TWI425763B - Operational amplifier system capable of automatically cancelling an offset and method capable of automatically cancelling an offset - Google Patents

Operational amplifier system capable of automatically cancelling an offset and method capable of automatically cancelling an offset Download PDF

Info

Publication number
TWI425763B
TWI425763B TW100118327A TW100118327A TWI425763B TW I425763 B TWI425763 B TW I425763B TW 100118327 A TW100118327 A TW 100118327A TW 100118327 A TW100118327 A TW 100118327A TW I425763 B TWI425763 B TW I425763B
Authority
TW
Taiwan
Prior art keywords
switch
operational amplifier
offset
coupled
output
Prior art date
Application number
TW100118327A
Other languages
Chinese (zh)
Other versions
TW201249099A (en
Inventor
吳柏樟
Original Assignee
安恩國際公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安恩國際公司 filed Critical 安恩國際公司
Priority to TW100118327A priority Critical patent/TWI425763B/en
Publication of TW201249099A publication Critical patent/TW201249099A/en
Application granted granted Critical
Publication of TWI425763B publication Critical patent/TWI425763B/en

Links

Landscapes

  • Amplifiers (AREA)

Description

可自動消除偏移的運算放大器系統及可自動消除偏移的方法An operational amplifier system that automatically eliminates offset and a method for automatically eliminating offset

本發明係有關於一種可自動消除偏移的運算放大器系統及其方法,尤指一種利用控制器控制複數個開關的開啟與關閉,以使運算放大器系統隨時可進入消除偏移模式的可自動消除偏移的運算放大器系統及其方法。The invention relates to an operational amplifier system and a method thereof for automatically eliminating offset, in particular to a controller for controlling the opening and closing of a plurality of switches, so that the operational amplifier system can be automatically eliminated at any time to eliminate the offset mode. Offset op amp systems and methods therefor.

請參照第1圖,第1圖係為先前技術說明一種可消除偏移的運算放大器系統100的示意圖。運算放大器系統100包含一運算放大器102、一比較器104、一控制器106、一消除偏移電路108及開關110、112。如第1圖所示,當運算放大器系統100於一消除偏移模式時,開關110、112開啟,且運算放大器系統100的第一輸入端INP和第二輸入端INN分別輸入不同的電壓(VP、VN)。比較器104係用以比較運算放大器102的第一輸出端OUTP和第二輸出端OUTN所輸出的電壓(VOUTP、VOUTN),並據以產生一比較結果CR。控制器106根據比較結果CR,輸出一m位元控制訊號CS至消除偏移電路108。消除偏移電路108根據控制訊號CS,產生一m位元消除偏移訊號OCS至運算放大器102,以消除運算放大器102的偏移。如此,當比較器104的比較結果CR改變(由1變為0或由0變為1)時,消除偏移電路108會鎖住消除偏移訊號OCS。而消除偏移電路108即可根據消除偏移訊號OCS,消除運算放大器102之偏移。Referring to Figure 1, there is shown a prior art diagram of an operational amplifier system 100 that eliminates offset. The operational amplifier system 100 includes an operational amplifier 102, a comparator 104, a controller 106, a cancellation offset circuit 108, and switches 110, 112. As shown in FIG. 1, when the operational amplifier system 100 is in an offset cancellation mode, the switches 110, 112 are turned on, and the first input terminal INP and the second input terminal INN of the operational amplifier system 100 respectively input different voltages (VP). , VN). The comparator 104 is configured to compare the voltages (VOUTP, VOUTN) outputted by the first output terminal OUTP and the second output terminal OUTN of the operational amplifier 102, and accordingly generate a comparison result CR. The controller 106 outputs an m-bit control signal CS to the cancellation offset circuit 108 based on the comparison result CR. The cancellation offset circuit 108 generates an m-bit cancellation offset signal OCS to the operational amplifier 102 based on the control signal CS to cancel the offset of the operational amplifier 102. Thus, when the comparison result CR of the comparator 104 changes (from 1 to 0 or from 0 to 1), the cancellation offset circuit 108 locks the cancellation offset signal OCS. The offset circuit 108 can eliminate the offset of the operational amplifier 102 according to the offset signal OCS.

如第1圖所示,當運算放大器系統100於消除偏移模式時,必須分別輸入不同的電壓VP、VN至運算放大器系統100的第一輸入端INP和第二輸入端INN。且每次運算放大器系統100執行消除偏移模式時,控制器106輸出的m位元控制訊號CS係由最小消除偏移值00...0開始增加或者由最大消除偏移值11...1開始減少,直到比較器104的比較結果CR改變。然而因為運算放大器102反應偏移電壓需要時間,所以需要較多的時間以作動態修正。As shown in FIG. 1, when the operational amplifier system 100 is in the offset cancel mode, different voltages VP, VN must be input to the first input terminal INP and the second input terminal INN of the operational amplifier system 100, respectively. And each time the operational amplifier system 100 performs the offset cancellation mode, the m-bit control signal CS output by the controller 106 is increased by the minimum cancellation offset value 00...0 or by the maximum elimination offset value 11... 1 begins to decrease until the comparison result CR of the comparator 104 changes. However, since the operational amplifier 102 takes time to react to the offset voltage, more time is required for dynamic correction.

本發明的一實施例提供一種可自動消除偏移的運算放大器系統。該運算放大器系統包含一控制器、一第一開關、一第二開關、一第三開關、一第四開關、一第五開關、一運算放大器、一數位控制電路及一消除偏移電路。該控制器係用以當該運算放大器系統於一消除偏移模式時,產生一控制訊號;該第一開關具有一第一端,耦接於該運算放大器系統的第一輸入端,一第二端,用以接收該控制訊號,及一第三端;該第二開關具有一第一端,耦接於該運算放大器系統的第二輸入端,一第二端,用以接收該控制訊號,及一第三端;該第三開關具有一第一端,耦接於該第一開關的第三端,一第二端,用以接收該控制訊號,及一第三端,耦接於該第二開關的第三端;該第四開關具有一第一端,一第二端,用以接收該控制訊號,及一第三端;該第五開關具有一第一端,耦接於該第四開關的第一端,一第二端,用以接收該控制訊號,及一第三端,耦接於該運算放大器系統的輸出端;該運算放大器具有一第一輸入端,耦接於該第一開關的第三端,一第二輸入端,耦接於該第二開關的第三端,及一輸出端,耦接於該第四開關的第一端;該數位控制電路具有一輸入端,耦接於該第四開關的第三端,及一輸出端,用以根據該運算放大器輸出的訊號,輸出一N位元控制訊號,其中N≧1;該消除偏移電路係耦接於該數位控制電路與該運算放大器之間,用以根據該N位元控制訊號和一查閱表,消除該運算放大器內部的偏移;其中當該運算放大器系統於該消除偏移模式時,該第一開關、該第三開關及該第四開關根據該控制訊號開啟,以及該第二開關及該第五開關根據該控制訊號關閉;當該運算放大器系統於一正常運作模式時,該第一開關、該第二開關及該第五開關開啟,以及該第三開關及該第四開關關閉。An embodiment of the present invention provides an operational amplifier system that automatically cancels offset. The operational amplifier system includes a controller, a first switch, a second switch, a third switch, a fourth switch, a fifth switch, an operational amplifier, a digital control circuit, and a cancellation offset circuit. The controller is configured to generate a control signal when the operational amplifier system is in an offset mode; the first switch has a first end coupled to the first input end of the operational amplifier system, and a second The second switch has a first end coupled to the second input end of the operational amplifier system, and a second end for receiving the control signal, And a third end; the third switch has a first end coupled to the third end of the first switch, a second end for receiving the control signal, and a third end coupled to the a third end of the second switch; the fourth switch has a first end, a second end for receiving the control signal, and a third end; the fifth switch has a first end coupled to the a first end of the fourth switch, a second end for receiving the control signal, and a third end coupled to the output end of the operational amplifier system; the operational amplifier having a first input coupled to a third end of the first switch, a second input end coupled to the second switch a third end, and an output end coupled to the first end of the fourth switch; the digital control circuit has an input end coupled to the third end of the fourth switch, and an output end for The signal output by the operational amplifier outputs an N-bit control signal, where N ≧ 1; the cancellation offset circuit is coupled between the digital control circuit and the operational amplifier for controlling the signal according to the N-bit a look-up table that cancels an offset inside the operational amplifier; wherein when the operational amplifier system is in the cancel offset mode, the first switch, the third switch, and the fourth switch are turned on according to the control signal, and the first The second switch and the fifth switch are turned off according to the control signal; when the operational amplifier system is in a normal operation mode, the first switch, the second switch, and the fifth switch are turned on, and the third switch and the fourth switch The switch is off.

本發明的另一實施例提供一種可自動消除偏移的方法。該方法包含當一運算放大器系統於一消除偏移模式時,一控制器產生一控制訊號;一第一開關、一第三開關及一第四開關根據該控制訊號開啟,以及一第二開關及一第五開關根據該控制訊號關閉;輸入一直流電壓至一運算放大器的第一輸入端;該運算放大器根據該直流電壓及該運算放大器內部的偏移,產生一邏輯電位;一數位控制電路根據該邏輯電位,執行一相對應的動作。Another embodiment of the present invention provides a method of automatically eliminating offset. The method includes: when an operational amplifier system is in an offset cancellation mode, a controller generates a control signal; a first switch, a third switch, and a fourth switch are turned on according to the control signal, and a second switch and a fifth switch is turned off according to the control signal; a constant current is input to a first input end of the operational amplifier; the operational amplifier generates a logic potential according to the DC voltage and an offset inside the operational amplifier; a digital control circuit is The logic potential performs a corresponding action.

本發明提供一種可自動消除偏移的運算放大器系統及其方法。該運算放大器系統及方法係利用一控制器控制一第一開關、一第二開關、一第三開關、一第四開關及一第五開關的開啟與關閉。因此,相較於先前技術,本發明有以下優點:第一、當該運算放大器系統於一消除偏移模式時,本發明僅需輸入一直流電壓;第二、本發明的一運算放大器可作為一比較器,因此可節省運該算放大器系統的面積;第三、該運算放大器系統可於一開機時,即進入該消除偏移模式,或該運算放大器系統根據一脈衝寬度調變訊號開始運作一段時間後,該運算放大器系統在該脈衝寬度調變訊號係為一邏輯低電位時,進入該消除偏移模式,亦即該運算放大器系統可根據一使用者的需求,隨時進入該消除偏移模式。The present invention provides an operational amplifier system and method thereof that automatically eliminates offset. The operational amplifier system and method utilizes a controller to control the opening and closing of a first switch, a second switch, a third switch, a fourth switch, and a fifth switch. Therefore, compared with the prior art, the present invention has the following advantages: First, when the operational amplifier system is in an offset cancellation mode, the present invention only needs to input a DC voltage; second, an operational amplifier of the present invention can be used as a comparator, thereby saving the area of the amplifier system; third, the operational amplifier system can enter the cancellation offset mode upon startup, or the operational amplifier system can operate according to a pulse width modulation signal After a period of time, the operational amplifier system enters the cancellation offset mode when the pulse width modulation signal is at a logic low level, that is, the operational amplifier system can enter the cancellation offset at any time according to a user's needs. mode.

請參照第2圖,第2圖係為本發明的一實施例說明一種可自動消除偏移的運算放大器系統200的示意圖。運算放大器系統200包含一控制器202、一第一開關204、一第二開關206、一第三開關208、一第四開關210、一第五開關212、一運算放大器214、一數位控制電路216及一消除偏移電路218。控制器202係用以當運算放大器系統200於一消除偏移模式時,產生一控制訊號CS;第一開關204具有一第一端,耦接於運算放大器系統200的第一輸入端INP,一第二端,用以接收控制訊號CS,及一第三端;第二開關206具有一第一端,耦接於運算放大器系統200的第二輸入端INN,一第二端,用以接收控制訊號CS,及一第三端;第三開關208具有一第一端,耦接於第一開關204的第三端,一第二端,用以接收控制訊號CS,及一第三端,耦接於第二開關206的第三端;第四開關210具有一第一端,一第二端,用以接收控制訊號CS,及一第三端;第五開關212具有一第一端,耦接於第四開關210的第一端,一第二端,用以接收控制訊號CS,及一第三端,耦接於運算放大器系統200的輸出端OUT,其中當運算放大器系統200於消除偏移模式時,第一開關204、第三開關208及第四開關210根據控制訊號CS開啟,以及第二開關206及第五開關212根據控制訊號CS關閉,或當運算放大器系統200於消除偏移模式時,第二開關206、第三開關208及第四開關210根據控制訊號CS開啟,以及第一開關204及第五開關212根據控制訊號CS關閉。當運算放大器系統200於一正常運作模式時,第一開關204、第二開關206及第五開關212開啟,以及第三開關208及第四開關210關閉。另外,第一開關204、第三開關208及第四開關210係可為P型金氧半電晶體,以及第二開關206及第五開關212係為N型金氧半電晶體;第一開關204、第三開關208及第四開關210係可為N型金氧半電晶體,以及第二開關206及第五開關212係可為P型金氧半電晶體;第一開關204、第二開關206、第三開關208、第四開關210及第五開關212係可為傳輸閘。運算放大器214具有一第一輸入端,耦接於第一開關204的第三端,一第二輸入端,耦接於第二開關206的第三端,及一輸出端,耦接於第四開關210的第一端;數位控制電路216具有一輸入端,耦接於第四開關210的第三端,及一輸出端,用以根據運算放大器214輸出的訊號,輸出一N位元控制訊號,其中N≧1;消除偏移電路218係耦接於數位控制電路216與運算放大器214之間,用以根據N位元控制訊號和一查閱表,消除運算放大器214內部的偏移。Please refer to FIG. 2. FIG. 2 is a schematic diagram showing an operational amplifier system 200 capable of automatically eliminating offset according to an embodiment of the present invention. The operational amplifier system 200 includes a controller 202, a first switch 204, a second switch 206, a third switch 208, a fourth switch 210, a fifth switch 212, an operational amplifier 214, and a digital control circuit 216. And an offset circuit 218. The controller 202 is configured to generate a control signal CS when the operational amplifier system 200 is in an offset cancellation mode. The first switch 204 has a first end coupled to the first input terminal INP of the operational amplifier system 200. The second end is configured to receive the control signal CS and the third end. The second switch 206 has a first end coupled to the second input end INN of the operational amplifier system 200, and a second end for receiving control The third switch 208 has a first end coupled to the third end of the first switch 204, and a second end for receiving the control signal CS and a third end coupled Connected to the third end of the second switch 206; the fourth switch 210 has a first end, a second end for receiving the control signal CS, and a third end; the fifth switch 212 has a first end, coupled Connected to the first end of the fourth switch 210, a second end for receiving the control signal CS, and a third end coupled to the output terminal OUT of the operational amplifier system 200, wherein the operational amplifier system 200 is used to eliminate the bias In the shift mode, the first switch 204, the third switch 208, and the fourth switch 210 are controlled according to The second switch 206 and the fifth switch 212 are turned off according to the control signal CS, or when the operational amplifier system 200 is in the cancel offset mode, the second switch 206, the third switch 208, and the fourth switch 210 are controlled according to the control signal. The CS is turned on, and the first switch 204 and the fifth switch 212 are turned off according to the control signal CS. When the operational amplifier system 200 is in a normal operation mode, the first switch 204, the second switch 206, and the fifth switch 212 are turned on, and the third switch 208 and the fourth switch 210 are turned off. In addition, the first switch 204, the third switch 208, and the fourth switch 210 may be P-type MOS transistors, and the second switch 206 and the fifth switch 212 are N-type MOS transistors; the first switch 204, the third switch 208 and the fourth switch 210 can be N-type MOS transistors, and the second switch 206 and the fifth switch 212 can be P-type MOS transistors; the first switch 204, the second The switch 206, the third switch 208, the fourth switch 210, and the fifth switch 212 can be transmission gates. The operational amplifier 214 has a first input end coupled to the third end of the first switch 204, a second input end coupled to the third end of the second switch 206, and an output end coupled to the fourth a first end of the switch 210; the digital control circuit 216 has an input coupled to the third end of the fourth switch 210, and an output for outputting an N-bit control signal according to the signal output by the operational amplifier 214 The N ≧ 1; the cancellation offset circuit 218 is coupled between the digital control circuit 216 and the operational amplifier 214 for removing the offset inside the operational amplifier 214 according to the N-bit control signal and a look-up table.

如第2圖所示,數位控制電路216包含一第一拴鎖器2162、一加法器2164、一減法器2166及一第二拴鎖器2168。第一拴鎖器2162具有一輸入端,及一輸出端;加法器2164具有一第一輸入端,耦接於運算放大器214的輸出端,用以接收運算放大器214輸出的訊號,一第二輸入端,耦接於第一拴鎖器2162的輸出端,用以接收第一拴鎖器2162儲存的暫存值RV,及一輸出端,其中當運算放大器214輸出的訊號係為一邏輯低電位“0”時,加法器2164根據邏輯低電位“0”及第一拴鎖器2162儲存的暫存值RV,輸出一第一校正偏移值FCOS;減法器2166具有一第一輸入端,耦接於運算放大器214的輸出端,用以接收運算放大器214輸出的訊號,一第二輸入端,耦接於第一拴鎖器2162的輸出端,用以接收第一拴鎖器2162儲存的暫存值RV,及一輸出端,其中當運算放大器214輸出的訊號係為一邏輯高電位“1”時,減法器2166根據邏輯高電位“1”及第一拴鎖器2162儲存的暫存值RV,輸出一第二校正偏移值SCOS;第二拴鎖器2168具有一輸入端,耦接於加法器2164與減法器2166,用以接收並儲存第一校正偏移值FCOS及第二校正偏移值SCOS,及一輸出端,耦接於消除偏移電路218及第一拴鎖器2162的輸入端,用以輸出第一校正偏移值FCOS及第二校正偏移值SCOS至消除偏移電路218及第一拴鎖器2162;其中第一校正偏移值FCOS及第二校正偏移值SCOS係為N位元控制訊號,且第一拴鎖器2162係根據第一校正偏移值FCOS及第二校正偏移值SCOS,更新第一拴鎖器2162所儲存的暫存值RV。As shown in FIG. 2, the digital control circuit 216 includes a first latch 2162, an adder 2164, a subtractor 2166, and a second latch 2168. The first latch 2162 has an input end and an output end. The adder 2164 has a first input end coupled to the output of the operational amplifier 214 for receiving the signal output by the operational amplifier 214, and a second input. The terminal is coupled to the output end of the first latch 2162 for receiving the temporary storage value RV stored by the first latch 2162, and an output terminal, wherein the signal output from the operational amplifier 214 is a logic low When "0", the adder 2164 outputs a first corrected offset value FCOS according to the logic low potential "0" and the temporary storage value RV stored by the first latch 2162; the subtractor 2166 has a first input end, coupled An output terminal of the operational amplifier 214 is configured to receive the signal outputted by the operational amplifier 214, and a second input terminal is coupled to the output end of the first latching device 2162 for receiving the temporary storage of the first latching device 2162. The stored value RV, and an output terminal, wherein when the signal output by the operational amplifier 214 is a logic high potential "1", the subtractor 2166 stores the temporary storage value according to the logic high potential "1" and the first latch 2162. RV, outputting a second corrected offset value SCOS; second The shackle 2168 has an input coupled to the adder 2164 and the subtractor 2166 for receiving and storing the first corrected offset value FCOS and the second corrected offset value SCOS, and an output coupled to the The offset circuit 218 and the input end of the first latch 2162 are configured to output a first corrected offset value FCOS and a second corrected offset value SCOS to the cancel offset circuit 218 and the first latch 2162; The corrected offset value FCOS and the second corrected offset value SCOS are N-bit control signals, and the first latch 2162 updates the first frame according to the first corrected offset value FCOS and the second corrected offset value SCOS. The temporary value RV stored by the lock 2162.

請參照第3圖,第3圖係為說明消除偏移電路218的示意圖。如第3圖所示,消除偏移電路218包含一第一消除偏移電路2182及一第二消除偏移電路2184。第一消除偏移電路2182包含第一電流源21822、21824、21826與第六開關21842、21844、21846。第一電流源21822具有一第一端,用以接收一第一電壓V1,及一第二端;第一電流源21824具有一第一端,用以接收第一電壓V1,及一第二端;第一電流源21826具有一第一端,用以接收第一電壓V1,及一第二端,其中流經第一電流源21822的電流係為I,流經第一電流源21824的電流係為2I,及流經第一電流源21826的電流係為4I。但本發明並不受限於流經第一電流源21822的電流係為I,流經第一電流源21824的電流係為2I,及流經第一電流源21826的電流係為4I。第六開關21842具有一第一端,耦接於第一電流源21822的第二端,一第二端,用以接收根據N位元控制訊號和查閱表所產生的一第一控制訊號FCS,及一第三端,耦接於運算放大器214;第六開關21844具有一第一端,耦接於第一電流源21824的第二端,一第二端,用以接收根據N位元控制訊號和查閱表所產生的第一控制訊號FCS,及一第三端,耦接於運算放大器214;第六開關21846具有一第一端,耦接於第一電流源21826的第二端,一第二端,用以接收根據N位元控制訊號和查閱表所產生的第一控制訊號FCS,及一第三端,耦接於運算放大器214。Please refer to FIG. 3, which is a schematic diagram illustrating the cancellation offset circuit 218. As shown in FIG. 3, the cancellation offset circuit 218 includes a first cancellation offset circuit 2182 and a second cancellation offset circuit 2184. The first cancellation offset circuit 2182 includes first current sources 21822, 21824, 21826 and sixth switches 21842, 21844, 21846. The first current source 21822 has a first end for receiving a first voltage V1 and a second end. The first current source 21824 has a first end for receiving the first voltage V1 and a second end. The first current source 21826 has a first end for receiving the first voltage V1, and a second end, wherein the current flowing through the first current source 21822 is I, and the current flowing through the first current source 21824 2I, and the current flowing through the first current source 21826 is 4I. However, the present invention is not limited to the current flowing through the first current source 21822 being I, the current flowing through the first current source 21824 being 2I, and the current flowing through the first current source 21826 being 4I. The sixth switch 21842 has a first end coupled to the second end of the first current source 21822, and a second end for receiving a first control signal FCS generated according to the N-bit control signal and the look-up table. And a third end coupled to the operational amplifier 214; the sixth switch 21844 has a first end coupled to the second end of the first current source 21824, and a second end for receiving the control signal according to the N bit The first control signal FCS generated by the lookup table and the third terminal are coupled to the operational amplifier 214. The sixth switch 21846 has a first end coupled to the second end of the first current source 21826. The second end is configured to receive the first control signal FCS generated according to the N-bit control signal and the look-up table, and a third end coupled to the operational amplifier 214.

如第3圖所示,第二消除偏移電路2184包含第二電流源21841、21843、21845與第七開關21862、21864、21866。第二電流源21841具有一第一端,用以接收第一電壓V1,及一第二端;第二電流源21843具有一第一端,用以接收第一電壓V1,及一第二端;第二電流源21845具有一第一端,用以接收第一電壓V1,及一第二端,其中流經第二電流源21841的電流係為I,流經第二電流源21843的電流係為2I,及流經第二電流源21845的電流係為4I。但本發明並不受限於流經第二電流源21841的電流係為I,流經第二電流源21843的電流係為2I,及流經第二電流源21845的電流係為4I。第七開關21862具有一第一端,耦接於第二電流源21841的第二端,一第二端,用以接收根據N位元控制訊號和查閱表所產生的一第二控制訊號SCS,及一第三端,耦接於運算放大器214;第七開關21864具有一第一端,耦接於第二電流源21843的第二端,一第二端,用以接收根據N位元控制訊號和查閱表所產生的第二控制訊號SCS,及一第三端,耦接於運算放大器214;第七開關21866具有一第一端,耦接於第二電流源21845的第二端,一第二端,用以接收根據N位元控制訊號和查閱表所產生的第二控制訊號SCS,及一第三端,耦接於運算放大器214。As shown in FIG. 3, the second cancellation offset circuit 2184 includes second current sources 21841, 21843, 21845 and seventh switches 21862, 21864, 21866. The second current source 21841 has a first end for receiving the first voltage V1, and a second end; the second current source 21843 has a first end for receiving the first voltage V1, and a second end; The second current source 21845 has a first end for receiving the first voltage V1 and a second end, wherein the current flowing through the second current source 21841 is I, and the current flowing through the second current source 21843 is 2I, and the current flowing through the second current source 21845 is 4I. However, the present invention is not limited to the current flowing through the second current source 21841 being I, the current flowing through the second current source 21843 being 2I, and the current flowing through the second current source 21845 being 4I. The seventh switch 21862 has a first end coupled to the second end of the second current source 21841, and a second end for receiving a second control signal SCS generated according to the N-bit control signal and the look-up table. And a third end coupled to the operational amplifier 214; the seventh switch 21864 has a first end coupled to the second end of the second current source 21843, and a second end for receiving the control signal according to the N bit The second control signal SCS generated by the lookup table and the third terminal are coupled to the operational amplifier 214. The seventh switch 21866 has a first end coupled to the second end of the second current source 21845. The second end is configured to receive the second control signal SCS generated by the N-bit control signal and the look-up table, and a third end coupled to the operational amplifier 214.

請參照第4A圖與第4B圖,第4A圖係為說明運算放大器系統200運作於正常運作模式的示意圖,及第4B圖係為說明運算放大器系統200運作於消除偏移模式的示意圖。如第4A圖所示,當運算放大器系統200運作於正常運作模式時,第一開關204、第二開關206及第五開關212開啟,以及第三開關208及第四開關210關閉。因此,運算放大器系統200的第一輸入端INP和第二輸入端INN分別接收訊號VP與VN,且由運算放大器系統200的輸出端OUT輸出訊號VOUT。Please refer to FIG. 4A and FIG. 4B. FIG. 4A is a schematic diagram illustrating the operation of the operational amplifier system 200 in a normal operation mode, and FIG. 4B is a schematic diagram illustrating the operation of the operational amplifier system 200 in the offset cancellation mode. As shown in FIG. 4A, when the operational amplifier system 200 operates in the normal operation mode, the first switch 204, the second switch 206, and the fifth switch 212 are turned on, and the third switch 208 and the fourth switch 210 are turned off. Therefore, the first input terminal INP and the second input terminal INN of the operational amplifier system 200 receive the signals VP and VN, respectively, and the output terminal OUT of the operational amplifier system 200 outputs the signal VOUT.

如第4B圖所示,當運算放大器系統200運作於消除偏移模式時,第一開關204、第三開關208及第四開關210根據控制訊號CS開啟,以及第二開關206及第五開關212根據控制訊號CS關閉。運算放大器系統200的第一輸入端INP接收一直流電壓V2。另外,如果第二開關206根據控制訊號CS開啟,以及第一開關204根據控制訊號CS關閉,則係由運算放大器系統200的第二輸入端INN接收直流電壓V2。因為第三開關208係為開啟,所以運算放大器214的第一輸入端與第二輸入端係同時接收直流電壓V2,且運算放大器214根據直流電壓V2與運算放大器214內部的偏移,產生一邏輯電位(邏輯高電位“1”或邏輯低電位“0”),亦即此時運算放大器214係做為一比較器。當運算放大器214根據直流電壓V2及運算放大器214內部的偏移,產生邏輯低電位“0”時,數位控制電路216內的加法器2164根據邏輯低電位“0”及數位控制電路216內的第一拴鎖器2162儲存的暫存值RV,輸出第一校正偏移值FCOS,亦即加法器2164係將第一拴鎖器2162儲存的暫存值RV加一,以產生並輸出第一校正偏移值FCOS。當運算放大器214根據直流電壓V2及運算放大器214內部的偏移,產生邏輯高電位“1”時,數位控制電路216內的減法器2166根據邏輯高電位“1”及數位控制電路216內的第一拴鎖器2162儲存的暫存值RV,輸出第二校正偏移值SCOS,亦即減法器2166係將第一拴鎖器2162儲存的暫存值RV減一,以產生並輸出第二校正偏移值SCOS。As shown in FIG. 4B, when the operational amplifier system 200 operates in the cancel offset mode, the first switch 204, the third switch 208, and the fourth switch 210 are turned on according to the control signal CS, and the second switch 206 and the fifth switch 212. According to the control signal CS is turned off. The first input INP of the operational amplifier system 200 receives the DC voltage V2. In addition, if the second switch 206 is turned on according to the control signal CS, and the first switch 204 is turned off according to the control signal CS, the DC voltage V2 is received by the second input terminal INN of the operational amplifier system 200. Because the third switch 208 is turned on, the first input terminal and the second input terminal of the operational amplifier 214 receive the DC voltage V2 at the same time, and the operational amplifier 214 generates a logic according to the offset of the DC voltage V2 and the internal of the operational amplifier 214. The potential (logic high potential "1" or logic low potential "0"), that is, the operational amplifier 214 is now used as a comparator. When the operational amplifier 214 generates a logic low potential "0" according to the DC voltage V2 and the internal offset of the operational amplifier 214, the adder 2164 in the digital control circuit 216 is based on the logic low potential "0" and the number in the digital control circuit 216. The temporary storage value RV stored by the shackle 2162 outputs a first corrected offset value FCOS, that is, the adder 2164 adds one of the temporary storage values RV stored by the first shackle 2162 to generate and output a first correction. Offset value FCOS. When the operational amplifier 214 generates a logic high potential "1" according to the DC voltage V2 and the offset inside the operational amplifier 214, the subtractor 2166 in the digital control circuit 216 is based on the logic high potential "1" and the number in the digital control circuit 216. The temporary storage value RV stored by the shackle 2162 outputs a second corrected offset value SCOS, that is, the subtractor 2166 subtracts the temporary storage value RV stored by the first shackle 2162 by one to generate and output a second correction. Offset value SCOS.

如第4B圖所示,第二拴鎖器2168接收並儲存第一校正偏移值FCOS和第二校正偏移值SCOS,以及輸出第一校正偏移值FCOS和第二校正偏移值SCOS至第一拴鎖器2162與消除偏移電路218;消除偏移電路218根據第一校正偏移值FCOS、第二校正偏移值SCOS和查閱表,消除運算放大器214內部的偏移;第一拴鎖器2162係根據第一校正偏移值FCOS和第二校正偏移值SCOS,更新第一拴鎖器2162儲存的暫存值RV。另外,當運算放大器系統200一開機時,運算放大器系統200即可進入消除偏移模式。此時,第一拴鎖器2162儲存的暫存值RV係為N位元控制訊號中的最小值00...00或最大值11...11。As shown in FIG. 4B, the second latch 2168 receives and stores the first corrected offset value FCOS and the second corrected offset value SCOS, and outputs the first corrected offset value FCOS and the second corrected offset value SCOS to The first latch 2162 and the cancel offset circuit 218; the cancel offset circuit 218 removes the offset inside the operational amplifier 214 according to the first corrected offset value FCOS, the second corrected offset value SCOS, and the lookup table; The locker 2162 updates the temporary storage value RV stored by the first latch 2162 according to the first corrected offset value FCOS and the second corrected offset value SCOS. Additionally, as soon as the operational amplifier system 200 is powered up, the operational amplifier system 200 can enter an offset cancellation mode. At this time, the temporary storage value RV stored by the first latch 2162 is the minimum value 00...00 or the maximum value 11...11 of the N-bit control signal.

請參照第4C圖,第4C圖係為說明運算放大器系統200根據一脈衝寬度調變訊號PWM開始運作一段時間後,運算放大器系統200在脈衝寬度調變訊號PWM係為邏輯低電位時,進入消除偏移模式的示意圖。如第4C圖所示,脈衝寬度調變訊號PWM係為邏輯低電位時,控制器202產生控制訊號CS。而運算放大器系統200即可在控制訊號CS係為邏輯高電位期間,執行消除運算放大器214內部的偏移。此時,第一拴鎖器2162儲存的暫存值RV係為前一次所儲存的暫存值。Referring to FIG. 4C, FIG. 4C is a diagram showing that the operational amplifier system 200 starts to operate after a period of time according to a pulse width modulation signal PWM, and the operational amplifier system 200 enters the elimination when the pulse width modulation signal PWM is logic low. Schematic diagram of the offset mode. As shown in FIG. 4C, when the pulse width modulation signal PWM is at a logic low level, the controller 202 generates a control signal CS. The operational amplifier system 200 can perform the cancellation of the offset inside the operational amplifier 214 while the control signal CS is at a logic high level. At this time, the temporary storage value RV stored by the first shackle 2162 is the temporary storage value stored last time.

請參照第2圖、第3圖、第4D圖和第4E圖,第4D圖係為說明4位元控制訊號、第一控制訊號FCS與第二控制訊號SCS的關係的查閱表400的示意圖,及第4E圖係為說明消除運算放大器214內部的偏移的示意圖。如第4D圖所示,4位元控制訊號具有16組控制訊號,其中每一組控制訊號對應於一第一控制訊號FCS與一第二控制訊號SCS。如第4E圖所示,例如第一拴鎖器2162儲存的暫存值RV係為0000,且運算放大器214內部的偏移係為負值,則運算放大器214根據直流電壓V2及運算放大器214內部的偏移,產生邏輯低電位“0”。然後,加法器2164將第一拴鎖器2162儲存的暫存值RV(0000)加一,以產生並輸出第一校正偏移值FCOS(0001)。經過一時脈CLK的週期T後,消除偏移電路218根據第一校正偏移值FCOS(0001)和查閱表400,改變第一消除偏移電路2182和第二消除偏移電路2184流入運算放大器214的電流,以調整運算放大器214內部的偏移。亦即當第一校正偏移值FCOS係為0001時,第二控制訊號SCS係為000且第一控制訊號FCS係為111。因此,第一消除偏移電路2182流入運算放大器214的電流係為7I,且第二消除偏移電路2184流入運算放大器214的電流係為零。如果運算放大器214根據直流電壓V2及運算放大器214內部的偏移,依然產生邏輯低電位“0”。加法器2164再將第一拴鎖器2162儲存的暫存值RV(0001)加一,以產生並輸出第一校正偏移值FCOS(0010)。經過時脈CLK的週期T後,消除偏移電路218根據第一校正偏移值FCOS(0010)和查閱表400,改變第一消除偏移電路2182和第二消除偏移電路2184流入運算放大器214的電流,以調整運算放大器214內部的偏移。如此,直到運算放大器214根據直流電壓V2及運算放大器214內部的偏移,產生邏輯高電位“1”。此時,如第4E圖所示,第一校正偏移值FCOS係為0100,且減法器2166根據邏輯高電位“1”,將第一拴鎖器2162儲存的暫存值RV(0100)減一,以產生並輸出第二校正偏移值SCOS(0100)。然後,第一拴鎖器2162儲存的暫存值RV(4位元控制訊號NCS)會持續在0100與0011之間跳動,亦即運算放大器系統200完成消除運算放大器214內部的偏移。但第4E圖僅係用以說明本發明,亦即本發明並不受限於第4E圖的例子。Please refer to FIG. 2, FIG. 3, FIG. 4D and FIG. 4E. FIG. 4D is a schematic diagram of a look-up table 400 illustrating the relationship between the 4-bit control signal, the first control signal FCS and the second control signal SCS. And FIG. 4E is a schematic diagram illustrating the elimination of the offset inside the operational amplifier 214. As shown in FIG. 4D, the 4-bit control signal has 16 sets of control signals, wherein each set of control signals corresponds to a first control signal FCS and a second control signal SCS. As shown in FIG. 4E, for example, the temporary storage value RV stored in the first latch 2162 is 0000, and the offset inside the operational amplifier 214 is a negative value, the operational amplifier 214 is based on the DC voltage V2 and the internal of the operational amplifier 214. The offset produces a logic low "0". Then, the adder 2164 increments the temporary value RV(0000) stored by the first latch 2162 to generate and output a first corrected offset value FCOS(0001). After a period T of one clock CLK, the cancellation offset circuit 218 changes the first cancellation offset circuit 2182 and the second cancellation offset circuit 2184 to the operational amplifier 214 according to the first correction offset value FCOS(0001) and the look-up table 400. The current is adjusted to adjust the offset inside the operational amplifier 214. That is, when the first correction offset value FCOS is 0001, the second control signal SCS is 000 and the first control signal FCS is 111. Therefore, the current flowing into the operational amplifier 214 by the first cancellation offset circuit 2182 is 7I, and the current flowing into the operational amplifier 214 by the second cancellation offset circuit 2184 is zero. If the operational amplifier 214 is still based on the DC voltage V2 and the offset inside the operational amplifier 214, a logic low potential "0" is still generated. The adder 2164 then increments the temporary value RV(0001) stored by the first latch 2162 to generate and output a first corrected offset value FCOS (0010). After the period T of the clock CLK, the cancellation offset circuit 218 changes the first cancellation offset circuit 2182 and the second cancellation offset circuit 2184 to the operational amplifier 214 according to the first correction offset value FCOS (0010) and the look-up table 400. The current is adjusted to adjust the offset inside the operational amplifier 214. Thus, until the operational amplifier 214 generates a logic high potential "1" based on the DC voltage V2 and the offset inside the operational amplifier 214. At this time, as shown in FIG. 4E, the first correction offset value FCOS is 0100, and the subtractor 2166 subtracts the temporary storage value RV (0100) stored by the first latch 2162 according to the logic high potential "1". First, to generate and output a second corrected offset value SCOS (0100). Then, the temporary storage value RV (4-bit control signal NCS) stored by the first latch 2162 continues to jump between 0100 and 0011, that is, the operational amplifier system 200 completes the elimination of the offset inside the operational amplifier 214. However, Fig. 4E is only for explaining the present invention, that is, the present invention is not limited to the example of Fig. 4E.

請參照第5圖,第5圖係為本發明的另一實施例說明一種可自動消除偏移的運算放大器系統500的示意圖。運算放大器系統500和運算放大器系統200的差別在於運算放大器系統500另包含一D型正反器2170。D型正反器2170係耦接於數位控制電路216與運算放大器214之間,用以使運算放大器214輸出的訊號快速達到邏輯高電位“1”與邏輯低電位“0”。另外,運算放大器系統500的其餘操作原理皆和運算放大器系統200相同,在此不再贅述。Please refer to FIG. 5. FIG. 5 is a schematic diagram showing an operational amplifier system 500 capable of automatically eliminating offset according to another embodiment of the present invention. The difference between operational amplifier system 500 and operational amplifier system 200 is that operational amplifier system 500 further includes a D-type flip-flop 2170. The D-type flip-flop 2170 is coupled between the digital control circuit 216 and the operational amplifier 214 for quickly causing the signal output from the operational amplifier 214 to reach a logic high potential "1" and a logic low potential "0". In addition, the remaining operating principles of the operational amplifier system 500 are the same as those of the operational amplifier system 200, and are not described herein again.

請參照第6圖,第6圖為係本發明的另一實施例說明一種可自動消除偏移的方法之流程圖。第6圖之方法係利用第2圖的運算放大器系統200說明,詳細步驟如下:步驟600:開始;步驟602:當運算放大器系統200於消除偏移模式時,控制器202產生控制訊號CS;步驟604:第一開關204、第三開關208及第四開關210根據控制訊號CS開啟,以及第二開關206及第五開關212根據控制訊號CS關閉;步驟606:輸入直流電壓V2至運算放大器系統200的第一輸入端INP;步驟608:運算放大器214根據直流電壓V2及運算放大器214內部的偏移,產生一個邏輯電位;如果運算放大器214係產生邏輯高電位“1”,進行步驟610;如果運算放大器214係產生邏輯低電位“0”,進行步驟618;步驟610:數位控制電路216內的減法器2166根據邏輯高電位“1”及數位控制電路216內的第一拴鎖器2162儲存的暫存值RV,輸出第二校正偏移值SCOS;步驟612:第二拴鎖器2168接收並儲存第二校正偏移值SCOS,以及輸出第二校正偏移值SCOS至第一拴鎖器2162與消除偏移電路218;步驟614:消除偏移電路218根據第二校正偏移值SCOS和查閱表400,消除運算放大器214內部的偏移;步驟616:第一拴鎖器2162根據第二校正偏移值SCOS,更新第一拴鎖器2162儲存的暫存值RV,跳回步驟608;步驟618:數位控制電路216內的加法器2164根據邏輯低電位“0”及數位控制電路216內的第一拴鎖器2162儲存的暫存值RV,輸出第一校正偏移值FCOS;步驟620:第二拴鎖器2168接收並儲存第一校正偏移值FCOS,以及輸出第一校正偏移值FCOS至第一拴鎖器2162與消除偏移電路218;步驟622:消除偏移電路218根據第一校正偏移值FCOS和查閱表400,消除運算放大器214內部的偏移;步驟624:第一拴鎖器2162根據第一校正偏移值FCOS,更新第一拴鎖器2162儲存的暫存值RV,跳回步驟608;在步驟606中,因為第三開關208係為開啟,所以運算放大器214的第一輸入端與第二輸入端係同時接收直流電壓V2。在步驟608中,運算放大器214根據直流電壓V2與運算放大器214內部的偏移,產生一個邏輯電位(邏輯高電位“1”或邏輯低電位“0”),亦即此時運算放大器214係做為一比較器。在步驟610中,減法器2166係將第一拴鎖器2162儲存的暫存值RV減一,以產生並輸出第二校正偏移值SCOS。在步驟614中,消除偏移電路218根據第二校正偏移值SCOS和查閱表400,改變第一消除偏移電路2182和第二消除偏移電路2184流入運算放大器214的電流,以調整運算放大器214內部的偏移。在步驟618中,加法器2164係將第一拴鎖器2162儲存的暫存值RV加一,以產生並輸出第一校正偏移值FCOS。在步驟622中,消除偏移電路218根據第一校正偏移值FCOS和查閱表400,改變第一消除偏移電路2182和第二消除偏移電路2184流入運算放大器214的電流,以調整運算放大器214內部的偏移。Please refer to FIG. 6. FIG. 6 is a flow chart showing a method for automatically eliminating offset according to another embodiment of the present invention. The method of FIG. 6 is illustrated by the operational amplifier system 200 of FIG. 2. The detailed steps are as follows: Step 600: Start; Step 602: When the operational amplifier system 200 is in the offset cancellation mode, the controller 202 generates the control signal CS; 604: The first switch 204, the third switch 208, and the fourth switch 210 are turned on according to the control signal CS, and the second switch 206 and the fifth switch 212 are turned off according to the control signal CS. Step 606: input the DC voltage V2 to the operational amplifier system 200. The first input terminal INP; step 608: the operational amplifier 214 generates a logic potential according to the DC voltage V2 and the offset inside the operational amplifier 214; if the operational amplifier 214 generates a logic high potential "1", proceed to step 610; The amplifier 214 generates a logic low potential "0" and proceeds to step 618. Step 610: The subtractor 2166 in the digital control circuit 216 stores the temporary storage according to the logic high potential "1" and the first latch 2162 in the digital control circuit 216. Store the value RV, output a second corrected offset value SCOS; step 612: the second latch 2168 receives and stores the second corrected offset value SCOS, and outputs the second Correcting the offset value SCOS to the first latch 2162 and the cancellation offset circuit 218; Step 614: Eliminating the offset circuit 218 to cancel the offset inside the operational amplifier 214 according to the second corrected offset value SCOS and the look-up table 400; 616: The first latch 2162 updates the temporary storage value RV stored by the first latch 2162 according to the second corrected offset value SCOS, and jumps back to step 608; Step 618: The adder 2164 in the digital control circuit 216 is based on the logic. The low potential "0" and the temporary storage value RV stored by the first latch 2162 in the digital control circuit 216 output the first corrected offset value FCOS; Step 620: The second latch 2168 receives and stores the first correction offset Shifting the FCOS, and outputting the first corrected offset value FCOS to the first latcher 2162 and the canceling offset circuit 218; Step 622: The canceling offset circuit 218 cancels the operation according to the first corrected offset value FCOS and the lookup table 400 The offset inside the amplifier 214; step 624: the first latch 2162 updates the temporary value RV stored by the first latch 2162 according to the first corrected offset value FCOS, and jumps back to step 608; in step 606, because The third switch 208 is turned on, so the operational amplifier 2 The first input terminal and the second input terminal 14 receive the DC voltage V2 at the same time. In step 608, the operational amplifier 214 generates a logic potential (logic high potential "1" or logic low potential "0") according to the offset of the DC voltage V2 and the operational amplifier 214, that is, the operational amplifier 214 is configured at this time. For a comparator. In step 610, the subtractor 2166 subtracts the temporary value RV stored by the first latch 2162 by one to generate and output a second corrected offset value SCOS. In step 614, the cancellation offset circuit 218 changes the current flowing into the operational amplifier 214 by the first cancellation offset circuit 2182 and the second cancellation offset circuit 2184 according to the second correction offset value SCOS and the look-up table 400 to adjust the operational amplifier. 214 internal offset. In step 618, the adder 2164 increments the temporary value RV stored by the first latch 2162 to generate and output a first corrected offset value FCOS. In step 622, the cancellation offset circuit 218 changes the current flowing into the operational amplifier 214 by the first cancellation offset circuit 2182 and the second cancellation offset circuit 2184 according to the first correction offset value FCOS and the look-up table 400 to adjust the operational amplifier. 214 internal offset.

綜上所述,本發明所提供的可自動消除偏移的運算放大器系統及其方法係利用控制器控制第一開關、第二開關、第三開關、第四開關及第五開關的開啟與關閉。因此,相較於先前技術,本發明有以下優點:第一、當運算放大器系統於消除偏移模式時,本發明僅需輸入一個直流電壓;第二、本發明的運算放大器可作為一個比較器,因此可節省運算放大器系統的面積;第三、運算放大器系統可於一開機時,即進入消除偏移模式,或運算放大器系統根據脈衝寬度調變訊號開始運作一段時間後,運算放大器系統在脈衝寬度調變訊號係為邏輯低電位時,進入消除偏移模式,亦即運算放大器系統可根據一使用者的需求,隨時進入消除偏移模式。In summary, the present invention provides an automatically cancelable offset operational amplifier system and method thereof for controlling the opening, closing, and closing of the first switch, the second switch, the third switch, the fourth switch, and the fifth switch by using a controller. . Therefore, compared with the prior art, the present invention has the following advantages: First, when the operational amplifier system is in the offset mode, the present invention only needs to input a DC voltage; second, the operational amplifier of the present invention can be used as a comparator. Therefore, the area of the operational amplifier system can be saved; third, the operational amplifier system can enter the elimination offset mode when the power is turned on, or the operational amplifier system starts to operate for a period of time according to the pulse width modulation signal, and the operational amplifier system is pulsed. When the width modulation signal is logic low, it enters the elimination offset mode, that is, the operational amplifier system can enter the elimination offset mode at any time according to the needs of a user.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

100、200、500...運算放大器系統100, 200, 500. . . Operational amplifier system

102、214...運算放大器102, 214. . . Operational Amplifier

104...比較器104. . . Comparators

106、202...控制器106, 202. . . Controller

108、218...消除偏移電路108, 218. . . Elimination of offset circuit

110、112...開關110, 112. . . switch

204...第一開關204. . . First switch

206...第二開關206. . . Second switch

208...第三開關208. . . Third switch

210...第四開關210. . . Fourth switch

212...第五開關212. . . Fifth switch

216...數位控制電路216. . . Digital control circuit

400...查閱表400. . . Lookup table

2162...第一拴鎖器2162. . . First lock

2164...加法器2164. . . Adder

2166...減法器2166. . . Subtractor

2168...第二拴鎖器2168. . . Second lock

2170...D型正反器2170. . . D-type flip-flop

2182...第一消除偏移電路2182. . . First cancellation offset circuit

2184...第二消除偏移電路2184. . . Second cancellation offset circuit

21822、21824、21826...第一電流源21822, 21824, 21826. . . First current source

21842、21844、21846...第六開關21842, 21844, 21846. . . Sixth switch

21841、21843、21845...第二電流源21841, 21843, 21845. . . Second current source

21862、21864、21866...第七開關21862, 21864, 21866. . . Seventh switch

“0”...邏輯低電位"0". . . Logical low potential

“1”...邏輯高電位"1". . . Logic high potential

CLK...時脈CLK. . . Clock

CR...比較結果CR. . . Comparing results

CS...控制訊號CS. . . Control signal

FCOS...第一校正偏移值FCOS. . . First correction offset value

FCS...第一控制訊號FCS. . . First control signal

I、2I、4I...電流I, 2I, 4I. . . Current

INN...第二輸入端INN. . . Second input

INP...第一輸入端INP. . . First input

OCS...消除偏移訊號OCS. . . Eliminate offset signals

OUTN...第二輸出端OUTN. . . Second output

OUTP...第一輸出端OUTP. . . First output

OUT...輸出端OUT. . . Output

PWM...脈衝寬度調變訊號PWM. . . Pulse width modulation signal

RV...暫存值RV. . . Temporary value

SCS...第二控制訊號SCS. . . Second control signal

SCOS...第二校正偏移值SCOS. . . Second correction offset value

T...週期T. . . cycle

V1...第一電壓V1. . . First voltage

V2...直流電壓V2. . . DC voltage

VP、VN、VOUT...訊號VP, VN, VOUT. . . Signal

600至624...步驟600 to 624. . . step

第1圖係為先前技術說明一種可消除偏移的運算放大器系統的示意圖。Figure 1 is a schematic diagram of an operational amplifier system with offset cancellation as described in the prior art.

第2圖係為本發明的一實施例說明一種可自動消除偏移的運算放大器系統的示意圖。2 is a schematic diagram of an operational amplifier system capable of automatically eliminating offsets, in accordance with an embodiment of the present invention.

第3圖係為說明消除偏移電路的示意圖。Figure 3 is a schematic diagram illustrating the elimination of the offset circuit.

第4A圖係為說明運算放大器系統運作於正常運作模式的示意圖。Figure 4A is a diagram illustrating the operation of the operational amplifier system in a normal mode of operation.

第4B圖係為說明運算放大器系統運作於消除偏移模式的示意圖。Figure 4B is a diagram illustrating the operation of the operational amplifier system in an offset cancellation mode.

第4C圖係為說明運算放大器系統根據脈衝寬度調變訊號開始運作一段時間後,運算放大器系統在脈衝寬度調變訊號係為邏輯低電位時,進入消除偏移模式的示意圖。Figure 4C is a schematic diagram showing the operation of the operational amplifier system after the pulse width modulation signal is started for a period of time, and the operational amplifier system enters the cancellation offset mode when the pulse width modulation signal is at a logic low level.

第4D圖係為說明4位元控制訊號、第一控制訊號與第二控制訊號的關係的查閱表的示意圖。4D is a schematic diagram of a look-up table illustrating the relationship between the 4-bit control signal, the first control signal, and the second control signal.

第4E圖係為說明消除運算放大器內部的偏移的示意圖。Fig. 4E is a schematic diagram illustrating the elimination of the offset inside the operational amplifier.

第5圖係為本發明的另一實施例說明一種可自動消除偏移的運算放大器系統的示意圖。Figure 5 is a schematic diagram of an operational amplifier system capable of automatically eliminating offsets in accordance with another embodiment of the present invention.

第6圖為係本發明的另一實施例說明一種可自動消除偏移的方法之流程圖。Figure 6 is a flow chart illustrating a method of automatically eliminating offsets in accordance with another embodiment of the present invention.

200...運算放大器系統200. . . Operational amplifier system

202...控制器202. . . Controller

204...第一開關204. . . First switch

206...第二開關206. . . Second switch

208...第三開關208. . . Third switch

210...第四開關210. . . Fourth switch

212...第五開關212. . . Fifth switch

214...運算放大器214. . . Operational Amplifier

216...數位控制電路216. . . Digital control circuit

218...消除偏移電路218. . . Elimination of offset circuit

2162...第一拴鎖器2162. . . First lock

2164...加法器2164. . . Adder

2166...減法器2166. . . Subtractor

2168...第二拴鎖器2168. . . Second lock

“0”...邏輯低電位"0". . . Logical low potential

“1”...邏輯高電位"1". . . Logic high potential

CS...控制訊號CS. . . Control signal

FCOS...第一校正偏移值FCOS. . . First correction offset value

INN...第二輸入端INN. . . Second input

INP...第一輸入端INP. . . First input

OUT...輸出端OUT. . . Output

RV...暫存值RV. . . Temporary value

SCOS...第二校正偏移值SCOS. . . Second correction offset value

Claims (15)

一種可自動消除偏移的運算放大器系統,包含:一控制器,用以當該運算放大器系統於一消除偏移模式時,產生一控制訊號;一第一開關,具有一第一端,耦接於該運算放大器系統的第一輸入端,一第二端,用以接收該控制訊號,及一第三端;一第二開關,具有一第一端,耦接於該運算放大器系統的第二輸入端,一第二端,用以接收該控制訊號,及一第三端;一第三開關,具有一第一端,耦接於該第一開關的第三端,一第二端,用以接收該控制訊號,及一第三端,耦接於該第二開關的第三端;一第四開關,具有一第一端,一第二端,用以接收該控制訊號,及一第三端;一第五開關,具有一第一端,耦接於該第四開關的第一端,一第二端,用以接收該控制訊號,及一第三端,耦接於該運算放大器系統的輸出端;一運算放大器,具有一第一輸入端,耦接於該第一開關的第三端,一第二輸入端,耦接於該第二開關的第三端,及一輸出端,耦接於該第四開關的第一端;一數位控制電路,具有一輸入端,耦接於該第四開關的第三端,及一輸出端,用以根據該運算放大器輸出的訊號,輸出一N位元控制訊號,其中N≧1;及 一消除偏移電路,耦接於該數位控制電路與該運算放大器之間,用以根據該N位元控制訊號和一查閱表,消除該運算放大器內部的偏移;其中當該運算放大器系統於該消除偏移模式時,該第一開關、該第三開關及該第四開關根據該控制訊號開啟,以及該第二開關及該第五開關根據該控制訊號關閉;當該運算放大器系統於一正常運作模式時,該第一開關、該第二開關及該第五開關開啟,以及該第三開關及該第四開關關閉。 An operational amplifier system capable of automatically eliminating offsets, comprising: a controller for generating a control signal when the operational amplifier system is in an offset cancellation mode; and a first switch having a first end coupled a first end of the operational amplifier system, a second end for receiving the control signal, and a third end; a second switch having a first end coupled to the second of the operational amplifier system An input end, a second end for receiving the control signal, and a third end; a third switch having a first end coupled to the third end of the first switch and a second end Receiving the control signal, and a third end coupled to the third end of the second switch; a fourth switch having a first end and a second end for receiving the control signal, and a first The third switch has a first end coupled to the first end of the fourth switch, a second end for receiving the control signal, and a third end coupled to the operational amplifier An output of the system; an operational amplifier having a first input coupled a third input end of the first switch, a second input end coupled to the third end of the second switch, and an output end coupled to the first end of the fourth switch; a digital control circuit, An input end coupled to the third end of the fourth switch, and an output end for outputting an N-bit control signal according to the signal output by the operational amplifier, wherein N≧1; An offset circuit coupled between the digital control circuit and the operational amplifier for canceling an internal offset of the operational amplifier according to the N-bit control signal and a look-up table; wherein when the operational amplifier system is When the offset mode is eliminated, the first switch, the third switch, and the fourth switch are turned on according to the control signal, and the second switch and the fifth switch are turned off according to the control signal; when the operational amplifier system is in a In the normal operation mode, the first switch, the second switch, and the fifth switch are turned on, and the third switch and the fourth switch are turned off. 如請求項1所述之運算放大器系統,其中該數位控制電路包含:一第一拴鎖器,具有一輸入端,及一輸出端;一加法器,具有一第一輸入端,耦接於該運算放大器的輸出端,用以接收該運算放大器輸出的訊號,一第二輸入端,耦接於該第一拴鎖器的輸出端,用以接收該第一拴鎖器儲存的暫存值,及一輸出端,其中當該運算放大器輸出的訊號係為一邏輯低電位時,該加法器根據該邏輯低電位及該第一拴鎖器儲存的暫存值,輸出一第一校正偏移值;一減法器,具有一第一輸入端,耦接於該運算放大器的輸出端,用以接收該運算放大器輸出的訊號,一第二輸入端,耦接於該第一拴鎖器的輸出端,用以接收該第一拴鎖器儲存的暫存值,及一輸出端,其中當該運算放大器輸出的訊號係為一邏輯高電位時,該減法器根據該邏輯高電位及該第一拴鎖器儲存的暫存值,輸出一第二校正偏移值;及 一第二拴鎖器,具有一輸入端,耦接於該加法器與該減法器,用以接收並儲存該第一校正偏移值及該第二校正偏移值,及一輸出端,耦接於該消除偏移電路及該第一拴鎖器的輸入端,用以輸出該第一校正偏移值及該第二校正偏移值至該消除偏移電路及該第一拴鎖器;其中該第一校正偏移值及該第二校正偏移值係為該N位元控制訊號,且該第一拴鎖器係根據該第一校正偏移值及該第二校正偏移值,更新該第一拴鎖器所儲存的暫存值。 The operational amplifier system of claim 1, wherein the digital control circuit comprises: a first latch having an input and an output; and an adder having a first input coupled to the An output of the operational amplifier is configured to receive the signal output by the operational amplifier, and a second input end is coupled to the output end of the first latch to receive the temporary storage value stored by the first latch. And an output end, wherein when the signal output by the operational amplifier is a logic low level, the adder outputs a first corrected offset value according to the logic low potential and the temporary storage value stored by the first latch a subtractor having a first input coupled to the output of the operational amplifier for receiving a signal output by the operational amplifier, and a second input coupled to the output of the first latch Receiving a temporary storage value stored by the first latch, and an output end, wherein when the signal output by the operational amplifier is a logic high level, the subtractor is based on the logic high potential and the first Temporary value stored by the locker , outputting a second corrected offset value; and a second latch has an input coupled to the adder and the subtractor for receiving and storing the first corrected offset value and the second corrected offset value, and an output terminal coupled The output of the canceling offset circuit and the first latch is configured to output the first correction offset value and the second correction offset value to the cancellation offset circuit and the first latch; The first correction offset value and the second correction offset value are the N-bit control signals, and the first latch is based on the first correction offset value and the second correction offset value. Update the temporary value stored by the first shackle. 如請求項2所述之運算放大器系統,其中該加法器根據該邏輯低電位及該第一拴鎖器儲存的暫存值,輸出該第一校正偏移值,係為該加法器將該第一拴鎖器儲存的暫存值加一,以產生並輸出該第一校正偏移值。 The operational amplifier system of claim 2, wherein the adder outputs the first corrected offset value according to the logic low potential and the temporary storage value stored by the first latch, for the adder to The temporary storage value stored by the shackle is incremented by one to generate and output the first corrected offset value. 如請求項2所述之運算放大器系統,其中該減法器根據該邏輯高電位及該第一拴鎖器儲存的暫存值,輸出該第二校正偏移值,係為該減法器將該第一拴鎖器儲存的暫存值減一,以產生並輸出該第二校正偏移值。 The operational amplifier system of claim 2, wherein the subtractor outputs the second corrected offset value according to the logic high potential and the temporary storage value stored by the first latch, the subtractor The temporary storage value stored by the shackle is decremented by one to generate and output the second corrected offset value. 如請求項1所述之運算放大器系統,另包含:一D型正反器,耦接於該數位控制電路與該運算放大器之間,用以使該運算放大器輸出的訊號快速達到一邏輯高電位與一邏輯低電位。 The operational amplifier system of claim 1, further comprising: a D-type flip-flop coupled between the digital control circuit and the operational amplifier to rapidly output a signal of the operational amplifier to a logic high level With a logic low potential. 如請求項1所述之運算放大器系統,其中該消除偏移電路包含:一第一消除偏移電路,包含至少一第一消除偏移單元,其中每一第一消除偏移單元包含:一第一電流源,具有一第一端,用以接收一第一電壓,及一第二端;及一第六開關,具有一第一端,耦接於該第一電流源的第二端,一第二端,用以接收根據該N位元控制訊號和該查閱表所產生的一第一控制訊號,及一第三端,耦接於該運算放大器;及一第二消除偏移電路,包含至少一第二消除偏移單元,其中每一第二消除偏移單元包含:一第二電流源,具有一第一端,用以接收該第一電壓,及一第二端;及一第七開關,具有一第一端,耦接於該第二電流源的第二端,一第二端,用以接收根據該N位元控制訊號和該查閱表所產生的一第二控制訊號,及一第三端,耦接於該運算放大器。 The operational amplifier system of claim 1, wherein the cancellation offset circuit comprises: a first cancellation offset circuit, comprising at least one first cancellation offset unit, wherein each first cancellation offset unit comprises: a first a current source having a first terminal for receiving a first voltage and a second terminal; and a sixth switch having a first end coupled to the second end of the first current source, The second end is configured to receive a first control signal generated according to the N-bit control signal and the look-up table, and a third end coupled to the operational amplifier; and a second cancellation offset circuit, including At least one second cancellation offset unit, wherein each second cancellation offset unit comprises: a second current source having a first end for receiving the first voltage, and a second end; and a seventh The switch has a first end coupled to the second end of the second current source, and a second end for receiving a second control signal generated according to the N-bit control signal and the look-up table, and A third end is coupled to the operational amplifier. 如請求項1所述之運算放大器系統,其中該第一開關、該第三開關及該第四開關係為N型金氧半電晶體,以及該第二開關及該第五開關係為P型金氧半電晶體。 The operational amplifier system of claim 1, wherein the first switch, the third switch, and the fourth open relationship are N-type MOS transistors, and the second switch and the fifth open relationship are P-type Gold oxide semi-transistor. 如請求項1所述之運算放大器系統,其中該第一開關、該第三開關及該第四開關係為P型金氧半電晶體,以及該第二開關及該第五開關係為N型金氧半電晶體。 The operational amplifier system of claim 1, wherein the first switch, the third switch, and the fourth open relationship are P-type MOS transistors, and the second switch and the fifth open relationship are N-type Gold oxide semi-transistor. 如請求項1所述之運算放大器系統,其中該第一開關、該第二開關、該第三開關、該第四開關及該第五開關係為傳輸閘。 The operational amplifier system of claim 1, wherein the first switch, the second switch, the third switch, the fourth switch, and the fifth open relationship are transmission gates. 一種可自動消除偏移的方法,其中應用於該方法的一運算放大器系統包含一控制器、一第一開關、一第二開關、一第三開關、一第四開關、一第五開關、一運算放大器、一數位控制電路及一消除偏移電路,其中該第一開關,具有一第一端,耦接於該運算放大器系統的第一輸入端,該第二開關,具有一第一端,耦接於該運算放大器的第二輸入端,該第三開關耦接於該運算放大器的第一輸入端與第二輸入端之間,該第四開關耦接於該運算放大器的輸出端,該第五開關耦接於該第四開關與該運算放大器的輸出端,該數位控制電路耦接於該第四開關,以及該消除偏移電路耦接於該數位控制電路與該運算放大器之間,該方法包含:當該運算放大器系統於一消除偏移模式時,該控制器產生一控制訊號;該第一開關、該第三開關及該第四開關根據該控制訊號開啟,以及該第二開關及該第五開關根據該控制訊號關閉;輸入一直流電壓至該運算放大器系統的第一輸入端; 該運算放大器根據該直流電壓及該運算放大器內部的偏移,產生一邏輯低電位;及該數位控制電路內的加法器根據該邏輯低電位及該數位控制電路內的第一拴鎖器儲存的暫存值,輸出一第一校正偏移值。 A method for automatically eliminating offset, wherein an operational amplifier system applied to the method includes a controller, a first switch, a second switch, a third switch, a fourth switch, a fifth switch, and a An operational amplifier, a digital control circuit, and a cancellation offset circuit, wherein the first switch has a first end coupled to the first input end of the operational amplifier system, and the second switch has a first end The second switch is coupled to the second input end of the operational amplifier, the third switch is coupled between the first input end and the second input end of the operational amplifier, and the fourth switch is coupled to the output end of the operational amplifier, The fifth switch is coupled to the fourth switch and the output of the operational amplifier, the digital control circuit is coupled to the fourth switch, and the cancellation offset circuit is coupled between the digital control circuit and the operational amplifier. The method includes: when the operational amplifier system is in an offset cancellation mode, the controller generates a control signal; the first switch, the third switch, and the fourth switch are turned on according to the control signal And the second switch and the fifth switch is turned off according to the control signal; an input DC voltage to the first input terminal of the operational amplifier system; The operational amplifier generates a logic low potential according to the DC voltage and an offset inside the operational amplifier; and the adder in the digital control circuit stores the logic according to the logic low level and the first latch in the digital control circuit The temporary value is output and a first corrected offset value is output. 如請求項10所述之方法,其中該數位控制電路內的加法器根據該邏輯低電位及該數位控制電路內的第一拴鎖器儲存的暫存值,輸出該第一校正偏移值,係為該加法器將該第一拴鎖器儲存的暫存值加一,以產生並輸出該第一校正偏移值。 The method of claim 10, wherein the adder in the digital control circuit outputs the first corrected offset value according to the logic low potential and a temporary storage value stored by the first latch in the digital control circuit, The adder adds the temporary value stored by the first latch to one to generate and output the first corrected offset value. 如請求項10所述之方法,另包含:一第二拴鎖器接收並儲存該第一校正偏移值,以及輸出該第一校正偏移值至該第一拴鎖器與一消除偏移電路;該消除偏移電路根據該第一校正偏移值和一查閱表,消除該運算放大器內部的偏移;及該第一拴鎖器根據該第一校正偏移值,更新該第一拴鎖器儲存的暫存值。 The method of claim 10, further comprising: receiving, by the second latch, the first corrected offset value, and outputting the first corrected offset value to the first latch and a canceling offset a circuit; the cancellation offset circuit cancels an offset inside the operational amplifier according to the first correction offset value and a look-up table; and the first latch performs the first update according to the first correction offset value The temporary value stored by the locker. 一種可自動消除偏移的方法,其中應用於該方法的一運算放大器系統包含一控制器、一第一開關、一第二開關、一第三開關、一第四開關、一第五開關、一運算放大器、一數位控制電路及一消除偏移電路,其中該第一開關,具有一第一端,耦接於該運算放大器系統的第一輸入端,該第二開關,具有一第一端, 耦接於該運算放大器的第二輸入端,該第三開關耦接於該運算放大器的第一輸入端與第二輸入端之間,該第四開關耦接於該運算放大器的輸出端,該第五開關耦接於該第四開關與該運算放大器的輸出端,該數位控制電路耦接於該第四開關,以及該消除偏移電路耦接於該數位控制電路與該運算放大器之間,該方法包含:當該運算放大器系統於一消除偏移模式時,該控制器產生一控制訊號;該第一開關、該第三開關及該第四開關根據該控制訊號開啟,以及該第二開關及該第五開關根據該控制訊號關閉;輸入一直流電壓至該運算放大器系統的第一輸入端;該運算放大器根據該直流電壓及該運算放大器內部的偏移,產生一邏輯高電位;及該數位控制電路內的加法器根據該邏輯高電位及該數位控制電路內的第一拴鎖器儲存的暫存值,輸出一第二校正偏移值。 A method for automatically eliminating offset, wherein an operational amplifier system applied to the method includes a controller, a first switch, a second switch, a third switch, a fourth switch, a fifth switch, and a An operational amplifier, a digital control circuit, and a cancellation offset circuit, wherein the first switch has a first end coupled to the first input end of the operational amplifier system, and the second switch has a first end The second switch is coupled to the second input end of the operational amplifier, the third switch is coupled between the first input end and the second input end of the operational amplifier, and the fourth switch is coupled to the output end of the operational amplifier, The fifth switch is coupled to the fourth switch and the output of the operational amplifier, the digital control circuit is coupled to the fourth switch, and the cancellation offset circuit is coupled between the digital control circuit and the operational amplifier. The method includes: when the operational amplifier system is in an offset cancellation mode, the controller generates a control signal; the first switch, the third switch, and the fourth switch are turned on according to the control signal, and the second switch And the fifth switch is turned off according to the control signal; inputting a DC voltage to the first input end of the operational amplifier system; the operational amplifier generates a logic high potential according to the DC voltage and an offset inside the operational amplifier; The adder in the digital control circuit outputs a second corrected offset value according to the logic high potential and the temporary storage value stored by the first latch in the digital control circuit. 如請求項13所述之方法,其中該數位控制電路內的減法器根據該邏輯高電位及該數位控制電路內的第一拴鎖器儲存的暫存值,輸出該第二校正偏移值,係為該減法器將該第一拴鎖器儲存的暫存值減一,以產生並輸出該第二校正偏移值。 The method of claim 13, wherein the subtractor in the digital control circuit outputs the second corrected offset value according to the logic high potential and a temporary storage value stored by the first latch in the digital control circuit, The subtractor stores the temporary storage value stored by the first shackle by one to generate and output the second corrected offset value. 如請求項13所述之方法,另包含: 一第二拴鎖器接收並儲存該第二校正偏移值,以及輸出該第二校正偏移值至該第一拴鎖器與一消除偏移電路;該消除偏移電路根據該第二校正偏移值和一查閱表,消除該運算放大器內部的偏移;及該第一拴鎖器根據該第二校正偏移值,更新該第一拴鎖器儲存的暫存值。 The method of claim 13, further comprising: a second shackle receives and stores the second correction offset value, and outputs the second correction offset value to the first shackle and a cancellation offset circuit; the cancellation offset circuit is responsive to the second correction The offset value and a look-up table cancel the offset inside the operational amplifier; and the first latch replaces the temporary storage value stored by the first latch according to the second corrected offset value.
TW100118327A 2011-05-25 2011-05-25 Operational amplifier system capable of automatically cancelling an offset and method capable of automatically cancelling an offset TWI425763B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100118327A TWI425763B (en) 2011-05-25 2011-05-25 Operational amplifier system capable of automatically cancelling an offset and method capable of automatically cancelling an offset

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100118327A TWI425763B (en) 2011-05-25 2011-05-25 Operational amplifier system capable of automatically cancelling an offset and method capable of automatically cancelling an offset

Publications (2)

Publication Number Publication Date
TW201249099A TW201249099A (en) 2012-12-01
TWI425763B true TWI425763B (en) 2014-02-01

Family

ID=48138921

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100118327A TWI425763B (en) 2011-05-25 2011-05-25 Operational amplifier system capable of automatically cancelling an offset and method capable of automatically cancelling an offset

Country Status (1)

Country Link
TW (1) TWI425763B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5982510B2 (en) * 2015-02-09 2016-08-31 力晶科技股▲ふん▼有限公司 Voltage generation circuit, regulator circuit, semiconductor memory device, and semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6724329B2 (en) * 2002-04-24 2004-04-20 Intel Corporation Decision feedback equalization employing a lookup table
JP2008042502A (en) * 2006-08-04 2008-02-21 Sharp Corp Offset correction apparatus, semiconductor device and display device and offset correcting method, noise detector, and noise detecting method
TW200832929A (en) * 2006-12-29 2008-08-01 Ind Tech Res Inst Analog-to-digital converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6724329B2 (en) * 2002-04-24 2004-04-20 Intel Corporation Decision feedback equalization employing a lookup table
JP2008042502A (en) * 2006-08-04 2008-02-21 Sharp Corp Offset correction apparatus, semiconductor device and display device and offset correcting method, noise detector, and noise detecting method
TW200832929A (en) * 2006-12-29 2008-08-01 Ind Tech Res Inst Analog-to-digital converter

Also Published As

Publication number Publication date
TW201249099A (en) 2012-12-01

Similar Documents

Publication Publication Date Title
JP5597660B2 (en) AD converter
JP4764086B2 (en) Semiconductor integrated circuit device
US7385444B2 (en) Class D amplifier
US8248108B2 (en) Comparator with offset compensation, in particular for analog digital converters
US9621145B2 (en) Sense amplifier latch with offset correction
US20060113969A1 (en) Voltage detection circuit, overcurrent detection circuit, charging current control system, and voltage detection method
JP5375753B2 (en) OSCILLATOR CIRCUIT AND ITS OPERATION CURRENT CONTROL METHOD
KR100341161B1 (en) A chopper-type voltage comparator
US9246504B2 (en) Circuits and methods for implementing a residue amplifier
JP4785801B2 (en) Class D amplifier
US6396430B1 (en) Pre-amplifier design for high-speed analog-to-digital converters
JP5473525B2 (en) System and method for removing non-linearities and canceling offset errors in comparator based / zero cross based switched capacitor circuits
US8742790B1 (en) Circuits and methods for level shifting a signal
JP2009232184A (en) Semiconductor integrated circuit
US10790791B2 (en) Auto zero offset current mitigation at an integrator input
TWI425763B (en) Operational amplifier system capable of automatically cancelling an offset and method capable of automatically cancelling an offset
US11211922B2 (en) Voltage comparator for offset compensation
US8471753B1 (en) Pipelined analog-to-digital converter and method for converting analog signal to digital signal
JP2010050590A (en) Comparator circuit
KR100603179B1 (en) A Digital Pulse Width Control Loop Circuit Without Phase change
US8390499B2 (en) Analog-to-digital converter
JP2010050614A (en) Semiconductor device and amplification device
US20160079924A1 (en) Bias circuit, operational amplifier, and delta sigma type ad converter
JP3384543B2 (en) Cascade A / D converter
JP2009094584A (en) Triangular wave generation circuit