TWI425222B - 電壓產生裝置 - Google Patents

電壓產生裝置 Download PDF

Info

Publication number
TWI425222B
TWI425222B TW98105662A TW98105662A TWI425222B TW I425222 B TWI425222 B TW I425222B TW 98105662 A TW98105662 A TW 98105662A TW 98105662 A TW98105662 A TW 98105662A TW I425222 B TWI425222 B TW I425222B
Authority
TW
Taiwan
Prior art keywords
source
drain
voltage
transistor
generating device
Prior art date
Application number
TW98105662A
Other languages
English (en)
Other versions
TW201031928A (en
Inventor
Cheng Hsiao Lai
Yuan Che Lee
Tsung Chien Wu
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW98105662A priority Critical patent/TWI425222B/zh
Publication of TW201031928A publication Critical patent/TW201031928A/zh
Application granted granted Critical
Publication of TWI425222B publication Critical patent/TWI425222B/zh

Links

Landscapes

  • Control Of Electrical Variables (AREA)

Description

電壓產生裝置
本發明是有關於一種電壓產生裝置,且特別是有關於一種具有溫度補償能力的電壓產生裝置。
在現今的電子產品中,總是存在著一些不可取代的類比電路。而這些類比電路為了追求電路表現的穩定性,多半需要一個準確的參考電源。也因此,許多所謂的帶隙(band gap)電壓產生裝置被提出。而這些帶隙電壓產生裝置最重要的課題,就是在於其輸出電壓對於溫度改變時的自我補償能力。
以下請參照圖1,圖1繪示一種習知具有溫度補償能力的電壓產生裝置100的電路圖。電壓產生裝置100是利用將電晶體M1及電晶體M2分別產生電流I1及I2。而電流I1被分為電流I1a 及電流I1b ,同時電流I2則被分為電流I2a 及電流I2b 。電流I1b 流經雙極性電晶體Q1並產生電壓VEB1 ,相同的,電流I2b 流經雙極性電晶體Q2並產生電壓VEB2 。放大器AMP1則接收上述的電壓VEB1 、VEB2 並透過電晶體M3及電阻R1所組成的輸出及來產生帶隙電壓VBG。
這個帶隙電壓VBG具有正溫度係數,因此為了達到補償的效果,電壓產生裝置100在帶隙電壓VBG後串接了一組低通濾波器101。這個由電容及電阻所組成的低通濾波器101因具有負溫度係數,因此可以有效的對輸出 電壓Vout產生溫度補償的效應,使輸出電壓Vout不隨著溫度改變而飄移。
然而,上述的電壓產生裝置100必需使用一定數量的電容及電阻,而增加了電路面積及成本。此外,這種習知的電壓產生裝置的架構也無法兼顧提升電源紋波拒斥比(Power Swing Rejection Ratio,PSRR)及頻寬兩項重要的參數,而影響了整體的表現。
本發明提供一種電壓產生裝置,可以有效提升其電源紋波拒斥比及頻寬。
本發明提出一種電壓產生裝置,包括第一N型電晶體以及增強式金氧半場效電晶體。其中的第一N型電晶體,具有閘極、第一源/汲極及第二源/汲極,其第一源/汲極耦接第一電壓,其第二源/汲極產生第一輸出電壓,而其閘極耦接第二電壓。而增強式金氧半場效電晶體則同樣具有閘極、第一源/汲極及第二源/汲極,其第一源/汲極耦接第一N型電晶體的第二源/汲極,其第二源/汲極與其閘極耦接第二電壓。此外,上述的第一N型電晶體為空乏式金氧半場效電晶體。
在本發明之一實施例中,上述之增強式金氧半場效電晶體為P型增強式金氧半場效電晶體,且此P型增強式金氧半場效電晶體的閘極耦接至其第二源/汲極。
在本發明之一實施例中,上述之增強式金氧半場效電晶體為N型增強式金氧半場效電晶體,且此N型增強 式金氧半場效電晶體的閘極耦接至其第一源/汲極。
在本發明之一實施例中,上述之電壓產生裝置更包括準位移動電路。準位移動電路耦接至增強式金氧半場效電晶體的第一源/汲極,並產生供應電壓。
在本發明之一實施例中,上述之準位移動電路為電晶體,具有閘極、第一源/汲極及第二源/汲極。其閘極耦接第一N型電晶體的第二源/汲極,其第一源/汲極接收第三電壓,其第二源/汲極產生該供應電壓。
在本發明之一實施例中,上述之電晶體為空乏式N型金氧半場效電晶體。
在本發明之一實施例中,上述之電壓產生裝置更包括電壓參考電路,電壓參考電路耦該準位移動電路,並接收供應電壓。電壓參考電路依據供應電壓產生參考輸出電壓。
在本發明之一實施例中,上述之電壓產生裝置更包括M個第二N型電晶體,依序串接在第一N型電晶體的第一源/汲極耦接第一電壓的路徑間。各第二N型電晶體具有閘極、第一源/汲極及第二源/汲極,其中M為正整數。其中,第1個第二N型電晶體的第一源/汲極耦接第一電壓,第M個第二N型電晶體的第二源/汲極耦接第一N型電晶體的第一源/汲極,而第M個第二N型電晶體的閘極耦接第一N型電晶體的第二源/汲極。此外,第i個第二N型電晶體的第二源/汲極耦接第i+1個第二N型電晶體的第一源/汲極,第i個第二N型電晶體的閘極耦接第i+1個第二N型電晶體的第二源/汲極,其中1i<M, 且i為整數。
在本發明之一實施例中,上述之第二N型電晶體為空乏式金氧半場效電晶體。
在本發明之一實施例中,上述之第二N型電晶體的第二源/汲極分別產生M個第二輸出電壓。
在本發明之一實施例中,上述之電壓產生裝置更包括M+1個補償電阻,分別串接在第一N型電晶體、第二N型電晶體的第二源/汲極與第二電壓間。
在本發明之一實施例中,上述之電壓產生裝置更包括準位移動電路。準位移動電路耦接第一N型電晶體的第二源/汲極及第二N型電晶體的其中之一的第二源/汲極。準位移動電路接收第一輸出電壓及第二輸出電壓的其中之一,並產生供應電壓。
在本發明之一實施例中,上述之準位移動電路為電晶體,具有閘極、第一源/汲極及第二源/汲極。準位移動電路的閘極耦接第一N型電晶體的第二源/汲極,其第一源/汲極耦接第二N型電晶體的其中之一的第二源/汲極,其第二源/汲極產生供應電壓。
在本發明之一實施例中,上述之電壓產生裝置,其中更包括補償電阻,耦接在第一N型電晶體的第二源/汲極與第二電壓間。
在本發明之一實施例中,上述之第一電壓為系統電壓。
在本發明之一實施例中,上述之第二電壓為接地電壓。
基於上述,本發明利用空乏式的N型金氧半場效電晶體的負溫度係數,配合加強型的P型金氧半場效電晶體的正溫度係數來達到溫度補償的效果。更重要的是,本發明的電壓產生裝置可以有效的提升其電源紋波拒斥比及頻寬。本發明的電壓產生裝置並不需要外掛任何的電容或電阻,可以有效降低電路的面積,進而節省成本。並且本發明的電壓產生裝置不需過高的操作電壓,僅會消耗很少的功率。
為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
第一實施例:
首先請參照圖2,圖2繪示本發明的第一實施例的電壓產生裝置200的電路圖。電壓產生裝置200包括電晶體M1及電晶體M2,其中的電晶體M1為一個N型的空乏式(depletion)金氧半場效電晶體(Metal Oxide Semiconductor Field-Effect Transistor,MOSFET)。而電晶體M2則為P型的增強式(enhancement)金氧半場效電晶體。
電晶體M1具有閘極、第一源/汲極及第二源/汲極,電晶體M1的第一源/汲極耦第一電壓VDD,而其二源/汲極產生輸出電壓Vout,另外,電晶體M1的閘極耦接第二電壓GND。在本實施例中第一電壓VDD為系統電壓,而第二電壓GND則為接地電壓。
在電路的整體作動方面,電壓產生裝置200在電晶體M1及電晶體M2的串接的路徑上產生一個電流I,以電晶體M1、M2均工作在飽和區為例,電流I可以表示同式(1)所示:I=k1 (Vgs1 -Vth1 )2 =k2 (Vsg2 -|Vth2 |)2 (1)
其中,Vgs1 、Vsg2 分別為電晶體M1的閘極源極電壓差及電晶體M2的源極閘極電壓差。另外,Vth1 、Vth2 則分別為電晶體M1、M2的臨界面電壓。而上述的特性參數k1 、k2 分別為電晶體M1、M2的特性參數,其中k1 =(μ1 ×Cox1 /2)(W1 /L1 ) k2 =(μ2 ×Cox2 /2)(W2 /L2 )
而μ1 、μ2 分別為電晶體M1的電子漂移率及M2的電洞漂移率,Cox1 、Cox2 則為電晶體M1、M2的閘極氧化層單位面積電容值,W1 /L1 、W2 /L2 則分別為電晶體M1、M2的通道寬長比。
請繼續參照圖2,由圖2的繪示可得知,由於電晶體M1的源極連接電晶體M2的源極,而電晶體M1的閘極連接電晶體M2的閘極,因此可以得到式(2)的關係式:Vgs1 =-Vsg2 且Vsg2 =Vout (2)
針對式(1)及式(2)進行解聯立方程式,則可以獲得以下的式(3):
其中若使電晶體M1、M2的特性參數k1 、k2 相等,則輸出電壓另可表示成如式(4)所示:
由式(4)可以得知,輸出電壓Vout 等於電晶體M1、M2的臨界電壓Vth1 、Vth2 的絕對值的平均值。而由於電晶體M1為N型的空乏式金氧半場效電晶體,因此其臨界電壓Vth1 具有負溫度係數,而相反的,電晶體M2為P型的增強式金氧半場效電晶體,因此其臨界電壓Vth2 具有正溫度係數。據此,輸出電壓Vout 是為一個對溫度變動不敏感的電壓。
在此請特別注意,上述的電晶體M1、M2均工作在飽和區僅只是針對本實施例提出一個範例,方便說明本實施例的溫度補償的原理及方式,並不用來限制本發明。事實上,本實施例的電晶體M1、M2工作在不同的工作區(如線性區),也同樣具有溫度補償的功能。
另外,本實施例的電壓產生裝置200更包括一個補償電阻Rc,其中補償電阻Rc串接在電晶體M1的第二源/汲極與第二電壓GND間。這個補償電阻Rc提供另外一個電流的流通路徑,用來補償電晶體M1、M2因為製程的漂移造成彼此間特性的不相匹配的問題。
第二實施例:
接著請參照圖3,圖3繪示本發明的第二實施例的電壓產生裝置300的電路圖。電壓產生裝置300包括P型電晶體ME 以及多個N型電晶體MD1 ~MD3 。而P型電晶體ME 為增強式金氧半場效電晶體,而N型電晶體MD1 ~MD3 則為空乏式金氧半場效電晶體。
其中,N型電晶體MD2 ~MD3 依序串接在N型電晶體MD1 的第一源/汲極耦接第一電壓VDD的路徑間,且其中N型電晶體MD3 的第一源/汲極耦接第一電壓VDD,而其閘極耦接到N型電晶體MD1 的第一源/汲極,且其第二源/汲極耦接到N型電晶體MD2 的第一源/汲極。N型電晶體MD2 的第二源/汲極則耦接到N型電晶體MD1 的第一源/汲極,且N型電晶體MD2 的閘極耦接N型電晶體MD1 的第二源/汲極。
由第一實施例中的說明可以得知,本第二實施例中的輸出電壓Vref1 應等於電晶體ME 與電晶體MD1 臨界電壓絕對值的平均值,也就是如式(5)所示:
其中的VthE 、VthD1 分別為電晶體ME 、MD1 的臨界電壓。
此外,由於電晶體ME 、MD1 ~MD3 相互串接,因此流經電晶體MD1 與流經電晶體MD2 的汲、源極的電流I應該是相等的。也因此可以據以推導出式(6)如下所示:kd1 (Vgs1 -VthD1 )2 =kd2 (Vgs2 -VthD2 )2 (6)
其中,kd1 、kd2 分別為電晶體MD1 、MD2 的特性參數,Vgs1 為電晶體MD1 的汲源極間的跨壓,Vgs1 則為電晶體MD1 的汲源極間的跨壓。換言之,Vgs2 =Vref1 -Vref2 ,Vgs1 =0-Vref1 =-Vref1 (假設第二電壓GND為0伏特(volts,V),且VthD2 為電晶體MD2 的臨界電壓。
在第二實施例中,假設其中的電晶體MD1 、MD2 是為製造成兩個相同特性的電晶體,則可以假設式(6)中的特性參數kd1 、kd2 是相等的,且電晶體MD1 、MD2 的臨界電壓VthD1 、VthD2 也是相等的。因此,綜合式(5)、(6)就可以解出輸出電壓Vref1 、Vref2 間的關係。並利用相同的原理,則可以類推出輸出電壓Vref1 、Vref3 間的關係,其中2Vref1 =Vref2 ,3Vref1 =Vref3
本實施中的電壓產生裝置300也只存在著一個電流路徑。並且與上一個實施例比較,在沒有多出來的電流路徑的情況下,卻增加了多個的輸出電壓。也就是說,電壓產生裝置300可以在不增加電流損耗的情況下,增加多組的輸出電壓。在另一方面,與第一實施例相同的,電壓產生裝置300也不需要使用電容或電阻等被動元件,有效的降低了電路面積的大小。此外,電壓產生裝置300中產生的輸出電壓Vref1 的電源紋波拒斥比也有效的被提昇。
值得注意的是,電壓產生裝置300的實施例中所說明的輸出電壓Vref1 、Vref2 、Vref3 的1:2:3關係並不代表本發明的電壓產生裝置僅能產生這樣比例關係的輸出電 壓。其中,電壓產生裝置300也可以利用改變電晶體MD1 、MD2 、MD3 間的特性關係(特性參數及臨界電壓),來調整輸出電壓Vref1 、Vref2 、Vref3 的關係。
此外,電壓產生裝置300也並不僅限於在電晶體MD1 上串接兩個電晶體MD2 ~MD3 。請參照圖4,圖4繪示本發明的第二實施例的電壓產生裝置300的另一實施方式的電路圖。其中的電晶體MDA 上方,更可以串接多個(例如為M個,M為正整數)電晶體MD1 ~MDM 。其中,電晶體MD1 的第一源/汲極耦接第一電壓VDD,第M個電晶體MDM 的第二源/汲極耦接電晶體MDA 的第一源/汲極,而第M個電晶體MDM 的閘極耦接電晶體MDA 的第二源/汲極。此外,第i個電晶體MDi 的第二源/汲極耦接第i+1個第二N型電晶體MDi+1 的第一源/汲極,第i個電晶體MDi 的閘極耦接第i+1個電晶體MDi+1 的第二源/汲極,其中1i<M,且i為整數。電壓產生裝置300在藉由圖4繪示的實施方式下,則可以產生M+1的輸出電壓Vref1 ~VrefM+1
並且,為了補償電晶體MD2 ~MDM+1 間的差異,產生輸出電壓Vref1 ~VrefM+1 的各個端點(電晶體MD2 ~MDA 的第一源/汲極)上都各可以串一個補償電阻。
第三實施例:
接著請參照圖5,圖5繪示本發明的第三實施例的電壓產生裝置500的電路圖。電壓產生裝置500包括N型電晶體ME 以及多個N型電晶體MD1 ~MD3 。而N型電晶體ME 為增強式金氧半場效電晶體,而N型電晶體MD1 ~MD3 則為空乏式金氧半場效電晶體。
在電壓產生裝置500中,電晶體MD1 ~MD3 相互串接。且電晶體MD3 的第一源/汲極耦接第一電壓VDD,其閘極耦接至電晶體MD2 的第二源/汲極,且其第二源/汲極耦接電晶體MD2 的第一源/汲極。而電晶體MD2 的閘極耦接至電晶體MD1 的第二源/汲極,其第二源/汲極耦接電晶體MD1 的第一源/汲極。電晶體MD1 的閘極則耦接第二電壓GND,其第二源/汲極耦接電晶體ME 的閘極及電晶體ME 的第一源/汲極。此外,電晶體ME 的第二源/汲極耦接第二電壓GND。
電壓產生裝置500也可以第二實施例中的電壓產生裝置300產生三個輸出電壓Vref1 、Vref2 、Vref3 。並且,在電晶體MD1 ~MD3 的特性參數及臨界電壓都相同的情況下,輸出電壓Vref1 、Vref2 、Vref3 的比同樣為1:2:3。
電壓產生裝置500也可以藉由串接更多的N型電晶體來對應產生更多的輸出電壓,而其實施方式與圖4的相關實施方式的說明相類似,此處不多贅述。
值得注意的是,電壓產生裝置500也不需要使用電容或電阻等被動元件,有效的降低了電路面積的大小。此外,電壓產生裝置500中產生的輸出電壓Vref1 的電源紋波拒斥比也被有效的被提昇。
此外,電壓產生裝置500的實施例中所說明的輸出電壓Vref1 、Vref2 、Vref3 的1:2:3關係同樣也並不代表本發明的電壓產生裝置僅能產生這樣比例關係的輸出電壓。其中,電壓產生裝置500也可以利用改變電晶體MD1 、MD2 、MD3 間的特性關係(特性參數及臨界電壓),來調整輸出電壓Vref1 、Vref2 、Vref3 的關係。
第四實施例:
接著請在參見圖6,圖6繪示本發明的第四實施例的電壓產生裝置600的電路圖。電壓產生裝置600除了第一實施例中所提到的電路外,更包括了準位移動電路610及電壓參考電路620。其中,準位移動電路610耦接N型電晶體M1的第二源/汲極。準位移動電路610接收輸出電壓Vref1 及第三電壓VEE,並藉以產生供應電壓Vop。而電壓參考電路620則耦接準位移動電路610,並接收供應電壓Vop並產生參考輸出電壓VrefO
在此,準位移動電路610藉以調整輸出電壓Vref1 的準位,來產生一個適用於電壓參考電路620所需要的電壓準位的供應電壓Vop。另外,準位移動電路610還可以產生一個與流經電晶體M1、M2的電流I1不同的新的電流I2,以因應電壓參考電路620的需求。也就是說,當電壓參考電路620需要較大電流的供應電壓Vop時,準位移動電路610則可以對應設計成可以驅動較大電流,以應付電壓參考電路620的需要。相反的,當電壓參考電路620需要較小電流的供應電壓Vop時,準位移動電路610則可以對應設計成可以驅動較小電流,以節省功率的消耗。
準位移動電路610可以用不同的電晶體來實施,在本實施例中,準位移動電路610為空乏式N型金氧半場效電晶體Ms1 。電晶體Ms1 的閘極耦接電晶體M1的第二源/汲極,其第一源/汲極接收第三電壓VEE,且其第二源/汲極產生供應電壓Vop。
電壓參考電路620則可以是任何關於可以產生電壓的裝置,例如電壓調整器(regulator)及電源轉換器(power converter)等。附帶一提的是,電壓產生裝置600的電源紋波拒斥比與頻寬,可以藉由這種架構得到有效的提昇。
在此請特別注意,圖6繪示的電壓產生裝置600中,電晶體M1及電晶體M2所組成的電路亦可以由圖2的電壓產生裝置200、圖3的電壓產生裝置300、圖4的電壓產生裝置400或圖5的電壓產生裝置500來替換,並不限於如圖6繪示的方式。
第五實施例:
接著請在參見圖7,圖7繪示本發明的第五實施例的電壓產生裝置700的電路圖。電壓產生裝置700中除了類似第二實施例中所提到的電路外,更包括了準位移動電路710及電壓參考電路720。其中,準位移動電路710耦接電晶體MD2 、電晶體MD1 的第二源/汲極。準位移動電路710接收輸出電壓Vref1 、Vref2 ,並藉以產生供應電壓Vop。而電壓參考電路720則耦接準位移動電路710,並接收供應電壓Vop並產生參考輸出電壓VrefO
在此,準位移動電路710的功能與第四實施例中的準位移動電路610的功能相類似,唯一不同的是,準位移動電路710並不需要第三電壓VEE。
準位移動電路710同樣可以用不同的電晶體來實施,在本實施例中,準位移動電路710為空乏式N型金氧半場效電晶體Ms2 。電晶體Ms2 的閘極耦接電晶體MD1 的第二源/汲極,其第一源/汲極耦接電晶體MD2 的第二源/汲極,其第二源/汲極產生供應電壓Vop。在此,電壓產生裝置700的電源紋波拒斥比與頻寬,同樣也可以藉由這種架構得到有效的提昇。
在此請特別注意,圖7繪示的電壓產生裝置700中,電晶體MD2 、MD1 及電晶體ME所組成的電路亦可以由圖2的電壓產生裝置200、圖3的電壓產生裝置300、圖4的電壓產生裝置400或圖5的電壓產生裝置500來替換,並不限於如圖7繪示的方式。
綜上所述,本發明藉由串接的空乏式N型金氧半導場效電晶體及增強式P型金氧半導場效電晶體,來產生具有溫度補償能力的輸出電壓。其中,本發明的電壓產生裝置並不需要使用電容與電阻,有效減低電路的面積。並且,本發明藉由串接更多的空乏式N型金氧半導場效電晶體來在不增加電流輸出的情況下產生多組的輸出電壓,可以有效使第一級的輸出電壓的電源紋波拒斥比得以提升。另外,本發明還藉由準位移動電路來使電壓產生裝置的頻寬及電源紋波拒斥比可以同時提升,並兼具低消耗功率及低成本的優點。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。
100、200、300、500、600、700...電壓產生裝置
101...低通濾波器
610、710...準位移動電路
620、720...電壓參考電路
M1、M2、Q1、MD1 ~MDM 、ME 、MDA ...電晶體
I、I1、I2、I1a 、I1b ...電流
VEB1 、VEB2 、VBG、VDD、VEE、GND...電壓
AMP1...放大器
R1、Rc...電阻
Vout、Vref1 、Vref2 、Vref3 ...輸出電壓
Vop...供應電壓
圖1繪示一種習知具有溫度補償能力的電壓產生裝置100的電路圖。
圖2繪示本發明的第一實施例的電壓產生裝置200的電路圖。
圖3繪示本發明的第二實施例的電壓產生裝置300的電路圖。
圖4繪示本發明的第二實施例的電壓產生裝置300的另一實施方式的電路圖。
圖5繪示本發明的第三實施例的電壓產生裝置500的電路圖。
圖6繪示本發明的第四實施例的電壓產生裝置600的電路圖。
圖7繪示本發明的第五實施例的電壓產生裝置700的電路圖。
200...電壓產生裝置
M1、M2...電晶體
I...電流
VDD、GND...電壓
Rc...電阻
VOUT ...輸出電壓

Claims (18)

  1. 一種電壓產生裝置,包括:一第一N型電晶體,具有閘極、第一源/汲極及第二源/汲極,其第一源/汲極耦接一第一電壓,其第二源/汲極產生一第一輸出電壓;以及一增強式金氧半場效電晶體,具有閘極、第一源/汲極及第二源/汲極,其第一源/汲極耦接該第一N型電晶體的第二源/汲極,其第二源/汲極與其閘極耦接一第二電壓;其中,該第一N型電晶體為空乏式金氧半場效電晶體。
  2. 如申請專利範圍第1項所述之電壓產生裝置,其中該增強式金氧半場效電晶體為一P型增強式金氧半場效電晶體。
  3. 如申請專利範圍第1項所述之電壓產生裝置,其中該增強式金氧半場效電晶體為一N型增強式金氧半場效電晶體,該N型增強式金氧半場效電晶體的閘極耦接至該N型增強式金氧半場效電晶體的第一源/汲極。
  4. 如申請專利範圍第1項所述之電壓產生裝置,其中更包括:一準位移動電路,耦接至該增強式金氧半場效電晶體的第一源/汲極,並產生一供應電壓。
  5. 如申請專利範圍第4項所述之電壓產生裝置,其中該準位移動電路為一電晶體,具有閘極、第一源/汲極及第二源/汲極,其閘極耦接該第一N型電晶體的第二源/ 汲極,其第一源/汲極接收一第三電壓,其第二源/汲極產生該供應電壓。
  6. 如申請專利範圍第5項所述之電壓產生裝置,其中該電晶體為空乏式N型金氧半場效電晶體。
  7. 如申請專利範圍第5項所述之電壓產生裝置,其中更包括:一電壓參考電路,耦接該準位移動電路,並接收該供應電壓,該電壓參考電路依據該供應電壓產生一參考輸出電壓。
  8. 如申請專利範圍第1項所述之電壓產生裝置,其中更包括:M個第二N型電晶體,依序串接在該第一N型電晶體的第一源/汲極耦接該第一電壓的路徑間,各該第二N型電晶體具有閘極、第一源/汲極及第二源/汲極,其中M為正整數;其中第1個第二N型電晶體的第一源/汲極耦接該第一電壓,第M個第二N型電晶體的第二源/汲極耦接該第一N型電晶體的第一源/汲極,而第M個第二N型電晶體的閘極耦接該第一N型電晶體的第二源/汲極,此外,第i個第二N型電晶體的第二源/汲極耦接第i+1個第二N型電晶體的第一源/汲極,第i個第二N型電晶體的閘極耦接第i+1個第二N型電晶體的第二源/汲極,其中1i<M,且i為整數。
  9. 如申請專利範圍第8項所述之電壓產生裝置,其中該些第二N型電晶體為空乏式金氧半場效電晶體。
  10. 如申請專利範圍第8項所述之電壓產生裝置,其中該些第二N型電晶體的第二源/汲極分別產生M個第二輸出電壓。
  11. 如申請專利範圍第8項所述之電壓產生裝置,其中更包括:M+1個補償電阻,分別串接在該第一N型電晶體、該些第二N型電晶體的第二源/汲極與該第二電壓間。
  12. 如申請專利範圍第8項所述之電壓產生裝置,其中更包括:一準位移動電路,耦接該第一N型電晶體的第二源/汲極及該些第二N型電晶體的其中之一的第二源/汲極,該準位移動電路接收該第一輸出電壓及該些第二輸出電壓的其中之一,並產生一供應電壓。
  13. 如申請專利範圍第12項所述之電壓產生裝置,其中該準位移動電路為一電晶體,具有閘極、第一源/汲極及第二源/汲極,其閘極耦接該第一N型電晶體的第二源/汲極,其第一源/汲極耦接該些第二N型電晶體的其中之一的第二源/汲極,其第二源/汲極產生該供應電壓。
  14. 如申請專利範圍第13項所述之電壓產生裝置,其中該電晶體為空乏式N型金氧半場效電晶體。
  15. 如申請專利範圍第12項所述之電壓產生裝置,其中更包括:一電壓參考電路,耦接該準位移動電路,並接收該供應電壓,該電壓參考電路依據該供應電壓產生一參考輸出電壓。
  16. 如申請專利範圍第1項所述之電壓產生裝置,其中更包括:一補償電阻,耦接在該第一N型電晶體的第二源/汲極與該第二電壓間。
  17. 如申請專利範圍第1項所述之電壓產生裝置,其中該第一電壓為一系統電壓。
  18. 如申請專利範圍第1項所述之電壓產生裝置,其中該第二電壓為一接地電壓。
TW98105662A 2009-02-23 2009-02-23 電壓產生裝置 TWI425222B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98105662A TWI425222B (zh) 2009-02-23 2009-02-23 電壓產生裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98105662A TWI425222B (zh) 2009-02-23 2009-02-23 電壓產生裝置

Publications (2)

Publication Number Publication Date
TW201031928A TW201031928A (en) 2010-09-01
TWI425222B true TWI425222B (zh) 2014-02-01

Family

ID=44854708

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98105662A TWI425222B (zh) 2009-02-23 2009-02-23 電壓產生裝置

Country Status (1)

Country Link
TW (1) TWI425222B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI497256B (zh) * 2012-11-02 2015-08-21 Elite Semiconductor Esmt 參考電壓產生電路與電子裝置
TWI688192B (zh) * 2018-11-06 2020-03-11 新唐科技股份有限公司 控制電路及其包含之半導體結構
TWI789671B (zh) * 2021-01-04 2023-01-11 紘康科技股份有限公司 具有溫度補償功能之參考電路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7064601B2 (en) * 2000-09-30 2006-06-20 Samsung Electronics Co., Ltd. Reference voltage generating circuit using active resistance device
TW200819949A (en) * 2006-10-19 2008-05-01 Faraday Tech Corp Supply-independent biasing circuit
TW200820584A (en) * 2006-10-31 2008-05-01 G Time Electronic Co Ltd A stable oscillator having a reference voltage independent from the temperature and the voltage source

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7064601B2 (en) * 2000-09-30 2006-06-20 Samsung Electronics Co., Ltd. Reference voltage generating circuit using active resistance device
TW200819949A (en) * 2006-10-19 2008-05-01 Faraday Tech Corp Supply-independent biasing circuit
TW200820584A (en) * 2006-10-31 2008-05-01 G Time Electronic Co Ltd A stable oscillator having a reference voltage independent from the temperature and the voltage source

Also Published As

Publication number Publication date
TW201031928A (en) 2010-09-01

Similar Documents

Publication Publication Date Title
US7808308B2 (en) Voltage generating apparatus
JP4761458B2 (ja) カスコード回路および半導体装置
JP5715587B2 (ja) レギュレータ
US9196318B2 (en) Low temperature drift voltage reference circuit
US8878510B2 (en) Reducing power consumption in a voltage regulator
CN108334153B (zh) 一种电流镜电路
US20070063686A1 (en) Series regulator and differential amplifier circuit thereof
US10520972B2 (en) Bandgap reference circuit
KR20100080958A (ko) 기준 바이어스 발생 회로
CN107402594B (zh) 实现高电源电压转变的低功耗低压差线性稳压器
US20130176058A1 (en) Voltage comparison circuit
TWI425222B (zh) 電壓產生裝置
JP6270002B2 (ja) 擬似抵抗回路及び電荷検出回路
CN105867508A (zh) 低压差线性稳压电路
US8638162B2 (en) Reference current generating circuit, reference voltage generating circuit, and temperature detection circuit
US7026863B2 (en) Reference-voltage generating circuit
US7786802B2 (en) Output stage circuit and operational amplifier thereof
CN113126683A (zh) E/d nmos基准电压源及低压差电压调整器
CN107272811B (zh) 一种低温度系数基准电压源电路
US10613560B2 (en) Buffer stage and control circuit
CN210895158U (zh) E/d nmos基准电压源及低压差电压调整器
CN109739293B (zh) 一种基于衬底偏置的fvf双环路ldo电路
CN108362929B (zh) 双路正端电流采样模块、采样电路、开关电路及采样方法
TW202046045A (zh) 基準電壓產生電路
JP2013083471A (ja) 過電流検出回路