TWI433269B - Semiconductor structure and manufacturing method and operating method for the same - Google Patents

Semiconductor structure and manufacturing method and operating method for the same Download PDF

Info

Publication number
TWI433269B
TWI433269B TW101101844A TW101101844A TWI433269B TW I433269 B TWI433269 B TW I433269B TW 101101844 A TW101101844 A TW 101101844A TW 101101844 A TW101101844 A TW 101101844A TW I433269 B TWI433269 B TW I433269B
Authority
TW
Taiwan
Prior art keywords
conductive
semiconductor structure
stacked
stacked structure
island
Prior art date
Application number
TW101101844A
Other languages
Chinese (zh)
Other versions
TW201232705A (en
Inventor
Hang Ting Lue
Shih Hong Chen
Chih Ping Chen
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW101101844A priority Critical patent/TWI433269B/en
Publication of TW201232705A publication Critical patent/TW201232705A/en
Priority to US13/612,658 priority patent/US20130003434A1/en
Application granted granted Critical
Publication of TWI433269B publication Critical patent/TWI433269B/en

Links

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Description

半導體結構及其製造方法與操作方法/Semiconductor structure and its manufacturing method and operation method /

本發明係有關於半導體結構及其製造方法與操作方法,特別係有關於記憶裝置及其製造方法與操作方法。The present invention relates to a semiconductor structure, a method of fabricating the same, and a method of operating the same, and more particularly to a memory device, a method of fabricating the same, and a method of operating the same.

記憶裝置係使用於許多產品之中,例如MP3播放器、數位相機、電腦檔案等等之儲存元件中。隨著應用的增加,對於記憶裝置的需求也趨向較小的尺寸、較大的記憶容量。因應這種需求,係需要製造高元件密度的記憶裝置。Memory devices are used in many products, such as MP3 players, digital cameras, computer files, and the like. As applications increase, so does the demand for memory devices toward smaller sizes and larger memory capacities. In response to this demand, it is required to manufacture a memory device having a high component density.

由於裝置臨界尺寸已經降低到技術之極限,因此設計者們開發一種提高記憶裝置密度的方法係使用三維堆疊記憶裝置,藉以達成更高的記憶容量,同時降低每一位元之成本。然而,此種記憶裝置複雜的結構也使得製造方法變得複雜。此外,操作性係受到設計的限制。Since device critical dimensions have been reduced to the limits of technology, designers have developed a way to increase the density of memory devices by using a three-dimensional stacked memory device to achieve higher memory capacity while reducing the cost per bit. However, the complicated structure of such a memory device also complicates the manufacturing method. In addition, the operability is limited by design.

本發明係有關於一種半導體結構及其製造方法與操作方法。製造方法簡單且半導體結構能以多變的方法操作。
提供一種半導體結構的操作方法。半導體結構包括基底、第一堆疊結構、介電元件、導電線、第一導電島與一第二導電島。第一堆疊結構形成於基底上。第一堆疊結構係包括交錯堆疊的第一導電條紋與第一絕緣條紋。第一導電條紋係藉由第一絕緣條紋分開。介電元件形成於第一堆疊結構上。導電線形成於介電元件上。導電線的延伸方向係垂直於第一堆疊結構的延伸方向。第一導電島與第二導電島形成於介電元件上。位於該第一堆疊結構的相對側面上的第一導電島與第二導電島係互相分開。半導體結構的操作方法包括分別施加第一電壓至第一導電島,並施加第二電壓至第二導電島。
提供一種半導體結構的製造方法。方法包括以下步驟。形成堆疊結構於基底上。堆疊結構係包括多數個導電條紋與多數個絕緣條紋。導電條紋係藉由絕緣條紋分開。形成介電元件於堆疊結構上。形成導電線於介電元件上。導電線的延伸方向係垂直於堆疊結構的延伸方向。形成導電島於介電元件上。位於單一個堆疊結構的相對側面上的導電島係互相分開。
提供一種半導體結構。半導體結構包括基底、堆疊結構、介電元件、導電線與導電島。堆疊結構形成於基底上。堆疊結構係包括交錯堆疊的導電條紋與絕緣條紋。導電條紋係藉由絕緣條紋分開。介電元件形成於堆疊結構上。導電線形成於介電元件上。導電線的延伸方向係垂直於堆疊結構的延伸方向。導電島形成於介電元件上。位於單一個堆疊結構的相對側面上的導電島係互相分開。
下文特舉較佳實施例,並配合所附圖式,作詳細說明如下:
The present invention relates to a semiconductor structure, a method of fabricating the same, and a method of operation. The manufacturing method is simple and the semiconductor structure can be operated in a variable manner.
A method of operating a semiconductor structure is provided. The semiconductor structure includes a substrate, a first stacked structure, a dielectric member, a conductive line, a first conductive island, and a second conductive island. The first stack structure is formed on the substrate. The first stack structure includes first staggered stacked conductive stripes and first insulating stripes. The first conductive strips are separated by a first insulating stripe. A dielectric element is formed on the first stacked structure. A conductive line is formed on the dielectric element. The direction in which the conductive lines extend is perpendicular to the direction in which the first stacked structure extends. The first conductive island and the second conductive island are formed on the dielectric element. The first conductive islands on the opposite sides of the first stacked structure are separated from the second conductive islands. The method of operating the semiconductor structure includes applying a first voltage to the first conductive island, respectively, and applying a second voltage to the second conductive island.
A method of fabricating a semiconductor structure is provided. The method includes the following steps. A stacked structure is formed on the substrate. The stacked structure includes a plurality of conductive stripes and a plurality of insulating stripes. The conductive stripes are separated by insulating stripes. A dielectric element is formed on the stacked structure. A conductive line is formed on the dielectric element. The direction in which the conductive lines extend is perpendicular to the direction in which the stacked structures extend. An electrically conductive island is formed on the dielectric element. Conductive islands located on opposite sides of a single stacked structure are separated from one another.
A semiconductor structure is provided. The semiconductor structure includes a substrate, a stacked structure, dielectric elements, conductive lines, and conductive islands. A stacked structure is formed on the substrate. The stacked structure includes staggered stacked conductive stripes and insulating stripes. The conductive stripes are separated by insulating stripes. The dielectric elements are formed on the stacked structure. A conductive line is formed on the dielectric element. The direction in which the conductive lines extend is perpendicular to the direction in which the stacked structures extend. A conductive island is formed on the dielectric element. Conductive islands located on opposite sides of a single stacked structure are separated from one another.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the preferred embodiment will be described in detail with reference to the accompanying drawings.

第1圖至第9圖繪示半導體結構的一製造實施例。請參照第1圖,於基底2上交錯地堆疊導電層4與絕緣層6。導電層4係藉由絕緣層6互相分開。導電層4包括多晶矽。於一實施例中,可對導電層4進行摻雜後進行退火。導電層4亦可包括金屬。絕緣層6包括氧化物。基底2具有一埋藏氧化層8於其上。圖案化導電層4與絕緣層6以形成如第2圖所示的堆疊結構10、12。圖案化的方法包括微影製程。堆疊結構10與12各包括交錯堆疊的導電條紋14與絕緣條紋16。1 to 9 illustrate a manufacturing embodiment of a semiconductor structure. Referring to FIG. 1, the conductive layer 4 and the insulating layer 6 are alternately stacked on the substrate 2. The conductive layers 4 are separated from each other by the insulating layer 6. The conductive layer 4 includes polysilicon. In an embodiment, the conductive layer 4 may be doped and then annealed. The conductive layer 4 may also include a metal. The insulating layer 6 includes an oxide. The substrate 2 has a buried oxide layer 8 thereon. The conductive layer 4 and the insulating layer 6 are patterned to form the stacked structures 10, 12 as shown in FIG. The method of patterning includes a lithography process. The stacked structures 10 and 12 each include staggered stacked conductive stripes 14 and insulating stripes 16.

請參照第3圖,於堆疊結構10與12上形成介電元件18。舉例來說,介電元件18具有多層結構,包括例如介電層20、22、24。於一實施例中,介電層20為氧化矽,介電層22為氮化矽,介電層24為氧化矽。於其他實施例中,介電元件18係單一層介電材料(未顯示),包括氮化矽或氧化矽例如二氧化矽、氮氧化矽。Referring to FIG. 3, dielectric elements 18 are formed on stacked structures 10 and 12. For example, dielectric element 18 has a multilayer structure including, for example, dielectric layers 20, 22, 24. In one embodiment, the dielectric layer 20 is tantalum oxide, the dielectric layer 22 is tantalum nitride, and the dielectric layer 24 is tantalum oxide. In other embodiments, dielectric element 18 is a single layer of dielectric material (not shown), including tantalum nitride or tantalum oxide such as hafnium oxide or hafnium oxynitride.

請參照第4圖,於介電元件18上形成導電層26。導電層26包括多晶矽。導電層26亦可包括金屬。於導電層26上形成圖案化的遮罩層28,並移除導電層26未被圖案化的遮罩層28遮蔽的部分,以形成如第5圖所示的導電線32、34、36。圖案化的方法例如包括微影製程。於實施例中,蝕刻製程係對導電層26(例如多晶矽) (第4圖)與介電元件18(例如ONO結構)具有適當的蝕刻選擇性,因此係蝕刻導電層26,而不會蝕刻介電元件18。Referring to FIG. 4, a conductive layer 26 is formed on the dielectric member 18. Conductive layer 26 includes polysilicon. Conductive layer 26 can also include a metal. A patterned mask layer 28 is formed over the conductive layer 26 and portions of the conductive layer 26 that are not masked by the patterned mask layer 28 are removed to form conductive lines 32, 34, 36 as shown in FIG. The method of patterning includes, for example, a lithography process. In an embodiment, the etch process has a suitable etch selectivity for the conductive layer 26 (eg, polysilicon) (FIG. 4) and the dielectric component 18 (eg, the ONO structure), thereby etching the conductive layer 26 without etching. Electrical component 18.

請參照第5圖,導電線32、34、36係配置於堆疊結構10、12的側面60、62、64、66與上表面50、52上。導電線32、34、36的延伸方向(往X方向延伸)係垂直於堆疊結構10、12的延伸方向(往Z方向延伸)。移除圖案化的遮罩層28。Referring to FIG. 5, the conductive lines 32, 34, 36 are disposed on the side surfaces 60, 62, 64, 66 of the stacked structures 10, 12 and the upper surfaces 50, 52. The extending direction of the conductive lines 32, 34, 36 (extending in the X direction) is perpendicular to the extending direction of the stacked structures 10, 12 (extending in the Z direction). The patterned mask layer 28 is removed.

請參照第6圖,於介電元件18上與導電線32、34、36上形成介電層38。舉例來說,介電層38包括氧化矽,其可藉由氣相沉積矽甲烷和臭氧或是四乙氧基矽烷(TEOS)和臭氧/氧氣的混合氣體來形成。介電層38具有一平坦的上表面40。於實施例中,上表面40係對齊或高於堆疊結構10、12之上表面50、52上的介電元件18的上表面42與導電線32、34、36的上表面44、46、48。具有平坦的上表面40的介電層38可幫助之後進行的微影製程例如曝光步驟。Referring to FIG. 6, a dielectric layer 38 is formed on the dielectric member 18 and the conductive lines 32, 34, 36. For example, the dielectric layer 38 includes ruthenium oxide which can be formed by vapor phase deposition of methane and ozone or a mixed gas of tetraethoxy decane (TEOS) and ozone/oxygen. Dielectric layer 38 has a flat upper surface 40. In an embodiment, the upper surface 40 is aligned or higher than the upper surface 42 of the dielectric element 18 and the upper surfaces 44, 46, 48 of the conductive lines 32, 34, 36 on the upper surfaces 50, 52 of the stacked structures 10, 12. . The dielectric layer 38 having a flat upper surface 40 can aid in a subsequent lithography process such as an exposure step.

請參照第7圖,於介電層38上形成圖案化的遮罩層54。圖案化的方法例如包括微影製程。圖案化的遮罩層54具有開口56,其露出導電線32上的介電層38。移除開口56露出的介電層38與導電線32,直到露出介電元件18的上表面42,並留下導電線32位於堆疊結構10、12之相對側面60、62、64、66上的部分以形成如第8圖所示的導電島70、72、74。於實施例中,蝕刻製程係對導電線32(例如多晶矽)(第7圖)、介電元件18(例如ONO結構)與介電層38(例如TEOS氧化物)具有適當的蝕刻選擇性,因此係蝕刻介電層38與導電線32,而不會蝕刻介電元件18。換句話說,導電島70、72、74係自對準地形成。因此製造方法簡單。於其他實施例中,亦可視設計上的需求,適當地圖案化導電線34、36以形成其他導電島(未顯示)。移除圖案化的遮罩層54(第7圖)。Referring to FIG. 7, a patterned mask layer 54 is formed on the dielectric layer 38. The method of patterning includes, for example, a lithography process. The patterned mask layer 54 has an opening 56 that exposes the dielectric layer 38 on the conductive line 32. The exposed dielectric layer 38 and the conductive lines 32 are removed from the opening 56 until the upper surface 42 of the dielectric element 18 is exposed, and the conductive lines 32 are disposed on opposite sides 60, 62, 64, 66 of the stacked structures 10, 12. Partially to form conductive islands 70, 72, 74 as shown in FIG. In an embodiment, the etch process has suitable etch selectivity for conductive lines 32 (eg, polysilicon) (FIG. 7), dielectric element 18 (eg, ONO structure), and dielectric layer 38 (eg, TEOS oxide), thus Dielectric layer 38 and conductive line 32 are etched without etching dielectric element 18. In other words, the conductive islands 70, 72, 74 are formed in a self-aligned manner. Therefore, the manufacturing method is simple. In other embodiments, the conductive lines 34, 36 are also suitably patterned to form other conductive islands (not shown), depending on the design requirements. The patterned mask layer 54 is removed (Fig. 7).

第9圖係未顯示第8圖中的介電層38。請參照第9圖,位於堆疊結構10之相對側面60、62上的導電島70、72係互相分開。此外,位於堆疊結構12之相對側面64、66上的導電島72、74係互相分開。導電島70、72、74係沿著垂直於堆疊結構10、12的延伸方向(往Z方向延伸)的方向(X方向)排列。The dielectric layer 38 in Fig. 8 is not shown in Fig. 9. Referring to Figure 9, the conductive islands 70, 72 on the opposite sides 60, 62 of the stacked structure 10 are separated from one another. In addition, conductive islands 72, 74 on opposite sides 64, 66 of stack structure 12 are separated from one another. The conductive islands 70, 72, 74 are arranged in a direction (X direction) perpendicular to the extending direction of the stacked structures 10, 12 (extending in the Z direction).

請參照第9圖,介電元件18係位於堆疊結構10、12與導電線34、36之間,且位於堆疊結構10、12與導電島70、72、74之間。於實施例中,導電線34、36與導電島70、72、74具有第一導電型。導電條紋14具有第二導電型。第一導電型與第二導電型係相反。舉例來說,第一導電型係n型導電型,第二導電型係p型導電型。導電島70、72、74可由單一材料或複合材料構成。Referring to FIG. 9, dielectric element 18 is between stack structures 10, 12 and conductive lines 34, 36 and between stack structures 10, 12 and conductive islands 70, 72, 74. In an embodiment, the conductive lines 34, 36 and the conductive islands 70, 72, 74 have a first conductivity type. The conductive stripes 14 have a second conductivity type. The first conductivity type is opposite to the second conductivity type. For example, the first conductivity type is an n-type conductivity type, and the second conductivity type is a p-type conductivity type. The conductive islands 70, 72, 74 may be constructed of a single material or a composite material.

根據實施例的方法製造出的半導體結構可具有精細的尺寸。舉例來說,於實施例中,字元線(WL)的半間距(half pitch)係為37.5nm。字元線(WL)的蝕刻關鍵尺寸(ECD)係約為25nm。位元線(BL)的蝕刻關鍵尺寸係約為30nm。串列選擇線(SSL)與接地選擇線(GSL)的通道長度係約等於0.25um,此長度足以良好地避免穿隧(punch through)效應的發生,以滿足程式化抑制(program-inhibit)的需求。此外,實施例中的獨立控制的雙閘極(IDG)解碼的三維垂直閘極裝置其陣列佈局係相似於一般的反及閘(NAND)型裝置。由於獨立控制的雙閘極串列選擇線係自對準的形成,且間距可微縮化,因此並不需要額外的面積。The semiconductor structure fabricated according to the method of the embodiment may have a fine size. For example, in an embodiment, the half pitch of the word line (WL) is 37.5 nm. The etch critical dimension (ECD) of the word line (WL) is approximately 25 nm. The critical dimension of the bit line (BL) is about 30 nm. The channel length of the tandem select line (SSL) and the ground select line (GSL) is approximately equal to 0.25 um, which is sufficient to well avoid the occurrence of a punch through effect to satisfy program-inhibition. demand. In addition, the independently controlled dual gate (IDG) decoded three dimensional vertical gate device in the embodiment has an array layout similar to that of a general NAND type device. Since the independently controlled dual gate series selection lines are self-aligned and the pitch can be miniaturized, no additional area is required.

第10圖繪示一實施例之半導體結構的立體圖。第10圖所示之半導體結構與第9圖所示之半導體結構的不同處在於,第10圖所示之半導體結構係具有BE-SONOS元件(可參照US專利號7,529,137)。請參照第10圖,介電元件218具有多層結構,包括介電層217、219、221、222、224。於實施例中,介電層217、219、221的厚度係小於介電層222、224。介電層217、221、224可以為氧化矽。介電層219、222可以為氮化矽。Figure 10 is a perspective view of a semiconductor structure of an embodiment. The semiconductor structure shown in Fig. 10 is different from the semiconductor structure shown in Fig. 9 in that the semiconductor structure shown in Fig. 10 has a BE-SONOS element (refer to US Pat. No. 7,529,137). Referring to FIG. 10, the dielectric member 218 has a multilayer structure including dielectric layers 217, 219, 221, 222, and 224. In an embodiment, the thickness of the dielectric layers 217, 219, 221 is less than the dielectric layers 222, 224. The dielectric layers 217, 221, 224 may be yttrium oxide. Dielectric layers 219, 222 can be tantalum nitride.

第11圖繪示一實施例中半導體結構的立體圖。第11圖未繪示半導體結構中的介電層,如第8圖所示的介電層38,也未繪示絕緣條紋116介於導電島110、112與導電線134、135、136之間的部分,換句話說,絕緣條紋116係如導電條紋114為連續的。11 is a perspective view of a semiconductor structure in an embodiment. FIG. 11 does not show the dielectric layer in the semiconductor structure, such as the dielectric layer 38 shown in FIG. 8, nor the insulating stripe 116 is interposed between the conductive islands 110, 112 and the conductive lines 134, 135, and 136. The portion, in other words, the insulating strips 116 are such that the conductive strips 114 are continuous.

請參照第11圖,於實施例中,半導體結構係三維垂直閘極記憶裝置(3D vertical gate memory device),例如包括反及閘(NAND)型快閃記憶體或反熔絲記憶體等等。金屬矽化物層184、185、186可形成於導電線134、135、136上。金屬矽化物層184、185、186例如包括矽化鎢、矽化鈷、矽化鈦。不同層次的導電條紋114係分別作為不同記憶平面的位元線(BL),例如最下層的導電條紋114係定義為第一層位元線(1st layer BL),不同排的1st layer BL係共同電性連接至導電層171,導電層171可為第一層導電層(1st layer CO)。最下層的導電條紋114接著愈上層的導電條紋114係依序定義為第二層位元線(2nd layer BL)、第三層位元線(3rd layer BL)、第四層位元線(4th layer BL)。不同排的2nd layer BL係共同電性連接至導電層173。不同排的3rd layer BL係共同電性連接至導電層175。不同排的4th layer BL係共同電性連接至導電層177。導電層173、導電層175、導電層177可分別為第二層導電層(2nd layer CO)、第三層導電層(3rd layer CO)、第四層導電層(4th layer CO)。導電層171、導電層173、導電層175、導電層177係電性連接至不同排的導電插塞192與導電層193。更上層的導電條紋與導電層(未顯示)係以此類推。導電層171、導電層173、導電層175、導電層177、導電插塞192與導電層193可具有雙倍的間距(pitch)以得到較佳的製程視窗(process window)。Referring to FIG. 11, in the embodiment, the semiconductor structure is a 3D vertical gate memory device, and includes, for example, a NAND type flash memory or an anti-fuse memory. Metal telluride layers 184, 185, 186 may be formed on conductive lines 134, 135, 136. The metal telluride layers 184, 185, 186 include, for example, tungsten telluride, cobalt telluride, and titanium telluride. Different levels of conductive strips 114 are respectively used as bit lines (BL) of different memory planes. For example, the lowermost conductive strips 114 are defined as first layer bit lines (1 st layer BL), and different rows of 1 st layer BL common lines electrically connected to the conductive layer 171, conductive layer 171 may be a layer of a first conductive layer (1 st layer cO). The lowermost conductive strips 114 are then sequentially defined as the second layer of bit lines (2 nd layer BL), the third layer of bit lines (3 rd layer BL), and the fourth layer of bit lines. (4 th layer BL). The different rows of 2 nd layer BL are electrically connected to the conductive layer 173 in common. Different rows of 3 rd layer BL lines are electrically connected to the conductive layer 175 in common. 4 th layer BL lines of the different rows together electrically connected to the conductive layer 177. The conductive layer 173, conductive layer 175, conductive layer 177 may be respectively a second level conductive layer (2 nd layer CO), a third conductive layers (3 rd layer CO), the fourth conductive layers (4 th layer CO). The conductive layer 171, the conductive layer 173, the conductive layer 175, and the conductive layer 177 are electrically connected to the different rows of the conductive plugs 192 and the conductive layer 193. The upper conductive stripes and conductive layers (not shown) are similar. The conductive layer 171, the conductive layer 173, the conductive layer 175, the conductive layer 177, the conductive plug 192 and the conductive layer 193 may have a double pitch to obtain a better process window.

導電條紋114係與共同源極線(common source line)190耦接。共同源極線(common source line)190可包括多晶矽。導電線135係作為接地選擇線(GSL)。導電線134、136係作為字元線(WL)。舉例來說,多數個導電線中最靠近導電線135(GSL)的導電線136係定義為WL0 ,接著遠離導電線135(GSL)的導電線134係定義為字元線WL1 。更遠離導電線135(GSL)的導電線(未顯示)係定義為字元線WL2 、WL3 …,以此類推。The conductive strips 114 are coupled to a common source line 190. A common source line 190 can include polysilicon. Conductive line 135 acts as a ground select line (GSL). Conductive lines 134, 136 are used as word lines (WL). For example, the conductive line 136 closest to the conductive line 135 (GSL) among the plurality of conductive lines is defined as WL 0 , and then the conductive line 134 away from the conductive line 135 (GSL) is defined as the word line WL 1 . Conductive lines (not shown) further away from the conductive line 135 (GSL) are defined as word lines WL 2 , WL 3 ..., and so on.

導電島170、172、174係作為串列選擇線(SSL)。導電島170、172、174係獨立地各自電性連接至不同組的導電插塞194、導電層195、導電插塞196與導電層197,而連接至解碼電路(平行於字元線)。舉例來說,第11圖中導電島170、172、174係分別定義為SSL0 、SSL1 、SSL2 ,以此類推。Conductive islands 170, 172, and 174 are used as a serial selection line (SSL). Conductive islands 170, 172, 174 are each independently electrically coupled to a different set of conductive plugs 194, conductive layer 195, conductive plugs 196 and conductive layer 197, and to a decoding circuit (parallel to the word lines). For example, the conductive islands 170, 172, and 174 in Fig. 11 are defined as SSL 0 , SSL 1 , SSL 2 , and so on.

導電插塞192、導電層193、導電插塞194、導電層195、導電插塞196與導電層197的材質可為金屬。舉例來說,導電層195係為第一金屬線(ML1),導電層197係為第二金屬線(ML2),導電層193係為第三金屬線(ML3),以此類推。導電插塞196亦可以符號V11表示。The material of the conductive plug 192, the conductive layer 193, the conductive plug 194, the conductive layer 195, the conductive plug 196 and the conductive layer 197 may be metal. For example, the conductive layer 195 is a first metal line (ML1), the conductive layer 197 is a second metal line (ML2), the conductive layer 193 is a third metal line (ML3), and so on. Conductive plug 196 can also be represented by symbol V11.

請參照第11圖,互相分開的導電島170、172與174其係可獨立地操作,例如可分別施加不同的偏壓,因此不同堆疊結構110與112中的導電條紋114 (BL)係分開地選擇或未被選擇。因此,半導體結構的操作方法具有高的可調變性。此半導體結構係為獨立控制雙閘極(independently controlled double gate, IDG)解碼的三維垂直閘極(vertical gate, VG)裝置。於一實施例中,此記憶體裝置係為雙閘極薄膜電晶體BE-SONOS 裝置(double-gate TFT BE-SONOS device)。Referring to FIG. 11, the conductive islands 170, 172 and 174 which are separated from each other can be operated independently, for example, different bias voltages can be respectively applied, so that the conductive stripes 114 (BL) in the different stacked structures 110 and 112 are separated. Selected or not selected. Therefore, the method of operation of the semiconductor structure has a high variability in denaturation. The semiconductor structure is a three-dimensional vertical gate (VG) device that independently controls an independently controlled double gate (IDG) decoding. In one embodiment, the memory device is a double-gate TFT BE-SONOS device.

於一實施例中,舉例來說,當選擇位在導電島170(SSL0)與導電島172(SSL1)之間的導電條紋114 (BL)開啟時,係藉由施加正的電壓(VSSL )於導電島170與導電島172來達到開啟導電條紋114的目的。當未選擇位在導電島172(SSL1)與導電島174(SSL2)之間的導電條紋114時,則係藉由施加正的電壓於導電島172,並施加負的電壓(Vinhibit )於導電島174來達到關閉的目的。上述的正電壓可約為+2 V至+4 V,負電壓可約為-2 V至-8 V。舉例來說,於一實施例中,正電壓係約+3.3 V,負電壓係約-3.3 V。於另一實施例中,正電壓係約+2.5 V,負電壓係約-7 V。又於另一實施例中,正電壓係約+2 V,負電壓係約-7 V。遠端的SSL係被施加0V(或接地)而被關閉。In one embodiment, for example, when the conductive strip 114 (BL) between the conductive island 170 (SSL0) and the conductive island 172 (SSL1) is turned on, a positive voltage (V SSL ) is applied. The conductive islands 170 and the conductive islands 172 are used to achieve the purpose of turning on the conductive stripes 114. When the conductive stripe 114 between the conductive island 172 (SSL1) and the conductive island 174 (SSL2) is not selected, a positive voltage is applied to the conductive island 172, and a negative voltage (V inhibit ) is applied to the conductive layer . Island 174 came to the end of the closure. The positive voltage described above can be approximately +2 V to +4 V, and the negative voltage can be approximately -2 V to -8 V. For example, in one embodiment, the positive voltage is about +3.3 V and the negative voltage is about -3.3 V. In another embodiment, the positive voltage is about +2.5 V and the negative voltage is about -7 V. In yet another embodiment, the positive voltage is about +2 V and the negative voltage is about -7 V. The remote SSL is turned off by applying 0V (or ground).

第12圖繪示一實施例中具有八層導電條紋BL(位元線)之半導體結構的上視示意圖。不同層次的導電條紋BL係分別電性連接至八組階梯狀的導電結構。階梯狀的導電結構可由如第11圖所示的導電層171、導電插塞192與導電層193所構成,或由導電層173、導電插塞192與導電層193所構成,以此類推。如第12圖所示,不同組的階梯狀的導電結構中的第三金屬線ML3係各別電性連接至接觸墊341。於此例中,半導體結構具有六十四個字元線WL1、WL2…WL63與WL64。FIG. 12 is a top plan view showing a semiconductor structure having eight conductive stripes BL (bit lines) in an embodiment. Different levels of conductive strips BL are electrically connected to eight sets of stepped conductive structures, respectively. The stepped conductive structure may be composed of a conductive layer 171, a conductive plug 192 and a conductive layer 193 as shown in FIG. 11, or a conductive layer 173, a conductive plug 192 and a conductive layer 193, and so on. As shown in FIG. 12, the third metal wires ML3 of the different sets of stepped conductive structures are electrically connected to the contact pads 341, respectively. In this example, the semiconductor structure has sixty-four word lines WL1, WL2 ... WL63 and WL64.

請參照第12圖,此例的半導體結構一個週期具有十六個串列選擇線(導電島)SSL0、SSL1、SSL2…SSL14與SSL15,分別電性連接至不同組(十六組)的第一金屬線ML1、導電插塞V11與第二金屬線ML2。第二金屬線ML2係電性連接至串列選擇線解碼電路。於實施例中,另一個週期的半導體結構可往X方向重複延伸,且兩個鄰近的週期半導體結構可共用一個導電島SSL0。Referring to FIG. 12, the semiconductor structure of this example has sixteen serial selection lines (conductive islands) SSL0, SSL1, SSL2, ..., SSL14 and SSL15, which are respectively electrically connected to different groups (sixteen groups). The metal line ML1, the conductive plug V11 and the second metal line ML2. The second metal line ML2 is electrically connected to the serial selection line decoding circuit. In an embodiment, another period of the semiconductor structure may be repeatedly extended in the X direction, and two adjacent periodic semiconductor structures may share one conductive island SSL0.

第13圖繪示具有ECD約30nm之BL的半導體結構的Id-VSSL 曲線,其中一個閘極係VSSL ,其餘的閘極係約-1V至約-7V的Vinhibit (愈右邊的曲線表示愈負)。從第13圖發現,當Vinhibit 愈負時,臨界電壓(Vt)會愈高。此外,當用以關閉SSL通道的Vinhibit 為約-1V至-7V時,用以開啟SSL通道的VSSL 較佳是大於約+2V。舉例來說,VSSL 為+2V且Vinhibit 為 -7V係提供選擇的/未選擇的BL通道的開關(ON/OFF)需求。Figure 13 is a diagram showing the Id-V SSL curve of a semiconductor structure having a BL of ECD of about 30 nm, wherein one gate is V SSL and the remaining gates are V inhibitor of about -1 V to about -7 V (the curve of the right side is represented) More negative). It is found from Fig. 13 that the higher the V inhibitor is, the higher the threshold voltage (Vt) will be. In addition, when the V inhibit used to turn off the SSL channel is about -1V to -7V, the V SSL used to turn on the SSL channel is preferably greater than about +2V. For example, V SSL is +2V and V inhibit is -7V to provide the switch (ON/OFF) requirement for the selected/unselected BL channel.

第14圖繪示半導體結構Vt-Vinhibit 曲線。從第14圖發現,當BL ECD的尺寸愈小,Vt愈大,這推測是由於寬度小的裝置愈容易造成空乏(depletion)。模擬曲線(TCAD simulation curve)係符合實驗結果。Figure 14 shows the Vt-V inhibition curve of the semiconductor structure. From Fig. 14, it is found that the smaller the size of the BL ECD, the larger the Vt, which is presumably due to the fact that the device having a small width is more likely to cause depletion. The TCAD simulation curve is in accordance with the experimental results.

實施例的半導體結構不但能提供讀取抑制(read inhibit),亦能提供程式化抑制(program inhibit)。第15圖顯示半導體結構的程式化抑制特徵。其中係在SSL0與SSL1施加+2V的VSSL 而選擇了位在SSL0與SSL1之間的BL開啟,選擇的BL係0V。其他的SSL則施加-7V的Vinhibit 以關閉未選擇的BL,未選擇的BL係+3.3V。在程式化步進脈衝(ISPP)過程中,其中一次程式化時間為50微秒(usec),通道閘電壓(Pass-gate voltage ;VPASS )為10V。此結果顯示半導體結構具有優異的程式化抑制特性。The semiconductor structure of the examples not only provides read inhibition but also provides program inhibit. Figure 15 shows the stylized suppression characteristics of the semiconductor structure. Among them, SSL is applied to SSL0 and SSL1 by +2V, and BL is selected between SSL0 and SSL1, and the selected BL is 0V. The other SSL applies a 4.7V V inhibit to turn off the unselected BL, and the unselected BL is +3.3V. In the stylized stepping pulse (ISPP) process, one of the programming times is 50 microseconds (usec), and the channel-gate voltage (V PASS ) is 10V. This result shows that the semiconductor structure has excellent stabilizing characteristics.

第16A圖顯示半導體結構即使每次ISPP的程式化時間增加至100 usec,其程式化干擾(program disturb)小。這推測出當通道位能(channel potential)被提高(約8V)時,半導體結構具有良好的穿隧效應免疫(punch-through immunity),能抑制漏電流(leakage)的發生。第16B圖顯示當VSSL 為+2V時,Vinhibit 要大於-5V才能得到良好的抑制效果。第16C圖顯示當Vinhibit 為-7V時,VSSL 要小於3V才能得到良好的抑制效果。Fig. 16A shows that the semiconductor structure has a small program disturb even if the program time of the ISPP is increased to 100 usec each time. This presumes that when the channel potential is increased (about 8 V), the semiconductor structure has good punch-through immunity and can suppress the occurrence of leakage. FIG. 16B shows that when V SSL is + 2V, V inhibit greater than -5V to get good inhibitory effect. Figure 16C shows that when V inhibit is -7V, V SSL is less than 3V to obtain a good suppression effect.

第17圖顯示在抹除3Xnm的3DVG TFT裝置的過程中Id-Vg特性。其中係對單層記憶單元(Single Level Cell; SLC)操作棋盤式(checkerboard ;CKB)時脈信號。裝置係具有兩層次BL與六十四個WL的NAND (64-WL NAND)。Idsat可大於150nA。Vt可定義在20 nA至40nA。第17圖顯示出半導體結構具有優異的次臨界特性,這是由於寬度窄的雙閘極裝置具有良好的閘極控制能力所致。64-WL NAND的Idsat在150nA以上能提供適當的記憶感測效果。Figure 17 shows the Id-Vg characteristics during the process of erasing a 3Xnm 3DVG TFT device. Among them, the single-level memory unit (SLC) operates a checkerboard (CKB) clock signal. The device is a NAND (64-WL NAND) with two levels of BL and sixty-four WLs. Idsat can be greater than 150nA. Vt can be defined from 20 nA to 40 nA. Fig. 17 shows that the semiconductor structure has excellent subcritical characteristics due to the good gate control capability of the narrow gate device having a narrow width. 64-WL NAND's Idsat provides proper memory sensing at 150nA or more.

第18圖顯示當3Xnm的3DVG TFT裝置之BL具有窄的ECD時,係具有良好的次臨界斜率(subthreshold slope ; S.S.)分佈,S.S.主要介於200 mV/decade至500mV/decade(十進數),且分佈窄,這是由於小的多晶矽體捕捉體積所致。Figure 18 shows that when the BL of a 3Xnm 3DVG TFT device has a narrow ECD, the system has a good subthreshold slope (SS) distribution, and the SS is mainly between 200 mV/decade and 500 mV/decade. And the distribution is narrow, which is due to the small polycrystalline carcass capturing volume.

第19圖顯示3Xnm的3DVG TFT裝置在初始、抹除與以SLC CKB程式化之後的程式化狀態下的Vt分佈。在程式化干擾偏壓之後,記憶窗係適當地分開,此顯示出實施例之裝置具有合理的優良效能。Figure 19 shows the Vt distribution of the 3Xnm 3DVG TFT device in the stylized state after initial, erasing and stylization with SLC CKB. After stylizing the interference bias, the memory window is properly separated, which shows that the device of the embodiment has reasonably good performance.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟悉此項技藝者,在不脫離本發明之精神和範圍內,當可做些許更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.

2‧‧‧基底2‧‧‧Base

4‧‧‧導電層4‧‧‧ Conductive layer

6‧‧‧絕緣層6‧‧‧Insulation

8‧‧‧埋藏氧化層8‧‧‧ buried oxide layer

10、12、110、112‧‧‧堆疊結構10,12,110,112‧‧‧Stack structure

14、114‧‧‧導電條紋14, 114‧‧‧ conductive stripes

16、116‧‧‧絕緣條紋16, 116‧‧‧Insulation stripes

18、218‧‧‧介電元件18, 218‧‧‧ dielectric components

20、22、24、38、217、219、221、222、224‧‧‧介電層20, 22, 24, 38, 217, 219, 221, 222, 224‧‧ dielectric layers

26‧‧‧導電層26‧‧‧ Conductive layer

28‧‧‧遮罩層28‧‧‧mask layer

32、34、36、134、135、136‧‧‧導電線32, 34, 36, 134, 135, 136‧‧‧ conductive lines

40‧‧‧介電層的上表面40‧‧‧ Upper surface of the dielectric layer

42‧‧‧介電元件的上表面42‧‧‧ Upper surface of the dielectric component

44、46、48‧‧‧導電線的上表面44, 46, 48‧‧‧ upper surface of the conductive wire

50、52‧‧‧堆疊結構的上表面50, 52‧‧‧ upper surface of the stacked structure

54‧‧‧圖案化的遮罩層54‧‧‧ patterned mask layer

56‧‧‧開口56‧‧‧ openings

60、62、64、66‧‧‧堆疊結構的側面60, 62, 64, 66‧‧‧ side of the stacking structure

70、72、74、170、172、174‧‧‧導電島70, 72, 74, 170, 172, 174‧‧ conductive islands

171、173、175、177‧‧‧導電層171, 173, 175, 177‧‧‧ conductive layers

184、185、186‧‧‧金屬矽化物層184, 185, 186‧‧‧ metal telluride layers

190‧‧‧共同源極線190‧‧‧Common source line

192、194、196‧‧‧導電插塞192, 194, 196‧‧‧ conductive plugs

193、195、197‧‧‧導電層193, 195, 197‧‧‧ conductive layer

341‧‧‧接觸墊341‧‧‧Contact pads

GSL‧‧‧接地選擇線GSL‧‧‧ Grounding selection line

WL1、WL2、WL63、WL64‧‧‧字元線WL1, WL2, WL63, WL64‧‧‧ character lines

V11‧‧‧導電插塞V11‧‧‧ conductive plug

ML1‧‧‧第一金屬線ML1‧‧‧first metal wire

ML2‧‧‧第二金屬線ML2‧‧‧second metal wire

ML3‧‧‧第三金屬線ML3‧‧‧ third metal wire

SSL0、SSL1、SSL2、SSL14、SSL15‧‧‧串列選擇線SSL0, SSL1, SSL2, SSL14, SSL15‧‧‧ string selection line

第1圖至第9圖繪示半導體結構的一製造實施例。1 to 9 illustrate a manufacturing embodiment of a semiconductor structure.

第10圖繪示一實施例中半導體結構的立體圖。Figure 10 is a perspective view of a semiconductor structure in an embodiment.

第11圖繪示一實施例之半導體結構的立體圖。11 is a perspective view of a semiconductor structure of an embodiment.

第12圖繪示一實施例中半導體結構的上視示意圖。Figure 12 is a top plan view showing a semiconductor structure in an embodiment.

第13圖繪示半導體結構的Id-VSSL 曲線。Figure 13 shows the Id-V SSL curve of the semiconductor structure.

第14圖繪示半導體結構的Vt-Vinhibit 曲線。Figure 14 shows the Vt-V inhibition curve of the semiconductor structure.

第15圖顯示半導體結構的程式化抑制特徵。Figure 15 shows the stylized suppression characteristics of the semiconductor structure.

第16A圖顯示半導體結構的Vt -每次程式化脈衝曲線。Figure 16A shows the Vt - each stylized pulse curve of the semiconductor structure.

第16B圖顯示半導體結構的Vt-Vinhibit 曲線。Figure 16B shows the Vt-V inhibition curve of the semiconductor structure.

第16C圖顯示半導體結構的Vt-VSSL 曲線。Figure 16C shows the Vt-V SSL curve of the semiconductor structure.

第17圖顯示半導體結構的Id-Vg曲線。Figure 17 shows the Id-Vg curve of the semiconductor structure.

第18圖顯示半導體結構的位元數(bit-count)-S.S.曲線。Figure 18 shows the bit-count-S.S. curve of the semiconductor structure.

第19圖顯示半導體結構的位元數-Vt曲線。Figure 19 shows the number of bits of the semiconductor structure - Vt curve.

110、112‧‧‧堆疊結構 110, 112‧‧‧Stack structure

114‧‧‧導電條紋 114‧‧‧ Conductive stripes

116‧‧‧絕緣條紋 116‧‧‧Insulation stripe

134、135、136‧‧‧導電線 134, 135, 136‧‧‧ conductive lines

170、172、174‧‧‧導電島 170, 172, 174‧‧ ‧ conductive island

184、185、186‧‧‧金屬矽化物層 184, 185, 186‧‧‧ metal telluride layers

190‧‧‧共同源極線 190‧‧‧Common source line

Claims (22)

一種半導體結構的操作方法,其中,
該半導體結構包括:
一基底;
一第一堆疊結構,形成於該基底上,其中該第一堆疊結構係包括交錯堆疊的第一導電條紋與第一絕緣條紋,該第一導電條紋係藉由該第一絕緣條紋分開;
一介電元件,形成於該第一堆疊結構上;
一導電線,形成於該介電元件上,該導電線的延伸方向係垂直於該第一堆疊結構的延伸方向;以及
一第一導電島與一第二導電島,形成於該介電元件上,其中位於該第一堆疊結構的相對側面上的該第一導電島與該第二導電島係互相分開,
該半導體結構的操作方法包括:
分別施加一第一電壓至該第一導電島,並施加一第二電壓至該第二導電島。
A method of operating a semiconductor structure, wherein
The semiconductor structure includes:
a substrate;
a first stacked structure formed on the substrate, wherein the first stacked structure comprises a first conductive strip and a first insulating strip alternately stacked, the first conductive strip being separated by the first insulating strip;
a dielectric component formed on the first stacked structure;
a conductive line formed on the dielectric element, the conductive line extending in a direction perpendicular to the extending direction of the first stacked structure; and a first conductive island and a second conductive island formed on the dielectric element The first conductive island on the opposite side of the first stacked structure and the second conductive island are separated from each other,
The method of operation of the semiconductor structure includes:
A first voltage is applied to the first conductive island and a second voltage is applied to the second conductive island.
如申請專利範圍第1項所述之半導體結構的操作方法,其中該第一電壓與該第二電壓皆為正偏壓。The method of operating a semiconductor structure according to claim 1, wherein the first voltage and the second voltage are both positively biased. 如申請專利範圍第2項所述之半導體結構的操作方法,其中該操作方法係使得該第一堆疊結構的該第一導電條紋被選擇。The method of operating a semiconductor structure according to claim 2, wherein the method of operation is such that the first conductive strip of the first stacked structure is selected. 如申請專利範圍第3項所述之半導體結構的操作方法,其中被選擇的該第一導電條紋係開啟。The method of operating a semiconductor structure of claim 3, wherein the selected first conductive strip is turned on. 如申請專利範圍第1項所述之半導體結構的操作方法,其中該第一電壓為正偏壓,該第二電壓為負偏壓。The method of operating a semiconductor structure of claim 1, wherein the first voltage is a positive bias and the second voltage is a negative bias. 如申請專利範圍第5項所述之半導體結構的操作方法,其中該操作方法係使得該第一堆疊結構的該第一導電條紋未被選擇。The method of operating a semiconductor structure according to claim 5, wherein the method of operation is such that the first conductive stripe of the first stacked structure is unselected. 如申請專利範圍第6項所述之半導體結構的操作方法,其中未被選擇的該第一導電條紋係關閉。The method of operating a semiconductor structure of claim 6, wherein the unselected first conductive strip is closed. 如申請專利範圍第1項所述之半導體結構的操作方法,其中該半導體結構更包括:
一第二堆疊結構,形成於該基底上,其中該第二堆疊結構係包括交錯堆疊的第二導電條紋與第二絕緣條紋,該第二導電條紋係藉由該第二絕緣條紋分開,其中該介電元件形成於該第二堆疊結構上,該導電線的延伸方向係垂直於該第二堆疊結構的延伸方向;以及
一第三導電島,形成於該介電元件上,其中位於該第二堆疊結構的相對側面上的該第二導電島與該第三導電島係互相分開,
該半導體結構的操作方法更包括:施加一第三電壓至該第三導電島。
The method of operating a semiconductor structure according to claim 1, wherein the semiconductor structure further comprises:
a second stack structure formed on the substrate, wherein the second stack structure comprises a second conductive strip and a second insulating strip staggered, and the second conductive strip is separated by the second insulating strip, wherein a dielectric element is formed on the second stacked structure, the conductive line extends in a direction perpendicular to the extending direction of the second stacked structure; and a third conductive island is formed on the dielectric element, wherein the second The second conductive island on the opposite side of the stacked structure and the third conductive island are separated from each other,
The method of operating the semiconductor structure further includes applying a third voltage to the third conductive island.
如申請專利範圍第8項所述之半導體結構的操作方法,其中該第一電壓與該第二電壓皆為正偏壓,該第三電壓為負偏壓。The method of operating a semiconductor structure according to claim 8, wherein the first voltage and the second voltage are both positively biased, and the third voltage is a negative bias. 如申請專利範圍第9項所述之半導體結構的操作方法,其中該操作方法係使得該第一堆疊結構的該第一導電條紋被選擇,並使得該第二堆疊結構的該第二導電條紋未被選擇。The method of operating a semiconductor structure according to claim 9 wherein the first conductive strip of the first stacked structure is selected such that the second conductive strip of the second stacked structure is not be chosen. 一種半導體結構的製造方法,包括:
形成一堆疊結構於一基底上,其中該堆疊結構係包括多數個導電條紋與多數個絕緣條紋,該些導電條紋係藉由該些絕緣條紋分開;
形成一介電元件於該堆疊結構上;
形成複數個導電線於該介電元件上,其中該些導電線的延伸方向係垂直於該堆疊結構的延伸方向;以及
形成複數個導電島於該介電元件上,其中位於單一個該堆疊結構的相對側面上的該些導電島係互相分開。
A method of fabricating a semiconductor structure, comprising:
Forming a stacked structure on a substrate, wherein the stacked structure includes a plurality of conductive stripes and a plurality of insulating stripes, and the conductive stripes are separated by the insulating stripes;
Forming a dielectric component on the stacked structure;
Forming a plurality of conductive lines on the dielectric element, wherein the conductive lines extend in a direction perpendicular to an extending direction of the stacked structure; and forming a plurality of conductive islands on the dielectric element, wherein the stacked structure is located The conductive islands on opposite sides of each other are separated from each other.
如申請專利範圍第11項所述之半導體結構的製造方法,其中該些導電線係配置於該堆疊結構的側面與上表面上,該些導電島的形成方法包括:
移除該導電線位於該堆疊結構之上表面上的該介電元件的上表面上的部分,並留下該導電線位於該堆疊結構之相對側面上的部分以形成該些導電島。
The method for fabricating a semiconductor structure according to claim 11, wherein the conductive lines are disposed on a side surface and an upper surface of the stacked structure, and the method for forming the conductive islands comprises:
A portion of the conductive line on the upper surface of the dielectric member on the upper surface of the stacked structure is removed, and a portion of the conductive line on opposite sides of the stacked structure is left to form the conductive islands.
如申請專利範圍第12項所述之半導體結構的製造方法,其中該些導電島的形成方法更包括:
形成一介電層於該堆疊結構上之該介電元件上與該導電線上,其中該介電層具有一平坦的上表面;
形成一圖案化的遮罩層於該該介電層上,其中該圖案化的遮罩層具有一開口,在移除該導電線的步驟中,係將該開口露出的該導電線移除,直到露出該堆疊結構之上表面上的該介電元件的上表面;以及
移除該圖案化的遮罩層。
The method for fabricating a semiconductor structure according to claim 12, wherein the method for forming the conductive islands further comprises:
Forming a dielectric layer on the dielectric element on the stacked structure and the conductive line, wherein the dielectric layer has a flat upper surface;
Forming a patterned mask layer on the dielectric layer, wherein the patterned mask layer has an opening, and in the step of removing the conductive line, removing the conductive line exposed by the opening, Until the upper surface of the dielectric element on the upper surface of the stacked structure is exposed; and the patterned mask layer is removed.
如申請專利範圍第13項所述之半導體結構的製造方法,其中該介電層之平坦的上表面係對齊或高於該堆疊結構上之該介電元件的上表面與該導電線的上表面。The method of fabricating a semiconductor structure according to claim 13, wherein the flat upper surface of the dielectric layer is aligned or higher than an upper surface of the dielectric member and an upper surface of the conductive line on the stacked structure. . 如申請專利範圍第11項所述之半導體結構的製造方法,其中位於該堆疊結構中相鄰近之兩個之間的該導電島係具有單一材料。The method of fabricating a semiconductor structure according to claim 11, wherein the conductive island between the two adjacent ones of the stacked structures has a single material. 如申請專利範圍第11項所述之半導體結構的製造方法,其中位於該堆疊結構中相鄰近之兩個之間的該導電島係具有複合材料。The method of fabricating a semiconductor structure according to claim 11, wherein the conductive island between the two adjacent ones of the stacked structures has a composite material. 如申請專利範圍第11項所述之半導體結構的製造方法,其中該導電線與該導電島具有一第一導電型,該導電條紋具有一第二導電型,該第一導電型與該第二導電型係相反。The method of manufacturing the semiconductor structure of claim 11, wherein the conductive line and the conductive island have a first conductivity type, the conductive strip has a second conductivity type, the first conductivity type and the second The conductivity type is reversed. 一種半導體結構,包括:
一基底;
一堆疊結構,形成於該基底上,其中該堆疊結構係包括交錯堆疊的導電條紋與絕緣條紋,該導電條紋係藉由該絕緣條紋分開;
一介電元件,形成於該堆疊結構上;
一導電線,形成於該介電元件上,該導電線的延伸方向係垂直於該堆疊結構的延伸方向;以及
複數個導電島,形成於該介電元件上,其中位於單一個該堆疊結構的相對側面上的該些導電島係互相分開。
A semiconductor structure comprising:
a substrate;
a stacked structure formed on the substrate, wherein the stacked structure comprises staggered stacked conductive stripes and insulating stripes, the conductive stripes being separated by the insulating stripes;
a dielectric component formed on the stacked structure;
a conductive line formed on the dielectric element, the conductive line extending in a direction perpendicular to an extending direction of the stacked structure; and a plurality of conductive islands formed on the dielectric element, wherein the single one of the stacked structures is The conductive islands on opposite sides are separated from one another.
如申請專利範圍第18項所述之半導體結構,其中該些導電島係沿著垂直於該堆疊結構的延伸方向的方向排列。The semiconductor structure of claim 18, wherein the conductive islands are arranged in a direction perpendicular to an extending direction of the stacked structure. 如申請專利範圍第18項所述之半導體結構,其中位於該堆疊結構中相鄰近之兩個之間的該導電島係具有單一材料。The semiconductor structure of claim 18, wherein the conductive island between two adjacent ones of the stacked structures has a single material. 如申請專利範圍第18項所述之半導體結構,其中位於該堆疊結構中相鄰近之兩個之間的該導電島係具有複合材料。The semiconductor structure of claim 18, wherein the conductive island between the two adjacent ones of the stacked structures has a composite material. 如申請專利範圍第18項所述之半導體結構,其中該導電線與該導電島具有一第一導電型,該導電條紋具有一第二導電型,該第一導電型與該第二導電型係相反。The semiconductor structure of claim 18, wherein the conductive line and the conductive island have a first conductivity type, the conductive strip has a second conductivity type, and the first conductivity type and the second conductivity type in contrast.
TW101101844A 2011-01-18 2012-01-17 Semiconductor structure and manufacturing method and operating method for the same TWI433269B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW101101844A TWI433269B (en) 2011-01-18 2012-01-17 Semiconductor structure and manufacturing method and operating method for the same
US13/612,658 US20130003434A1 (en) 2011-01-18 2012-09-12 Method for operating a semiconductor structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW100101846 2011-01-18
TW101101844A TWI433269B (en) 2011-01-18 2012-01-17 Semiconductor structure and manufacturing method and operating method for the same

Publications (2)

Publication Number Publication Date
TW201232705A TW201232705A (en) 2012-08-01
TWI433269B true TWI433269B (en) 2014-04-01

Family

ID=47069679

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101101844A TWI433269B (en) 2011-01-18 2012-01-17 Semiconductor structure and manufacturing method and operating method for the same

Country Status (1)

Country Link
TW (1) TWI433269B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI499038B (en) * 2012-12-11 2015-09-01 Macronix Int Co Ltd Three dimensional gate structures with horizontal extensions
CN103872056B (en) * 2012-12-14 2016-08-17 旺宏电子股份有限公司 There is horizontal-extending three-dimensional gate structure and manufacture method thereof
TWI489623B (en) * 2012-12-21 2015-06-21 Macronix Int Co Ltd Semiconductor structure and manufacturing method of the same
CN103887259B (en) * 2012-12-24 2016-08-17 旺宏电子股份有限公司 Semiconductor structure and manufacture method thereof
TWI506765B (en) * 2013-10-15 2015-11-01 Macronix Int Co Ltd Integrated circuit and operating method for the same
US9245603B2 (en) 2013-10-21 2016-01-26 Macronix International Co., Ltd. Integrated circuit and operating method for the same
TWI555151B (en) * 2014-07-10 2016-10-21 旺宏電子股份有限公司 Semiconductor structure
US9947665B2 (en) 2014-07-15 2018-04-17 Macronix International Co., Ltd. Semiconductor structure having dielectric layer and conductive strip
CN105336741B (en) * 2014-08-14 2018-05-25 旺宏电子股份有限公司 Semiconductor structure
TWI567948B (en) * 2014-10-07 2017-01-21 旺宏電子股份有限公司 Three dimensional stacked semiconductor structure and method for manufacturing the same
CN106298497B (en) * 2015-06-08 2019-01-04 旺宏电子股份有限公司 Semiconductor element and its manufacturing method

Also Published As

Publication number Publication date
TW201232705A (en) 2012-08-01

Similar Documents

Publication Publication Date Title
TWI433269B (en) Semiconductor structure and manufacturing method and operating method for the same
US10461095B2 (en) Ferroelectric non-volatile memory
US9831257B2 (en) SGVC 3D architecture with floating gate device in lateral recesses on sides of conductive strips and insulating strips
KR101169396B1 (en) Non-volatile memory device and method of operating the same
US20130003434A1 (en) Method for operating a semiconductor structure
TWI611607B (en) Three dimensional memory device
US9343152B2 (en) Cell array with a manufacturable select gate for a nonvolatile semiconductor memory device
US10453861B1 (en) Ferroelectric non-volatile memory
US7271063B2 (en) Method of forming FLASH cell array having reduced word line pitch
US10453862B1 (en) Ferroelectric non-volatile memory
TWI453897B (en) Memory device, manufacturing method and operating method of the same
CN102623457B (en) Semiconductor structure, manufacturing method thereof and operating method
US20140140131A1 (en) Three dimensional gate structures with horizontal extensions
US20150048434A1 (en) Structure and Method of Manufacturing a Stacked Memory Array for Junction-Free Cell Transistors
CN109037226B (en) 3D memory device and method of manufacturing the same
US9741569B2 (en) Forming memory using doped oxide
TWI605548B (en) Memory structure and manufacturing method for the same
US20160284722A1 (en) Memory device and manufacturing method of the same
JP2007273859A (en) Semiconductor device and manufacturing method therefor
JP5801341B2 (en) Semiconductor memory
JP2009530843A (en) Semiconductor field effect transistor, memory cell, and memory element
KR100634006B1 (en) Split gate type non-volatile memory device and method of fabricating the same
CN109148453B (en) Method of manufacturing semiconductor device and 3D memory device
TWI447900B (en) Nonvolatile stacked nand memory
JP2006210700A (en) Nonvolatile semiconductor memory device and its manufacturing method