TWI431695B - Fabrication methods for trench mosfet - Google Patents

Fabrication methods for trench mosfet Download PDF

Info

Publication number
TWI431695B
TWI431695B TW99105599A TW99105599A TWI431695B TW I431695 B TWI431695 B TW I431695B TW 99105599 A TW99105599 A TW 99105599A TW 99105599 A TW99105599 A TW 99105599A TW I431695 B TWI431695 B TW I431695B
Authority
TW
Taiwan
Prior art keywords
trench
substrate
oxide layer
field effect
effect transistor
Prior art date
Application number
TW99105599A
Other languages
Chinese (zh)
Other versions
TW201130052A (en
Inventor
Ya Sheng Liu
Original Assignee
Vanguard Int Semiconduct Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vanguard Int Semiconduct Corp filed Critical Vanguard Int Semiconduct Corp
Priority to TW99105599A priority Critical patent/TWI431695B/en
Publication of TW201130052A publication Critical patent/TW201130052A/en
Application granted granted Critical
Publication of TWI431695B publication Critical patent/TWI431695B/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

溝槽式金屬氧化半導體場效電晶體的製造方法Method for manufacturing trench type metal oxide semiconductor field effect transistor

本發明係有關於一種半導體裝置的製造方法,特別是有關於一種溝槽式金屬氧化半導體場效電晶體(trench MOSFET)的製造方法。The present invention relates to a method of fabricating a semiconductor device, and more particularly to a method of fabricating a trench metal oxide semiconductor field effect transistor (trench MOSFET).

高壓元件技術適用於高電壓與高功率的積體電路領域,傳統功率電晶體為達高耐壓高電流的設計,元件電流流向由平面結構設計為垂直結構。隨著晶片技術性的突破功率電晶體也有不同的做法,目前在極低壓功率電晶體技術發展有溝渠式閘極配合多樣化製程結構功率電晶體(Trench MOSFET)。The high-voltage component technology is suitable for the field of high-voltage and high-power integrated circuits. The conventional power transistor is designed to achieve high withstand voltage and high current, and the component current flow direction is designed as a vertical structure by a planar structure. With the technical breakthrough of wafer technology, there are different approaches to power transistors. At present, the development of extremely low voltage power transistor technology has a trench gate with a variety of process structure power transistors (Trench MOSFET).

由於溝槽式場效電晶體能夠有效地降低產品的導通電阻,並且具有較大電流處理能力,所以近年來溝槽式金屬氧化半導體場效電晶體在電腦、消費電子等領域中發展快速。目前,Trench MOSFET技術在低壓MOSFET產品市場中已被廣泛接受,具有很高的市場佔有率。在高壓MOSFET市場上,雖然隨著Trench MOSFET工藝技術的不斷提升產品的耐壓能力有了一定的提高,但相較於平面式(Plannar)產品,Trench MOSFET的耐壓能力仍有一定的差距。未來,含有高端工藝的平面技術將會是高壓MOSFET的發展趨勢。Since the trench field effect transistor can effectively reduce the on-resistance of the product and has a large current processing capability, in recent years, the trench type metal oxide semiconductor field effect transistor has been rapidly developed in the fields of computers and consumer electronics. Currently, Trench MOSFET technology has been widely accepted in the low voltage MOSFET product market and has a high market share. In the high-voltage MOSFET market, although the voltage withstand capability of the Trench MOSFET process technology has been improved, there is still a certain gap in the withstand voltage capability of the Trench MOSFET compared to the Plannar product. In the future, planar technology with high-end processes will be the development trend of high-voltage MOSFETs.

第1圖係顯示傳統溝槽式金屬氧化半導體場效電晶體(trench MOSFET)的剖面示意圖。請參閱第1A圖,於一半導體基底100中具有一溝槽構造。該半導體基底100中另 包括一N型摻雜區102、一P型井區(PW)104、及一N+ 型濃摻雜區106,分別做為該溝槽式電晶體的汲極、通道區及源極。一氧化層120順應性地形成並覆蓋該溝槽構造與半導體基底的表面,做為該溝槽式電晶體的閘極介電層。一摻雜多晶矽130沉積並填滿該溝槽中,做為該溝槽式電晶體的閘極。然而,溝槽式閘極結構功率電晶體在製程上有其困難度,必須考慮電晶體溝渠式閘極深淺。尤其是,傳統溝槽式MOSFET的在溝槽的底部,氧化層的厚度和其他位置的氧化層厚度相同,易造成寄生電容(Qgd)效應。因此,業界亟需一種溝槽式金屬氧化半導體場效電晶體及製造方法,能有效地降低寄生電容(Qgd)效應。Figure 1 is a schematic cross-sectional view showing a conventional trench metal oxide semiconductor field effect transistor (trench MOSFET). Referring to FIG. 1A, there is a trench structure in a semiconductor substrate 100. The semiconductor substrate 100 further includes an N-type doping region 102, a P-type well region (PW) 104, and an N + -type heavily doped region 106, respectively serving as a drain and a channel of the trench transistor. District and source. An oxide layer 120 conformally forms and covers the trench structure and the surface of the semiconductor substrate as a gate dielectric layer of the trench transistor. A doped polysilicon 130 is deposited and fills the trench as the gate of the trench transistor. However, the trench gate structure power transistor has difficulty in the process, and the depth of the transistor trench gate must be considered. In particular, the thickness of the oxide layer at the bottom of the trench of the conventional trench MOSFET is the same as the thickness of the oxide layer at other locations, which is liable to cause a parasitic capacitance (Qgd) effect. Therefore, there is a need in the industry for a trench metal oxide semiconductor field effect transistor and a manufacturing method capable of effectively reducing the parasitic capacitance (Qgd) effect.

本發明之一實施例提供一種溝槽式金屬氧化半導體場效電晶體的製造方法,包括:提供一基底,具有一溝槽構造於該基底中;形成一犧牲氧化層,順應性地覆蓋該溝槽構造與該基底的表面;沿垂直方向形成一氧化層,使該犧牲氧化層於該基底的表面及於該溝槽底部的部分增厚;移除該氧化層及部份的犧牲氧化層,於該基底的表面及於該溝槽底部留下部分的氧化層;成長一額外的氧化層,順應性地披覆於前述基底結構上;以及沉積一導電層於該基底結構上並填滿該溝槽,做為該溝槽式電晶體的閘極。An embodiment of the present invention provides a method for fabricating a trench metal oxide semiconductor field effect transistor, comprising: providing a substrate having a trench structure in the substrate; forming a sacrificial oxide layer to conformally cover the trench a groove structure and a surface of the substrate; forming an oxide layer in a vertical direction to thicken the portion of the sacrificial oxide layer on the surface of the substrate and the bottom portion of the trench; removing the oxide layer and a portion of the sacrificial oxide layer, Depositing a portion of the oxide layer on the surface of the substrate and at the bottom of the trench; growing an additional oxide layer conformally overlying the substrate structure; and depositing a conductive layer on the substrate structure and filling the substrate A trench is used as the gate of the trench transistor.

本發明另一實施例提供一種溝槽式金屬氧化半導體場效電晶體的製造方法,包括:提供一半導體基底具有一溝槽構造於該基底中,該半導體基底沿垂直方向包括一N型 摻雜區、一P型井區、及一N型濃摻雜區,分別做為該溝槽式電晶體的汲極、通道區及源極;形成一犧牲氧化層,順應性地覆蓋該溝槽構造與該半導體基底表面;施以一高密度電漿化學氣相沉積法,沿垂直方向形成一氧化層,使該犧牲氧化層於該基底的表面及於該溝槽底部的部分增厚;移除該氧化層及部份的犧牲氧化層,於該基底的表面及於該溝槽底部留下部分的氧化層;成長一額外的氧化層,順應性地披覆於前述基底結構上;形成一摻雜多晶矽於該基底結構上並填滿該溝槽;施以一化學機械研磨移除表面多餘的該摻雜多晶矽;以及移除該基底結構表面的部分氧化矽層,使露出位於溝槽上方該摻雜多晶矽的頂部,做為該溝槽式電晶體的閘極。Another embodiment of the present invention provides a method of fabricating a trench metal oxide semiconductor field effect transistor, comprising: providing a semiconductor substrate having a trench structure in the substrate, the semiconductor substrate including an N-type in a vertical direction a doped region, a P-type well region, and an N-type heavily doped region are respectively used as a drain, a channel region and a source of the trench transistor; a sacrificial oxide layer is formed to conformally cover the trench a trench structure and the surface of the semiconductor substrate; applying a high-density plasma chemical vapor deposition method to form an oxide layer in a vertical direction, so that the sacrificial oxide layer is thickened on a surface of the substrate and a portion at a bottom portion of the trench; Removing the oxide layer and a portion of the sacrificial oxide layer, leaving a portion of the oxide layer on the surface of the substrate and at the bottom of the trench; growing an additional oxide layer conformally overlying the substrate structure; forming a doped polysilicon is deposited on the substrate structure and fills the trench; a chemical mechanical polishing is applied to remove the excess doped germanium on the surface; and a portion of the germanium oxide layer on the surface of the base structure is removed to expose the trench The top of the doped polysilicon is used as the gate of the trench transistor.

為使本發明能更明顯易懂,下文特舉實施例,並配合所附圖式,作詳細說明如下:In order to make the invention more apparent, the following detailed description of the embodiments and the accompanying drawings are as follows:

以下以各實施例詳細說明並伴隨著圖式說明之範例,做為本發明之參考依據。在圖式或說明書描述中,相似或相同之部分皆使用相同之圖號。且在圖式中,實施例之形狀或是厚度可擴大,並以簡化或是方便標示。再者,圖式中各元件之部分將以分別描述說明之,值得注意的是,圖中未繪示或描述之元件,為所屬技術領域中具有通常知識者所知的形式,另外,特定之實施例僅為揭示本發明使用之特定方式,其並非用以限定本發明。The following is a detailed description of the embodiments and examples accompanying the drawings, which are the basis of the present invention. In the drawings or the description of the specification, the same drawing numbers are used for similar or identical parts. In the drawings, the shape or thickness of the embodiment may be expanded and simplified or conveniently indicated. In addition, the components of the drawings will be described separately, and it is noted that the components not shown or described in the drawings are known to those of ordinary skill in the art, and in particular, The examples are merely illustrative of specific ways of using the invention and are not intended to limit the invention.

有鑑於此,本發明的主要特徵及樣態在於將溝槽式金 屬氧化半導體場效電晶體的溝槽底部介電層增厚,因此可有效地降低元件的寄生電容(Qgd)效應,並藉由與習知製程相容的製程技術,可有效地降低製造成本。In view of this, the main features and aspects of the present invention are in the form of grooved gold. The dielectric layer of the trench at the bottom of the oxide semiconductor field effect transistor is thickened, so that the parasitic capacitance (Qgd) effect of the device can be effectively reduced, and the manufacturing cost can be effectively reduced by a process technology compatible with the conventional process. .

第2A-2I圖係顯示本發明之實施例的溝槽式金屬氧化半導體場效電晶體的製造方法於各製程步驟的剖面示意圖。請參閱第2A圖,首先,提供一基底200,例如一半導體基底,包括單晶矽基底、磊晶矽基底、矽鍺基底、絕緣層上有矽(SOI)基底、及化合物半導體基底。一溝槽構造210形成於基底200中。此外,另可選擇施以一等向性蝕刻(isotropic etching),例如濕式蝕刻,微移除該溝槽210的表面212。2A-2I is a schematic cross-sectional view showing a method of fabricating a trench type metal oxide semiconductor field effect transistor according to an embodiment of the present invention at each process step. Referring to FIG. 2A, first, a substrate 200, such as a semiconductor substrate, including a single crystal germanium substrate, an epitaxial germanium substrate, a germanium substrate, a germanium-on-insulator (SOI) substrate, and a compound semiconductor substrate are provided. A trench structure 210 is formed in the substrate 200. Alternatively, an isotropic etching, such as wet etching, may be employed to micro-removal the surface 212 of the trench 210.

請參閱第2B圖,形成一犧牲氧化層(SAC oxide)215,順應性地覆蓋該溝槽構造210與該半導體基底200的表面。於一具體實施例中,可選擇施以熱氧化法成長一氧化層於半導體基底200的表面。Referring to FIG. 2B, a sacrificial oxide layer (SAC oxide) 215 is formed to conformally cover the trench structure 210 and the surface of the semiconductor substrate 200. In one embodiment, an oxide layer may be grown on the surface of the semiconductor substrate 200 by thermal oxidation.

接著,請參閱第2C圖,沿垂直方向形成一氧化層217部分,例如施以一高密度電漿化學氣相沉積法(HDP CVD),使該犧牲氧化層215於該基底的表面及於該溝槽底部的部分增厚。應注意的是,沉積氧化層217的步驟並不限定於HDP CVD,亦可選擇使用其他適當具方向性的薄膜沉積製程。Next, referring to FIG. 2C, a portion of the oxide layer 217 is formed in a vertical direction, for example, by a high density plasma chemical vapor deposition (HDP CVD), the sacrificial oxide layer 215 is applied to the surface of the substrate and The portion at the bottom of the groove is thickened. It should be noted that the step of depositing the oxide layer 217 is not limited to HDP CVD, and other suitable directional thin film deposition processes may be selected.

接著,請參閱第2D圖,移除該氧化層217及部份的犧牲氧化層215,使得在基底的表面並且在溝槽底部留下部分的氧化層215’。例如浸置於濕蝕刻液中,使基底的表面及溝槽底部留下部分的氧化層215’。此外,另可選擇施以 一等向性蝕刻(isotropic etching),例如濕式蝕刻,微移除該溝槽210的側壁表面219。Next, referring to FIG. 2D, the oxide layer 217 and a portion of the sacrificial oxide layer 215 are removed such that a portion of the oxide layer 215' remains on the surface of the substrate and at the bottom of the trench. For example, immersing in a wet etching solution leaves a portion of the oxide layer 215' on the surface of the substrate and the bottom of the trench. In addition, you can choose to apply An isotropic etching, such as wet etching, slightly removes the sidewall surface 219 of the trench 210.

請參閱第2E圖,成長一額外的氧化層222,順應性地披覆於前述進行中的基底結構上。因此,在溝槽210底部的氧化層222會比溝槽210內其他部分的氧化層厚。接著,形成一摻雜多晶矽閘極230於該基底結構上並填滿該溝槽,如第2F圖所示。Referring to FIG. 2E, an additional oxide layer 222 is grown, conformally overlying the underlying substrate structure. Therefore, the oxide layer 222 at the bottom of the trench 210 may be thicker than the oxide layer of other portions of the trench 210. Next, a doped polysilicon gate 230 is formed on the base structure and fills the trench, as shown in FIG. 2F.

請參閱第2G圖,施以一化學機械研磨240移除表面多餘的摻雜多晶矽230,使得摻雜多晶矽230與基底表面的氧化層222位於相同的水平面上。接著,移除該基底結構表面的部分氧化矽層222,例如以濕式浸置(wet dip)245移除部分的氧化矽層222,使露出位於溝槽上方該摻雜多晶矽230的頂部,如第2H圖所示。Referring to FIG. 2G, a chemical mechanical polishing 240 is applied to remove excess doped polysilicon 230 from the surface such that the doped polysilicon 230 is on the same level as the oxide layer 222 on the surface of the substrate. Next, the partial ruthenium oxide layer 222 of the surface of the base structure is removed, for example, a portion of the ruthenium oxide layer 222 is removed by wet dip 245 so as to expose the top of the doped polysilicon 230 above the trench, such as Figure 2H shows.

應注意的是,另可選擇再施以化學機械研磨法250移除該摻雜多晶矽的頂部,如第2I圖所示。於一實施例中,在完成上述結構後,於所述基底200中,可形成一N型摻雜區202、一P型井區(PW)204、及一N+ 型濃摻雜區206,分別做為該溝槽式電晶體的汲極、通道區及源極。根據本發明實施例,由於使用單方向的氧化層增厚步驟,使溝槽底部的氧化層會比溝槽內其他部分的氧化層厚,因而能有效地降低元件的寄生電容(Qgd)效應,提升高壓半導體裝置的電性效能,並降低製造成本。It should be noted that the top of the doped polysilicon can be optionally removed by chemical mechanical polishing 250, as shown in FIG. In an embodiment, after the above structure is completed, an N-type doping region 202, a P-type well region (PW) 204, and an N + -type heavily doped region 206 may be formed in the substrate 200. They are used as the drain, channel and source of the trench transistor. According to the embodiment of the present invention, since the oxidized layer thickening step in one direction is used, the oxide layer at the bottom of the trench is thicker than the oxide layer in other portions of the trench, thereby effectively reducing the parasitic capacitance (Qgd) effect of the device. Improve the electrical performance of high voltage semiconductor devices and reduce manufacturing costs.

本發明雖以各種實施例揭露如上,然其並非用以限定本發明的範圍,任何所屬技術領域中具有通常知識者,在 不脫離本發明之精神和範圍內,當可做些許的更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。The present invention has been disclosed above in various embodiments, and is not intended to limit the scope of the present invention. The scope of the present invention is defined by the scope of the appended claims.

100‧‧‧半導體基底100‧‧‧Semiconductor substrate

102‧‧‧N型摻雜區102‧‧‧N-doped area

104‧‧‧P型井區(PW)104‧‧‧P type well area (PW)

106‧‧‧N+ 型濃摻雜區106‧‧‧N + type heavily doped area

120‧‧‧氧化層120‧‧‧Oxide layer

130‧‧‧摻雜多晶矽130‧‧‧Doped polysilicon

200‧‧‧基底200‧‧‧Base

202‧‧‧N型摻雜區202‧‧‧N-doped area

204‧‧‧P型井區(PW)204‧‧‧P type well area (PW)

206‧‧‧N+ 型濃摻雜區206‧‧‧N + type heavily doped area

210‧‧‧溝槽構造210‧‧‧ trench structure

212‧‧‧溝槽的表面212‧‧‧The surface of the trench

215‧‧‧犧牲氧化層(SAC oxide)215‧‧‧Sacrificial oxide layer (SAC oxide)

215’‧‧‧殘留部分的氧化層215'‧‧‧ Residual part of the oxide layer

217‧‧‧氧化層217‧‧‧Oxide layer

219‧‧‧溝槽的側壁表面219‧‧‧ sidewall surface of the trench

222‧‧‧額外的氧化層222‧‧‧Additional oxide layer

230‧‧‧摻雜多晶矽閘極230‧‧‧Doped polysilicon gate

240‧‧‧化學機械研磨240‧‧‧Chemical mechanical grinding

245‧‧‧濕式浸置(wet dip)245‧‧‧wet dip (wet dip)

250‧‧‧化學機械研磨法250‧‧‧Chemical mechanical grinding

第1圖係顯示傳統溝槽式金屬氧化半導體場效電晶體(trench MOSFET)的剖面示意圖。Figure 1 is a schematic cross-sectional view showing a conventional trench metal oxide semiconductor field effect transistor (trench MOSFET).

第2A-2I圖係顯示本發明之實施例的溝槽式金屬氧化半導體場效電晶體的製造方法於各製程步驟的剖面示意圖。2A-2I is a schematic cross-sectional view showing a method of fabricating a trench type metal oxide semiconductor field effect transistor according to an embodiment of the present invention at each process step.

200‧‧‧基底200‧‧‧Base

210‧‧‧溝槽構造210‧‧‧ trench structure

215‧‧‧犧牲氧化層(SAC oxide)215‧‧‧Sacrificial oxide layer (SAC oxide)

217‧‧‧氧化層217‧‧‧Oxide layer

Claims (13)

一種溝槽式金屬氧化半導體場效電晶體的製造方法,包括:提供一基底,具有一溝槽構造於該基底中;形成一犧牲氧化層,順應性地覆蓋該溝槽構造與該基底的表面;沿垂直方向形成一氧化層,使該犧牲氧化層於該基底的表面及於該溝槽底部的部分增厚;緊接在上述沿垂直方向形成氧化層之後,移除該氧化層及部份的犧牲氧化層,於該基底的表面及於該溝槽底部留下部分的氧化層;成長一額外的氧化層,順應性地披覆於前述基底結構上;以及沉積一導電層於該基底結構上並填滿該溝槽,做為該溝槽式電晶體的閘極。 A method of fabricating a trench metal oxide semiconductor field effect transistor, comprising: providing a substrate having a trench structure in the substrate; forming a sacrificial oxide layer compliantly covering the trench structure and a surface of the substrate Forming an oxide layer in a vertical direction to thicken the surface of the sacrificial oxide layer on the surface of the substrate and the bottom portion of the trench; immediately after forming the oxide layer in the vertical direction, removing the oxide layer and the portion a sacrificial oxide layer leaving a portion of the oxide layer on the surface of the substrate and at the bottom of the trench; growing an additional oxide layer compliantly overlying the substrate structure; and depositing a conductive layer on the substrate structure The trench is filled up and used as the gate of the trench transistor. 如申請專利範圍第1項所述之溝槽式金屬氧化半導體場效電晶體的製造方法,其中該基底為一半導體基底,包括單晶矽基底、磊晶矽基底、矽鍺基底、絕緣層上有矽(SOI)基底、及化合物半導體基底。 The method for manufacturing a trench metal oxide semiconductor field effect transistor according to claim 1, wherein the substrate is a semiconductor substrate, including a single crystal germanium substrate, an epitaxial germanium substrate, a germanium substrate, and an insulating layer. A bismuth (SOI) substrate, and a compound semiconductor substrate. 如申請專利範圍第1項所述之溝槽式金屬氧化半導體場效電晶體的製造方法,更包括形成一N型摻雜區、一P型井區、及一N型濃摻雜區該基底中,分別做為該溝槽式電晶體的汲極、通道區及源極。 The method for fabricating a trench metal oxide semiconductor field effect transistor according to claim 1, further comprising forming an N-type doped region, a P-type well region, and an N-type heavily doped region. Among them, the drain, the channel region and the source of the trench transistor are respectively used. 如申請專利範圍第1項所述之溝槽式金屬氧化半導體場效電晶體的製造方法,於所述形成一犧牲氧化層的步 驟之前,更包括施以一等向性蝕刻,微移除該溝槽的表面。 The method for fabricating a trench metal oxide semiconductor field effect transistor according to claim 1, wherein the step of forming a sacrificial oxide layer Before the step, an isotropic etching is applied to micro-removal the surface of the trench. 如申請專利範圍第1項所述之溝槽式金屬氧化半導體場效電晶體的製造方法,其中所述沿垂直方向形成一氧化層的步驟包括,施以一高密度電漿化學氣相沉積法。 The method for manufacturing a trench type metal oxide semiconductor field effect transistor according to claim 1, wherein the step of forming an oxide layer in a vertical direction comprises applying a high density plasma chemical vapor deposition method. . 如申請專利範圍第1項所述之溝槽式金屬氧化半導體場效電晶體的製造方法,其中於所述移除該氧化層及部份的犧牲氧化層的步驟之後,更包括施以一等向性蝕刻,微移除該溝槽的表面。 The method for manufacturing a trench metal oxide semiconductor field effect transistor according to claim 1, wherein after the step of removing the oxide layer and a portion of the sacrificial oxide layer, the method further comprises: The etch is etched to slightly remove the surface of the trench. 如申請專利範圍第1項所述之溝槽式金屬氧化半導體場效電晶體的製造方法,其中所述沉積一導電層於該基底結構上並填滿該溝槽包括:形成一摻雜多晶矽於該基底結構上並填滿該溝槽;施以一化學機械研磨移除表面多餘的該摻雜多晶矽;以及移除該基底結構表面的部分氧化矽層,使露出位於溝槽上方該摻雜多晶矽的頂部。 The method for fabricating a trench metal oxide semiconductor field effect transistor according to claim 1, wherein the depositing a conductive layer on the base structure and filling the trench comprises: forming a doped polysilicon The substrate structure fills the trench; applying a chemical mechanical polishing to remove the excess doped germanium on the surface; and removing a portion of the germanium oxide layer on the surface of the base structure to expose the doped polysilicon above the trench the top of. 如申請專利範圍第7項所述之溝槽式金屬氧化半導體場效電晶體的製造方法,更包括施以化學機械研磨法移除該摻雜多晶矽的頂部。 The method for fabricating a trench metal oxide semiconductor field effect transistor according to claim 7, further comprising applying a chemical mechanical polishing method to remove the top of the doped polysilicon. 一種溝槽式金屬氧化半導體場效電晶體的製造方法,包括:提供一半導體基底具有一溝槽構造於該基底中,該半導體基底沿垂直方向包括一N型摻雜區、一P型井區、及一N型濃摻雜區,分別做為該溝槽式電晶體的汲極、通道區及源極; 形成一犧牲氧化層,順應性地覆蓋該溝槽構造與該半導體基底表面;施以一高密度電漿化學氣相沉積法,沿垂直方向形成一氧化層,使該犧牲氧化層於該基底的表面及於該溝槽底部的部分增厚;緊接在上述沿垂直方向形成氧化層之後,移除該氧化層及部份的犧牲氧化層,於該基底的表面及於該溝槽底部留下部分的氧化層;成長一額外的氧化層,順應性地披覆於前述基底結構上;形成一摻雜多晶矽於該基底結構上並填滿該溝槽;施以一化學機械研磨移除表面多餘的該摻雜多晶矽;以及移除該基底結構表面的部分氧化矽層,使露出位於溝槽上方該摻雜多晶矽的頂部,做為該溝槽式電晶體的閘極。 A method of fabricating a trench metal oxide semiconductor field effect transistor, comprising: providing a semiconductor substrate having a trench structure in the substrate, the semiconductor substrate including an N-type doped region and a P-type well region in a vertical direction And an N-type heavily doped region, respectively serving as a drain, a channel region and a source of the trench transistor; Forming a sacrificial oxide layer compliantly covering the trench structure and the surface of the semiconductor substrate; applying a high-density plasma chemical vapor deposition method to form an oxide layer in a vertical direction to make the sacrificial oxide layer on the substrate The surface and a portion at the bottom of the trench are thickened; immediately after the formation of the oxide layer in the vertical direction, the oxide layer and a portion of the sacrificial oxide layer are removed, leaving a surface on the substrate and at the bottom of the trench a portion of the oxide layer; growing an additional oxide layer, conformally overlying the substrate structure; forming a doped polysilicon on the substrate structure and filling the trench; applying a chemical mechanical polishing to remove excess surface The doped polysilicon layer; and a portion of the yttrium oxide layer on the surface of the base structure is removed to expose the top of the doped polysilicon above the trench as the gate of the trench transistor. 如申請專利範圍第9項所述之溝槽式金屬氧化半導體場效電晶體的製造方法,其中該基底為一半導體基底,包括單晶矽基底、磊晶矽基底、矽鍺基底、絕緣層上有矽(SOI)基底、及化合物半導體基底。 The method for manufacturing a trench metal oxide semiconductor field effect transistor according to claim 9, wherein the substrate is a semiconductor substrate, including a single crystal germanium substrate, an epitaxial germanium substrate, a germanium substrate, and an insulating layer. A bismuth (SOI) substrate, and a compound semiconductor substrate. 如申請專利範圍第9項所述之溝槽式金屬氧化半導體場效電晶體的製造方法,於所述形成一犧牲氧化層的步驟之前,更包括施以一等向性蝕刻,微移除該溝槽的表面。 The method for fabricating a trench metal oxide semiconductor field effect transistor according to claim 9, wherein before the step of forming a sacrificial oxide layer, the method further comprises: applying an isotropic etching to micro-removal The surface of the groove. 如申請專利範圍第9項所述之溝槽式金屬氧化半導體場效電晶體的製造方法,其中於所述移除該氧化層及 部份的犧牲氧化層的步驟之後,更包括施以一等向性蝕刻,微移除該溝槽的表面。 The method for manufacturing a trench type metal oxide semiconductor field effect transistor according to claim 9, wherein the removing the oxide layer and After the step of sacrificing the oxide layer, the method further comprises applying an isotropic etching to slightly remove the surface of the trench. 如申請專利範圍第9項所述之溝槽式金屬氧化半導體場效電晶體的製造方法,更包括施以化學機械研磨法移除該摻雜多晶矽的頂部。 The method for fabricating a trench metal oxide semiconductor field effect transistor according to claim 9, further comprising applying a chemical mechanical polishing method to remove the top of the doped polysilicon.
TW99105599A 2010-02-26 2010-02-26 Fabrication methods for trench mosfet TWI431695B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99105599A TWI431695B (en) 2010-02-26 2010-02-26 Fabrication methods for trench mosfet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99105599A TWI431695B (en) 2010-02-26 2010-02-26 Fabrication methods for trench mosfet

Publications (2)

Publication Number Publication Date
TW201130052A TW201130052A (en) 2011-09-01
TWI431695B true TWI431695B (en) 2014-03-21

Family

ID=50180095

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99105599A TWI431695B (en) 2010-02-26 2010-02-26 Fabrication methods for trench mosfet

Country Status (1)

Country Link
TW (1) TWI431695B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI497713B (en) * 2011-09-14 2015-08-21 Inotera Memories Inc Fabricating method of an insulator
CN111370473A (en) * 2020-03-24 2020-07-03 成都森未科技有限公司 Groove type device and preparation method thereof

Also Published As

Publication number Publication date
TW201130052A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
US8846466B2 (en) Forming inter-device STI regions and intra-device STI regions using different dielectric materials
US9269815B2 (en) FinFET semiconductor device with a recessed liner that defines a fin height of the FinFet device
US20130171790A1 (en) Methods of Manufacturing Semiconductor Devices and Transistors
KR100970282B1 (en) Trench MOSFET and Manufacturing Method thereof
TW201620041A (en) Semiconductor device and method for manufacturing the same
CN112530943A (en) Semiconductor device and method for manufacturing the same
CN103035713A (en) Finfet device and method of manufacturing same
JP2008533705A (en) Fabrication of carrier substrate contacts to trench-isolated SOI integrated circuits with high voltage components
TWI512841B (en) Method of forming trench gate mosfet
JP5822326B1 (en) Semiconductor device manufacturing method and semiconductor device
TWI514577B (en) Semiconductor device and method for fabricating the same
JP2008028263A (en) Semiconductor device
TWI277153B (en) Semiconductor device with recessed channel and method of fabricating the same
TWI431695B (en) Fabrication methods for trench mosfet
US9666670B2 (en) Method and structure of making enhanced UTBB FDSOI devices
TW201926437A (en) Method of manufacturing trench gate MOSFET
CN107978565B (en) Semiconductor device, manufacturing method thereof and electronic device
CN103545366B (en) Semiconductor device and method for manufacturing the same
TW201304139A (en) Trenched power semiconductor device and fabrication method thereof
JP6033938B2 (en) Semiconductor device manufacturing method and semiconductor device
TWI606519B (en) Trench power semiconductor device and manufacturing method thereof
TW202401751A (en) Integrated circuit and method of forming the same
TWI550864B (en) Trench-gate metal oxide semiconductor device and fabricating method thereof
TW201511266A (en) Lateral diffused semiconductor device and fabrications thereof
CN116960184A (en) SOI substrate and preparation method thereof, transistor and preparation method thereof