TWI555151B - Semiconductor structure - Google Patents

Semiconductor structure Download PDF

Info

Publication number
TWI555151B
TWI555151B TW103123736A TW103123736A TWI555151B TW I555151 B TWI555151 B TW I555151B TW 103123736 A TW103123736 A TW 103123736A TW 103123736 A TW103123736 A TW 103123736A TW I555151 B TWI555151 B TW I555151B
Authority
TW
Taiwan
Prior art keywords
conductive
layer
dielectric layer
sidewall
semiconductor structure
Prior art date
Application number
TW103123736A
Other languages
Chinese (zh)
Other versions
TW201603214A (en
Inventor
胡志瑋
葉騰豪
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW103123736A priority Critical patent/TWI555151B/en
Publication of TW201603214A publication Critical patent/TW201603214A/en
Application granted granted Critical
Publication of TWI555151B publication Critical patent/TWI555151B/en

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Description

半導體結構 Semiconductor structure

本發明是有關於一種半導體結構,且特別是有關於一種記憶體結構。 This invention relates to a semiconductor structure, and more particularly to a memory structure.

近年來半導體元件的結構不斷地改變,且元件的記憶體儲存容量也不斷增加。記憶裝置係使用於許多產品之中,例如MP3播放器、數位相機、電腦檔案等等之儲存元件中。隨著應用的增加,對於記憶裝置的需求也趨向較小的尺寸、較大的記憶容量。因應這種需求,係需要製造高元件密度及具有小尺寸的記憶裝置。 In recent years, the structure of semiconductor elements has been constantly changing, and the memory storage capacity of the elements has also been increasing. Memory devices are used in many products, such as MP3 players, digital cameras, computer files, and the like. As applications increase, so does the demand for memory devices toward smaller sizes and larger memory capacities. In response to this demand, it is required to manufacture a memory device having a high component density and a small size.

因此,設計者們無不致力於開發一種三維記憶裝置,不但具有許多堆疊平面而達到更高的記憶儲存容量,具有更微小的尺寸,同時具備良好之特性與穩定性。 Therefore, designers are all committed to developing a three-dimensional memory device that not only has many stacked planes but also achieves higher memory storage capacity, has a smaller size, and has good characteristics and stability.

根據一實施例,揭露一種半導體結構,其包括一導電條紋、一導電層、一第一介電層、與一第二介電層。第一介電層介於交錯配置的導電條紋與導電層之間。第二介電層不同於第一介電層,並與第一介電層鄰接在導電條紋之同一側壁的不同位 置上。 According to an embodiment, a semiconductor structure including a conductive strip, a conductive layer, a first dielectric layer, and a second dielectric layer is disclosed. The first dielectric layer is interposed between the staggered conductive stripes and the conductive layer. The second dielectric layer is different from the first dielectric layer and adjacent to the first dielectric layer at different positions on the same sidewall of the conductive stripe Set it up.

根據另一實施例,揭露一種半導體結構,其包括一導電層、一第一介電層、與一導電條紋。導電條紋藉由第一介電層分開自與導電條紋交錯配置的導電層。導電條紋包括一第一導電部分、一第二導電部分、及該第一導電部分與該第二導電部分之間的一曲表面。 In accordance with another embodiment, a semiconductor structure is disclosed that includes a conductive layer, a first dielectric layer, and a conductive strip. The conductive stripes are separated from the conductive layer staggered with the conductive stripes by the first dielectric layer. The conductive stripe includes a first conductive portion, a second conductive portion, and a curved surface between the first conductive portion and the second conductive portion.

根據又另一實施例,揭露一種半導體結構,其包括一導電層、一導電條紋、與一第一介電層。導電層具有相對的一第一側壁與一第二側壁、及第一側壁與第二側壁之間的一第三側壁。第一介電層分開交錯配置的導電條紋導電層。第一介電層位於導電層之第一側壁與第二側壁上的厚度係大於位於第三側壁上的厚度。 According to still another embodiment, a semiconductor structure including a conductive layer, a conductive strip, and a first dielectric layer is disclosed. The conductive layer has a first sidewall and a second sidewall, and a third sidewall between the first sidewall and the second sidewall. The first dielectric layer separates the staggered conductive strip conductive layers. The thickness of the first dielectric layer on the first sidewall and the second sidewall of the conductive layer is greater than the thickness on the third sidewall.

102‧‧‧底絕緣層 102‧‧‧Bottom insulation

104‧‧‧導電薄膜 104‧‧‧Electrical film

106‧‧‧介電薄膜 106‧‧‧Dielectric film

108‧‧‧源極接觸插塞 108‧‧‧Source contact plug

110‧‧‧第一穿孔 110‧‧‧First perforation

112‧‧‧穿孔 112‧‧‧Perforation

114‧‧‧穿孔 114‧‧‧Perforation

116‧‧‧導電條紋 116‧‧‧ Conductive stripes

118‧‧‧導電連接 118‧‧‧Electrically connected

120‧‧‧導電板 120‧‧‧conductive plate

122‧‧‧第一介電層 122‧‧‧First dielectric layer

124‧‧‧上表面 124‧‧‧ upper surface

126‧‧‧表面 126‧‧‧ surface

127‧‧‧曲表面 127‧‧‧ 曲 Surface

128‧‧‧側壁 128‧‧‧ side wall

130‧‧‧導電層 130‧‧‧ Conductive layer

132‧‧‧遮罩層 132‧‧‧mask layer

134A、134B‧‧‧第二穿孔 134A, 134B‧‧‧ second perforation

136‧‧‧音叉狀穿孔 136‧‧‧ tuning fork piercing

138‧‧‧導電層 138‧‧‧ Conductive layer

140‧‧‧條紋部分 140‧‧‧ striped section

142‧‧‧第二介電層 142‧‧‧Second dielectric layer

144‧‧‧第一側壁 144‧‧‧ first side wall

146‧‧‧第二側壁 146‧‧‧ second side wall

148‧‧‧側壁 148‧‧‧ side wall

149‧‧‧表面 149‧‧‧ surface

150‧‧‧側壁 150‧‧‧ side wall

152‧‧‧第一導電部分 152‧‧‧First conductive part

154‧‧‧第二導電部分 154‧‧‧Second conductive part

156‧‧‧第三側壁 156‧‧‧ third side wall

158‧‧‧遮罩層 158‧‧‧mask layer

160‧‧‧側壁 160‧‧‧ side wall

162‧‧‧側壁 162‧‧‧ side wall

164‧‧‧側壁 164‧‧‧ side wall

166‧‧‧開口 166‧‧‧ openings

168‧‧‧導電接觸 168‧‧‧Electrical contact

T1、T2、T3‧‧‧厚度 T1, T2, T3‧‧‧ thickness

D1、D2、D3‧‧‧尺寸 D1, D2, D3‧‧‧ size

S1‧‧‧第一間距 S1‧‧‧first spacing

S2‧‧‧第二間距 S2‧‧‧Second spacing

S3‧‧‧第二間距 S3‧‧‧Second spacing

第1A圖至第11A圖繪示根據一實施例之半導體結構的製造流程。 FIGS. 1A through 11A illustrate a manufacturing process of a semiconductor structure in accordance with an embodiment.

第12圖繪示根據一實施例之半導體結構其導電層、導電條紋與第一介電層的上視圖。 12 is a top view of a conductive structure, conductive stripes, and a first dielectric layer of a semiconductor structure in accordance with an embodiment.

第1A圖至第11A圖繪示根據一實施例之半導體結構的製造流程。 FIGS. 1A through 11A illustrate a manufacturing process of a semiconductor structure in accordance with an embodiment.

請參照第1A圖與第1B圖,其分別繪示堆疊結構的 上示圖與剖面圖。堆疊結構包括交錯形成在底絕緣層102上的導電薄膜104與介電薄膜106。實施例中,堆疊結構的最頂層為介電薄膜106,而為了清楚說明本揭露,圖示係以導電薄膜104示意堆疊結構的區域,此後不再贅述。 Please refer to FIG. 1A and FIG. 1B, which respectively illustrate the stacked structure. The above diagram and section view. The stacked structure includes a conductive film 104 and a dielectric film 106 which are alternately formed on the bottom insulating layer 102. In the embodiment, the topmost layer of the stacked structure is the dielectric film 106, and for the sake of clarity of the disclosure, the figure shows the area of the stacked structure with the conductive film 104, which will not be described later.

底絕緣層102可形成在半導體基底(未繪示)上。半導體基底可包括矽基底、絕緣層上覆矽(SOI)、或其他合適的基底材料。一實施例中,底絕緣層102與介電薄膜106為氧化物例如氧化矽。然本揭露並不限於此。其他實施例中,底絕緣層102與介電薄膜106可分別包括單一層結構或多層結構的氧化物、氮化物、或氮氧化物,例如氧化矽、氮化矽、氮氧化矽、或其他合適的介電材料。導電薄膜104可包括多晶矽或其他合適的導電材料。 The bottom insulating layer 102 may be formed on a semiconductor substrate (not shown). The semiconductor substrate can include a germanium substrate, an insulating layer overlying germanium (SOI), or other suitable substrate material. In one embodiment, the bottom insulating layer 102 and the dielectric film 106 are oxides such as hafnium oxide. However, the disclosure is not limited to this. In other embodiments, the bottom insulating layer 102 and the dielectric film 106 may respectively comprise a single layer structure or a multilayer structure of oxides, nitrides, or oxynitrides, such as hafnium oxide, tantalum nitride, hafnium oxynitride, or other suitable Dielectric material. Conductive film 104 can comprise polysilicon or other suitable electrically conductive material.

請參照第1A圖,於堆疊結構中形成源極接觸插塞108,其電性連接至不同階層之導電薄膜104。源極接觸插塞108的形成方法可包括,例如蝕刻製程在堆疊結構中形成穿孔,並填充導電材料例如多晶矽或金屬至穿孔中而形成。 Referring to FIG. 1A, a source contact plug 108 is formed in the stacked structure, which is electrically connected to the conductive film 104 of different levels. The method of forming the source contact plug 108 may include, for example, an etching process in which a via is formed in the stacked structure and filled with a conductive material such as polysilicon or metal into the via.

請參照第2A圖與第2B圖,於堆疊結構中形成第一穿孔110、穿孔112與穿孔114,以圖案化堆疊結構。圖案化後的堆疊結構具有往Z方向連續延伸、且互相分開的數個條紋堆疊(其包括導電條紋116),以及往X方向延伸、且鄰接在條紋堆疊(或導電條紋116)之間的數個連接堆疊(其包括導電連接118)。條紋堆疊(導電條紋116)也可鄰接板堆疊(其包括導電板120)。一實施例中,舉例來說,連接堆疊(或導電連接118)在Z軸方向上的尺寸 D1為0.05μm,板堆疊(或導電板120)的尺寸D2為0.5μm。 Referring to FIGS. 2A and 2B, a first through hole 110, a through hole 112, and a through hole 114 are formed in the stacked structure to pattern the stacked structure. The patterned stacked structure has a plurality of stripe stacks (which include conductive strips 116) extending continuously in the Z direction and separated from each other, and a number extending in the X direction and adjoining between the stripe stacks (or conductive strips 116) Connection stacks (which include conductive connections 118). The stripe stack (conductive strips 116) may also abut the board stack (which includes the conductive strips 120). In one embodiment, for example, the size of the connection stack (or conductive connection 118) in the Z-axis direction D1 is 0.05 μm, and the size D2 of the board stack (or the conductive board 120) is 0.5 μm.

請參照第3A圖至第3C圖,可形成第一介電層122於第一穿孔110露出的堆疊結構上、與堆疊結構的上表面124上。第一介電層122可包括ONO結構、ONONO結構、ONONONO結構、或由穿隧材料(tunneling material)/捕捉材料(trapping material)/阻擋材料(blocking material)構成的材料層,應用於反及閘(NAND)之儲存材料。其中為清楚表示,第一介電層122在第3A圖與第3C圖僅繪示位於第一穿孔110中的部分。請參照第3C圖,其顯示四個第一穿孔110附近區域的放大圖。實施例中,第一穿孔110係藉由微影技術,使用蝕刻製程而形成。所形成往Z方向延伸的長條形第一穿孔110在短側壁126與長側壁128之間的轉角處具有曲表面127,此輪廓會使得後續沉積形成的第一介電層122,由於沉積速率不同,造成其在曲表面127上的厚度T1係大於在第一穿孔110之短側壁126與長側壁128上實質相等的厚度T2與厚度T3。 Referring to FIGS. 3A-3C, a first dielectric layer 122 may be formed on the stacked structure exposed by the first via 110 and on the upper surface 124 of the stacked structure. The first dielectric layer 122 may include an ONO structure, an ONONO structure, an ONONONO structure, or a material layer composed of a tunneling material/trapping material/blocking material, applied to the gate (NAND) storage material. For the sake of clarity, the first dielectric layer 122 only shows the portion located in the first through hole 110 in FIGS. 3A and 3C. Please refer to FIG. 3C, which shows an enlarged view of the area near the four first perforations 110. In an embodiment, the first vias 110 are formed by lithography using an etching process. The elongated first through hole 110, which is formed to extend in the Z direction, has a curved surface 127 at a corner between the short side wall 126 and the long side wall 128, which contour causes the subsequent deposition of the first dielectric layer 122 due to the deposition rate. The difference is that the thickness T1 on the curved surface 127 is greater than the thickness T2 and the thickness T3 which are substantially equal on the short side wall 126 and the long side wall 128 of the first through hole 110.

請參照第4A圖至第4C圖,將導電層130填充至第一穿孔110中,並形成在堆疊結構的上表面124上的第一介電層122上。導電層130可包括多晶矽、或其他合適的材料。為了清楚說明本揭露,導電層130在第4A圖與第4C圖中僅繪示出第一穿孔110中的部分,而未顯示出堆疊結構之上表面124上的部分。 Referring to FIGS. 4A-4C, the conductive layer 130 is filled into the first via 110 and formed on the first dielectric layer 122 on the upper surface 124 of the stacked structure. Conductive layer 130 can comprise polysilicon, or other suitable material. For clarity of the disclosure, the conductive layer 130 depicts only portions of the first via 110 in Figures 4A and 4C, but does not show portions of the upper surface 124 of the stacked structure.

請參照第5A圖至第5C圖,形成圖案化的遮罩層132例如光阻在導電層130上。 Referring to FIGS. 5A-5C, a patterned mask layer 132 is formed, for example, on the conductive layer 130.

請參照第6A圖與第6B圖,將遮罩層132之第二穿孔134A、134B與音叉狀穿孔136向下轉移至導電層130、第一介電層122與堆疊結構。一實施例中,是使用對導電層130、第一介電層122與堆疊結構(包括第1B圖所示的導電薄膜104與介電薄膜106的材料)具有低蝕刻選擇比的蝕刻製程進行轉移步驟。 Referring to FIGS. 6A and 6B, the second through holes 134A, 134B of the mask layer 132 and the tuning fork shaped through holes 136 are transferred downward to the conductive layer 130, the first dielectric layer 122, and the stacked structure. In one embodiment, the transfer process is performed using an etching process having a low etching selectivity ratio to the conductive layer 130, the first dielectric layer 122, and the stacked structure (including the material of the conductive film 104 and the dielectric film 106 shown in FIG. 1B). step.

請參照第7A圖至第7C圖,在遮罩層132(第6A圖與第6B圖)移除之後,導電層130留下的部分包括,往Z方向延伸、且互相分開的導電層138,以及鄰接在導電層138之間的條紋部分140,其中條紋部分140係與下方的條紋堆疊(導電條紋116)重疊。為清楚說明,第7C圖並未繪示導電層138位於堆疊結構之上表面124上的部分。 Referring to FIGS. 7A-7C, after the mask layer 132 (FIG. 6A and FIG. 6B) is removed, the portion left by the conductive layer 130 includes a conductive layer 138 extending in the Z direction and separated from each other. And a stripe portion 140 that is adjacent between the conductive layers 138, wherein the stripe portion 140 overlaps the underlying stripe stack (conductive strips 116). For clarity of illustration, Figure 7C does not illustrate the portion of conductive layer 138 that is on top surface 124 of the stacked structure.

將第二介電層142填充至第二穿孔134A、134B與音叉狀穿孔136中。實施例中,第一介電層122係不同於第二介電層142。舉例來說,第一介電層122為多層介電結構,例如氧化物-氮化物-氧化物(ONO)、氧化物-氮化物-氧化物-氮化物-氧化物(ONONO)結構,或由穿隧材料(tunneling material)/捕捉材料(trapping material)/阻擋材料(blocking material)構成的材料層,應用於反及閘(NAND)之儲存材料。第二介電層142為單一層介電結構,例如單一層氧化物。然本揭露並不限於此,不同的介電層亦可指具有不同材料的單一介電薄膜,或者不同數目的多層介電結構。介電層亦可包括其他合適的介電材料。 The second dielectric layer 142 is filled into the second vias 134A, 134B and the tuning fork shaped vias 136. In an embodiment, the first dielectric layer 122 is different from the second dielectric layer 142. For example, the first dielectric layer 122 is a multilayer dielectric structure, such as an oxide-nitride-oxide (ONO), oxide-nitride-oxide-nitride-oxide (ONONO) structure, or A layer of material consisting of a tunneling material/trapping material/blocking material is applied to the NAND storage material. The second dielectric layer 142 is a single layer dielectric structure, such as a single layer oxide. However, the disclosure is not limited thereto, and different dielectric layers may also refer to a single dielectric film having different materials, or a different number of multilayer dielectric structures. The dielectric layer can also include other suitable dielectric materials.

請參照第7C圖,其繪示堆疊結構之一導電薄膜階 層,鄰近四個第一穿孔110的區域放大圖。轉移第二穿孔134A的製程,係移除與導電條紋116電性連接的導電連接118(第5A圖),因此,藉此步驟留下的導電條紋116係彼此間電性隔離。第二穿孔134B係移除第一穿孔110中部分的導電層138,藉此將導電層138分割成數個互相分離的區塊。 Please refer to FIG. 7C, which shows a conductive film step of the stacked structure. Layer, an enlarged view of the area adjacent to the four first perforations 110. The process of transferring the second vias 134A removes the conductive connections 118 (FIG. 5A) that are electrically connected to the conductive stripes 116. Therefore, the conductive stripes 116 left by this step are electrically isolated from each other. The second via 134B removes a portion of the conductive layer 138 in the first via 110, thereby dividing the conductive layer 138 into a plurality of discrete segments.

請參照第7C圖,舉例來說,第二穿孔134B的蝕刻製程係期望能停止在第一介電層122的內部分,例如氧化物-氮化物-氧化物-氮化物-氧化物(ONONO)中的ONO內層。而在某些情況下,蝕刻製程會蝕穿ONONO結構。因此,實施例中,第二穿孔134B的尺寸D3(X方向上的寬度)係實質上對準、或超過第一穿孔110中導電層138的第一側壁144與第二側壁146,或可能超過第一穿孔110的長側壁128。 Referring to FIG. 7C, for example, the etching process of the second via 134B is desirably stopped at the inner portion of the first dielectric layer 122, such as an oxide-nitride-oxide-nitride-oxide (ONONO). The inner layer of ONO. In some cases, the etch process etches through the ONONO structure. Thus, in an embodiment, the dimension D3 (width in the X direction) of the second via 134B is substantially aligned, or exceeds the first sidewall 144 and the second sidewall 146 of the conductive layer 138 in the first via 110, or may exceed The long side wall 128 of the first perforation 110.

一些實施例中,微影光罩對應第二穿孔134A與第二穿孔134B位置的圖案具有相同的輪廓,因此不具選擇性的蝕刻製程能形成出輪廓實質上相同的第二穿孔134A與第二穿孔134B。 In some embodiments, the lithographic mask has the same contour as the pattern of the second perforation 134A and the second perforation 134B, so that the non-selective etching process can form the second perforation 134A and the second perforation having substantially the same contour. 134B.

因此,一實施例中,形成的第二穿孔134A其側壁148、150實質上分別對準導電層138的第一側壁144、第二側壁146,或者超過第一側壁144、第二側壁146而未到達對準第一穿孔110之長側壁128的程度。這使得導電條紋116鄰近導電連接118位置的部分形成比第一導電部分152更寬的第二導電部分154,亦即第一穿孔110之間的第一導電部分152為較窄導電部 分,第二穿孔134A之間的第二導電部分154為較寬導電部分,如第7圖所示。此例中,留下的導電條紋116保留曲表面127,且第一介電層122位於曲表面127上較厚的轉角部分仍會保留在第二穿孔134A的表面149上。第一導電部分152與第二導電部分154係交替地往導電條紋116的延伸方向配置。 Therefore, in one embodiment, the sidewalls 148, 150 of the second via 134A are substantially aligned with the first sidewall 144, the second sidewall 146 of the conductive layer 138, or the first sidewall 144 and the second sidewall 146, respectively. The extent to which the long side walls 128 of the first perforations 110 are aligned is reached. This causes the portion of the conductive strip 116 adjacent the location of the conductive connection 118 to form a second conductive portion 154 that is wider than the first conductive portion 152, that is, the first conductive portion 152 between the first vias 110 is a narrower conductive portion. The second conductive portion 154 between the second vias 134A is a wider conductive portion as shown in FIG. In this example, the remaining conductive strips 116 retain the curved surface 127, and the thicker corner portions of the first dielectric layer 122 on the curved surface 127 will remain on the surface 149 of the second via 134A. The first conductive portion 152 and the second conductive portion 154 are alternately arranged toward the extending direction of the conductive strips 116.

另一實施例中,形成的第二穿孔134A其側壁148、150實質上對準第一穿孔110之長側壁128。這使得導電條紋116具有實質上等寬的第一導電部分152與第二導電部分154(未繪示)。此例中,留下的導電條紋116具有曲表面127,且第一介電層122位於曲表面127上較厚的轉角部分仍會保留在第二穿孔134A的表面149上。 In another embodiment, the second perforations 134A are formed with their sidewalls 148, 150 substantially aligned with the long sidewalls 128 of the first perforations 110. This causes the conductive strips 116 to have substantially equal widths of the first conductive portion 152 and the second conductive portion 154 (not shown). In this example, the remaining conductive strips 116 have a curved surface 127, and the thicker corner portions of the first dielectric layer 122 on the curved surface 127 will remain on the surface 149 of the second via 134A.

又另一實施例中,形成的第二穿孔134A其側壁148、150超過第一穿孔110之長側壁128。這使得導電條紋116的第一導電部分152寬度窄於第二導電部分154(未繪示),亦即第一導電部分152為較窄導電部分,第二導電部分154為較寬導電部分。此例中,留下的導電條紋116具有曲表面127,且第一介電層122位於曲表面127上較厚的轉角部分仍會保留在第二穿孔134A的表面149上。 In still another embodiment, the formed second perforations 134A have sidewalls 148, 150 that extend beyond the long sidewalls 128 of the first perforations 110. This causes the first conductive portion 152 of the conductive strip 116 to be narrower than the second conductive portion 154 (not shown), that is, the first conductive portion 152 is a narrower conductive portion and the second conductive portion 154 is a wider conductive portion. In this example, the remaining conductive strips 116 have a curved surface 127, and the thicker corner portions of the first dielectric layer 122 on the curved surface 127 will remain on the surface 149 of the second via 134A.

一實施例中,對應導電連接118位置的第二穿孔134A也會露出導電層138鄰接在第一側壁144與第二側壁146之間的第三側壁156上的第一介電層122,藉此使填充在其中的第二介電層142能鄰接露出的第一介電層122而形成往Z方向連續 延伸的介電元件,並定義出導電條紋116。其他實施例中,形成對應導電連接118位置的第二穿孔134A製程,會移除導電層138之第三側壁156上部分或全部第一介電層122厚度較薄的部分,並留下第一介電層122位於曲表面127上較厚的轉角部分,而填充在此種第二穿孔134A中的第二介電層142仍能與第一介電層122構成用以定義出導電條紋116的介電元件。移除導電層138之第三側壁156上部分或全部的第一介電層122,也會使得第一介電層122位於導電層138之第一側壁144與第二側壁146上的厚度T3係大於位於第三側壁156上的厚度T2。舉例來說,當第一介電層122全移除時,厚度T2為零。 In one embodiment, the second via 134A corresponding to the location of the conductive connection 118 also exposes the first dielectric layer 122 of the conductive layer 138 adjacent the third sidewall 156 between the first sidewall 144 and the second sidewall 146. The second dielectric layer 142 filled therein can be adjacent to the exposed first dielectric layer 122 to form a continuous direction in the Z direction. The dielectric elements are extended and conductive strips 116 are defined. In other embodiments, the second via 134A process for forming the location of the corresponding conductive connection 118 removes a portion of the third sidewall 156 of the conductive layer 138 that is thinner than the first dielectric layer 122 and leaves the first portion. The dielectric layer 122 is located on a thicker corner portion of the curved surface 127, and the second dielectric layer 142 filled in the second via 134A can still form a conductive strip 116 with the first dielectric layer 122. Dielectric element. Removing some or all of the first dielectric layer 122 on the third sidewall 156 of the conductive layer 138 also causes the first dielectric layer 122 to be on the first sidewall 144 and the second sidewall 146 of the conductive layer 138. Greater than the thickness T2 located on the third sidewall 156. For example, when the first dielectric layer 122 is completely removed, the thickness T2 is zero.

第二導電部分154與第二穿孔134A中的第二介電層142之間不具有第一介電層122。第一介電層122係位於第一導電部分152與第二穿孔134B中的第二介電層142之間,並位於第一導電部分152與導電層138之間。 There is no first dielectric layer 122 between the second conductive portion 154 and the second dielectric layer 142 in the second via 134A. The first dielectric layer 122 is located between the first conductive portion 152 and the second dielectric layer 142 of the second via 134B and between the first conductive portion 152 and the conductive layer 138.

其他實施例中,微影光罩對應第二穿孔134A與第二穿孔134B位置的圖案可根據其他設計具有不同的輪廓,或搭配其他特性(例如等向、非等向、具有蝕刻選擇性等)的蝕刻製程,以形成預期形態的第二穿孔134A與第二穿孔134B。 In other embodiments, the pattern of the lithography mask corresponding to the positions of the second through holes 134A and the second through holes 134B may have different contours according to other designs, or may be combined with other characteristics (eg, isotropic, non-isotropic, etch selective, etc.). The etching process is performed to form a second via 134A and a second via 134B in a desired configuration.

請參照第8A圖,形成圖案化的遮罩層158例如光阻在第7圖所示的結構上。 Referring to FIG. 8A, a patterned mask layer 158 is formed, for example, on the structure shown in FIG.

請參照第9A圖至第9C圖,移除導電層130被遮罩層158露出的部分。實施例中,此蝕刻步驟移除了與導電層138 電性連接的條紋部分140(第7A圖),藉此分開導電層138,並使得彼此電性隔離。然後移除遮罩層158。 Referring to FIGS. 9A to 9C, the portion of the conductive layer 130 exposed by the mask layer 158 is removed. In an embodiment, the etching step removes the conductive layer 138 The strip portions 140 (FIG. 7A) are electrically connected, thereby separating the conductive layers 138 and electrically isolating from each other. The mask layer 158 is then removed.

請參照第9C圖,第一介電層122介於、或鄰接在交錯配置的導電層138與導電條紋116的第一導電部分152之間。或者,導電條紋116的第一導電部分152係鄰接在第一介電層122之間。第二介電層142介於往X方向延伸之導電層138相鄰的兩個之間,並介於、或鄰接在導電條紋116之相鄰的兩個第二導電部分154之間。或者,導電條紋116的第二導電部分154係鄰接在第二介電層142之間。Z方向上不同位置的第一介電層122係藉由第二介電層142互相分開。第一介電層122與第二介電層142鄰接在導電條紋116之同一側壁(可包括位在X軸不同位置上相連接的側壁160與側壁162,以及之間的曲側壁164的不同位置上。 Referring to FIG. 9C, the first dielectric layer 122 is interposed or adjacent between the staggered conductive layer 138 and the first conductive portion 152 of the conductive strip 116. Alternatively, the first conductive portion 152 of the conductive strip 116 is adjacent between the first dielectric layer 122. The second dielectric layer 142 is interposed between two adjacent conductive layers 138 extending in the X direction and is adjacent to, or adjacent to, adjacent two adjacent second conductive portions 154 of the conductive stripes 116. Alternatively, the second conductive portion 154 of the conductive strip 116 is adjacent between the second dielectric layer 142. The first dielectric layers 122 at different positions in the Z direction are separated from each other by the second dielectric layer 142. The first dielectric layer 122 and the second dielectric layer 142 abut on the same sidewall of the conductive strip 116 (which may include sidewalls 160 and sidewalls 162 that are connected at different locations on the X-axis, and different locations of the curved sidewalls 164 therebetween) on.

請參照第10A圖與第10B圖,搭配微影技術進行蝕刻製程,以在板堆疊中形成不同深度的開口166,其分別露出不同階層的導電薄膜104(或導電板120),而形成階梯構造。 Referring to FIGS. 10A and 10B, an etch process is performed with lithography to form openings 166 of different depths in the stack of plates, which respectively expose conductive films 104 (or conductive plates 120) of different levels to form a stepped structure. .

請參照第11A圖,形成導電接觸168。 Referring to Figure 11A, a conductive contact 168 is formed.

實施例中,半導體結構為三維堆疊垂直閘記憶體裝置,導電條紋116係用作位元線,導電層138係用作字元線。記憶胞係由位元線與字元線交錯處而定,其數目可依實際需求與設計而定,例如改變堆疊結構中導電條紋116(或位元線)的階層數,或改變相同階層中往Z方向延伸的導電條紋116(或位元線)與往X方向延伸的導電層138(或字元線)的數目。 In an embodiment, the semiconductor structure is a three-dimensional stacked vertical gate memory device, conductive stripes 116 are used as bit lines, and conductive layer 138 is used as word lines. The memory cell is determined by the intersection of the bit line and the word line, and the number may be determined according to actual needs and design, for example, changing the number of layers of the conductive stripe 116 (or bit line) in the stacked structure, or changing the same level. The number of conductive stripes 116 (or bit lines) extending in the Z direction and the number of conductive layers 138 (or word lines) extending in the X direction.

上述實施例中,如第9C圖所繪示,形成在一個第一穿孔110中的一個第二介電層142能分割(或定義出)兩個往X方向延伸的導電層138。然本揭露並不限於此。舉例來說,可在一個第一穿孔110中形成五個互相分開的第二介電層142(其位於第二穿孔134B中),藉此在對應導電連接118(或連接堆疊)位置的第二介電層142(其位於第二穿孔134A中)之間定義出六個導電層138,如第12圖所示。導電條紋116的第二導電部分154相鄰近的兩個之間係具有六個導電層138。 In the above embodiment, as shown in FIG. 9C, a second dielectric layer 142 formed in a first via 110 can divide (or define) two conductive layers 138 extending in the X direction. However, the disclosure is not limited to this. For example, five mutually separated second dielectric layers 142 (which are located in the second vias 134B) may be formed in one first via 110, thereby being at a second location corresponding to the conductive connections 118 (or connected stacks) Six conductive layers 138 are defined between the dielectric layer 142 (which is located in the second via 134A) as shown in FIG. The second conductive portion 154 of the conductive strip 116 has six conductive layers 138 adjacent to each other.

實施例中,連接堆疊在Z軸方向上具有特定尺寸D1(寬度)(參照第2A圖,其可能是受限於製程極限或決定於其造成的支撐效果)。而第二穿孔134A(第9C圖)需要移除連接堆疊(或導電連接118),或要移除第一介電層122與連接堆疊(或導電連接118)相鄰接的部分,或甚至移除導電層138與第一介電層122鄰接的曲部分。因此,第二穿孔134A在Z軸方向上的尺寸,會比主要移除第一穿孔110內的導電層138而形成的第二穿孔134B還要大。這使得導電層138(或位元線)最靠近第二導電部分154的兩個之間的第一間距S1(第12圖),會大於其他的第二間距,例如第二間距S2或第二間距S3等。 In the embodiment, the connection stack has a specific dimension D1 (width) in the Z-axis direction (refer to FIG. 2A, which may be limited by the process limit or determined by the support effect thereof). The second via 134A (FIG. 9C) needs to remove the connection stack (or conductive connection 118), or remove the portion of the first dielectric layer 122 adjacent to the connection stack (or conductive connection 118), or even move Except for the curved portion of the conductive layer 138 adjacent to the first dielectric layer 122. Therefore, the size of the second through hole 134A in the Z-axis direction may be larger than the second through hole 134B formed by mainly removing the conductive layer 138 in the first through hole 110. This causes the conductive layer 138 (or bit line) to be closest to the first pitch S1 (Fig. 12) between the two of the second conductive portions 154, which may be greater than the other second pitch, such as the second pitch S2 or the second Spacing S3 and so on.

一些比較例中,位元線的形成是藉由圖案化導電薄膜與介電薄膜的堆疊結構,一次性地形成長條狀的開口而定義出。換句話說,位元線形成過程中會發生整面側壁露出開口的情況。然而,包括位元線之高深寬比(aspect ratio)的條紋堆疊,其在 兩側皆為開口而未受其他元件支撐的情況下,容易受到其他應力(例如浸液清洗步驟中,充滿在開口中的液體,或浸、拉動作中造成的應力)影響而發生彎曲(bending),使得結構受損甚至形成不期望的短路,降低產品良率。 In some comparative examples, the formation of the bit lines is defined by patterning the stacked structure of the conductive film and the dielectric film, and forming a strip-like opening at a time. In other words, the entire side wall is exposed to the opening during the formation of the bit line. However, a stripe stack including a high aspect ratio of the bit line, When both sides are open and are not supported by other components, they are susceptible to bending due to other stresses (such as the liquid in the immersion cleaning step, the liquid filled in the opening, or the stress caused by the immersion and pulling action). ), causing structural damage or even undesired short circuits, reducing product yield.

在本揭露的實施例中,包括導電條紋116的條紋堆疊係利用多次圖案化穿孔(包括第一穿孔110與第二穿孔134A、134B)的方式形成,過程中用以形成導電條紋116的材料部分係受到支撐。舉例來說,第一穿孔110形成之後,條紋堆疊係受到條紋堆疊與板堆疊的支撐。在形成第二穿孔134A、134B之後,條紋堆疊係受到第一穿孔110內的第一介電層122、第二介電層142與導電層138的支撐。因此,相較於比較例,實施例具有較穩定的結構特徵,不容易發生形變的問題,且產品可靠性高。 In an embodiment of the present disclosure, the stripe stack including the conductive strips 116 is formed by multiple patterning vias (including the first vias 110 and the second vias 134A, 134B), the material used to form the conductive strips 116 in the process. Some are supported. For example, after the first perforations 110 are formed, the stripe stack is supported by the stripe stack and the board stack. After forming the second vias 134A, 134B, the stripe stack is supported by the first dielectric layer 122, the second dielectric layer 142, and the conductive layer 138 within the first via 110. Therefore, compared with the comparative example, the embodiment has a relatively stable structural feature, is less prone to deformation, and has high product reliability.

綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In conclusion, the present invention has been disclosed in the above embodiments, but it is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

110‧‧‧第一穿孔 110‧‧‧First perforation

116‧‧‧導電條紋 116‧‧‧ Conductive stripes

122‧‧‧第一介電層 122‧‧‧First dielectric layer

134A、134B‧‧‧第二穿孔 134A, 134B‧‧‧ second perforation

138‧‧‧導電層 138‧‧‧ Conductive layer

142‧‧‧第二介電層 142‧‧‧Second dielectric layer

152‧‧‧第一導電部分 152‧‧‧First conductive part

154‧‧‧第二導電部分 154‧‧‧Second conductive part

160‧‧‧側壁 160‧‧‧ side wall

162‧‧‧側壁 162‧‧‧ side wall

164‧‧‧側壁 164‧‧‧ side wall

Claims (10)

一種半導體結構,包括:一導電條紋;一導電層;一第一介電層,介於交錯配置的該導電條紋與該導電層之間;以及一第二介電層,不同於該第一介電層,並與該第一介電層鄰接在該導電條紋之同一側壁的不同位置上。 A semiconductor structure comprising: a conductive strip; a conductive layer; a first dielectric layer interposed between the conductive strips and the conductive layer; and a second dielectric layer different from the first dielectric layer And an electrical layer adjacent to the first dielectric layer at different locations on the same sidewall of the conductive strip. 如申請專利範圍第1項所述之半導體結構,包括數個該導電條紋與數個導電層,其中該第二介電層介於該些導電條紋之相鄰的兩個之間,並介於該些導電層之相鄰的兩個之間。 The semiconductor structure of claim 1, comprising a plurality of the conductive stripes and a plurality of conductive layers, wherein the second dielectric layer is between the adjacent two of the conductive stripes, and Between two adjacent ones of the conductive layers. 如申請專利範圍第1項所述之半導體結構,其中該導電條紋具有厚度不同且相鄰接的一第一導電部分與一第二導電部分,.該第一介電層鄰接在該第一導電部分,該第二介電層鄰接在該第二導電部分。 The semiconductor structure of claim 1, wherein the conductive strip has a first conductive portion and a second conductive portion that are different in thickness and adjacent to each other. The first dielectric layer is adjacent to the first conductive layer. In part, the second dielectric layer is adjacent to the second conductive portion. 如申請專利範圍第1項所述之半導體結構,其中該第一介電層為多層介電結構,該第二介電層為單一層介電結構。 The semiconductor structure of claim 1, wherein the first dielectric layer is a multilayer dielectric structure, and the second dielectric layer is a single layer dielectric structure. 如申請專利範圍第1項所述之半導體結構,其中該第一介電層為氧化物-氮化物-氧化物(ONO)或氧化物-氮化物-氧化物-氮化物-氧化物(ONONO)結構,該第二介電層為氧化物。 The semiconductor structure of claim 1, wherein the first dielectric layer is an oxide-nitride-oxide (ONO) or an oxide-nitride-oxide-nitride-oxide (ONONO) Structure, the second dielectric layer is an oxide. 一種半導體結構,包括:一導電層; 一第一介電層;以及一導電條紋,藉由該第一介電層分開自與該導電條紋交錯配置的該導電層,該導電條紋包括一第一導電部分、一第二導電部分、及該第一導電部分與該第二導電部分之間的一曲表面。 A semiconductor structure comprising: a conductive layer; a first dielectric layer; and a conductive strip separated from the conductive layer by a staggered arrangement of the conductive strips, the conductive stripe comprising a first conductive portion, a second conductive portion, and a curved surface between the first conductive portion and the second conductive portion. 如申請專利範圍第6項所述之半導體結構,其中該第一介電層係介於該導電條紋的該第一導電部分與該導電層之間,該第一導電部分與該第二導電部分係交替地往該導電條紋的延伸方向配置。 The semiconductor structure of claim 6, wherein the first dielectric layer is between the first conductive portion of the conductive strip and the conductive layer, the first conductive portion and the second conductive portion They are alternately arranged in the direction in which the conductive stripes extend. 如申請專利範圍第6項所述之半導體結構,其中該導電層用作字元線,該些字元線之間具有不同的一第一間距與一第二間距。 The semiconductor structure of claim 6, wherein the conductive layer is used as a word line, and the word lines have different first and second intervals. 一種半導體結構,包括:一導電層,具有相對的一第一側壁與一第二側壁、及該第一側壁與該第二側壁之間的一第三側壁;一導電條紋;以及一第一介電層,分開交錯配置的該導電條紋與該導電層,該第一介電層位於該導電層之該第一側壁與該第二側壁上的厚度係大於位於該第三側壁上的厚度。 A semiconductor structure comprising: a conductive layer having a first sidewall and a second sidewall, and a third sidewall between the first sidewall and the second sidewall; a conductive strip; and a first dielectric layer And an electrically conductive layer, the electrically conductive layer is disposed in a staggered manner, and the first dielectric layer is located on the first sidewall and the second sidewall of the conductive layer to have a thickness greater than a thickness on the third sidewall. 如申請專利範圍第1至9項其中之一所述之半導體結構,其中該半導體結構為記憶體裝置,該導電條紋用作位元線,該導電層用作字元線,該些字元線之間具有不同的一第一間距與一第二間距。 The semiconductor structure according to any one of claims 1 to 9, wherein the semiconductor structure is a memory device, the conductive stripe is used as a bit line, and the conductive layer is used as a word line, and the word lines are used. There is a different first spacing and a second spacing between.
TW103123736A 2014-07-10 2014-07-10 Semiconductor structure TWI555151B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103123736A TWI555151B (en) 2014-07-10 2014-07-10 Semiconductor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103123736A TWI555151B (en) 2014-07-10 2014-07-10 Semiconductor structure

Publications (2)

Publication Number Publication Date
TW201603214A TW201603214A (en) 2016-01-16
TWI555151B true TWI555151B (en) 2016-10-21

Family

ID=55641673

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103123736A TWI555151B (en) 2014-07-10 2014-07-10 Semiconductor structure

Country Status (1)

Country Link
TW (1) TWI555151B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201232705A (en) * 2011-01-18 2012-08-01 Macronix Int Co Ltd Semiconductor structure and manufacturing method and operating method for the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201232705A (en) * 2011-01-18 2012-08-01 Macronix Int Co Ltd Semiconductor structure and manufacturing method and operating method for the same

Also Published As

Publication number Publication date
TW201603214A (en) 2016-01-16

Similar Documents

Publication Publication Date Title
US11997851B2 (en) Staircase formation in three-dimensional memory device
KR101113766B1 (en) Non volatile memory device and method for manufacturing the same
JP7192121B2 (en) Formation of staircase structures in three-dimensional memory devices
JP2019160871A (en) Method for manufacturing semiconductor device and semiconductor storage device
US9455155B2 (en) Semiconductor structure and manufacturing method for the same
US9142454B1 (en) Semiconductor structure and method for manufacturing the same
TWI564996B (en) Semiconductor device and manufacturing method thereof
KR101055587B1 (en) Method of manufacturing memory having 3-dimensional structure
TWI550764B (en) Semiconductor structure and method for manufacturing the same
TWI440138B (en) Memory and manufacturing method thereof
TW202147579A (en) Staircase structure in three-dimensional memory device and method for forming the same
TWI572016B (en) Semiconductor structure and method for fabricating the same
TWI462278B (en) Semiconductor structure and manufacturing method of the same
TWI555151B (en) Semiconductor structure
US20150145012A1 (en) Semiconductor structure and manufacturing method of the same
US20220123009A1 (en) Memory device
TWI580086B (en) Memory device and manufacturing method of the same
TWI527196B (en) semiconductor structure and method for manufacturing the same
CN105336741B (en) Semiconductor structure
TWI524381B (en) Semiconductor structure and method for manufacturing the same
US9947665B2 (en) Semiconductor structure having dielectric layer and conductive strip
TWI646667B (en) Method for manufacturing three dimensional stacked semiconductor structure and structure manufactured by the same
US9293471B1 (en) Semiconductor apparatus and manufacturing method of the same
TWI571997B (en) Semiconductor structure and manufacturing method for the same
TWI813433B (en) Semiconductor structure