感測方法 | |
TWI506520B (zh) | 電容式觸控裝置的控制方法 | |
TWI506502B (zh) | 觸摸點及觸摸壓力的檢測方法 | |
KR101452053B1 (ko) | 터치스크린 장치 및 터치스크린 장치의 화면 주밍 방법 | |
TWI441048B (zh) | 觸控面板及觸碰點定位方法 | |
TWI465992B (zh) | 觸控面板觸控點之檢測方法 | |
CN104731391A (zh) | 触控式键盘 | |
KR101184459B1 (ko) | 압력센서 | |
TWI451317B (zh) | 觸摸屏 | |
US20140062915A1 (en) | Touchscreen panel and touchscreen device | |
TWI465796B (zh) | 觸摸屏面板 | |
TWI481922B (zh) | 個人數位助理 | |
TWI441504B (zh) | 移動電話 | |
TW201015397A (en) | Electronic device and display system with integrated touch screen and control method thereof | |
TWI328766B (zh) | ||
Cairns et al. | Interacting with Flexible Displays |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |