TWI435276B - 用以辨識手寫符號之方法及設備 - Google Patents
用以辨識手寫符號之方法及設備 Download PDFInfo
- Publication number
- TWI435276B TWI435276B TW096123753A TW96123753A TWI435276B TW I435276 B TWI435276 B TW I435276B TW 096123753 A TW096123753 A TW 096123753A TW 96123753 A TW96123753 A TW 96123753A TW I435276 B TWI435276 B TW I435276B
- Authority
- TW
- Taiwan
- Prior art keywords
- symbol
- stroke
- strokes
- recognition engine
- complex
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/22—Character recognition characterised by the type of writing
- G06V30/224—Character recognition characterised by the type of writing of printed characters having additional code marks or containing code marks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/32—Digital ink
- G06V30/36—Matching; Classification
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Character Discrimination (AREA)
Description
本討論大致上有關數位系統之領域。特別地是,其有關辨識手寫符號之方法及設備。
以手寫辨識為基礎之文字輸入允許使用者使用一書寫工具(例如筆、劃針、或手指)及一電子輸入裝置(例如一輸入板、數位板、或觸控板)線上輸入符號。一典型之手寫辨識輸入裝置擷取該書寫工具軌跡之X、Y、及時間坐標,該手寫輸入可接著被自動地轉換成數位文字。手寫辨識軟體使用該輸入筆順,以施行該書寫至文字之轉換(例如其辨識所意欲之符號順序)。
藉由以自然之順序(例如由左至右,用以書寫英文)書寫,一使用者典型能以限制之方式(例如盒子模式或使用時限)或不受強制的方式(例如連續地標記或草書的)輸入符號。大致上,該符號輸入之限制越多,則該符號辨識之解析更容易。然而,限制符號輸入通常係不自然的,並增加該符號辨識系統之使用者的學習時間,且使該文字輸入過程變緩慢。對比之下,不受強制的符號輸入通常係計算密集的及易於錯誤的。不受強制的符號輸入辨識系統典型需要藉由在辨識之前適當地分段、歸類、及重新定序此等記錄的手寫資料,預處理該手寫資料。
由於科技進步之結果,很多小電子裝置、諸如行動電話正包含手寫符號輸入功能性。然而,這些小裝置典型具有設以小符號輸入區域之輸入裝置。這些輸入裝置通常係僅只具有足夠供使用者書寫單一符號之空間。在這些輸入裝置上,符號不能以自然之順序(例如並排及由左至右)書寫,該書寫順序對於很多語言係自然的。這些輸入裝置要求該等符號彼此上下地書寫。
由於符號彼此上下地書寫,使用小輸入裝置所輸入的符號之分段對上面所述該符號輸入系統增加額外之複雜性。對於在小輸入裝置上之手寫辨識,目前之解決方法確實存在。然而,為了處理該複雜之符號分段問題,這些目前之解決方法對使用者提供不自然之符號輸入或已經減少準確性。
譬如,一些小輸入裝置要求使用者學習特別之字母,諸如一筆劃(unistroke)字母。設計一筆劃字母,使得每一符號係單一筆劃。如此,雖然符號分段係輕易地處理,一使用者被迫學習一不自然及扭曲之字母。其他小輸入裝置使用一時限機件或另一外部分段信號,以處理該符號分段問題。一使用者被要求在輸入一符號之後中止。一旦該時限發生,施行該符號辨識。此技術係亦不自然的,因其要求一使用者在輸入每一符號之後等候一時限。再者,其係易於錯誤的,因一使用者不能足夠快速地輸入筆劃,在該使用者完成輸入該符號之前造成一時限發生,導致一不對之辨識符號。再者,外部分段信號之使用、例如下壓一按鍵以指示一符號之終止係亦易於錯誤的及不易控制的。
在此討論之各種具體實施例提供一用以至少局部地彼此上下書寫的手寫符號之整合式分段及辨識的方法及設備。於一具體實施例中,複數筆劃係接收在一電子裝置之共同輸入區域,其中該複數筆劃組合地界定複數符號。於一具體實施例中,該複數符號包含一表意語言之語音形象。
於一具體實施例中,其已決定該複數筆劃之一筆劃是否代表一非符號之手勢,使得如果一筆劃被決定代表一非符號之手勢,該筆劃在該複數符號辨識引擎被忽視。
以複數符號辨識引擎分析該複數筆劃之連續組合,以決定藉由該複數筆劃所界定之複數符號的至少一可能符號,其中該複數符號辨識引擎之至少一引擎係組構成可辨識包含一特別數目之筆劃的符號。於一具體實施例中,該複數符號辨識引擎包含統計式分類器。於一具體實施例中,該複數符號辨識引擎包含一筆劃符號辨識引擎、二筆劃符號辨識引擎、三筆劃符號辨識引擎。於一具體實施例中,該複數符號辨識引擎亦包含四筆劃符號辨識引擎。
應了解該複數符號辨識引擎不須是分開之模組,但可為以一拒絕包含由重疊符號的筆劃所形成之非符號的假設之方式,施行一分析筆劃之組合的類似功能之單一模組。
於一具體實施例中,該分析不需要使用一外部機件以辨識該可能之符號。於一具體實施例中,不需要之外部機件包含外部分段信號及筆劃辭典之至少一個。
於一具體實施例中,該複數筆劃之可能組合係根據二進位狀態機所決定。於一具體實施例中,該可能之組合係根據一預定限制所限制。一符號係由該可能之組合所選擇。
於另一具體實施例中,本發明為手寫符號之辨識提供一設備。一筆劃接收器係可操作的,以接收輸入一共同輸入區域之複數筆劃,其中該複數筆劃組合地界定複數符號,且其中一符號之至少一筆劃係空間地重疊在另一符號之至少一筆劃上方。於一具體實施例中,該筆劃接收器係一手持式計算裝置之筆劃輸入裝置。於一具體實施例中,該複數筆劃之每一筆劃係與該複數符號之僅只一符號有關聯。於一具體實施例中,該複數符號包含一表意語言之語音形象。
於一具體實施例中,該筆劃分析器係組構成可決定該複數筆劃的一筆劃是否代表一非符號之手勢,及如果該筆劃代表一非符號之手勢,用以在該複數符號辨識引擎忽視該筆劃。
一筆劃分析器係可操作的,以連續地分析該複數筆劃,以決定藉由該複數筆劃所界定的至少一可能之符號。該筆劃分析器包含複數符號辨識引擎,用以分析該複數筆劃之連續組合,其中該複數符號辨識引擎係用以辨識包含一特別數目之筆劃的符號。於一具體實施例中,該複數符號辨識引擎包含用以辨識包含一筆劃之符號的一筆劃符號辨識引擎、用以辨識包含二筆劃之符號的二筆劃符號辨識引擎、用以辨識包含三筆劃之符號的三筆劃符號辨識引擎。於一具體實施例中,該複數符號辨識引擎亦包含用以辨識包含四筆劃之符號的四筆劃符號辨識引擎。於一具體實施例中,該複數符號辨識引擎之每一個決定一機率,即藉由該複數符號辨識引擎的一個別符號辨識引擎所分析之筆劃係該可能有效之符號。
於一具體實施例中,該筆劃分析器係組構成可根據二進位狀態機決定該複數筆劃之可能的組合,及根據一預定限制而限制該可能之組合。於一具體實施例中,該複數符號辨識引擎包含統計式分類器。於一具體實施例中,該複數符號辨識引擎之至少一符號辨識引擎係組構成可辨識藉由至少一共同筆劃所連接的複數符號之至少二符號。
概括地,此書寫法討論一用於辨識手寫符號之方法及設備。複數筆劃係在一電子裝置之共同輸入區域接收,其中該複數筆劃組合地界定複數符號。該複數筆劃之連續組合係以複數符號辨識引擎所分析,以決定藉由該複數筆劃所界定之複數符號的至少一可能符號,其中該複數符號辨識引擎之至少一引擎係組構成可辨識包含一特別數目之筆劃的符號。
併入及形成此說明書的一部份之附圖說明本發明之具體實施例,且隨同該敘述,具有說明本發明之原理的作用:第1A圖係按照本發明的一具體實施例之方塊圖,其顯示一示範小形狀因數裝置之零組件。
第1B圖係按照本發明的一具體實施例之概要圖,其顯示使用一手寫輸入裝置的單字之示範輸入。
第2圖係按照本發明的一具體實施例之方塊圖,其顯示一手寫辨識引擎之零組件。
第3A圖按照本發明的一具體實施例說明一用於該單字“do”之示範輸入影像。
第3B圖按照本發明的一具體實施例說明一用於該單字“do”之三筆劃輸入的二進位狀態機。
第4圖係按照本發明的一具體實施例之流程圖,其說明用以辨識手寫符號的過程中之諸步驟。
第5圖係按照本發明的一具體實施例之流程圖,其說明用以分析一筆劃的過程中之諸步驟。
現在將詳細地參考本發明之各種具體實施例,其範例係在該等附圖中說明。雖然本發明將會同各種具體實施例敘述,將了解它們係不欲將本發明限制於這些具體實施例。反而,本發明係意欲涵蓋另外之選擇、修改及同等項,它們可被包含在本發明之精神及範圍內,如由所附申請專利範圍所界定者。再者,於本發明之以下詳細敘述中,極多特定之細節被提出,以便提供本發明之一完全理解。然而,對於普通熟諳此技藝者將為明顯的是本發明可被實踐,而沒有這些特定之細節。於其他情況中,未詳細地敘述早已習知的方法、程序、零組件、及電路,以便不會無益地使本發明之態樣變得難理解。
用於本申請案之目的,“符號”一詞意指一或多個意欲傳達意義之手寫筆劃。例如,符號係意欲包含、但不限於各種字符之字母、用於表意語言之表意文字、語音符號、數字、數學符號、標點符號等。
本發明之各種具體實施例提供一以手寫辨識為基礎之方法,用以施行文字輸入進入該等電腦裝置,在此配置供文字輸入之區域相對該書寫符號之尺寸係小的。譬如,配置用於文字輸入之區域可僅只能夠並排地接收一或二符號,在此所有額外之符號必需重疊。第1B圖說明在一配置給文字輸入的小區域上之示範輸入。特別地是,符號係以一自然之方式輸入,且不需要一使用者學習一特別之字符或依靠一時限或任何其他瞄準分開之書寫符號的外部機件。本發明之具體實施例提供一辨識手寫符號之方法,其包含在一電子裝置之共同輸入區域接收複數筆劃,其中該複數筆劃組合地界定複數符號。以複數符號辨識引擎分析該複數筆劃之連續組合,以決定藉由該複數筆劃所界定之複數符號的至少一可能符號,其中該複數符號辨識引擎之至少一引擎係組構成可辨識包含一特別數目之筆劃的符號。
第1A圖係按照本發明的一具體實施例之方塊圖,其顯示一示範小形狀因數電子裝置100之零組件。大致上,電子裝置100包含用以連通資訊之匯流排110;與匯流排110耦合之處理器101,用以處理資訊及指令;與匯流排110耦合之唯讀(非揮發性)記憶體(ROM)102,用以儲存靜態資訊及處理器101用之指令;及與匯流排110耦合之隨機存取(揮發性)記憶體(RAM)103,用以儲存資訊及處理器101用之指令。電子裝置100亦包含與匯流排110耦合之手寫輸入裝置104,用以接收筆劃輸入;與匯流排110耦合之手寫辨識引擎105,用以在所接收之筆劃輸入上施行手寫辨識;及與匯流排110耦合之顯示裝置106,用以顯示資訊。
於一具體實施例中,手寫輸入裝置104係可操作的,俾能由一使用者接收以筆、劃針、或手指為基礎之手寫輸入。譬如,手寫輸入裝置104可為一數位化輸入板、觸控板、感應筆輸入板等。手寫輸入裝置104係可操作的,以擷取呈筆劃資料形式輸入之X及Y坐標資訊。換句話說,手寫輸入裝置104係一坐標輸入裝置,用以即時偵測以一符號及/或單字的自然筆劃順序書寫之符號筆劃。於一具體實施例中,該等個別符號之筆劃包含位置及暫時資訊,該資訊源自該物體接觸、移動越過、及離開該手寫輸入裝置104之表面的運動。於另一具體實施例中,在此該手寫輸入裝置104係一放置在顯示裝置106後方之感應裝置,該個別之符號筆劃包含位置及暫時資訊,該資訊源自該物體接觸、移動越過、及離開該顯示裝置106之表面的運動。於一具體實施例中,筆劃係儲存於非揮發性記憶體102及揮發性記憶體103之一中,用以藉由手寫辨識引擎105所存取。於一具體實施例中,藉由一使用所輸入之符號係一表意語言之語音形象。於一具體實施例中,該符號係非草書的。
於一具體實施例中,手寫輸入裝置104係足夠小,使得藉由一使用者所輸入之符號不能被並排地書寫(例如由左至右或由頂部至底部),但反之彼此重疊。譬如,於一具體實施例中,手寫輸入裝置104具有比一平方英吋較少之一表面積。第1B圖係按照本發明的一具體實施例之概要圖150,其顯示一使用手寫輸入裝置104的單字之示範輸入。概要圖150說明使用一小形狀因數手寫輸入裝置的單字“BELL”之輸入。特別地是,該符號B、E、L及L係彼此重疊地輸入。應了解本發明之具體實施例係可操作,以輸入並排地書寫之符號,譬如短單字,諸如“AN”及“TO”。於一具體實施例中,一單字之末端係藉由特別之手勢、按鈕下壓、時限、或另一信號所指示。
參考第圖1A,手寫辨識引擎105係可操作的,以在手寫輸入裝置104接收筆劃輸入,及施行該等筆劃上之符號辨識。應了解該手寫辨識引擎105可被實現為電子裝置100內之硬體、軟體、及/或韌體。再者,應了解如虛線所示之手寫辨識引擎105指示手寫辨識功能性,其可為能獨立運行的零組件或分佈越過電子裝置100之其他零組件。例如,應了解該手寫辨識引擎105之不同功能可為分佈越過電子裝置100之諸零組件,諸如處理器101、非揮發性記憶體102、及揮發性記憶體103。在下面例如參考第2圖討論手寫辨識引擎105之操作。手寫辨識引擎105係可操作,以輸出經辨識之符號。
利用有電子裝置100之顯示裝置106可為一液晶裝置(LCD)或另一顯示裝置,其適合用於建立該使用者可辨別之圖型影像及字母數字或表意符號。顯示裝置106係可操作的,以顯示辨識符號。於一具體實施例中,該等經辨識之符號被顯示為文字。
第2圖係按照本發明的一具體實施例之方塊圖,其顯示一用以施行手寫辨識的系統200之諸零組件。於一具體實施例中,本發明提供一系統200,用以基於進入一電腦裝置(例如第1A圖之電子裝置100)的文字輸入施行手寫辨識,在此配置給文字輸入之區域相對該書寫工具係小的。一使用者係能夠以自然的筆順輸入符號之筆劃。
系統200包含手寫輸入裝置104、手寫辨識引擎105、及顯示裝置106。如上面所述,筆劃輸入係在手寫輸入裝置104接收。在第2圖中,該筆劃輸入係表示為筆劃202、204、206及208。特別地是,筆劃208係最近輸入之筆劃,而筆劃206、204及202係在其之前。如所示,四筆劃係被手寫辨識引擎105所處理。然而,應了解任何數目之筆劃能被處理,並本發明之具體實施例不限於本具體實施例。例如,雖然本具體實施例係敘述為處理該四個最近接收之筆劃,其他具體實施例可被引導朝向其他數目之最近接收筆劃(例如所接收之最近三筆劃或所接收之最近五筆劃)。
於一具體實施例中,手寫輸入裝置104係可操作的,以感測及報告接觸移動之形跡。該等接觸形跡係在稱為X,Y坐標筆劃中分類成各組標點。一筆劃緩衝器201暫時地保有該輸入筆劃,以允許形成將筆順分段之不同假設。
手寫辨識引擎105係可操作的,以基於使用者筆劃輸入辨識一組已登錄之符號(例如a-z、0-9、A-Z、或表意符號)。筆劃202、204、206及208係藉由手寫辨識引擎105所處理,用以施行手寫辨識。於一具體實施例中,筆劃202、204、206及208係在筆劃分析器210處理。筆劃分析器210係可操作,以連續地分析複數筆劃,以決定藉由該複數筆劃所界定之至少一可能的符號。如所示,筆劃分析器210包含四個符號辨識引擎222、224、226及228,用以在分別包含最近輸入之四、三、二及一筆劃的符號上施行符號辨識。應了解該等符號辨識引擎222、224、226及228不需為可分開之模組,但可為單一模組,其以一拒絕包含由重疊符號的筆劃所形成之非符號的假設之方式,施行一分析筆劃之組合的類似功能。
於一具體實施例中,筆劃分析器210亦包含手勢辨識器220,用以決定最近之筆劃是否為符號的一部份或正指示一手勢。一手寫筆劃可為一符號(所輸入之文字)的一部份或一手勢,以發出一指令。因為手勢代表一組預定之筆劃,一手勢辨識器210能於符號辨識之前過濾出手勢筆劃。
一旦已確認一筆劃不是一手勢,該符號辨識及分段開始。儲存於暫時緩衝器中之筆劃202、204、206及208被用於試探性的符號產生。基於該緩衝器中之可用的筆劃,可關於該最近之輸入筆劃形成若干新試探性的符號。藉由使用有關用於一特別符號集之最大筆劃數目的先前知識決定新試探性的符號之數目。藉由預設,每一個試探性的符號被假設為一包含僅只該最近筆劃之新的符號,或一包含與一或多個先前筆劃結合的最近筆劃之新的符號。
於一具體實施例中,於將筆劃送至符號辨識引擎之前,該等筆劃係在前置處理器212、214、216及218遭受預處理。前置處理器212、214、216及218係可操作的,以施行各種變換,以將原始資料(例如X,Y坐標)轉換成一有利於該辨識過程之表示法。於一具體實施例中,該預處理包含操作,諸如定標、規格化及特徵產生,例如將該輸入表示法轉換成更適用於該辨識之表示法。
預處理技術併入人類之有關在手邊工作的知識,諸如習知變異數與有關之特徵。譬如,預處理能包含要點擷取、雜訊過濾、及特徵擷取。於一具體實施例中,前置處理器212、214、216及218之輸出係一向量,其代表多維特徵空間中所界定的特徵向量形式中之輸入。此超空間被分成若干代表該問題之個別類別的次空間。一分類過程決定該特別之輸入屬於哪一次空間特徵向量。
在預處理之後,筆劃被送至個別之符號辨識引擎222、224、226及228,用以分別在該最近四筆劃、最近三筆劃、最近二筆劃、及最近筆劃之組合上施行符號辨識。於一具體實施例中,特徵向量的形式中之輸入筆劃係相對已登錄類別之特徵比對。應了解被辨識為手勢之筆劃不會通過該等符號辨識引擎222、224、226及228。
於一具體實施例中,符號辨識引擎222、224、226及228包含統計式辨識器及係可操作的,以在預定類別組之中施行分類。於一具體實施例中,符號辨識引擎222、224、226及228亦被訓練成可拒絕筆劃的一非合法組合。該等符號辨識引擎222、224、226及228輸出反映該預處理輸入信號及該輸出類別間之類似性的分數。一高輸出分數建議該相關試探性的符號之驗收,而在所有類別上之低分數建議拒絕該相關之假設。於一具體實施例中,該輸出分數指示藉由該個別符號辨識引擎所分析之筆劃係一可能的符號之機率。以整體而言,應了解該等符號辨識引擎222、224及226在該個別之符號辨識內分析筆劃之每一組合,而非個別地分析每一筆劃。
於一具體實施例中,每一符號辨識引擎222、224、226及228係可操作的,以對於規則之分類工作達成良好性能,且係可操作的,以拒絕一不正確假設窗口中所觀察之無意義符號的查詢,其中當產生一有效之“信心判斷”供拒絕含混之輸入圖案時,筆劃係來自二意欲之符號。於一具體實施例中,每一符號辨識引擎採用一模板比對程序,其藉由測量其類似性徹底地施行一輸入符號及一群模板間之比對。該比較之正確結果係該模板具有最高之類似性分數。
於一具體實施例中,該模板比對包含:.已歸類之模板比對:該等模板藉由筆劃之數目被歸類成諸群組。這些群組將該辨識工作分成互相排除之子任務,且如此推進該辨識性能。
.類似性測量:一函數測量該已轉變之輸入及所有模板間之類似性,其報告該最高得分比較當作該有意之類別。
.用於子集合類別辨識之懲罰因數:一子集合類別係一簡單之類別,其亦代表一更複雜之類別的一部份(例如I及C係手寫中之K的子集合類別)。一懲罰常數係分解成該類似性測量之因數,以致一子集合類別將不會獲得一高分。譬如,當一輸入“I”係相對該模板“K”比對時。
.以異形文字(allograph)為基礎之辨識:用於相同符號的手寫樣式中之變化有時候導致不同之子集合,其稱為異形文字。譬如,小寫“z”亦可被寫成像“3”,且此第二異形文字包含與一規則之“z”不同的特徵。該辨識工作處理異形文字當作分開之類別。
應了解其他型式之統計式分類器可被用於符號辨識引擎222、224、226及228中,諸如神經網路等,且本發明不限於模板比對之使用。
於一具體實施例中,該等符號辨識引擎之比對結果係在後處理器232、234、236及238遭受後處理。該後處理係可操作的,以在諸類別之中減少現存的混亂。該辨識結果係隨同一信心水準、例如一辨識分數之類別標籤。
筆劃分析器210係可操作的,以在接收筆劃上施行符號辨識。暫時分段器(segmenter)240係可操作的,以接收該符號辨識結果,及基於該等符號辨識引擎之符號辨識結果選擇該最佳配合符號。
暫時分段器240評估所有可能之假設,例如組合輸入筆劃之順序的方式。在該筆順之特別部份中,具有最高分數之假設獲勝,且輸出與獲勝之假設有關的累積之符號順序。為產生所有可能之解答,於一具體實施例中,當新的筆劃被加至該系統時,暫時分段器240利用指數地擴展之二進位狀態機。該狀態機係二進位的,其中每一狀態具有二後代狀態之最大數目,代表基於該上代狀態之二新的可能之假設:該新近加入之筆劃係單一筆劃符號或該最近之筆劃附加至該上代狀態中之累積筆劃。
第3A圖說明按照本發明的一具體實施例而用於該單字“do”之示範輸入影像300。如所示,該單字“do”包含三筆劃312、314及316。輸入影像300說明該該等筆劃之重疊式輸入,且圖解310說明該等筆劃,如在該筆順領域中所輸入者。
第3B圖說明按照本發明的一具體實施例而用於該單字“do”之三筆劃輸入的二進位狀態機320。二進位狀態機為筆劃之每一組合掌握有效假設之行蹤。假設330係用於輸入筆劃312之唯一假設。假設340a及340b兩者係用於輸入筆劃312及314之組合的有效假設。假設350a、350b及350c係用於輸入筆劃312、314、及316的有效假設。假設350d係無效的,因該類別“d”係已知包括少於三筆劃,如此可排除用於三筆劃“d”之假設。該想要之輸出“do”係指示在假設350c。
二進位狀態機指數地成長。為了限制該二進位狀態機之成長,以便改善處理速度及系統虛耗,各種限制可被加在暫時分段器240上。
於一具體實施例中,對於一合法之符號,一任意限制係強加在筆劃之數目上。譬如,用於大寫字母、小寫字母、及數字,筆劃之最大數目被分別限制為少於四、三及二筆劃。如此,如果一具有超過這些限制之若干筆劃的符號具有零可能性,將在該狀態機中不會保存假設。
於一具體實施例中,該二進位狀態機之深度係受限制的。此限制強迫該等累積筆劃之點火及運送該狀態機中之最親信假設(狀態)。此限制能由該筆劃緩衝器卸除一未完成符號之筆劃,且如此其係易於分段錯誤。該分段工作的一目標係避免達到此限制。
暫時分段器240係可操作的,以接收該符號辨識結果,及將事件之順序分成各組互相排除之接頭事件。這配合於隱藏式馬可夫模型(HMM)的一般框架,該模型隱藏來自一觀察順序之狀態。以該界定HMM中之最高可能性辨識該路徑對該分段給與最可能之回答。一HMM之複雜性係藉由在連續狀態之中的相依之順序所指示。於此問題領域中,用於已登錄之符號組,相依之順序係等於每符號的筆劃之最大數目(例如四)。如此,任何涉及超過四筆劃之假設可馬上由該HMM排除。
如由暫時分段器240所決定者,一狀態之信心出自二主要來源:該新的假想符號中之信心及其前面字串之信心。該前面字串可出自該上代狀態或一源始狀態。譬如,狀態350a反映一將新的符號“o”附加至其上代狀態340a之假設,反之狀態350b否定340a之(看起來像“I”的符號之)局部假定,並將一新的符號“d”附加至狀態330。於一具體實施例中,該二信心係同樣地加重。
本發明亦藉由提供一早期之點火決定提供用於該二進位狀態機之增強的管理。一早期之點火決定意指在該狀態機抵達其限制之前,卸除該等累積之筆劃及輸送該最佳之猜測至該使用者的信號。此一信號可為源自當該獲勝之假設於最近辨識的符號中具有一很高之信心時。另一方面,該最近觀察上之結論有助於在該順序之另一排除部份促進該信心。
控制模組250由暫時分段器240接收符號及單字,且由手勢辨識器220辨識手勢。控制模組250係可操作,以顯示示範小形狀因數電子裝置260的顯示裝置106上之符號及單字。控制模組250亦係可操作,以回應於一手勢之接收採取適當之作用,例如開始一新的單字或插入一空間。
第4圖係按照本發明的一具體實施例之流程圖,其說明用以辨識手寫符號的過程400中之諸步驟。於一具體實施例中,在電腦可讀取及電腦可執行指令的控制之下,藉著處理器及電零組件進行過程400。此等電腦可讀取及電腦可執行的指令譬如駐在於資料儲存部件中,諸如電腦可用之揮發性及非揮發性記憶體。然而,該等電腦可讀取及電腦可執行的指令可駐在任何型式的電腦可讀取媒體中。雖然特定之步驟已在過程400中揭示,此等步驟係示範的。亦即,本發明之具體實施例係很適合用於施行各種其他步驟或第4圖中所引述之步驟的變化。於一具體實施例中,過程400係藉著第2圖之手寫辨識引擎105所施行。
在第4圖之步驟405,一電子裝置之共同輸入區域開始接收複數筆劃,其中該複數筆劃組合地界定複數符號。於一具體實施例中,該複數符號之第一符號的至少一筆劃係空間地重疊在該複數符號之第二符號的至少一筆劃上方,其中該複數筆劃之每一筆劃係與該複數符號之僅只一符號有關。於一具體實施例中,該複數符號包含一表意語言之語音形象。於一具體實施例中,該複數符號的一符號包含僅只四筆劃。
在步驟410,處理一筆劃。在步驟415,其係決定該筆劃是否為一單複數字尾(word ending)手勢。如果該筆劃係一單複數字尾手勢,過程400持續進行至步驟440。另一選擇係,如果該筆劃不是一單複數字尾手勢,過程400持續進行至步驟420。在步驟420,產生涉及該筆劃的假想之符號。於一具體實施例中,該假想之符號包含該筆劃及先前處理筆劃之連續組合。
在步驟425,分析該假想之符號。於一具體實施例中,根據第5圖之過程500分析該等假想之符號。
第5圖係按照本發明的一具體實施例之流程圖,其說明用以分析複數筆劃的過程500中之諸步驟。於一具體實施例中,在電腦可讀取及電腦可執行指令的控制之下,藉著處理器及電零組件進行過程500。該等電腦可讀取及電腦可執行的指令譬如駐在於資料儲存部件中,諸如電腦可用之揮發性及非揮發性記憶體。然而,該等電腦可讀取及電腦可執行的指令可駐在任何型式的電腦可讀取媒體中。雖然特定之步驟已在過程500中揭示,此等步驟係示範的。亦即,本發明之具體實施例係很適合用於施行各種其他步驟或第5圖中所引述之步驟的變化。於一具體實施例中,過程500係藉著第2圖之手寫辨識引擎105所施行。
在步驟520,以複數符號辨識引擎分析該複數筆劃之連續組合,以決定藉由該複數筆劃所界定之該複數符號的至少一可能符號。於一具體實施例中,該複數符號辨識引擎包含統計式分類器。於一具體實施例中,該複數符號辨識引擎之至少一引擎係組構成可辨識包含一特別數目之筆劃的符號。
能共同地以一或多個筆劃書寫符號組合,諸如連字、雙元音字(Dipthong)等。於一具體實施例中,藉著該等符號辨識引擎、該手勢辨識器、或一最佳化用於此工作之額外辨識器的一或多個,辨識藉由至少一共同筆劃所連接之複數符號的至少二符號。
於一具體實施例中,該分析不需要使用一外部機件以辨識該可能之符號。於一具體實施例中,不需要之外部機件包含外部分段信號及筆劃辭典之至少一個,諸如一包含描述符號雙字母組間之筆劃的相對位置之資訊的筆劃辭典。
於一具體實施例中,該複數符號辨識引擎包含一筆劃符號辨識引擎、二筆劃符號辨識引擎、三筆劃符號辨識引擎。於一具體實施例中,該複數符號辨識引擎亦包含四筆劃符號辨識引擎。
在步驟525,該複數筆劃之可能組合係根據二進位狀態機所決定。在步驟530,該等可能之組合係根據一預定限制而有限的。於一具體實施例中,處理500接著持續進行至第4圖之步驟430。
參考第4圖,在步驟430,其係決定是否滿足該早期點火標準。於一具體實施例中,當該獲勝假設中之最近假想符號具有一很高信心及已知不是任何另一符號之子集合時,滿足該早期點火標準。如果不滿足該早期點火標準,過程400持續進行至步驟435,在此存取該下一筆劃供處理,且過程400持續進行至步驟410。另一選擇係,如果滿足該早期點火標準,由該可能之組合選擇符號之一局部完成字串。於一具體實施例中,如所示在步驟440,該獲勝之假想字串係輸出至一顯示裝置,例如第1圖之顯示裝置106,且重新設定過程400供下一筆順。
如此敘述本發明之各種具體實施例、用以辨識手寫符號之方法及設備。雖然已在特別具體實施例中敘述本發明,應了解本發明將不被解釋為受此等具體實施例所限制,但反之應解釋為根據下面之申請專利範圍。
100...電子裝置
101...處理器
102...唯讀(非揮發性)記憶體
103...隨機存取(揮發性)記憶體
104...手寫輸入裝置
105...手寫辨識引擎
106...顯示裝置
110...匯流排
150...概要圖
200...系統
201...筆劃緩衝器
202...筆劃
204...筆劃
206...筆劃
208...筆劃
210...筆劃分析器
212...前置處理器
214...前置處理器
216...前置處理器
218...前置處理器
220...手勢辨識器
222...符號辨識引擎
224...符號辨識引擎
226...符號辨識引擎
228...符號辨識引擎
232...後處理器
234...後處理器
236...後處理器
238...後處理器
240...暫時分段器
250...控制模組
260...小形狀因數電子裝置
300...輸入影像
310...圖解
312...筆劃
314...筆劃
316...筆劃
320...二進位狀態機
330...假設
340a...假設
340b...假設
350a...假設
350b...假設
350c...假設
350d...假設
400...過程
500...過程
第1A圖係按照本發明的一具體實施例之方塊圖,其顯示一示範小形狀因數裝置之零組件。
第1B圖係按照本發明的一具體實施例之概要圖,其顯示使用一手寫輸入裝置的單字之示範輸入。
第2圖係按照本發明的一具體實施例之方塊圖,其顯示一手寫辨識引擎之零組件。
第3A圖按照本發明的一具體實施例說明一用於該單字“do”之示範輸入影像。
第3B圖按照本發明的一具體實施例說明一用於該單字“do”之三筆劃輸入的二進位狀態機。
第4圖係按照本發明的一具體實施例之流程圖,其說明用以辨識手寫符號的過程中之諸步驟。
第5圖係按照本發明的一具體實施例之流程圖,其說明用以分析一筆劃的過程中之諸步驟。
104...手寫輸入裝置
105...手寫辨識引擎
106...顯示裝置
200...系統
201...筆劃緩衝器
202...筆劃
204...筆劃
206...筆劃
208...筆劃
210...筆劃分析器
212...前置處理器
214...前置處理器
216...前置處理器
218...前置處理器
220...手勢辨識器
222...符號辨識引擎
224...符號辨識引擎
226...符號辨識引擎
228...符號辨識引擎
232...後處理器
234...後處理器
236...後處理器
238...後處理器
240...暫時分段器
250...控制模組
260...小形狀因數電子裝置
Claims (29)
- 一種用以辨識手寫符號之方法,包含:在一電子裝置之一共同輸入區域接收複數筆劃,其中該複數筆劃組合地界定複數符號;及用該電子裝置之複數符號辨識引擎分析該複數筆劃之順序組合,以決定藉由該複數筆劃所界定之複數符號的至少一可能符號,其中該複數符號辨識引擎之每一者係組構來辨識包含一不同數目順序之筆劃的符號,其中該複數筆劃係在該複數符號辨識引擎被分析。
- 如申請專利範圍第1項之方法,其中該分析不需要使用一外部機件來辨識該可能之符號。
- 如申請專利範圍第2項之方法,其中該外部機件包含外部分段信號及外部筆劃辭典之至少一個。
- 如申請專利範圍第1項之方法,其中該複數符號之第一符號的至少一筆劃係空間地重疊在該複數符號之第二符號的至少一筆劃上方,其中該複數筆劃之每一筆劃係與該複數符號之僅只一符號有關。
- 如申請專利範圍第1項之方法,其中分析該複數筆劃之順序組合包含:決定該複數筆劃的一筆劃是否代表一非符號之手勢;及如果該筆劃代表一非符號之手勢,在該複數符號辨識引擎忽視該筆劃。
- 如申請專利範圍第1項之方法,其中分析該複數筆劃之 順序組合包含:辨識藉由至少一共同筆劃所連接的符號之至少二該複數符號。
- 一種用以辨識及分段手寫符號之方法,該方法包含:在一電子裝置之一共同輸入區域接收複數筆劃,其中該複數筆劃組合地界定複數符號;及其中第一符號的至少一筆劃係空間地重疊在第二符號的至少一筆劃上方,及其中該複數筆劃之每一筆劃係與該複數符號之僅只一符號有關;及順序地分析該複數筆劃,以決定藉由該複數筆劃所界定之至少一可能的符號,其中該順序地分析不需要使用一外部筆劃辭典來辨識至少一個該可能之符號,其中該順序地分析係線上施行。
- 如申請專利範圍第7項之方法,其中該外部分段信號包含一時限信號。
- 如申請專利範圍第7項之方法,其中該外部筆劃辭典包含描述符號雙字母組間之筆劃的相對位置之資訊。
- 如申請專利範圍第7項之方法,其中該順序地分析該複數筆劃包含利用複數符號辨識引擎,來決定藉由該複數筆劃所界定之複數符號的至少一可能符號,其中該複數符號辨識引擎之每一引擎係組構來辨識包含一不同數目之順序筆劃的符號。
- 如申請專利範圍第1或10項之方法,其中該複數符號辨識引擎包含一單筆劃符號辨識引擎、一雙筆劃符號辨識引擎、一三筆劃符號辨識引擎。
- 如申請專利範圍第11項之方法,其中該複數符號辨識引擎另包含一四筆劃符號辨識引擎。
- 如申請專利範圍第1或7項之方法,其中該複數符號的一符號包含僅只四筆劃。
- 如申請專利範圍第1或7項用之方法,其中分析該複數筆劃之順序組合或順序地分析該複數筆劃包含:根據一二進位狀態機決定該複數筆劃之可能的組合;及根據一預定限制而限制該等可能的組合。
- 如申請專利範圍第1或7項之方法,其中該複數符號包含一表意語言之語音形象。
- 如申請專利範圍第7項之方法,其中順序地分析該複數筆劃包含:決定該複數筆劃的一筆劃是否代表一非符號手勢;及如果該筆劃代表一非符號之手勢,忽視該筆劃。
- 如申請專利範圍第1或10項之方法,其中該複數符號辨識引擎包含統計式分類器。
- 一種用以辨識手寫符號之設備,包含:一筆劃接收器,用以接收輸入一共同輸入區域之複數筆劃,其中該複數筆劃組合地界定複數符號,且其中第一符號之至少一筆劃係空間地重疊在第二符號之至少一筆劃上方;及一筆劃分析器,用以順序地分析該複數筆劃,以決 定藉由該複數筆劃所界定的至少一可能之符號,該筆劃分析器包含:複數符號辨識引擎,用以分析該複數筆劃之順序組合,其中每個該複數符號辨識引擎係用以辨識包含一不同數目之順序筆劃的符號,其中該複數筆劃係在該複數符號辨識引擎被分析。
- 如申請專利範圍第18項之設備,其中該複數符號辨識引擎包含:一單筆劃符號辨識引擎,用以辨識包含單筆劃之符號;一雙筆劃符號辨識引擎,用以辨識包含雙筆劃之符號;及一三筆劃符號辨識引擎,用以辨識包含三筆劃之符號。
- 如申請專利範圍第19項之設備,其中該複數符號辨識引擎另包含一四筆劃符號辨識引擎,用以辨識包含四筆劃之符號。
- 如申請專利範圍第18項之設備,其中每個該複數符號辨識引擎決定一機率值,即藉由該複數符號辨識引擎的一個別符號辨識引擎所分析之筆劃係該可能的符號之機率值。
- 如申請專利範圍第18項之設備,其中該筆劃接收器係一手持式計算裝置之筆劃輸入裝置。
- 如申請專利範圍第18項之設備,其中該複數符號的一符 號包含不超過四筆劃之筆劃。
- 如申請專利範圍第18項之設備,其中該複數筆劃之每一筆劃係與該複數符號之僅只一符號有關聯。
- 如申請專利範圍第18項之設備,其中該筆劃分析器係組構成用以根據一二進位狀態機決定該複數筆劃之可能的組合,及根據一預定限制而限制該等可能的組合。
- 如申請專利範圍第18項之設備,其中該複數符號包含一表意語言之語音形象。
- 如申請專利範圍第18項之設備,其中該筆劃分析器係組構成用以決定該複數筆劃的一筆劃是否代表一非符號手勢;及如果該筆劃代表一非符號之手勢,在該複數符號辨識引擎忽視該筆劃。
- 如申請專利範圍第18項之設備,其中該複數符號辨識引擎包含統計式分類器。
- 如申請專利範圍第18項之設備,其中該複數符號辨識引擎之至少一符號辨識引擎係組構成可辨識藉由至少一共同筆劃所連接的複數符號之至少二符號。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/484,051 US20080008387A1 (en) | 2006-07-06 | 2006-07-06 | Method and apparatus for recognition of handwritten symbols |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200823773A TW200823773A (en) | 2008-06-01 |
TWI435276B true TWI435276B (zh) | 2014-04-21 |
Family
ID=38895117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096123753A TWI435276B (zh) | 2006-07-06 | 2007-06-29 | 用以辨識手寫符號之方法及設備 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20080008387A1 (zh) |
EP (1) | EP2038813A4 (zh) |
JP (1) | JP5211334B2 (zh) |
KR (1) | KR101354663B1 (zh) |
CN (1) | CN101484907B (zh) |
TW (1) | TWI435276B (zh) |
WO (1) | WO2008005304A2 (zh) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8074172B2 (en) | 2007-01-05 | 2011-12-06 | Apple Inc. | Method, system, and graphical user interface for providing word recommendations |
US8121412B2 (en) * | 2008-06-06 | 2012-02-21 | Microsoft Corporation | Recognition of tabular structures |
US8566717B2 (en) * | 2008-06-24 | 2013-10-22 | Microsoft Corporation | Rendering teaching animations on a user-interface display |
TWI385584B (zh) * | 2008-11-05 | 2013-02-11 | Avermedia Information Inc | 自動排列手寫字串之裝置及方法 |
US8310461B2 (en) * | 2010-05-13 | 2012-11-13 | Nuance Communications Inc. | Method and apparatus for on-top writing |
CN102156609B (zh) * | 2010-12-10 | 2012-12-19 | 上海合合信息科技发展有限公司 | 一种重叠书写的手写输入方法 |
US8988461B1 (en) | 2011-01-18 | 2015-03-24 | Disney Enterprises, Inc. | 3D drawing and painting system with a 3D scalar field |
CN102141892B (zh) * | 2011-03-28 | 2013-01-02 | 安徽科大讯飞信息科技股份有限公司 | 叠加手写输入显示方法及系统 |
US9142056B1 (en) * | 2011-05-18 | 2015-09-22 | Disney Enterprises, Inc. | Mixed-order compositing for images having three-dimensional painting effects |
US8094941B1 (en) * | 2011-06-13 | 2012-01-10 | Google Inc. | Character recognition for overlapping textual user input |
EP3522075A1 (en) * | 2011-06-13 | 2019-08-07 | Google LLC | Character recognition for overlapping textual user input |
CN102981693B (zh) * | 2011-09-07 | 2015-11-25 | 汉王科技股份有限公司 | 一种多语言手写输入方法和装置 |
TWI447619B (zh) * | 2011-12-15 | 2014-08-01 | Inventec Corp | 提供引導軌跡以輔助手勢輸入之系統及其方法 |
CN103366151B (zh) * | 2012-03-30 | 2017-05-31 | 佳能株式会社 | 手写字符识别方法以及设备 |
CN105283882B (zh) * | 2013-04-12 | 2019-12-27 | 诺基亚技术有限公司 | 用于文本输入的装置及相关联的方法 |
US9465985B2 (en) | 2013-06-09 | 2016-10-11 | Apple Inc. | Managing real-time handwriting recognition |
CN103425262A (zh) * | 2013-08-01 | 2013-12-04 | 广东小天才科技有限公司 | 一种汉字手写输入方法及装置 |
KR102147935B1 (ko) * | 2013-08-29 | 2020-08-25 | 삼성전자주식회사 | 데이터 처리 방법 및 그 전자 장치 |
CN105095924A (zh) * | 2014-04-25 | 2015-11-25 | 夏普株式会社 | 手写识别方法和设备 |
US10528249B2 (en) * | 2014-05-23 | 2020-01-07 | Samsung Electronics Co., Ltd. | Method and device for reproducing partial handwritten content |
JP6430199B2 (ja) * | 2014-09-30 | 2018-11-28 | 株式会社東芝 | 電子機器、方法及びプログラム |
JP6451316B2 (ja) * | 2014-12-26 | 2019-01-16 | 富士通株式会社 | 文字認識プログラム、文字認識方法及び文字認識装置 |
CN104699405B (zh) * | 2015-03-26 | 2019-03-29 | 联想(北京)有限公司 | 信息处理方法、信息处理装置和电子设备 |
DK179329B1 (en) * | 2016-06-12 | 2018-05-07 | Apple Inc | Handwriting keyboard for monitors |
CN108509955B (zh) * | 2017-02-28 | 2022-04-15 | 柯尼卡美能达美国研究所有限公司 | 用于字符识别的方法、系统和非瞬时计算机可读介质 |
US10204082B2 (en) * | 2017-03-31 | 2019-02-12 | Dropbox, Inc. | Generating digital document content from a digital image |
US11194467B2 (en) | 2019-06-01 | 2021-12-07 | Apple Inc. | Keyboard management user interfaces |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5580183A (en) * | 1978-12-12 | 1980-06-17 | Nippon Telegr & Teleph Corp <Ntt> | On-line recognition processing system of hand-written character |
JPS58169296A (ja) * | 1982-03-31 | 1983-10-05 | Fujitsu Ltd | オンライン手書文字認識装置 |
US4731857A (en) * | 1984-06-29 | 1988-03-15 | International Business Machines Corporation | Recognition system for run-on handwritten characters |
JPS63155389A (ja) * | 1986-12-19 | 1988-06-28 | Toshiba Corp | オンライン文字認識装置 |
US5459796A (en) * | 1990-10-22 | 1995-10-17 | The Watt Stopper | System for entering handwritten data into computer generated forms |
JPH05233599A (ja) * | 1992-02-18 | 1993-09-10 | Seiko Epson Corp | オンライン文字認識装置 |
US5592608A (en) * | 1993-10-15 | 1997-01-07 | Xerox Corporation | Interactively producing indices into image and gesture-based data using unrecognized graphical objects |
JP3486459B2 (ja) * | 1994-06-21 | 2004-01-13 | キヤノン株式会社 | 電子情報機器及びその制御方法 |
US6094506A (en) * | 1995-10-25 | 2000-07-25 | Microsoft Corporation | Automatic generation of probability tables for handwriting recognition systems |
US6898315B2 (en) * | 1998-03-23 | 2005-05-24 | Microsoft Corporation | Feature extraction for real-time pattern recognition using single curve per pattern analysis |
JP4536239B2 (ja) * | 1999-10-15 | 2010-09-01 | パナソニック株式会社 | 文字入力装置及び方法並びにコンピュータ読み取り可能な記録媒体 |
JP3974359B2 (ja) * | 2000-10-31 | 2007-09-12 | 株式会社東芝 | オンライン文字認識装置及び方法並びにコンピュータ読み取り可能な記憶媒体及びオンライン文字認識プログラム |
US7369702B2 (en) * | 2003-11-07 | 2008-05-06 | Microsoft Corporation | Template-based cursive handwriting recognition |
CN1317664C (zh) * | 2004-01-17 | 2007-05-23 | 中国科学院计算技术研究所 | 乱笔顺库建立方法及联机手写汉字识别评测系统 |
WO2006028438A1 (en) * | 2004-09-01 | 2006-03-16 | Hewlett-Packard Development Company, L.P. | System, method, and apparatus for continuous character recognition |
US7496547B2 (en) * | 2005-06-02 | 2009-02-24 | Microsoft Corporation | Handwriting recognition using a comparative neural network |
-
2006
- 2006-07-06 US US11/484,051 patent/US20080008387A1/en not_active Abandoned
-
2007
- 2007-06-29 TW TW096123753A patent/TWI435276B/zh active
- 2007-06-29 JP JP2009518279A patent/JP5211334B2/ja active Active
- 2007-06-29 CN CN2007800256798A patent/CN101484907B/zh active Active
- 2007-06-29 EP EP07835913.0A patent/EP2038813A4/en not_active Withdrawn
- 2007-06-29 WO PCT/US2007/015083 patent/WO2008005304A2/en active Application Filing
- 2007-06-29 KR KR1020097000441A patent/KR101354663B1/ko active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
US20080008387A1 (en) | 2008-01-10 |
WO2008005304A2 (en) | 2008-01-10 |
EP2038813A2 (en) | 2009-03-25 |
CN101484907B (zh) | 2012-01-25 |
JP5211334B2 (ja) | 2013-06-12 |
WO2008005304A3 (en) | 2008-07-31 |
KR101354663B1 (ko) | 2014-01-24 |
KR20090045190A (ko) | 2009-05-07 |
EP2038813A4 (en) | 2014-04-23 |
JP2009543204A (ja) | 2009-12-03 |
TW200823773A (en) | 2008-06-01 |
CN101484907A (zh) | 2009-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI435276B (zh) | 用以辨識手寫符號之方法及設備 | |
US8175389B2 (en) | Recognizing handwritten words | |
US10007859B2 (en) | System and method for superimposed handwriting recognition technology | |
EP1564675B1 (en) | Apparatus and method for searching for digital ink query | |
EP3320482B1 (en) | System for recognizing multiple object input and method and product for same | |
Breuel et al. | High-performance OCR for printed English and Fraktur using LSTM networks | |
Choudhary et al. | A new character segmentation approach for off-line cursive handwritten words | |
Alghamdi et al. | Printed Arabic script recognition: A survey | |
Chiang et al. | Recognizing arbitrarily connected and superimposed handwritten numerals in intangible writing interfaces | |
CN115311666A (zh) | 图文识别方法、装置、计算机设备及存储介质 | |
Verma et al. | Removal of obstacles in Devanagari script for efficient optical character recognition | |
Singh et al. | Online handwritten Gurmukhi words recognition: An inclusive study | |
EP3295292B1 (en) | System and method for superimposed handwriting recognition technology | |
Al Sayed et al. | Survey on handwritten recognition | |
Urala et al. | Recognition of open vocabulary, online handwritten pages in Tamil script | |
Bhattacharya et al. | Cleaning of online Bangla free-form handwritten text | |
AU2021101278A4 (en) | System and Method for Automatic Language Detection for Handwritten Text | |
JPH09114926A (ja) | オンライン文字認識における入力文字大分類方法および装置 | |
Karthick et al. | Pre-processing techniques for Tamil online handwritten character recognition | |
KR900005141B1 (ko) | 문자인식장치 | |
Thakur et al. | Offline Recognition of Image for content Based Retrieval | |
JPS61220081A (ja) | パタ−ン切り出し及び認識方式 | |
JPS60217488A (ja) | 文字認識装置 |