TW201249099A - Operational amplifier system capable of automatically cancelling an offset and method capable of automatically cancelling an offset - Google Patents

Operational amplifier system capable of automatically cancelling an offset and method capable of automatically cancelling an offset Download PDF

Info

Publication number
TW201249099A
TW201249099A TW100118327A TW100118327A TW201249099A TW 201249099 A TW201249099 A TW 201249099A TW 100118327 A TW100118327 A TW 100118327A TW 100118327 A TW100118327 A TW 100118327A TW 201249099 A TW201249099 A TW 201249099A
Authority
TW
Taiwan
Prior art keywords
switch
operational amplifier
offset
circuit
control signal
Prior art date
Application number
TW100118327A
Other languages
Chinese (zh)
Other versions
TWI425763B (en
Inventor
Po-Chang Wu
Original Assignee
Iml Int
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iml Int filed Critical Iml Int
Priority to TW100118327A priority Critical patent/TWI425763B/en
Publication of TW201249099A publication Critical patent/TW201249099A/en
Application granted granted Critical
Publication of TWI425763B publication Critical patent/TWI425763B/en

Links

Landscapes

  • Amplifiers (AREA)

Abstract

An operational amplifier system includes a controller, a first switch, a second switch, a third switch, a fourth switch, a fifth switch, an operational amplifier, a digital control circuit, and an offset cancellation circuit. When the operational amplifier system is in an offset cancellation mode, the controller generates a control signal. The first switch, the third switch, and the fourth switch are turned on according to the control signal, and the second switch and the fifth switch are turned off according to the control signal. The operational amplifier outputs a signal according to a direct current voltage. The digital control circuit outputs an N-bit control signal according to the signal, where N ≥ 1. The offset cancellation circuit cancels an offset of the operational amplifier according to the N-bit control signal and a lookup table.

Description

201249099 六、發明說明: 【發明所屬之技術領域】 器系統及其方法 2日祕有關於-種可自動消除偏移的運算放大器系統及其方 / s種利馳制器控制複數個開關的開啟與關閉使運算 放大器㈣_可私祕轉赋的可自㈣除轉的運算2 【先前技術】 μ。月=照第1圖’第!圖係為先前技術說明一種可消除偏移的運 减大器系統100的示意圖。運算放大器系統刚包含一運算放大 器02比車乂器104、一控制器1〇6、一消除偏移電路⑽及開關 如第1圖所7^,當運算放大器系統卿於-消除偏移模 ’時開關110、112開啟’且運算放大器系統卿的第一輸入端聊 和第二輸入端麵分別輸入不同的電麗(VP、VN)。比較器1〇4係 用以比較運异放大器102的第一輸出端〇υτρ和第二輸出端 所輸出的賴V0UTP、V0刪),並據以產生一比較結果cr。控 制β 106根據她結果CR,輸出―…^元控制罐cs至消除偏 移電路108。消除偏移電路⑽根據控制訊號cs,產生一爪位元消 除偏移訊號ocs至運算放大器102,以消除運算放大器1〇2的偏 移。如此,當比較器104的比較結果CR改變(由】變為〇或由〇變 為1)時,消除偏移電路⑽會鎖住消除偏移賊〇cs。而消除偏移 電路⑽即可根據消除偏移訊號0CS,消除運算放大器1〇2之偏移。 201249099 如第!圖所示,當運算放大器系統卿於消除偏移模式時必 須分別輸入不同的電壓VP、VN至運算放大器系統刚 端INP和第二輸入端麵。且每次運算放大器系統⑽執行消,: 移模式時,控制器1()6輸出的m位元控制訊號cs係由最小 移值(do.』開始增加或者由最大消除偏移值U i開始減少直 比較器1〇4的比較結果CR改變。然而因為運算放大器1〇 移電壓需要時間’所以需錄麵時間以作賴修正。’ 【發明内容】 本發明的-實施例提供-種可自動消除偏移的運算放大器系 統。該運算放大器祕包含—控制器、—第—_、—第二開關、 -第三開關、—第四開關、—第五開關、—運算放大器、一數位控 ^電路及—消除偏移電路。該控㈣個以當該運算放大器系統^ 一消除偏移模式時,產生—控制訊號;該第—開關具有—第—端, 耦接於該運算放大器系統的第一輸入端,一第二端,用以接收該控 制^號’及-第三端;該第二開關具有—第—端’祕於該運算放 =系統的第二輸人端’―第二端,用以接收該控制訊號,及一第 -端H開關具有-第—端,祕於該第—開關的第三端,一 第U以接收該控制訊號,及—第三端,雛於該第二開關的 第ϋ第四開關具有-第-端,一第二端,用以接收該控制訊 娩及-第二端;該第五開關具有一第一端,搞接於該第四開關的 第—端,-第二端,用以接收該控制訊號,及一第三端,粞接於該 201249099 運算放大器系統的輸出端;該運算放大器具有—第—輸入端,輕接 於該第-開關的第三端,-第二輸入端,雛於該第二開關的第三 端’及-輸出端,祕於該第四開關的第—端;該數位控制電路具 有-,入端,墟於該第四開關的第三端,及—輸出端,用以根據 該運算放大器輸出的訊號’輸出位元控制訊號,其中; 該消除偏移f路係雛賤數健制電路與該運算放大器之間,用 以根據該N位元控制訊號和—查,消除該運算放大器⑽的偏 移’其中當韻算放大H統霞消除偏麵式時,該第一開關、 該第三開關及該第四關根據該控制訊號開啟,以及該第二開關及 該第五開關根據該控制訊號關閉;當該運算放大器系統於一^運 作模式時,該第i關、該第二開關及該第五開關開啟,以及該第 三開關及該第四開關關閉。 本發明的另-實施例提供-種可自動消除偏移的方法。該方法 包含當-運算放大器系統於-消除偏移模式時,—控制器產生一控 制减,-第ϋ關、—第三關及—第四開關根據該控制訊號開 啟,以及-第二開關及一第五開關根據該控制訊號關閉;輸入一直 流電壓至-運算放大端;該運算放大器根據該直流電 壓及該運算放大H内部的偏移,產生—邏輯電位;—數位控制電路 根據該邏輯電位’執行一相對應的動作。 本發明提供-種可自動消除偏移的運算放大器系統及其方法。 該運算放大n系統及方法係糊-控制器控制一第_開關、一第二 201249099 開關、一第三開關、一第四開關及一第五開關的開啟與關閉。因此, 相較於先前技術,本發明有以下優點:第一、當該運算放大器系統 於一消除偏移模式時,本發明僅需輸入一直流電壓;第二、本發明 的一運算放大器可作為一比較器,因此可節省運該算放大器系統的 面積,第二、該運算放大器系統可於一開機時,即進入該消除偏移 模式,或該運算放大器系統根據一脈衝寬度調變訊號開始運作一段 時間後,該運算放大器系統在該脈衝寬度調變訊號係為一邏輯低電 位時,進入該消除偏移模式,亦即該運算放大器系統可根據一使用 者的需求,隨時進入該消除偏移模式。 【實施方式】 晴參照第2圖’第2圖係為本發明的一實施例說明一種可自動 消除偏移的運算放大器系統勘的示意圖^運算放大器系統2〇〇包 含一控制H 202、-第-開關2〇4、-第二關2Q6、_第三開關2〇8、 -第四開關210、-第五開關212、一運算放大器214、一數位控制 電路216及-消除偏移電路218。控制器2〇2係用以當運算放大器 系統200於-消除偏移模式時,產生一控制訊號cs ;第一開關挪 具有-第-端,雛於運算放大器系統2⑽的第一輸入端·,一 第二端,用以接收控制訊號Cs,及一第三端;第二關2〇6具有一 第一端,搞接於運算放大器系統2〇〇的第二輸入端画,一第二端, 用以接收控制訊號cs,及-第三端;第三開關2〇8具有一第一端, 输於第-開關204的第三端,一第二端,用以接收控制訊號cs, 及第二;^ ’輕接於第二開關206的第三端;第四開關21〇具有一 201249099 第-端,-第二端,用以接收控制訊⑽,及—第三端;第五開關 212具有一第一端,耦接於第四開關21〇的第一端,一第二端,用 以接收控制減CS,及-第三端,减於玫大縣統的輸 出端⑽,其中當運算放大器系統朋於消除偏移模式時第一開 關2〇4、第三開關2〇8及第四開關⑽根據控制訊號cs開啟,以及 第二開關2G6及第五_212根據控制訊號cs_,或當運算放 大器系統2〇〇於消除偏移模式時,第二開關2〇6、第三開關2〇8及 第四開關2H)根據控觀號CS_,以及第—開關;第五開 關212根據控制訊號CS _閉。當運算放大器系統細於一正常運 作模式時,第-開關204、第二開關·及第五開關212開啟,以 及第三開關208及第四開關21〇關閉。另外,第一開關2〇4、第三 開關208及第四開關210係可為p型金氧半電晶體,以及第二開關 206及第五開關212係為N型金氧半電晶體;第一開關2〇4、第三 開關208及第四開關210係可為N型金氧半電晶體,以及第二開關 206及第五開關Ή2係可為P型金氧半電晶體;第一開關、第二 開關206、第三關208、第四開關⑽及第五觸212係可為傳輸 問。運算放大器214具有-第一輸入端,柄接於第-開關204的第 三端,-第二輸人端’織於第二開_ ❾第三端,及—輸出端, 麵接於第四開關210的第-端;數位控制電路216具有一輸入端, 搞接於第四開關210的第三端,及—輸出端,用以根據運算放大器 214輸出的訊號’輸出-N位元控制訊號,其中;消除偏移電 路218係粞接於數位控制電路216與運算放大器214之間,用以根 據N位tl控制訊號和-查閱表,消除運算放大器⑽内部的偏移。 201249099 如第2圖所示,數位控制電路216包含一第一拴鎖器2162、一 加法器2164、-減法器鳩及一第二拾鎖器2168。第一检鎖器2162 具有一輸入端,及一輸出端;加法器2164具有一第一輸入端,耦接 於運算放大器214的輸出端,用以接收運算放大器214輸出的訊號, -第二輸入端’柄接於第一栓鎖器2162的輸出端,用以接收第一拾 鎖器2162儲存的暫存值Rv,及一輸出端,其中當運算放大器214 輸出的訊號係為-邏輯低電位“〇”時’加法器2164根據邏輯低電 位〇及第-拴鎖器2162儲存的暫存值RV,輸出一第一校正偏 移值FCOS,減法器2166具有-第-輸入端,麵接於運算放大器214 的輸出端’用以接收運算放大器214輸出的訊號,一第二輸入端, 輕接於第-拴鎖器2162的輸出端,用以接收第一拴鎖器2162儲存 的暫存值RV,及-輸出端,其中當運算放大器214輸出的訊號係 為邏輯尚電位1時’減法器2166根據邏輯高電位“丨,,及第一 拾鎖器2162儲存的暫存值RV,輸出一第二校正偏移值sc〇s ;第 -拾鎖器2168具有-輸人端,祕於加法器2164與減法器2166, 用以接收並儲存第-校正偏移值FCqS及第二校正偏移值sc〇s, 及一輸出端,耦接於消除偏移電路218及第一拴鎖器2162的輸入 端,用以輸出第一校正偏移值FC〇s及第二校正偏移值sc〇s至消 除偏移電路218及第-拾鎖器2162 ;其中第一校正偏移值FC〇s及 第二校正偏移值scos係為N位元控制訊號,且第—拾鎖器2162 係根據第一校正偏移值FC〇s及第二校正偏移值sc〇s,更新第一 拾鎖器2162所儲存的暫存值rv。 201249099 請參照第3圖,第3圖係為說明消除偏移電路218的示意圖。 如第3圖所示,消除偏移電路218包含一第一消除偏移電路2182 及一第二消除偏移電路2184。第一消除偏移電路2182包含第一電 流源 21822、21824、21826 與第六開關 21842、21844、21846。第 一電流源21822具有一第一端,用以接收一第一電壓v卜及一第二 端,第一電流源21824具有一第一端,用以接收第一電壓vi,及一 第二端;第一電流源21826具有一第一端,用以接收第一電壓vi, 及一第二端’其中流經第一電流源21822的電流係為I,流經第一 電流源21824的電流係為21 ’及流經第一電流源21826的電流係為 41 °但本發明並不受限於流經第一電流源21822的電流係為I,流經 第一電流源21824的電流係為21,及流經第一電流源21820的電流 係為41。第六開關21842具有一第一端,耦接於第一電流源21822 的第二端,一第二端,用以接收根據N位元控制訊號和查閱表所產 生的一第一控制訊號FCS,及一第三端,耦接於運算放大器214 ; 第六開關21844具有一第一端,耦接於第一電流源21824的第二端, 一第二端,用以接收根據N位元控制訊號和查閱表所產生的第一控 制訊號FCS ’及一第三端,搞接於運算放大器214 ;第六開關21846 具有一第一端,耦接於第一電流源21826的第二端,一第二端,用 以接收根據N位元控制訊號和查閱表所產生的第一控制訊號fCs, 及一第三端,耦接於運算放大器214。 如第3圖所示’第二消除偏移電路2184包含第二電流源21841、 201249099 21843、21845 與第七開關 21862、21864、21866。第二電流源 21841 具有一第一端,用以接收第一電壓νι,及一第二端,第一電流源 21843具有一第一端,用以接收第一電壓VI ’及一第二端;第二電 流源21845具有一第一端,用以接收第一電壓VI,及一第二端,其 中流經第二電流源21841的電流係為I,流經第二電流源21843的 電流係為21,及流經第二電流源21845的電流係為41。但本發明並 不受限於流經第二電流源21841的電流係為I,流經第二電流源 21843的電流係為21,及流經第二電流源21845的電流係為41。第 七開關21862具有一第一端,耦接於第二電流源21841的第二端, 一第二端’用以接收根據N位元控制訊號和查閱表所產生的一第二 控制訊號SCS’及一第三端,耦接於運算放大器214;第七開關21864 具有一第一端,耦接於第二電流源21843的第二端,一第二端,用 以接收根據N位元控制訊號和查閱表所產生的第二控制訊號scs, 及一第三端,耦接於運算放大器214;第七開關21866具有一第一 端’爐於第二電流源21845的第二端…第二端,用以接收根據 N位元控制訊號和查閱表所產生的第二控制訊號scs,及一第二 端,耦接於運算放大器214。 — 請參照第4A ®與第4B g,第4A圖係為說明運算放 2〇0運作於正常運作模式的示意圖,及第4B圖係為說明運算放Μ 系統200運作於消除偏移模式的示意圖。如第4α圖所示篡 放大器系統200運作於正常運作模式時,第一開關2 : 2㈣五爾第糊2Q8及㈣關;閉。 ^2? 12 201249099 因此,運算放大器系統200的第一輸入端IN?和第二輸入端_分 別接收訊號VP與VN,且由運算放大器系統200的輸出端〇υτ輸 出訊號VOUT。 如第4B圖所示,當運算放大器系統200運作於消除偏移模式 時,第一開關204、第三開關208及第四開關210根據控制訊號cs 開啟’以及第二開關206及第五開關212根據控制訊號cs關閉。 運鼻放大器系統200的第一輸入端INP接收一直流電壓V2。另外, 如果第二開關206根據控制訊號CS開啟,以及第一開關204根據 控制訊號CS關閉’則係由運算放大器系統2〇〇的第二輸入端_ 接收直k電壓V2。因為第三開關208係為開啟,所以運算放大器 214的第一輸入端與第二輸入端係同時接收直流電壓V2,且運算放 大器214根據直流電壓V2與運算放大器214内部的偏移產生一 邏輯電位(賴高電位丫或賴低修“G”),亦即此時運算放 大器214係做為一比較器。當運算放大器214根據直流電壓π及 運算放大器214内部的偏移,產生邏輯低電位“G”時,數位控制電 路216内的加法器2164娜邏輯低電位‘‘〇,,及數位控制電路別 内的第拾鎖器2162儲存的暫存值RV,輸出第一校正偏移值 FCOS’亦即加法器施係將第一拾鎖器雇儲存的暫存值w加 ☆以產生並輸出第一校正偏移值Fc〇s。當運算放大器叫根據 直·電! V2及運算放大器214内部的偏移,產生邏輯高電位丫 夺數位控制電路216内的減法器根據邏輯高電位‘丫, 及數 控制電路216内的第—拾鎖器2162儲存的暫存值,輸出第二 13 201249099 校正偏移值SCOS,亦即減法器2166係將第一拴鎖器2162儲存的 暫存值RV減一,以產生並輸出第二校正偏移值sc〇s〇 如第4B圖所示,第二拴鎖器2168接收並儲存第一校正偏移值 FC0S和第二校正偏移值SC0S,以及輸出第一校正偏移值fc〇s 和第二校正偏雜SCOS至第一拾鎖器2162與消除偏移電路218; 消除偏移電路218根據第一校正偏移值FC〇s、第二校正偏移值 SC0S和查閱表,消除運算放大器214内部的偏移;第一拴鎖器 係根據第一校正偏移值FC0S和第二校正偏移值Sc〇s,更新第一 拾鎖器2162儲存的暫存值RV。另外,當運算放大器系統一開 機時,運算放大器系統200即可進入消除偏移模式。此時,第一拴 鎖器2162儲存的暫存值RV係為N位元控制訊號中的最小值〇〇 〇〇 或最大值11...11。 ‘ 請參照第4C圖’第4C圖係為說明運算放大器系統根據一 脈衝寬度調變訊號PWM開始運作一段時間後,運算放大器系統勘 在脈衝寬度調變訊號PWM係為邏輯低電位時,進人;肖除偏移模式 的示意圖。如第4C圖所示,脈衝寬度調變訊號pwM係為邏輯: 位時’控制器202產生控制訊號cs。而運算放大器系統即可 控制訊號cs係為邏輯高電位_,執行消除運算放大器214内苦 的偏移。此時,第-拾鎖器2162儲存的暫存值RV係為前一次^ 存的暫存值。 201249099 請參照第2圖、第3圖、第4D圖和第4E圖,第4D圖係為說 明4位元控制訊號、第—控制訊號FCS與第二控制訊號奶的關 係的查閱表400的示意圖,及第4E圖係為說明消除運算放大器214 内部的偏移的示意圖。如第4D圖所示,4位元控制訊號具有16組 控制訊號’其巾每-組控制訊麟應於—第_控制訊號FCS與一第 二控制訊號SCS。如第4E圖所示,例如第-拾鎖器2162儲存的暫 存值RV係為0000,且運算放大器214内部的偏移係為負值,則運 算放大器214根據直流電壓V2及運算放大器214内部的偏移,產 生邏輯低電位“G”。然、後,加法器2164將第—拾鎖器2162儲存的 暫存值RV(0000)加-,以產生並輸出第一校正偏移值FC〇s(_u。 經過一時脈CLK的週期τ後,消除偏移電路218根據第一校正偏 移值FCOS(OOOl)和查閱表400,改變第一消除偏移電路2182和第 二消除偏移電路2184力入運算放大器214㈣流,以調整運算放大 器214内部的偏移。亦即當第一校正偏移值只^^係為〇〇〇ι時第 二控制訊號SCS係為〇〇〇且第一控制訊號FCS係為lu。因此,第 一消除偏移電路2182流入運算放大器214的電流係為π,且第二 消除偏移電路2184流入運算放大器214的電流係為零。如果運算放 大器214根據直流電壓V2及運算放大器214内部的偏移,依然產 生邏輯低電位“0”。加法器2164再將第-拴鎖器搬儲存的暫存 值RV(oooi)加一’以產生並輸出第一校正偏移值FC〇s⑽⑼。經 過時脈CLK的週期τ後,消除偏移電路218根據第一校正偏移值 FCOS(OOIO)和查閱表4〇〇,改變第一消除偏移電路2182和第二消除 偏移電路2184流入運算放大器214的電流,以調整運算放大器214 15 201249099 内部的偏移。如此,直到運算放大器214根據直流電壓V2及運算 放大器214内部的偏移,產生邏輯高電位Ί” 。此時,如第4E圖 =示,第-校正偏移值FC0S係為麵,且減法器2166根據邏輯 冋電位1 ,將第一拴鎖器2162儲存的暫存值RV(〇1〇〇)減一,以 產生並輸出第二校正偏移值sc〇s(()1(K))。紐,第一拾鎖器Μα 儲存的暫魏RV(4減㈣峨腦)會持續在圆與_之間 跳動’亦即運算放大器系統· $成消除運算放大器214内部的偏 移仁第4E圖僅係用以說明本發明,亦即本發明並不受限於第犯 圖的例子。 請參照第5圖,第5圖係為本發明的另一實施例說明一種可自 動消除偏移的運算放大器系統5⑻的示意圖。運算放大器系統· 和運算放大器系統200的差別在於運算放大器系統5⑻另包含一 d |反器2170。D型正反器2170係搞接於數位控制電路216與運 算放大器214之間,用以使運算放大器214輸出的訊號快速達到邏 輯向電位“Γ與邏輯低電位“〇,’。另外,運算放大器系統漏的 其餘操作原理皆和運算放大器系統2⑽相同,在此不再f述。 請參照第6圖,第6圖為係本發明的另一實施例說明一種可自 動消除偏移的方法之流程圖。第6圖之方法係利用第2圖的運算放 大器系統200說明,詳細步驟如下: 步驟600:開始; 201249099 . 步驟602 : 步驟604 : 步驟606 : 步驟608 : 步驟610 : 步驟612 : 步驟614 : 步驟616 : 步驟618: 當運算放大器系統200於消除偏移模式時,控制器 202產生控制訊號CS ; 第一開關204、第三開關208及第四開關21〇根據控 制5fl说CS開啟’以及第一開關206及第五開關212 根據控制訊號CS關閉; 輸入直流電壓V2至運算放大器系統2〇〇的第一輸入 端 INP ; 運算放大器214根據直流電壓V2及運算放大器214 内部的偏移,產生一個邏輯電位;如果運算放大器 214係產生邏輯高電位“Γ,進行步驟㈣;如果運 算放大器214係產生邏輯低電位“〇” ,進行步驟 618 ; 數位控制電路216内的減法器2166根據邏輯高電位 1及數位控制電路216内的第一栓鎖器2162儲存 的暫存值RV,輸出第二校正偏移值sC〇s ; 第二拴鎖11 2168接收並儲存第二校正偏移值 SCOS ’以及輸㈣二校正偏雜§⑽至第一拾鎖 器2162與消除偏移電路218 ; 消除偏移電路2職據第二校正偏移值sc〇s和查閱 表·’消除運算放大器214内部的偏移; 第一拾鎖益2162根據第二校正偏移值SCOS,更新 第拾鎖器2162儲存的暫存值Rv,跳回步驟6〇8 ; 數位控制電路216内的加法器2164根據邏輯低電位 17 201249099 “〇”及數位控制電路216内的第一拾鎖器麗儲存 的暫存值RV,輸出第一校正偏移值FC〇s ; 步驟:帛二拾細接收並儲存第—校正偏移值 FCOS,以及輸出第一校正偏移值Fc〇s至第一拾鎖 器2162與消除偏移電路218 ; 步驟622 :消除偏移電路218根據第一校正偏移值FC〇s和查閲 表彻,消除運算放大器214内部的偏移,· 步驟624 :第一拾鎖器搬根據第一校正偏移值聊,更新 第一拴鎖器2162儲存的暫存值Rv,跳回步驟_ ; 在步驟606令,因為第三開關2〇8係為開啟,所以運算放大器 214的第-輸入端與第二輸入端係同時接收直流龍%。在步驟 6〇8中’運算放大器214根據直流電壓%與運算放大_内部的 偏移,產生-個邏輯電位(邏輯高電位,,或邏輯低電位‘, 亦即此時運算放大器214係做為L在步_中減糾 2166^^^,2162^^ ^ 第斗正偏移值謂。在步驟似中,消除偏移電路218根據第 :权:偏移值SCOS和查閱表4〇〇,改變第一消除偏移電路搬和 =:偏移電路流入運算放大器214的電流,以調整運算放 =二内部的偏移。在步細中,加法器2164 =儲麵暫存值RV加-,喊生讀㈣—校正偏移值fc〇s。 Γ22中,消除偏移電路218根據第一校正偏移值職和查 改k第/肖除偏移電路2 i 8 2和第二消除偏移電路2⑻ 201249099 流入運算放大器214的電流,以調整運算放大器214内部的偏移。 綜上所述’本發明所提供的可自動消除偏移的運算放大器系統 及其方法係利用控制器控制第一開關、第二開關、第三開關、第四 開關及第五·的·與_。因此,相較於先前技術,本發明有 以下優點.帛、當運算敎料、祕絲偏賴式時,本發明僅 需輸入一個直流糕;第二、本發運算放大ϋ可作為-個比較 器’因此可節省運算放大器系統的面積;第三、運算放大器系統可 機時’即進人消除偏移模式,或運算放大器系統根據脈衝寬 度翁魏f絲運作—段咖後,放大職統在脈衝寬度調變 訊^為邏輯低電位時,進人_賴式,糾運算放大器系統 可根據-使用者的需求,隨時進人消除偏移模式。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍 所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 【圖式簡單說明】 第1 P為先前技術·—種可偏移的·放大料統的示意 圃0 第2=為本發明的—實施例說明—種可自動消除偏移的運算放大 益系統的示意圖。 第3圖係為說明消除偏移電路的示意圖。 第4A圖係為說明運算放大器系統運作於正常運作模式的示意圖。 201249099 第4C圖传算放大器系統運作於消除偏移模式的示意圖。 運算放大器系統根據脈衝寬度調變訊號開始運作 電位V: ’?算放大器系統在脈繼調變訊號係為邏輯低 €位等進入消除偏移模式的示意圖。 第4==明4位元控制訊號、第一控制訊號與第二控制訊號 的關係的查閱表的示意圖。 第4Ε圖係為說明消除運算放大器内部的偏移的示意圖。 第5圖係為本發明的另—實施例說明—種可自動消除偏移的運算放 大器系統的示意圖。 第6圖為係本發明的另—實施例說明—種可自動消除偏移的方法之 流程圖。 【主要元件符號說明】 100、200、500 運算放大器系統 102 ' 214 運算放大器 104 比較器 106 、 202 控制器 108、218 消除偏移電路 110 、 112 開關 204 第一開關 206 第二開關 208 第三開關 210 第四開關 201249099 212 第五開關 216 數位控制電路 400 查閱表 2162 第一拴鎖器 2164 加法器 2166 減法器 2168 第二拴鎖器 2170 D型正反器 2182 第一消除偏移電路 2184 第二消除偏移電路 21822 、 21824 、 21826 第一電流源 21842、21844、21846 第六開關 21841 、 21843 、 21845 第二電流源 21862 、 21864 、 21866 第七開關 “ο” 邏輯低電位 “ 1 ” 邏輯高電位 CLK 時脈 CR 比較結果 CS 控制訊號 FCOS 第一校正偏移值 FCS 第一控制訊號 I、21、41 電流 INN 第二輸入端 21 201249099201249099 VI. Description of the Invention: [Technical Fields of the Invention] The system and method thereof are related to an operational amplifier system capable of automatically eliminating offset and its side/s type of Lichi controller controlling the opening of a plurality of switches And turn off the operation of the operational amplifier (4) _ can be privately transferred from the (four) divide operation 2 [prior art] μ. Month = according to Figure 1 '! The figure is a schematic diagram of a prior art description of an offset reduction system 100. The operational amplifier system just includes an operational amplifier 02 than the brake 104, a controller 1〇6, a cancellation offset circuit (10), and a switch as shown in Fig. 1 when the operational amplifier system is in the -offset mode. When the switches 110, 112 are turned on, and the first input end of the operational amplifier system and the second input end face respectively input different electric galvanics (VP, VN). The comparator 1〇4 is used to compare the first output terminal 〇υτρ of the operational amplifier 102 with the NMOS VOUTP, V0 output of the second output terminal, and accordingly generate a comparison result cr. The control β 106 controls the can cs to the offset circuit 108 in accordance with her result CR. The canceling offset circuit (10) generates a claw bit erasing offset signal ocs to the operational amplifier 102 based on the control signal cs to cancel the offset of the operational amplifier 1〇2. Thus, when the comparison result CR of the comparator 104 changes (from 】 to 〇 or from 〇 to 1), the cancellation offset circuit (10) locks the offset thief cs. The offset circuit (10) can eliminate the offset of the operational amplifier 1〇2 according to the offset signal 0CS. 201249099 as the first! As shown in the figure, when the op amp system is in the offset mode, different voltages VP and VN must be input to the INP and the second input end of the op amp system. And each time the operational amplifier system (10) performs the cancellation, in the shift mode, the m-bit control signal cs output by the controller 1() 6 is increased by the minimum shift value (do.) or by the maximum elimination offset value U i . The comparison result CR of the direct comparator 1〇4 is changed. However, since the operational amplifier 1 shifts the voltage, it takes time 'therefore, the recording time is required for correction.' [Invention] The present invention provides an automatic An operational amplifier system that eliminates offset. The operational amplifier includes - controller, - - -, - second switch, - third switch, - fourth switch, - fifth switch, - operational amplifier, a digital control ^ a circuit and a cancellation offset circuit. The control (four) generates a control signal when the operational amplifier system eliminates the offset mode; the first switch has a first terminal coupled to the operational amplifier system An input end, a second end, for receiving the control ^ number 'and the third end; the second switch has a - first end 'secret of the operation put = the second input end of the system' - the second End, for receiving the control signal, and An first-end H-switch has a -th terminal, secretly the third end of the first switch, a U-th to receive the control signal, and - a third end, the second switch of the second switch Having a first end, a second end for receiving the control signal and a second end; the fifth switch having a first end coupled to the first end of the fourth switch, the second end For receiving the control signal, and a third end connected to the output of the 201249099 operational amplifier system; the operational amplifier has a - first input terminal, which is lightly connected to the third end of the first switch, - The second input end is formed at the third end 'and the output end of the second switch, and is secreted to the first end of the fourth switch; the digital control circuit has -, the input end, and the third end of the fourth switch And the output terminal is configured to output a signal according to the signal output by the operational amplifier, wherein the offset offset f is between the health circuit and the operational amplifier, and is used according to the N Bit control signal and - check to eliminate the offset of the operational amplifier (10) The first switch, the third switch, and the fourth switch are turned on according to the control signal, and the second switch and the fifth switch are turned off according to the control signal; when the operational amplifier system is in a ^ In the operational mode, the ith switch, the second switch and the fifth switch are turned on, and the third switch and the fourth switch are turned off. A further embodiment of the present invention provides a method for automatically eliminating offset. The method includes when the operational amplifier system is in the -offset offset mode, the controller generates a control subtraction, - the third switch, the third switch and the - fourth switch are turned on according to the control signal, and - the second switch and a fifth switch is turned off according to the control signal; the input current is applied to the -operation amplification terminal; the operational amplifier generates a logic potential according to the DC voltage and the offset of the operation amplification H; the digital control circuit is based on the logic potential 'Execute a corresponding action. The present invention provides an operational amplifier system and method thereof that automatically eliminates offset. The operational amplification n system and method is a paste-controller that controls the opening and closing of a first switch, a second 201249099 switch, a third switch, a fourth switch, and a fifth switch. Therefore, compared with the prior art, the present invention has the following advantages: First, when the operational amplifier system is in an offset cancellation mode, the present invention only needs to input a DC voltage; second, an operational amplifier of the present invention can be used as a comparator, thereby saving the area of the amplifier system. Second, the operational amplifier system can enter the cancellation offset mode upon startup, or the operational amplifier system can operate according to a pulse width modulation signal. After a period of time, the operational amplifier system enters the cancellation offset mode when the pulse width modulation signal is at a logic low level, that is, the operational amplifier system can enter the cancellation offset at any time according to a user's needs. mode. [Embodiment] FIG. 2 is a schematic diagram showing an operational amplifier system capable of automatically eliminating offsets according to an embodiment of the present invention. The operational amplifier system 2 includes a control H 202, - a switch 2〇4, a second switch 2Q6, a third switch 2〇8, a fourth switch 210, a fifth switch 212, an operational amplifier 214, a digital control circuit 216 and a cancellation offset circuit 218. The controller 2〇2 is configured to generate a control signal cs when the operational amplifier system 200 is in the -offset mode; the first switch has a -first end, which is preceded by the first input of the operational amplifier system 2 (10), a second end is configured to receive the control signal Cs, and a third end; the second switch 2〇6 has a first end, which is connected to the second input end of the operational amplifier system 2〇〇, and a second end For receiving the control signal cs, and the third terminal; the third switch 2〇8 has a first end, which is outputted to the third end of the first switch 204, and a second end for receiving the control signal cs, and Second; ^ 'lightly connected to the third end of the second switch 206; the fourth switch 21 〇 has a 201249099 first end, - second end for receiving the control signal (10), and - the third end; the fifth switch The 212 has a first end coupled to the first end of the fourth switch 21A, and a second end for receiving the control minus CS, and the third end is reduced from the output (10) of the Meixian County system, wherein When the operational amplifier system is in the elimination of the offset mode, the first switch 2〇4, the third switch 2〇8, and the fourth switch (10) are opened according to the control signal cs And the second switch 2G6 and the fifth_212 are controlled according to the control signal cs_, or when the operational amplifier system 2 is in the offset cancel mode, the second switch 2〇6, the third switch 2〇8, and the fourth switch 2H According to the control number CS_, and the first switch; the fifth switch 212 is closed according to the control signal CS_. When the operational amplifier system is thinner than a normal operation mode, the first switch 204, the second switch, and the fifth switch 212 are turned on, and the third switch 208 and the fourth switch 21 are turned off. In addition, the first switch 2〇4, the third switch 208, and the fourth switch 210 may be p-type MOS transistors, and the second switch 206 and the fifth switch 212 are N-type MOS transistors; The switch 2〇4, the third switch 208 and the fourth switch 210 can be N-type MOS transistors, and the second switch 206 and the fifth switch Ή2 can be P-type MOS semi-transistors; the first switch The second switch 206, the third switch 208, the fourth switch (10), and the fifth touch 212 can be transmission questions. The operational amplifier 214 has a first input end, the handle is connected to the third end of the first switch 204, and the second input end is woven on the second open end _ ❾ third end, and the output end is connected to the fourth end. The first end of the switch 210; the digital control circuit 216 has an input terminal connected to the third end of the fourth switch 210, and an output terminal for controlling the signal according to the output of the operational amplifier 214 'output-N bit control signal The cancellation offset circuit 218 is coupled between the digital control circuit 216 and the operational amplifier 214 for controlling the offset of the operational amplifier (10) according to the N-bit control signal and the look-up table. 201249099 As shown in FIG. 2, the digital control circuit 216 includes a first latch 2162, an adder 2164, a subtractor 鸠, and a second latch 2168. The first locker 2162 has an input terminal and an output terminal. The adder 2164 has a first input terminal coupled to the output terminal of the operational amplifier 214 for receiving the signal output by the operational amplifier 214. The end handle is connected to the output end of the first latch 2162 for receiving the temporary storage value Rv stored by the first latch 2162, and an output terminal, wherein the signal output from the operational amplifier 214 is - logic low The "adder" 2164 outputs a first corrected offset value FCOS according to the logic low potential 暂 and the temporary storage value RV stored by the first-locker 2162, and the subtracter 2166 has a -th input terminal, which is connected to The output terminal ' of the operational amplifier 214 is configured to receive the signal output by the operational amplifier 214, and a second input terminal is connected to the output end of the first-locker 2162 for receiving the temporary storage value stored by the first latching device 2162. RV, and - output, wherein when the signal outputted by the operational amplifier 214 is logic potential 1 "subtractor 2166 according to the logic high potential "丨, and the temporary storage value RV stored by the first latch 2162, output one Second correction offset value sc〇s; first-locker 2 The 168 has an input terminal, the adder 2164 and the subtractor 2166, for receiving and storing the first correction offset value FCqS and the second correction offset value sc〇s, and an output end coupled to the cancellation bias The shifting circuit 218 and the input end of the first latching device 2162 are configured to output a first corrected offset value FC〇s and a second corrected offset value sc〇s to the canceling offset circuit 218 and the first-locker 2162; The first correction offset value FC〇s and the second correction offset value scous are N-bit control signals, and the first-locker 2162 is based on the first correction offset value FC〇s and the second correction offset. The value sc〇s updates the temporary value rv stored by the first latch 2162. 201249099 Please refer to FIG. 3, which is a schematic diagram illustrating the cancellation offset circuit 218. As shown in FIG. The shift circuit 218 includes a first cancellation offset circuit 2182 and a second cancellation offset circuit 2184. The first cancellation offset circuit 2182 includes first current sources 21822, 21824, 21826 and sixth switches 21842, 21844, 21846. A current source 21822 has a first end for receiving a first voltage v and a second end, the first current source 2182 4 has a first end for receiving the first voltage vi, and a second end; the first current source 21826 has a first end for receiving the first voltage vi, and a second end ' flowing through the The current of a current source 21822 is I, the current flowing through the first current source 21824 is 21 ', and the current flowing through the first current source 21826 is 41 °, but the invention is not limited to flowing through the first current. The current of the source 21822 is I, the current flowing through the first current source 21824 is 21, and the current flowing through the first current source 21820 is 41. The sixth switch 21842 has a first end coupled to the second end of the first current source 21822, and a second end for receiving a first control signal FCS generated according to the N-bit control signal and the look-up table. And a third terminal coupled to the operational amplifier 214; the sixth switch 21844 has a first end coupled to the second end of the first current source 21824, and a second end for receiving the control signal according to the N bit The first control signal FCS' and the third terminal generated by the look-up table are connected to the operational amplifier 214. The sixth switch 21846 has a first end coupled to the second end of the first current source 21826. The second end is configured to receive the first control signal fCs generated according to the N-bit control signal and the look-up table, and a third end coupled to the operational amplifier 214. As shown in Fig. 3, the second cancellation offset circuit 2184 includes second current sources 21841, 201249099 21843, 21845 and seventh switches 21862, 21864, 21866. The second current source 21841 has a first end for receiving the first voltage νι, and a second end, the first current source 21843 has a first end for receiving the first voltage VI ' and a second end; The second current source 21845 has a first end for receiving the first voltage VI and a second end, wherein the current flowing through the second current source 21841 is I, and the current flowing through the second current source 21843 is 21, and the current flowing through the second current source 21845 is 41. However, the present invention is not limited to the current flowing through the second current source 21841 being I, the current flowing through the second current source 21843 being 21, and the current flowing through the second current source 21845 being 41. The seventh switch 21862 has a first end coupled to the second end of the second current source 21841, and a second end 'for receiving a second control signal SCS' generated according to the N-bit control signal and the look-up table. And a third end coupled to the operational amplifier 214; the seventh switch 21864 has a first end coupled to the second end of the second current source 21843, and a second end for receiving the control signal according to the N bit And the second control signal scs generated by the look-up table, and a third end coupled to the operational amplifier 214; the seventh switch 21866 has a first end 'furnace at the second end of the second current source 21845... the second end The second control signal scs generated according to the N-bit control signal and the look-up table is received, and a second end is coupled to the operational amplifier 214. — Please refer to 4A ® and 4B g. Figure 4A is a schematic diagram illustrating the operation of the operation panel 2〇0 in the normal operation mode, and Figure 4B is a schematic diagram illustrating the operation of the operation release system 200 in the elimination of the offset mode. . As shown in Fig. 4α, when the ampere amplifier system 200 is operating in the normal operation mode, the first switch 2: 2 (four) five er. 2Q8 and (4) off; Thus, the first input IN? As shown in FIG. 4B, when the operational amplifier system 200 operates in the cancel offset mode, the first switch 204, the third switch 208, and the fourth switch 210 are turned "on" according to the control signal cs, and the second switch 206 and the fifth switch 212. According to the control signal cs off. The first input INP of the nose amplifier system 200 receives the DC voltage V2. In addition, if the second switch 206 is turned on according to the control signal CS, and the first switch 204 is turned off according to the control signal CS, the straight input voltage V2 is received by the second input terminal _ of the operational amplifier system 2A. Because the third switch 208 is turned on, the first input terminal and the second input terminal of the operational amplifier 214 receive the DC voltage V2 at the same time, and the operational amplifier 214 generates a logic potential according to the offset of the DC voltage V2 and the internal of the operational amplifier 214. (Lai high potential or low "G"), that is, the operational amplifier 214 is used as a comparator. When the operational amplifier 214 generates a logic low potential "G" according to the DC voltage π and the offset inside the operational amplifier 214, the adder 2164 in the digital control circuit 216 is low in logic '', and in the digital control circuit. The temporary storage value RV stored by the first locker 2162 outputs a first corrected offset value FCOS', that is, the adder applies the temporary storage value w stored by the first pickup to the ☆ to generate and output the first correction. The offset value is Fc〇s. When the op amp is called according to straight! The internal offset of V2 and operational amplifier 214 generates a temporary value stored by the subtracter in the logic high potential capture digital control circuit 216 according to the logic high potential '丫, and the first latch 2162 in the number control circuit 216, The second 13 201249099 correction offset value SCOS is output, that is, the subtractor 2166 subtracts the temporary storage value RV stored by the first latch 2162 by one to generate and output a second corrected offset value sc〇s, such as 4B. As shown, the second latch 2168 receives and stores the first corrected offset value FC0S and the second corrected offset value SC0S, and outputs a first corrected offset value fc〇s and a second corrected offset SCOS to the first The latch 2162 and the cancel offset circuit 218; the cancel offset circuit 218 cancels the offset inside the operational amplifier 214 according to the first corrected offset value FC〇s, the second corrected offset value SC0S, and the lookup table; The locker updates the temporary storage value RV stored by the first pickup 2162 according to the first correction offset value FC0S and the second correction offset value Sc〇s. In addition, the operational amplifier system 200 can enter the cancel offset mode as soon as the operational amplifier system is turned on. At this time, the temporary storage value RV stored by the first latch 2162 is the minimum value 〇〇 或 or the maximum value 11...11 of the N-bit control signal. 'Please refer to Figure 4C'. Figure 4C shows the operation of the op amp system based on a pulse width modulation signal PWM for a period of time. The op amp system is surveyed when the pulse width modulation signal PWM is logic low. Schematic diagram of the shift mode. As shown in Fig. 4C, the pulse width modulation signal pwM is logical: when the bit is set, the controller 202 generates the control signal cs. The op amp system can control the signal cs to be a logic high _, and perform the cancellation of the bit error in the operational amplifier 214. At this time, the temporary storage value RV stored by the first-locker 2162 is the temporary storage value of the previous time. 201249099 Please refer to FIG. 2, FIG. 3, FIG. 4D and FIG. 4E. FIG. 4D is a schematic diagram of a look-up table 400 for explaining the relationship between the 4-bit control signal, the first control signal FCS and the second control signal milk. And FIG. 4E is a schematic diagram illustrating the elimination of the offset inside the operational amplifier 214. As shown in Fig. 4D, the 4-bit control signal has 16 sets of control signals', and each of the sets of control signals is applied to the -th control signal FCS and the second control signal SCS. As shown in FIG. 4E, for example, the temporary value RV stored in the first-locker 2162 is 0000, and the offset inside the operational amplifier 214 is a negative value, the operational amplifier 214 is based on the DC voltage V2 and the inside of the operational amplifier 214. The offset produces a logic low "G". Then, the adder 2164 adds - the temporary value RV(0000) stored by the first latch 2162 to generate and output a first corrected offset value FC〇s (_u. After a period τ of a clock CLK The cancellation offset circuit 218 changes the first cancellation offset circuit 2182 and the second cancellation offset circuit 2184 to the operational amplifier 214 (four) stream according to the first correction offset value FCOS (OOO1) and the look-up table 400 to adjust the operational amplifier 214. The internal offset, that is, when the first correction offset value is only 〇〇〇ι, the second control signal SCS is 〇〇〇 and the first control signal FCS is lu. Therefore, the first cancellation bias The current flowing into the operational amplifier 214 by the shift circuit 2182 is π, and the current flowing into the operational amplifier 214 by the second canceling offset circuit 2184 is zero. If the operational amplifier 214 is still generated according to the DC voltage V2 and the offset inside the operational amplifier 214, The logic low potential is “0.” The adder 2164 adds a temporary value RV(oooi) stored by the first-locker to generate a first corrected offset value FC〇s(10)(9). The period of the clock CLK is passed. After τ, the cancellation offset circuit 218 is based on the first correction bias The value FCOS (OOIO) and the look-up table 4〇〇 change the current flowing into the operational amplifier 214 by the first cancellation offset circuit 2182 and the second cancellation offset circuit 2184 to adjust the offset inside the operational amplifier 214 15 201249099. Thus, The operational amplifier 214 generates a logic high potential Ί" according to the DC voltage V2 and the offset inside the operational amplifier 214. At this time, as shown in FIG. 4E, the first correction offset value FC0S is a plane, and the subtractor 2166 is based on logic. The zeta potential 1 subtracts the temporary storage value RV (〇1〇〇) stored by the first latch 2162 to generate and output a second corrected offset value sc〇s(()1(K)). The first locker Μα stores the temporary Wei RV (4 minus (four) camphor) will continue to jump between the circle and _ 'that is, the operational amplifier system · $ into the elimination of the internal offset of the operational amplifier 214 4E The present invention is not limited to the example of the first invention. Referring to FIG. 5, FIG. 5 illustrates an operational amplifier system capable of automatically eliminating offsets according to another embodiment of the present invention. Schematic of 5(8). Operational Amplifier System · and Operational Amplifier System 200 The operational amplifier system 5 (8) further includes a d-reactor 2170. The D-type flip-flop 2170 is connected between the digital control circuit 216 and the operational amplifier 214 to quickly bring the signal output from the operational amplifier 214 to a logic potential. "Γ and logic low potential "〇, '. In addition, the remaining operating principles of the operational amplifier system leakage are the same as the operational amplifier system 2 (10), and will not be described here. Please refer to Figure 6, Figure 6 is the present invention Another embodiment illustrates a flow chart of a method for automatically eliminating offsets. The method of FIG. 6 is illustrated by the operational amplifier system 200 of FIG. 2. The detailed steps are as follows: Step 600: Start; 201249099. Step 602: Step 604: Step 606: Step 608: Step 610: Step 612: Step 614: Step 616: Step 618: When the operational amplifier system 200 is in the offset cancellation mode, the controller 202 generates the control signal CS; the first switch 204, the third switch 208, and the fourth switch 21 are said to be "on" and "first" according to the control 5fl. The switch 206 and the fifth switch 212 are turned off according to the control signal CS; the DC voltage V2 is input to the first input terminal INP of the operational amplifier system 2A; the operational amplifier 214 generates a logic according to the DC voltage V2 and the offset inside the operational amplifier 214. Potential; if the operational amplifier 214 generates a logic high potential "Γ, proceed to step (4); if the operational amplifier 214 generates a logic low potential "〇", proceed to step 618; the subtractor 2166 in the digital control circuit 216 is based on the logic high potential 1 and The temporary storage value RV stored by the first latch 2162 in the digital control circuit 216 outputs a second corrected offset value sC〇s; the second shackle 11 2168 receives and stores the second corrected offset value SCOS' and the input (four) two correction offset § (10) to the first latch 2162 and the cancellation offset circuit 218; the offset circuit 2 eliminates the second corrected offset value sc〇 s and lookup table · 'eliminate the internal offset of the operational amplifier 214; the first pickup benefit 2162 according to the second corrected offset value SCOS, update the temporary storage value Rv stored by the first lock 2162, jump back to step 6 〇 8; The adder 2164 in the digital control circuit 216 outputs the first corrected offset value FC〇s according to the logical low potential 17 201249099 “〇” and the temporary storage value RV stored in the first pickup 216 in the digital control circuit 216; The second pick-up receives and stores the first-corrected offset value FCOS, and outputs the first corrected offset value Fc〇s to the first latch 2162 and the cancel-off offset circuit 218; Step 622: The cancel-off offset circuit 218 is The first correction offset value FC〇s and the look-up table are performed to eliminate the offset inside the operational amplifier 214. Step 624: The first pick-up device moves to update the first latch 2162 according to the first corrected offset value. The stored temporary value Rv, jump back to step _; in step 606, because the third switch 2 The 〇8 system is turned on, so the first input terminal and the second input terminal of the operational amplifier 214 receive the DC dragon% at the same time. In step 6〇8, the operational amplifier 214 is based on the DC voltage % and the operation amplification _ internal offset. Generate a logic potential (logic high, or logic low), that is, the operational amplifier 214 is used as L in step _ subtraction 2166^^^, 2162^^ ^ . In the step, the canceling offset circuit 218 changes the current flowing into the operational amplifier 214 by the first canceling offset circuit and the offset circuit according to the first: offset value SCOS and the lookup table 4A to adjust the operation. Put = two internal offsets. In the step, the adder 2164 = the storage temporary value RV plus -, the call read (four) - the correction offset value fc 〇 s. In FIG. 22, the cancellation offset circuit 218 adjusts the current flowing into the operational amplifier 214 according to the first correction offset value and the correction of the kth/division offset circuit 2 i 8 2 and the second cancellation offset circuit 2 (8) 201249099. The offset inside amplifier 214. In summary, the present invention provides an automatically cancelable offset operational amplifier system and method thereof for controlling a first switch, a second switch, a third switch, a fourth switch, and a fifth and a . Therefore, compared with the prior art, the present invention has the following advantages: 帛, when the operation data, the secret silk bias type, the invention only needs to input a DC cake; the second, the operation amplification ϋ can be used as a comparison 'Therefore, it can save the area of the op amp system; third, the op amp system can be used to eliminate the offset mode, or the op amp system can operate according to the pulse width. When the pulse width modulation signal is logic low, the input operation amplifier system can be used to eliminate the offset mode at any time according to the needs of the user. The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should fall within the scope of the present invention. [Simplified description of the drawings] The first P is a prior art, and the following is an illustration of a shiftable amplifying system. The second embodiment of the present invention is a description of an embodiment of the present invention. Schematic diagram. Figure 3 is a schematic diagram illustrating the elimination of the offset circuit. Figure 4A is a diagram illustrating the operation of the operational amplifier system in a normal mode of operation. 201249099 Figure 4C shows a schematic diagram of the operation of the amplifier system in the offset mode. The op amp system starts operating according to the pulse width modulation signal. Potential V: ’? The amplifier system is in the schematic diagram of the pulse-shifting signal system, which is logic low, etc. 4:= Schematic diagram of a look-up table of the relationship between the 4-bit control signal, the first control signal and the second control signal. The fourth diagram is a schematic diagram illustrating the elimination of the offset inside the operational amplifier. Figure 5 is a schematic illustration of an operational amplifier system that automatically eliminates offsets, in accordance with another embodiment of the present invention. Figure 6 is a flow diagram of a method for automatically eliminating offsets in accordance with another embodiment of the present invention. [Main component symbol description] 100, 200, 500 operational amplifier system 102 '214 operational amplifier 104 comparator 106, 202 controller 108, 218 elimination offset circuit 110, 112 switch 204 first switch 206 second switch 208 third switch 210 Fourth switch 201249099 212 Fifth switch 216 Digital control circuit 400 Lookup table 2162 First locker 2164 Adder 2166 Reducer 2168 Second locker 2170 Type D flip-flop 2182 First cancel offset circuit 2184 Second Elimination offset circuit 21822, 21824, 21826 first current source 21842, 21844, 21846 sixth switch 21841, 21843, 21845 second current source 21862, 21864, 21866 seventh switch "ο" logic low potential "1" logic high potential CLK Clock CR Comparison Result CS Control Signal FCOS First Correction Offset Value FCS First Control Signal I, 21, 41 Current INN Second Input 21 201249099

INPINP

OCSOCS

OUTNOUTN

OUTPOUTP

OUTOUT

PWMPWM

RVRV

SCSSCS

SCOSSCOS

TT

VI V2 VP、VN、VOUT 600 至 624 第一輸入端 消除偏移訊號 第二輸出端 第一輸出端 輸出端 脈衝寬度調變訊號 暫存值 第二控制訊號 第二校正偏移值 週期 第一電壓 直流電壓 訊號 步驟 C* ^8 22VI V2 VP, VN, VOUT 600 to 624 The first input eliminates the offset signal, the second output, the first output, the output, the pulse width modulation signal, the temporary value, the second control signal, the second correction offset, the period, the first voltage. DC voltage signal step C* ^8 22

Claims (1)

201249099 七、申請專利範圍: 1.種可自。動消除偏移的運算放大器系統,包含: 控^器’用以當該運算放大器系統於一消除偏移模式時,產 生一控制訊號; 、 輸入端 一第二開關 輸入端 一第三開關 第二端 1關具有一第一端,搞接於該運算放大器系統的第一 一第二端,用以接收該控制訊號,及一第三端; 具有一第一端,耦接於該運算放大器系統的第二 一第二端,用以接收該控制訊號,及一第三端; 具有一第一端,耦接於該第一開關的第三端,一 用以接收該控制訊號’及一第三端,麵接於該第 二開關的第三端; 一第四開關,具有-第—端,—第二端,用以接收該控制訊號, 及一第三端; 一第五開關’具有-第-端,浦於該第間_第一端,一 第二端’用以接收該控制碱,及一第三端,搞接於該運 算放大器系統的輸出端; 一運算放大器,具有一第一輸入端,耦接於該第一開關的第三 端,一第二輸入端,耦接於該第二開關的第三端,及一輸 出端’耦接於該第四開關的第一端; 一數位控制電路,具有一輸入端,耦接於該第四開關的第三端, 及一輸出端,用以根據該運算放大器輸出的訊號,輸出一 N位元控制訊號,其中N21 ;及 23 201249099 -消除偏移電路’耦接於該數位控制電路與該運算放大器之 間用以根據位元控制訊號和一查閱表,消除該運算 放大器内部的偏移; 其中當該運算放大器系統於該消除偏移模式時,該第一開關、 該第三開關及該第四開關根據該控制訊號開啟,以及該第 二開關及該第五關根據該㈣訊號義;當該運算放大 器系統於-正常運作模式時,該第―開關、該第二開關及 該第五開咖啟,以及該第三開關及該第四開關關閉。 2.如請求項丨所述之運算放大器系統,射該數位㈣電路包含: -第-拴鎖器’具有一輸入端,及一輸出端; 第一輸入端’_於該運算放大器的輸出端,201249099 VII. The scope of application for patents: 1. The species can be self-contained. The operational amplifier cancellation system includes: a controller for generating a control signal when the operational amplifier system is in an offset cancellation mode; and a second switch input terminal and a third switch second The first end has a first end connected to the first second end of the operational amplifier system for receiving the control signal, and a third end; having a first end coupled to the operational amplifier system The second second end is configured to receive the control signal and a third end; the first end is coupled to the third end of the first switch, and the second end is configured to receive the control signal and the first a third end, connected to the third end of the second switch; a fourth switch having a - first end, a second end for receiving the control signal, and a third end; a fifth switch 'having a first end, a second end, a second end 'to receive the control base, and a third end connected to the output of the operational amplifier system; an operational amplifier having a a first input end coupled to the third of the first switch a second input end coupled to the third end of the second switch, and an output end 'coupled to the first end of the fourth switch; a digital control circuit having an input coupled to a third end of the fourth switch, and an output end for outputting an N-bit control signal according to the signal output by the operational amplifier, wherein N21; and 23 201249099 - the cancellation offset circuit are coupled to the digital control The circuit and the operational amplifier are configured to cancel the offset inside the operational amplifier according to the bit control signal and a look-up table; wherein the first switch, the third when the operational amplifier system is in the offset cancellation mode The switch and the fourth switch are turned on according to the control signal, and the second switch and the fifth switch are based on the (four) signal; when the operational amplifier system is in the normal operation mode, the first switch, the second switch, and The fifth opening and the third switch and the fourth switch are closed. 2. The operational amplifier system of claim 1, wherein the digital (four) circuit comprises: - the first-locker has an input, and an output; the first input is - the output of the operational amplifier , 暫存值,及端’其巾當該放大賭 一加法器,具有一第一輸入端,耦接於該 用以接收該運.曾从丄mi ·· ·. 於該第一拴鎖The temporary value, and the end of the towel as the zoom-in gambling adder, has a first input coupled to the receiver for receiving the shipment. The previous shackle from the 丄mi ···. 24 201249099 第用具有一輸入端,耦接於該加法器與該減法器, 收_存該第—校正偏移值及該第二校正偏移值, 及:輸出端,輕接於該消除偏移電路及該第一拾鎖器的輸 用以輸出該第—校正偏移值及該第二校正偏移值至 δ亥扁除偏移電路及該第一拴鎖器; 其找第-校正偏移值及該第二校正偏移值係為該職元控制 /虎且該第—拾鎖祕根制校正偏雜及該第二 杈正偏移值,更新該第一拾鎖器所儲存的暫存值。 :长項2所述之運算放Afl系統’其中該加法ϋ根據該邏輯 &位及該第一拾鎖器儲存的暫存值,輸出該第一校正偏移 值,係為該加法器將該第一拾鎖器儲存的暫存值加-,以產生 並輸出該第一校正偏移值。 古青求項2所述之運算放大器系統,其中該減法器根據該邏輯 问電位及該第-拾鎖器儲存的暫存值,輸出該第二校正偏移 值,係為該減法器將該第一拾鎖器儲存的 以產生 並輸出該第二校正偏移值。 5·如請求項1所述之運算放大料統,另包含: 一 D型正反H,__數位控制電路與該運算放大器之間, 用以使該運算放大器輸出的訊號快速達到-邏輯高電位與 一邏輯低電位。 25 201249099 6. 如請求項1所述之運算放大器系統,其中該消除偏移電路包含: 一第一消除偏移電路,包含至少一第一消除偏移單元,其中每 一第一消除偏移單元包含: 一第一電流源,具有一第一端,用以接收一第一電壓, 及一第二端;及 一第六開關,具有一第一端,耦接於該第一電流源的 第二端,一第二端,用以接收根據該N位元控制 訊號和該查閱表所產生的一第一控制訊號,及一第 三端,耦接於該運算放大器;及 一第二消除偏移電路,包含至少一第二消除偏移單元,其中每 一第二消除偏移單元包含: 一第二電流源,具有一第一端,用以接收該第一電壓, 及一第二端;及 一第七開關,具有一第一端,耦接於該第二電流源的 第二端,一第二端,用以接收根據該N位元控制 訊號和該查閱表所產生的一第二控制訊號,及一第 三端,耦接於該運算放大器。 7. 如請求項1所述之運算放大器系統,其中該第一開關、該第三 開關及該第四開關係為N型金氧半電晶體,以及該第二開關及 該第五開關係為P型金氧半電晶體。 26 201249099 8.如e i項1所述之運算放大器系統,其中該第—酬、該第三 開關及5亥第四開關係為p型金氧半電晶體,以及該第二開關及 該第五開關係為N型金氧半電晶體。 • 士 °月求項1所述之運算放大器系統,其中該第-開關、該第二 開關該帛—開關、該第四關及該帛五開_、為傳輸閘。 10. 一種可自動消除偏移的方法,包含: 田運算放大器系統於一消除偏移模式時,一控制器產生一控 制訊號; 一第i關、-第三開關及—第四_根據該控制訊號開啟, 以及第一開關及一第五開關根據該控制訊號關閉; 輸入:直流電壓至該運算放大器系統的第一輸入端; 該運算放大器根據該直流電壓及該運算放大器内部的偏移,產 生一邏輯電位;及 一數位控機職據闕輯輸,執行—姉應的動作。 Π.如請伽〇之方㈣巾當該放大· 及該運算放大器内部的偏移,產生直机電壓 王遴輯低電位時,該數位控 制電路_加法器根據該邏輯低電位及該數位控制電路内 一拾鎖器儲存的暫存值’輪出—第—校正偏移值。 12.如請求項u所述之方法, 其中該數位㈣電路_加法器根據 27 201249099 該邏輯低電位及該數位控制電路内的第—拾鎖器儲存的暫存 該第-校正偏移值,係為該加法_第—拾鎖器儲 存的暫存值加-,以產生並輸出該第—校正偏移值。 13.如請求項u所述之方法,另包含: 一第4鎖ϋ接收並儲存該第,正偏移值,以及輸出該第— 校正偏移值至該第一拾鎖器與-消除偏移電路; 該消轉移電路根據該第-校正偏移值和—朗表,消除該運 算放大器内部的偏移;及 更新該第一拴鎖器儲存 "亥第拾鎖器根據該第一校正偏移值, 的暫存值。 .°凊求項10所述之方法,其中t該運算放大器根據該直流電壓 及魏魏大H内部的偏移,產生—賴高電位時,該數位控 制電路内的減法器根據該邏輯高f位及該數位控制電路内的第 -拾鎖器儲存的暫存值,輸出—第二校正偏移值。 15. 如请求項14所述之方法,其中該數位控制電路内的減法器根據 該邏輯高電位及該數位㈣電路_第—栓魅儲存的暫存 值’輸出該第二校正偏移值,係為該減法器將該第一拾鎖器儲 存的暫存值減-,以產生並輸崎第二校正偏移值。 16. 如請求項14所述之方法另包含: 28 201249099 一第,拾鎖器接收_存該第二校正偏移值 ,以及輸出該第二 ^正偏移值至該第—拾鎖器與一消除偏移電路; ^ 電路根據該第二校正偏移值和一查閱表,消除該運 $喊巧内部的偏移;及 的根據該第二校正偏移值’更新該第一拾鎖器儲存 八、圖式: 2924 201249099 The first use has an input coupled to the adder and the subtractor, receives the first-corrected offset value and the second corrected offset value, and: the output terminal is lightly connected to the canceling bias The shifting circuit and the input of the first latch are configured to output the first correction offset value and the second correction offset value to the δ 扁 flat offset circuit and the first latch; The offset value and the second correction offset value are the duty control/tiger and the first-to-pick lock correction error and the second positive offset value are updated, and the first lock is stored. Temporary value. : The operation of the long term 2, the Afl system, wherein the adding 输出 outputs the first corrected offset value according to the logical & and the temporary storage value stored by the first latch, the adder will The temporary value stored by the first latch is added to generate and output the first corrected offset value. The operational amplifier system of claim 2, wherein the subtractor outputs the second corrected offset value according to the logic potential and the temporary storage value stored by the first-locker, the subtractor The first latch is stored to generate and output the second correction offset value. 5. The operational amplifier system of claim 1, further comprising: a D-type positive and negative H, between the __ digital control circuit and the operational amplifier, to enable the output of the operational amplifier to quickly reach a logic high The potential is low with a logic. The operational amplifier system of claim 1, wherein the cancellation offset circuit comprises: a first cancellation offset circuit comprising at least one first cancellation offset unit, wherein each first cancellation offset unit The first current source has a first end for receiving a first voltage and a second end, and a sixth switch having a first end coupled to the first current source a second end, a second end, configured to receive a first control signal generated by the N-bit control signal and the look-up table, and a third end coupled to the operational amplifier; and a second cancellation bias The second circuit includes a second current source having a first terminal for receiving the first voltage and a second terminal; And a seventh switch having a first end coupled to the second end of the second current source, and a second end configured to receive a second generated according to the N-bit control signal and the look-up table a control signal, and a third end coupled to the operation Amplifier. 7. The operational amplifier system of claim 1, wherein the first switch, the third switch, and the fourth open relationship are N-type MOS transistors, and the second switch and the fifth open relationship are P-type gold oxide semi-electrode. The circuit amplifier system of claim 1, wherein the first compensation, the third switch, and the fifth open relationship are p-type MOS transistors, and the second switch and the fifth The open relationship is an N-type metal oxide semi-transistor. The operational amplifier system of claim 1, wherein the first switch, the second switch, the fourth switch, and the fifth switch are transmission gates. 10. A method for automatically eliminating offsets, comprising: a field operational amplifier system: a controller generates a control signal when an offset mode is eliminated; an ith switch, a third switch, and a fourth _ according to the control The signal is turned on, and the first switch and the fifth switch are turned off according to the control signal; the input: the DC voltage is applied to the first input end of the operational amplifier system; the operational amplifier is generated according to the DC voltage and the offset inside the operational amplifier A logic potential; and a digital controller to record the operation, the implementation of the action. Π If you want the gamma square (four) towel to be amplified and the internal offset of the operational amplifier, when the straight-line voltage is generated, the digital control circuit _ adder controls the logic according to the low potential and the digital The temporary value stored in the locker of the circuit is 'rounded out' - the corrected offset value. 12. The method of claim u, wherein the digital (four) circuit_adder temporarily stores the first-corrected offset value according to the logic low level of 27 201249099 and the first-locker stored in the digital control circuit. The temporary value stored in the addition_first-locker is added to generate and output the first correction offset value. 13. The method of claim u, further comprising: a fourth lock receiving and storing the first, positive offset value, and outputting the first corrected offset value to the first latch and the canceling offset a shifting circuit; the canceling circuit cancels an offset inside the operational amplifier according to the first-corrected offset value and the -Lang; and updates the first latch storage "Hai pickup according to the first correction The temporary value of the offset value. The method of claim 10, wherein t the operational amplifier generates a high potential according to the DC voltage and the internal offset of Wei Wei H, the subtractor in the digital control circuit is based on the logic high f The bit and the temporary value stored by the first-locker in the digital control circuit, and the output - the second corrected offset value. 15. The method of claim 14, wherein the subtractor in the digital control circuit outputs the second corrected offset value according to the logic high potential and the digital (4) circuit_the first stored value of the temporary storage value. The subtractor subtracts the temporary value stored by the first latch to generate and input a second corrected offset value. 16. The method of claim 14 further comprising: 28 201249099 a first, the latch receives _ stored the second corrected offset value, and outputs the second positive offset value to the first latch An offset circuit is eliminated; ^ the circuit cancels the internal offset of the call according to the second corrected offset value and a lookup table; and updates the first latch according to the second corrected offset value Save eight, schema: 29
TW100118327A 2011-05-25 2011-05-25 Operational amplifier system capable of automatically cancelling an offset and method capable of automatically cancelling an offset TWI425763B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100118327A TWI425763B (en) 2011-05-25 2011-05-25 Operational amplifier system capable of automatically cancelling an offset and method capable of automatically cancelling an offset

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100118327A TWI425763B (en) 2011-05-25 2011-05-25 Operational amplifier system capable of automatically cancelling an offset and method capable of automatically cancelling an offset

Publications (2)

Publication Number Publication Date
TW201249099A true TW201249099A (en) 2012-12-01
TWI425763B TWI425763B (en) 2014-02-01

Family

ID=48138921

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100118327A TWI425763B (en) 2011-05-25 2011-05-25 Operational amplifier system capable of automatically cancelling an offset and method capable of automatically cancelling an offset

Country Status (1)

Country Link
TW (1) TWI425763B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105869676A (en) * 2015-02-09 2016-08-17 力晶科技股份有限公司 Voltage generating circuit, regulator circuit, semiconductor storage device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6724329B2 (en) * 2002-04-24 2004-04-20 Intel Corporation Decision feedback equalization employing a lookup table
JP4234159B2 (en) * 2006-08-04 2009-03-04 シャープ株式会社 Offset correction device, semiconductor device, display device, and offset correction method
US7589650B2 (en) * 2006-12-29 2009-09-15 Industrial Technology Research Institute Analog-to-digital converter with calibration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105869676A (en) * 2015-02-09 2016-08-17 力晶科技股份有限公司 Voltage generating circuit, regulator circuit, semiconductor storage device
CN105869676B (en) * 2015-02-09 2019-11-12 力晶积成电子制造股份有限公司 Voltage generation circuit and adjuster circuit

Also Published As

Publication number Publication date
TWI425763B (en) 2014-02-01

Similar Documents

Publication Publication Date Title
JP4922204B2 (en) Signal detection circuit
US8174317B2 (en) Fully-differential amplifier circuit
US20110241662A1 (en) Magnetic sensor device
US9621145B2 (en) Sense amplifier latch with offset correction
US7394309B1 (en) Balanced offset compensation circuit
CN110365337B (en) Voltage reference circuit and method for providing voltage reference
JP5473525B2 (en) System and method for removing non-linearities and canceling offset errors in comparator based / zero cross based switched capacitor circuits
JP3597812B2 (en) Pseudo differential amplifier circuit and A / D converter using pseudo differential amplifier circuit
TW201249099A (en) Operational amplifier system capable of automatically cancelling an offset and method capable of automatically cancelling an offset
JP3424549B2 (en) Switched capacitor circuit
WO2003014913A2 (en) Hybrid comparator and method
US7683677B2 (en) Sample-and-hold amplification circuits
JPWO2010032726A1 (en) Sample hold circuit and control method thereof
JP2013524665A (en) Differential amplifier with rail-to-rail input voltage range
JP2008219404A (en) Amplifier circuit
JP4017596B2 (en) Switching amplifier
JP2021072550A (en) Voltage comparator
US8471753B1 (en) Pipelined analog-to-digital converter and method for converting analog signal to digital signal
KR20140046803A (en) Time amplifier and time amplifying method
CN116888930A (en) Error sampler circuit
TW201021432A (en) Comparator and pipelined ADC
US6201489B1 (en) Method and circuit for temporal cancellation of DC offset
CN111175676A (en) Low-voltage sensor system and disorder elimination method thereof
EP2239833A1 (en) Charge pump circuit and semiconductor integrated circuit
JP6796953B2 (en) Amplifier circuit and multipath nested mirror amplifier circuit