TWI423483B - Optical diode package structure - Google Patents

Optical diode package structure Download PDF

Info

Publication number
TWI423483B
TWI423483B TW98132734A TW98132734A TWI423483B TW I423483 B TWI423483 B TW I423483B TW 98132734 A TW98132734 A TW 98132734A TW 98132734 A TW98132734 A TW 98132734A TW I423483 B TWI423483 B TW I423483B
Authority
TW
Taiwan
Prior art keywords
photodiode
package structure
substrate
microlens array
microlens
Prior art date
Application number
TW98132734A
Other languages
Chinese (zh)
Other versions
TW201112448A (en
Inventor
Chih Ming Chen
Cheng Chin Chen
Ching Chi Cheng
Ching Fu Tsou
Teng Hsien Lai
Cheng Han Huang
Chun Ming Chang
Original Assignee
Silicon Base Dev Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silicon Base Dev Inc filed Critical Silicon Base Dev Inc
Priority to TW98132734A priority Critical patent/TWI423483B/en
Publication of TW201112448A publication Critical patent/TW201112448A/en
Application granted granted Critical
Publication of TWI423483B publication Critical patent/TWI423483B/en

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Led Device Packages (AREA)

Description

光二極體封裝結構 Photodiode package structure

本案係為一種光二極體封裝結構,尤指應用於一光二極體晶粒上的一種光二極體封裝結構。 The present invention is a photodiode package structure, especially an optical diode package structure applied to a photodiode die.

發光二極體(Light Emitting Diode以下簡稱LED)是一種可直接將電能轉化為可見光和輻射能的發光器件,其發光的原理是在半導體內正負極兩個端子施加電壓,當電流通過,使電子與電洞相結合時,剩餘能量便以光的形式釋放,依其使用的材料的不同,其能階高低使光子能量產生不同波長的光,因此,發光二極體(LED)通常具有工作電壓低、耗電量小、發光效率高、發光回應時間極短、光色純、結構牢固、抗衝擊、耐振動、性能穩定可靠、重量輕體積小以及成本低等一系列特性,發光二極體的發展可說是突飛猛進,現已能大量生產整個可見光譜段各種顏色的高亮度、高性能產品。而發光二極體(LED)在業界的生產過程主要可分為上游是發光二極體(LED)襯底晶片及襯底生產,中游的產業為發光二極體(LED)晶片設計及製造生產,下游則為發光二極體(LED)封裝與測試,其中發光二極體(LED)的封裝是影響發光二極體(LED)成品是否精良的重要關鍵技術。 Light Emitting Diode (LED) is a kind of light-emitting device that can directly convert electrical energy into visible light and radiant energy. The principle of light-emitting is to apply voltage to the two terminals of the positive and negative electrodes in the semiconductor. When the current passes, the electron is passed. When combined with a hole, the remaining energy is released in the form of light. Depending on the material used, the level of the energy level causes the photon energy to produce light of different wavelengths. Therefore, the light-emitting diode (LED) usually has an operating voltage. Low performance, low power consumption, high luminous efficiency, short response time, pure light color, firm structure, impact resistance, vibration resistance, stable and reliable performance, light weight, small size and low cost. The development can be said to be leaps and bounds, and it is now able to mass produce high-brightness, high-performance products of various colors in the entire visible spectrum. The production process of light-emitting diodes (LEDs) in the industry can be mainly divided into the production of light-emitting diode (LED) substrate wafers and substrates, and the midstream industry is the design and manufacture of light-emitting diode (LED) chips. The downstream is the LED package and test. The package of the LED is an important key technology that affects whether the finished LED is excellent.

發光二極體封裝結構是將單顆或多顆發光二極體 (LED)固定於支架或基板之上,並透過打線或共晶等方式讓發光二極體(LED)的正負電極與支架或基板上的電極相連接,並使用點膠或是壓模的方式將發光二極體(LED)以環氧樹脂或矽膠加以封裝。請參見第一圖,其係為習用具有透鏡結構之發光二極體封裝結構示意圖。從圖中我們可以清楚地看出,該發光二極體封裝結構1包含有一封裝基座10與一透鏡結構11,其中該封裝基座10係具有一承載空間12用來承載一發光二極體晶粒100,而該透鏡結構11係透過一黏合膠13(例如:矽氧烷樹脂(Silicone)或是環氧樹脂(Epoxy))來與該封裝基座10之出光面101進行接合固定。然而,習用具有透鏡結構之發光二極體封裝結構1在該透鏡結構11與該封裝基座10進行接合時,時常會發生該透鏡結構11無法準確的對準該封裝基座10之出光面101的中心點(如圖中三角形符號所標示處),而造成該透鏡結構11與該封裝基座10之間有偏移的情況發生,或是在接合的過程中,該黏合膠13因施力不均導致該透鏡結構11與封裝基座10產生傾斜的情況。 The light emitting diode package structure is a single or multiple light emitting diodes (LED) is fixed on the support or the substrate, and the positive and negative electrodes of the light-emitting diode (LED) are connected to the electrodes on the bracket or the substrate by wire bonding or eutectic, and the method of dispensing or molding is used. The light emitting diode (LED) is encapsulated with epoxy or silicone. Please refer to the first figure, which is a schematic diagram of a light-emitting diode package structure having a lens structure. As can be clearly seen from the figure, the LED package structure 1 includes a package base 10 and a lens structure 11 , wherein the package base 10 has a bearing space 12 for carrying a light-emitting diode. The lens structure 11 is bonded to the light-emitting surface 101 of the package base 10 through an adhesive 13 (for example, Silicone or Epoxy). However, when the lens structure 11 and the package base 10 are joined by the light-emitting diode package structure 1 having a lens structure, it often happens that the lens structure 11 cannot accurately align the light-emitting surface 101 of the package base 10. The center point (as indicated by the triangle symbol in the figure) causes an offset between the lens structure 11 and the package base 10, or the adhesive 13 is applied during the bonding process. The unevenness causes a situation in which the lens structure 11 and the package base 10 are inclined.

如第二圖(a)(b)(c),其係為該透鏡結構11與該封裝基座10進行接合後產生偏移或傾斜示意圖。如第二圖(a)(b)所示,當該透鏡結構11與該封裝基座10接合的過程中,如第二圖(a)所示,該透鏡結構11無法準確的對準該封裝基座10之出光面101的中心點時(三角形符號所標示處),如第二圖(b)所示,便會產生該透鏡結構11相對於該封裝基座10之出光面101產生單向(X方向)或雙向(X方向與Y方向)的線性偏移。如第二圖(c)所示,當在接合的過 程中,因為施力不均而造成該接合膠13變形,進而導致該透鏡結構11相對於該封裝基座10之出光面101產生一偏斜傾角。上述的該透鏡結構11與封裝基座10在接合過程中所產生接合不良的情況,皆會產生該發光二極體晶粒100與該透鏡結構11相對位置偏移過大,造成發光效率下降與光型的改變。此外,在該透鏡結構11與該封裝基座10接合後,會有以下的情況產生,如第二圖(d)所示之俯視圖,我們可以清楚看出,倘若該透鏡結構11為內切於該封裝基座10四邊之內切圓,則該透鏡結構11無法將該封裝基座10全部涵蓋到(如圖所示該封裝基座的四個角露出於該透鏡結構11之外),因而浪費了該封裝基座10的面積;另外一種情況如第二圖(e)所示之俯視圖,為了能使該透鏡結構11完全的將該封裝基座10涵蓋,因而加大了該透鏡結構11的面積,但如此又會有部分的該透鏡結構11超出該封裝基座10外,而浪費了該透鏡結構11的面積。上述兩種情況皆會造成製作成本的提高。 As shown in the second figure (a), (b) and (c), the lens structure 11 is bonded to the package base 10 to generate an offset or tilt diagram. As shown in the second figure (a) (b), during the bonding of the lens structure 11 to the package base 10, as shown in the second figure (a), the lens structure 11 cannot accurately align the package. When the center point of the light-emitting surface 101 of the susceptor 10 (marked by the triangular symbol), as shown in the second figure (b), the lens structure 11 is generated to be unidirectional with respect to the light-emitting surface 101 of the package base 10. Linear offset (in the X direction) or in both directions (X direction and Y direction). As shown in the second figure (c), when joined During the process, the bonding adhesive 13 is deformed due to uneven application, and the lens structure 11 is caused to have a skew angle with respect to the light-emitting surface 101 of the package base 10. When the lens structure 11 and the package base 10 are not properly bonded during the bonding process, the relative positional deviation between the LED die 100 and the lens structure 11 is excessively large, resulting in a decrease in luminous efficiency and light. Type change. In addition, after the lens structure 11 is bonded to the package base 10, the following situation occurs. As shown in the second figure (d), it can be clearly seen that the lens structure 11 is inscribed in When the package base 10 is rounded in four sides, the lens structure 11 cannot cover the package base 10 (the four corners of the package base are exposed outside the lens structure 11 as shown). The area of the package base 10 is wasted; another case is a top view shown in FIG. 2(e), in order to enable the lens structure 11 to completely cover the package base 10, thereby increasing the lens structure 11 The area of the lens structure 11 is wasted by the fact that a portion of the lens structure 11 is beyond the package base 10. Both of the above cases will result in an increase in production costs.

而為了改善上述透鏡結構與封裝基座間相對位移所造成對準固定以及浪費製作成本的問題,因而發展出可以與許多的光學元件結合成形的一種微透鏡光學系統(Micro lens optical system)。如第三圖(a)~(e)所示,先以光阻熱回流法(Reflow process)製作球面透鏡200(第三圖(a));隨後將一高分子材料201澆鑄(Cast)在第三圖(a)中的球面透鏡上(第三圖(b));固化後得到一個高分子材料模具202(第三圖(c));再以旋塗的方式,將製作微透鏡陣列203的材料塗布在第三圖(c)中所得到之高分子材料模具202上 (第三圖(d));最後再進行一脫膜程序後,便可得到具有彈性之微透鏡陣列203。經由上述的微透鏡陣列203製作程序說明後,我們可以清楚地看出,習用的微透鏡陣列203是必須額外透過一系列鑄膜成形製程製作完成後,再將此微透鏡陣列203的個別單顆微透鏡結構與單一個發光二極體的封裝基座進行接合,形成如第一圖所示之封裝架構,雖然此微透鏡陣列203能有效改善透鏡結構與封裝基座間相對位移所造成的對準及固定的問題,但如此繁複的製程勢必也會造成製作成本的提高,因此,如何針對上述缺失進行改善,係為發展本案之最主要的目的。 In order to improve the alignment and the cost of manufacturing due to the relative displacement between the lens structure and the package base, a micro lens optical system that can be formed in combination with a plurality of optical elements has been developed. As shown in the third (a) to (e), the spherical lens 200 is first formed by a Reflow process (Fig. 3(a)); then a polymer material 201 is cast (Cast) at The spherical lens in the third figure (a) (third figure (b)); after curing, a polymer material mold 202 is obtained (third figure (c)); and the microlens array is fabricated by spin coating. The material of 203 is coated on the polymer material mold 202 obtained in the third figure (c). (Fig. 3(d)); finally, after performing a stripping process, a microlens array 203 having elasticity is obtained. After the description of the microlens array 203 is described above, it can be clearly seen that the conventional microlens array 203 has to be additionally fabricated through a series of casting processes, and then the individual lenses of the microlens array 203 are The microlens structure is bonded to a package base of a single light emitting diode to form a package structure as shown in the first figure, although the microlens array 203 can effectively improve the alignment caused by the relative displacement between the lens structure and the package base. And fixed problems, but such a complicated process will inevitably lead to an increase in production costs. Therefore, how to improve the above-mentioned defects is the most important purpose of the development of this case.

本案係為一種光二極體封裝結構,應用於一光二極體晶粒上,該封裝結構包含:一基板,其係具有一第一表面;一承載空間,其頂部開口位於該基板之該第一表面,其底部用以承載該光二極體晶粒;以及一光學材料層,其係形成於該承載空間中且覆蓋於該光二極體晶粒上並具有一微透鏡陣列結構,其中該微透鏡陣列結構位於該光二極體晶粒之上方,用以透射該光二極體晶粒所發出之光線,同時透過微透鏡的外形以及陣列的排列方式,可以有效的提升出光效率及改變光型。 The present invention is an optical diode package structure applied to a photodiode die. The package structure comprises: a substrate having a first surface; a bearing space having a top opening at the first of the substrate a surface, a bottom portion thereof for carrying the photodiode crystal grain; and an optical material layer formed in the bearing space and covering the photodiode crystal grain and having a microlens array structure, wherein the microlens The array structure is located above the crystal diode of the photodiode to transmit the light emitted by the photodiode, and the shape of the microlens and the arrangement of the array can effectively improve the light efficiency and change the optical mode.

根據上述構想,本案所述之光二極體封裝結構,其中該基板係為一(100)晶格方向、一(110)晶格方向或一(111)晶格方向之矽半導體基板。 According to the above concept, the photodiode package structure of the present invention, wherein the substrate is a germanium (100) lattice direction, a (110) lattice direction or a (111) lattice direction.

根據上述構想,本案所述之光二極體封裝結構,其中該基板係為一氧化鋁或一氮化鋁材料之陶瓷基板。 According to the above concept, the photodiode package structure of the present invention, wherein the substrate is a ceramic substrate of aluminum oxide or aluminum nitride material.

根據上述構想,本案所述之光二極體封裝結構,其中該基板係為以一鋁金屬或一銅金屬所完成之一金屬基板。 According to the above concept, the photodiode package structure of the present invention, wherein the substrate is a metal substrate made of an aluminum metal or a copper metal.

根據上述構想,本案所述之光二極體封裝結構,其中該承載空間係由複數個斜面環繞而成,且該等斜面與該承載空間底部夾角小於90度。 According to the above concept, the optical diode package structure of the present invention, wherein the bearing space is surrounded by a plurality of inclined faces, and the inclined faces are less than 90 degrees from the bottom of the carrying space.

根據上述構想,本案所述之光二極體封裝結構,其中該承載空間之形狀係為一錐型、一正立方型、一矩型、一半橢圓型或一半圓錐型。 According to the above concept, the photodiode package structure of the present invention, wherein the shape of the bearing space is a cone shape, a positive cubic shape, a rectangular shape, a half elliptical shape or a half conical shape.

根據上述構想,本案所述之光二極體封裝結構,更包含一導通孔,其底部開口位於該基板所具有之一第二表面,該導通孔之頂部係連通於該承載空間之底部。 According to the above concept, the photodiode package structure of the present invention further comprises a via hole, wherein the bottom opening is located on a second surface of the substrate, and the top of the via hole is connected to the bottom of the carrying space.

根據上述構想,本案所述之光二極體封裝結構,其中該光學材料層與該微透鏡陣列結構係為具有一定透光率之一熱固型或一熱塑型之光學膠體。 According to the above concept, the photodiode package structure of the present invention, wherein the optical material layer and the microlens array structure are optical colloids having a certain light transmittance or a thermoplastic type.

根據上述構想,本案所述之光二極體封裝結構,其中該光學材料層係為具有一定透光率之一熱固型或一熱塑型之光學膠體,而該微透鏡陣列結構係為一光敏材料、一熱固型材料或一熱塑型材料。 According to the above concept, the photodiode package structure of the present invention, wherein the optical material layer is a thermocolloid or a thermoplastic optical colloid having a certain light transmittance, and the microlens array structure is a photosensitive Material, a thermoset material or a thermoplastic material.

根據上述構想,本案所述之光二極體封裝結構,其中該微透鏡陣列結構係透過一模仁壓合於該光學材料層上來完成。 According to the above concept, the photodiode package structure of the present invention, wherein the microlens array structure is completed by pressing a mold core onto the optical material layer.

根據上述構想,本案所述之光二極體封裝結構,其中該微透鏡陣列結構係由複數個微透鏡結構所構成,而該等 微透鏡結構係可為圓弧彎曲向上之一半球形三維微結構或兩軸向長度不等之一半橢圓形三維微結構。 According to the above concept, the photodiode package structure of the present invention, wherein the microlens array structure is composed of a plurality of microlens structures, and the The microlens structure may be a hemispherical three-dimensional microstructure with an arc curved upward or a semi-elliptical three-dimensional microstructure with two axial lengths.

根據上述構想,本案所述之光二極體封裝結構,其中該等微透鏡結構係可為圓弧彎曲向下之一半球形三維微結構或兩軸向長度不等之一半橢圓形三維微結構。 According to the above concept, the photodiode package structure described in the present invention, wherein the microlens structure may be a circular hemispherical three-dimensional microstructure or a semi-elliptical three-dimensional microstructure having two axial lengths.

根據上述構想,本案所述之光二極體封裝結構,其中該等微透鏡結構係可為一三面體錐型微結構或一四面體錐型微結構。 According to the above concept, the photodiode package structure of the present invention, wherein the microlens structure can be a trihedral pyramid microstructure or a tetrahedral pyramid microstructure.

根據上述構想,本案所述之光二極體封裝結構,其中該微透鏡陣列結構係位於該基板之該第一表面上或位於該承載空間內。 According to the above concept, the photodiode package structure of the present invention, wherein the microlens array structure is located on or in the first surface of the substrate.

根據上述構想,本案所述之光二極體封裝結構,其所應用之該光二極體晶粒係為一發光二極體或一雷射二極體。 According to the above concept, the photodiode package structure used in the present invention is a photodiode or a laser diode.

本案另一方面係為一種光二極體封裝結構,應用於一光二極體晶粒上,該封裝結構包含:一基板,其係具有一第一表面;一承載空間,其頂部開口位於該基板之該第一表面,其底部用以承載該光二極體晶粒;一光學材料層,其係形成於該承載空間中並覆蓋於該光二極體晶粒上;以及一微透鏡陣列結構,其係連接於該光學材料層並位於該光二極體晶粒上方,用以透射該光二極體晶粒所發出之光線及定義光型。 The other aspect of the present invention is a photodiode package structure applied to a photodiode die. The package structure includes: a substrate having a first surface; a bearing space having a top opening at the substrate The first surface has a bottom portion for carrying the photodiode grains; an optical material layer formed in the bearing space and covering the photodiode crystal grains; and a microlens array structure Connecting to the optical material layer and above the photodiode die for transmitting light emitted by the photodiode and defining a light pattern.

根據上述構想,本案另一方面所述之光二極體封裝結構,其中該基板係為一(100)晶格方向、一(110)晶格方向或一(111)晶格方向之矽半導體基板。 According to the above concept, in another aspect of the invention, the photodiode package structure, wherein the substrate is a germanium (100) lattice direction, a (110) lattice direction or a (111) lattice direction.

根據上述構想,本案另一方面所述之光二極體封裝結構,其中該基板係為一氧化鋁或一氮化鋁材料之陶瓷基板。 According to the above concept, in another aspect of the invention, the photodiode package structure, wherein the substrate is a ceramic substrate of aluminum oxide or aluminum nitride material.

根據上述構想,本案另一方面所述之光二極體封裝結構,其中該基板係為以一鋁金屬或一銅金屬所完成之一金屬基板。 According to the above concept, in another aspect of the invention, the photodiode package structure, wherein the substrate is a metal substrate made of an aluminum metal or a copper metal.

根據上述構想,本案另一方面所述之光二極體封裝結構,其中該承載空間係由複數個斜面環繞而成,且該等斜面與該承載空間底部夾角小於90度。 According to the above concept, in the photodiode package structure of the present invention, the bearing space is surrounded by a plurality of inclined faces, and the inclined faces are less than 90 degrees from the bottom of the carrying space.

根據上述構想,本案另一方面所述之光二極體封裝結構,其中該承載空間之形狀係為一錐型、一正立方型、一矩型、一半橢圓型或一半圓錐型。 According to the above concept, in the photodiode package structure according to another aspect of the present invention, the shape of the bearing space is a cone shape, a positive cubic shape, a rectangular shape, a half elliptical shape or a half conical shape.

根據上述構想,本案另一方面所述之光二極體封裝結構,更包含一導通孔,其底部開口位於該基板所具有之一第二表面,該導通孔之頂部係連通於該承載空間之底部。 According to the above concept, the photodiode package structure of the present invention further includes a via hole, wherein the bottom opening is located on a second surface of the substrate, and the top of the via hole is connected to the bottom of the carrying space. .

根據上述構想,本案另一方面所述之光二極體封裝結構,其中該光學材料層與該微透鏡陣列結構係為具有一定透光率之一熱固型或一熱塑型之光學膠體。 According to the above concept, the photodiode package structure of the present invention, wherein the optical material layer and the microlens array structure are optical colloids having a certain light transmittance or a thermoplastic type.

根據上述構想,本案另一方面所述之光二極體封裝結構,其中該光學材料層係為具有一定透光率之一熱固型或一熱塑型之光學膠體,而該微透鏡陣列結構係為一光敏材料、一熱固型材料或一熱塑型材料。 According to the above concept, the photodiode package structure according to another aspect of the present invention, wherein the optical material layer is a thermocolloid or a thermoplastic optical colloid having a certain light transmittance, and the microlens array structure is It is a photosensitive material, a thermosetting material or a thermoplastic material.

根據上述構想,本案另一方面所述之光二極體封裝結構,其中該微透鏡陣列結構係可以一乾模成形後貼合於該基板之該第一表面與該光學材料層上。 According to the above concept, in the photodiode package structure of the present invention, the microlens array structure can be bonded to the first surface of the substrate and the optical material layer after dry molding.

根據上述構想,本案另一方面所述之光二極體封裝結 構,其中該微透鏡陣列結構係由複數個微透鏡結構所構成,而該等微透鏡結構係可為圓弧彎曲向上之一半球形三維微結構或兩軸向長度不等之一半橢圓形三維微結構。 According to the above concept, the photodiode package junction described in another aspect of the present invention The microlens array structure is composed of a plurality of microlens structures, and the microlens structures may be a circular arc curved upward one hemispherical three-dimensional microstructure or two axial lengths unequal one semi-elliptical three-dimensional micro structure.

根據上述構想,本案另一方面所述之光二極體封裝結構,其中該等微透鏡結構係可為圓弧彎曲向下之一半球形三維微結構或兩軸向長度不等之一半橢圓形三維微結構。 According to the above concept, the photodiode package structure according to another aspect of the present invention, wherein the microlens structure can be a circular arc curved downward one hemispherical three-dimensional microstructure or two axial lengths of one semi-elliptical three-dimensional micro structure.

根據上述構想,本案另一方面所述之光二極體封裝結構,其中該等微透鏡結構係可為一三面體錐型微結構或一四面體錐型微結構。 According to the above concept, the photodiode package structure according to another aspect of the present invention, wherein the microlens structure may be a trihedral pyramid microstructure or a tetrahedral pyramid microstructure.

根據上述構想,本案另一方面所述之光二極體封裝結構,其中該微透鏡陣列結構係位於該基板之該第一表面上或位於該承載空間內。 According to the above concept, a photodiode package structure according to another aspect of the invention, wherein the microlens array structure is located on or in the first surface of the substrate.

根據上述構想,本案另一方面所述之光二極體封裝結構,其所應用之該光二極體晶粒係為一發光二極體或一雷射二極體。 According to the above concept, the photodiode package structure used in another aspect of the present invention is a light emitting diode or a laser diode.

請參見第四圖,其係本案為改善習用光二極體封裝結構產生之缺失所發展出一光二極體封裝結構之第一較佳實施例示意圖,而本案所述之該封裝結構係應用於一發光二極體(LED)或一雷射二極體(Laser Diode)之光二極體晶粒300的封裝過程中。從圖中我們可以清楚看出,本案所述之光二極體封裝結構3係包含有具有一第一表面301與一第二表面302之一基板30、一承載空間31、一導通孔 32、33、一光學材料層34以及一微透鏡陣列結構35,其中該基板30係為一(100)晶格方向、一(110)晶格方向或一(111)晶格方向之矽半導體基板,此類半導體基板可提供高導熱性之散熱,另外該基板30的材質也可以利用一氧化鋁或一氮化鋁材料所完成之陶瓷基板或是利用一鋁金屬、一銅金屬所完成之一金屬基板,同樣也可以提供高導熱性之散熱;該承載空間31主要係由複數個斜面306環繞而成,其頂部開口位於該基板30之該第一表面301之側,該承載空間31之底部主要用於承載該光二極體晶粒300;該導通孔32、33之底部開口位於該基板30之該第二表面302之側,且該導通孔32、33之頂部係連通於該承載空間31之底部,而本案所述之光二極體封裝結構最主要的技術手段便是該承載空間31中具有該光學材料層34,其係覆蓋於該光二極體晶粒300上,且該光學材料層34上連接有該微透鏡陣列結構35,該微透鏡陣列結構35係位於該光二極體晶粒300之上方,主要用以透射該光二極體晶粒300所發出之光線,同時透過單一微透鏡的外形以及陣列的排列方式,可以有效的提升出光效率及改變光型。以下再針對本案所述之光二極體封裝結構進行詳細的描述。 Please refer to the fourth figure, which is a schematic diagram of a first preferred embodiment of a photodiode package structure developed to improve the defect of the conventional photodiode package structure, and the package structure described in the present application is applied to The encapsulation process of the light-emitting diode (LED) or a laser diode 300 of the laser diode. As can be clearly seen from the figure, the photodiode package structure 3 of the present invention includes a substrate 30 having a first surface 301 and a second surface 302, a bearing space 31, and a via hole. 32, 33, an optical material layer 34 and a microlens array structure 35, wherein the substrate 30 is a (100) lattice direction, a (110) lattice direction or a (111) lattice direction of the germanium semiconductor substrate Such a semiconductor substrate can provide heat dissipation with high thermal conductivity, and the material of the substrate 30 can also be made of a ceramic substrate made of an aluminum oxide or an aluminum nitride material or one of aluminum metal and copper metal. The metal substrate can also provide heat dissipation with high thermal conductivity; the bearing space 31 is mainly formed by a plurality of inclined surfaces 306, and the top opening is located on the side of the first surface 301 of the substrate 30, and the bottom of the bearing space 31 The bottom of the via holes 32, 33 is located on the side of the second surface 302 of the substrate 30, and the tops of the via holes 32, 33 are connected to the bearing space 31. The bottom of the optical diode package structure of the present invention is that the optical material layer 34 is covered in the bearing space 31, and the optical material layer is covered on the photodiode die 300. 34 is connected to the micro a mirror array structure 35, the microlens array structure 35 is located above the photodiode die 300, and is mainly used to transmit light emitted by the photodiode die 300 while passing through a single microlens shape and array arrangement. The way can effectively improve the light extraction efficiency and change the light type. The photodiode package structure described in the present application will be described in detail below.

承上述之技術說明,通常位於該基板30之該第一表面301與該第二表面302上的該承載空間31與該導通孔32、33是經由對該基板30之該第一表面301與該第二表面302進行蝕刻的方式來完成,依照該基板30的晶格特性分別於該第一表面301與該第二表面302上形成底部與斜面306間之夾角小於90度之該承載空間31與該導通孔32、33, 而由複數個斜面306所環繞而成的該承載空間,其形狀可為一錐型、一正立方型、一矩型、一半橢圓型或一半圓錐型。而該光學材料層34係為具有一定透光率之一熱固型(如:矽膠、環氧樹脂)或一熱塑型(如:高玻璃轉移溫度之聚酯系)之光學膠體,該微透鏡陣列結構35係為一光敏材料(如:光阻)、一熱固型材料或一熱塑型材料。 According to the above technical description, the bearing space 31 and the via holes 32, 33 generally located on the first surface 301 and the second surface 302 of the substrate 30 are via the first surface 301 of the substrate 30 and the The second surface 302 is etched, and the bearing space 31 is formed on the first surface 301 and the second surface 302 at an angle of less than 90 degrees between the bottom surface and the inclined surface 306 according to the lattice characteristics of the substrate 30. The via holes 32, 33, The bearing space surrounded by the plurality of inclined faces 306 may have a shape of a cone shape, a positive cubic shape, a rectangular shape, a half elliptical shape or a half conical shape. The optical material layer 34 is an optical colloid having a certain light transmittance (such as: silicone rubber, epoxy resin) or a thermoplastic type (such as a high glass transition temperature polyester). The lens array structure 35 is a photosensitive material (eg, photoresist), a thermoset material, or a thermoplastic material.

請參見第五圖(a)~(c),其係為本案在第一較佳實施例中所述之光二極體封裝基座結構3中所包含之微透鏡陣列結構35製作方法之流程示意圖。從圖中我們可以清楚看出,該微透鏡陣列結構35主要是透過一模仁壓合成形製程來完成,其步驟流程從第五圖(a)~(c)中可以清楚看出,首先如第五圖(a)所示,我們在原先的該光學材料層34上塗佈另一光學材料層350(此光學材料層350我們可以利用矽膠來完成);如第五圖(b)所示,將一微透鏡模仁3016壓合於光學材料層350上;如第五圖(c)所示,移除該微透鏡模仁3016,進而於光學材料層350上形成該微透鏡陣列結構35。除此之外,該微透鏡陣列結構35也可以另外以乾模的形式加以成形後直接貼合於該基板30的該第一表面301上。 Referring to FIG. 5(a)-(c), FIG. 5 is a flow chart showing a method for fabricating the microlens array structure 35 included in the photodiode package base structure 3 described in the first preferred embodiment. . As can be clearly seen from the figure, the microlens array structure 35 is mainly completed by a die-compression forming process, and the flow of the steps can be clearly seen from the fifth figure (a) to (c), firstly as As shown in the fifth figure (a), we apply another layer of optical material 350 on the original layer 34 of optical material (this layer of optical material 350 can be completed by using silicone); as shown in the fifth figure (b) A microlens mold core 3016 is pressed onto the optical material layer 350; as shown in FIG. 5(c), the microlens mold core 3016 is removed, and the microlens array structure 35 is formed on the optical material layer 350. . In addition, the microlens array structure 35 may be additionally formed in the form of a dry mold and directly attached to the first surface 301 of the substrate 30.

請參見第六圖(a)(b),其係本案為改善習用光二極體封裝結構產生之缺失所發展出一光二極體封裝結構之第二較佳實施例示意圖。從第六圖(a)中我們可以清楚看出,本案所述之光二極體封裝結構4係包含有具有一第一表面401與一第二表面402之一基板40、一承載空間41、一導通孔42、43、一光學材料層44,在本實施例中所述之光二極體 封裝結構4與第一較佳實施例不同的地方在於,我們僅在該承載空間41中形成該光學材料層44,不用再另外於該光學材料層44上形成另一光學材料層來製作微透鏡陣列結構,也就是在本實施例中的微透鏡陣列結構45是與該光學材料層44一體成形的,其製作的方法如第六圖(b)所示,將一微透鏡模仁4016直接壓合於尚未凝固的該光學材料層44上,然後再移除該微透鏡模仁4016後便可於該光學材料層44上形成如第六圖(a)中所示之微透鏡陣列結構45。而本較佳實施例有部分技術手段與第一較佳實施例相同,故在此就不予贅述之。 Please refer to the sixth figure (a) and (b), which is a schematic diagram of a second preferred embodiment of the photodiode package structure developed in order to improve the defect of the conventional photodiode package structure. It can be clearly seen from the sixth figure (a) that the photodiode package structure 4 of the present invention includes a substrate 40 having a first surface 401 and a second surface 402, a bearing space 41, and a Vias 42, 43 and an optical material layer 44, the photodiodes described in this embodiment The difference between the package structure 4 and the first preferred embodiment is that we only form the optical material layer 44 in the bearing space 41, and no additional optical material layer is formed on the optical material layer 44 to form the microlens. The array structure, that is, the microlens array structure 45 in this embodiment is integrally formed with the optical material layer 44, and the method of fabricating is as shown in FIG. 6(b), and a microlens mold core 4016 is directly pressed. The microlens array structure 45 as shown in the sixth diagram (a) can be formed on the optical material layer 44 after the microlens mold core 4016 is removed from the optical material layer 44 which has not been solidified. The technical solutions of the preferred embodiment are the same as those of the first preferred embodiment, and therefore will not be described herein.

上述在第一較佳實施例與第二較佳實施例中所述之該微透鏡模仁3016、4016我們主要係以一體積膨脹法、一熱熔式、一表面張力或一熱擠壓法進行製作,再透過一翻模製程來完成該微透鏡模仁3016、4016。 The microlens mold cores 3016, 4016 described in the first preferred embodiment and the second preferred embodiment are mainly by a volume expansion method, a hot melt method, a surface tension or a hot extrusion method. The microlens mold cores 3016, 4016 are completed by a molding process.

另外,在上述不同實施方式的製作流程步驟中,我們可以清楚看出,該光學材料層34、44的厚度決定了該微透鏡陣列結構35、45的形成位置,例如在第四圖中,該微透鏡陣列結構35之形成位置係位於該基板30之該第一表面301上,而在第六圖(a)中,該微透鏡陣列結構45之形成位置則是位於該承載空間41中,然而,上述之實施方式僅為本案所提之較佳實施例,該光學材料層34、44也可沿著該光二極體晶粒300、400的四周塗布均勻厚度即可,並不一定需要將該光學材料層34、44填滿該承載空間31、41。 In addition, in the manufacturing process steps of the above different embodiments, it can be clearly seen that the thickness of the optical material layers 34, 44 determines the formation position of the microlens array structures 35, 45, for example, in the fourth figure, The formation position of the microlens array structure 35 is located on the first surface 301 of the substrate 30, and in the sixth diagram (a), the formation position of the microlens array structure 45 is located in the bearing space 41, however The embodiment is only a preferred embodiment of the present invention. The optical material layers 34 and 44 may also be coated with a uniform thickness along the periphery of the photodiode die 300, 400. The optical material layers 34, 44 fill the load spaces 31, 41.

再請參見第七圖(a)~(d),其係為該微透鏡陣列結構35、45不同形狀之實施例示意圖。在上述的第一較佳實施 例與第二較佳實施例的說明中,該微透鏡陣列結構35、45中所包含複數個微透鏡結構,我們均以一半球形三維微結構為例來進行說明,然而,本案所述之微透鏡陣列結構所包含的該等微透鏡結構除了可以該半球形三維微結構之外,還可以如第七圖(a)所示之兩軸向長度不等之半橢圓形三維微結構50、如第七圖(b)所示之圓弧彎曲向下之半球形三維微結構60、如第七圖(c)所示之圓弧彎曲向下之兩軸向長度不等的半橢圓形三維微結構70、如第七圖(d)所示之一三面體或四面體之錐型微結構80。 Referring again to the seventh (a) to (d), which are schematic diagrams of different shapes of the microlens array structures 35, 45. First preferred implementation in the above In the description of the second preferred embodiment, the plurality of microlens structures included in the microlens array structures 35 and 45 are described by taking a half-spherical three-dimensional microstructure as an example. However, the micro-invention described in the present application The microlens structure included in the lens array structure may have a semi-elliptical three-dimensional microstructure 50 of unequal lengths of two axial directions as shown in the seventh figure (a), in addition to the hemispherical three-dimensional microstructure. The semi-spherical three-dimensional microstructure 60 of the circular arc curved downward shown in the seventh figure (b), and the semi-elliptical three-dimensional micro with two circular axial lengths as shown in the seventh figure (c) Structure 70, a trihedral or tetrahedral tapered microstructure 80 as shown in the seventh diagram (d).

綜合以上不同的實施例說明,我們可以清楚瞭解到,透過本案所述之技術手段所完成之光二極體封裝結構,確實解決了習用封裝結構上所產生的缺失,進而完成發展本案之最主要的目的。而本發明得由熟習此技藝之人士任施匠思而為諸般修飾,然皆不脫如附申請專利範圍所欲保護者。 Based on the above various embodiments, we can clearly understand that the optical diode package structure completed by the technical means described in the present invention does solve the defects in the conventional package structure, and thus completes the development of the main purpose. The present invention has been modified by those skilled in the art, and is not intended to be protected as claimed.

本案圖式中所包含之各元件列示如下: The components included in the diagram of this case are listed as follows:

1‧‧‧發光二極體封裝結構 1‧‧‧Light emitting diode package structure

10‧‧‧封裝基座 10‧‧‧Package base

11‧‧‧透鏡結構 11‧‧‧ lens structure

12‧‧‧承載空間 12‧‧‧ Carrying space

13‧‧‧黏合膠 13‧‧‧Adhesive

100‧‧‧發光二極體晶粒 100‧‧‧Lighting diode crystal grains

101‧‧‧出光面 101‧‧‧Glossy surface

200‧‧‧球面透鏡 200‧‧‧Spherical lens

201‧‧‧高分子材料 201‧‧‧ Polymer materials

202‧‧‧高分子材料模具 202‧‧‧Polymer material mould

203‧‧‧微透鏡陣列 203‧‧‧Microlens array

3‧‧‧光二極體封裝結構 3‧‧‧Photodiode package structure

30‧‧‧基板 30‧‧‧Substrate

31‧‧‧承載空間 31‧‧‧ Carrying space

32、33‧‧‧導通孔 32, 33‧‧‧through holes

34、350‧‧‧光學材料層 34, 350‧‧‧ Optical material layer

35‧‧‧微透鏡陣列結構 35‧‧‧Microlens array structure

301‧‧‧第一表面 301‧‧‧ first surface

302‧‧‧第二表面 302‧‧‧ second surface

306‧‧‧斜面 306‧‧‧Bevel

300‧‧‧光二極體晶粒 300‧‧‧Photodiode grains

3016‧‧‧微透鏡模仁 3016‧‧‧Microlens mold

4‧‧‧光二極體封裝結構 4‧‧‧Photodiode package structure

40‧‧‧基板 40‧‧‧Substrate

41‧‧‧承載空間 41‧‧‧ Carrying space

42、43‧‧‧導通孔 42, 43‧‧‧ vias

44‧‧‧光學材料層 44‧‧‧Optical material layer

45‧‧‧微透鏡陣列結構 45‧‧‧Microlens array structure

401‧‧‧第一表面 401‧‧‧ first surface

402‧‧‧第二表面 402‧‧‧ second surface

406‧‧‧斜面 406‧‧‧Bevel

4016‧‧‧微透鏡模仁 4016‧‧‧Microlens mold

400‧‧‧光二極體晶粒 400‧‧‧Photodiode grains

50‧‧‧兩軸向長度不等之半橢圓形三維微結構 50‧‧‧Half-elliptical three-dimensional microstructures with different axial lengths

60‧‧‧圓弧彎曲向下之半球形三維微結構 60‧‧‧Curved curved downward hemispherical three-dimensional microstructure

70‧‧‧圓弧彎曲向下之兩軸向長度不等的半橢圓形三維微結構 70‧‧‧A semi-elliptical three-dimensional microstructure with two axial lengths that are curved downwards

80‧‧‧三面體或四面體之錐型微結構 80‧‧‧Third or tetrahedral pyramidal microstructure

本案得藉由下列圖式及說明,俾得更深入之了解: The case can be further understood by the following diagrams and explanations:

第一圖,其係為習用具有透鏡結構之發光二極體封裝結構示意圖。 The first figure is a schematic diagram of a light-emitting diode package structure having a lens structure.

第二圖(a)(b)(c)(d)(e),其係為該透鏡結構與該封裝基座進行接合後產生偏移或傾斜以及造成封裝基座面積浪費示意圖。 The second figure (a) (b) (c) (d) (e) is a schematic diagram of the offset or tilt of the lens structure after bonding with the package base and the waste of the package base area.

第三圖(a)~(e),其係為一微透鏡陣列製作方法流程示意 圖。 The third figure (a) ~ (e), which is a flow chart of a microlens array production method Figure.

第四圖,其係為本案為改善習用光二極體封裝結構所產生之缺失所發展出一光二極體封裝結構之第一較佳實施例示意圖。 The fourth figure is a schematic diagram of a first preferred embodiment of a photodiode package structure developed to improve the conventional photodiode package structure.

第五圖(a)~(c),其係為本案在第一較佳實施例中所述之光二極體封裝基座結構中所包含之微透鏡陣列結構製作方法之流程示意圖。 The fifth diagrams (a) to (c) are schematic flowcharts of the method for fabricating the microlens array structure included in the photodiode package base structure described in the first preferred embodiment.

第六圖(a)(b),其係本案為改善習用光二極體封裝結構產生之缺失所發展出一光二極體封裝結構之第二較佳實施例示意圖。 Fig. 6(a)(b) is a schematic view showing a second preferred embodiment of the photodiode package structure developed in order to improve the defect of the conventional photodiode package structure.

第七圖(a)~(d),其係為該微透鏡陣列結構中所包含複數個微透鏡結構不同形狀之實施例示意圖。 The seventh (a) to (d) are schematic views of embodiments in which the plurality of microlens structures are different in shape in the microlens array structure.

3‧‧‧光二極體封裝結構 3‧‧‧Photodiode package structure

30‧‧‧基板 30‧‧‧Substrate

31‧‧‧承載空間 31‧‧‧ Carrying space

32、33‧‧‧導通孔 32, 33‧‧‧through holes

34‧‧‧光學材料層 34‧‧‧Optical material layer

35‧‧‧微透鏡陣列結構 35‧‧‧Microlens array structure

300‧‧‧光二極體晶粒 300‧‧‧Photodiode grains

301‧‧‧第一表面 301‧‧‧ first surface

302‧‧‧第二表面 302‧‧‧ second surface

306‧‧‧斜面 306‧‧‧Bevel

Claims (30)

一種光二極體封裝結構,應用於一光二極體晶粒上,該封裝結構包含:一基板,其係具有一第一表面;一承載空間,其頂部開口位於該基板之該第一表面,其底部用以承載該光二極體晶粒;以及一光學材料層,其係形成於該承載空間中且覆蓋於該光二極體晶粒上並具有一微透鏡陣列結構,其中該微透鏡陣列結構位於該光二極體晶粒之上方,用以透射該光二極體晶粒所發出之光線及定義光型。 An optical diode package structure is applied to a photodiode die. The package structure comprises: a substrate having a first surface; a bearing space having a top opening on the first surface of the substrate, a bottom portion for carrying the photodiode die; and an optical material layer formed in the bearing space and covering the photodiode die and having a microlens array structure, wherein the microlens array structure is located Above the photodiode grains, the light emitted by the photodiode grains and the defined light pattern are transmitted. 如申請專利範圍第1項所述之光二極體封裝結構,其中該基板係為一(100)晶格方向、一(110)晶格方向或一(111)晶格方向之矽半導體基板。 The photodiode package structure according to claim 1, wherein the substrate is a germanium (100) lattice direction, a (110) lattice direction or a (111) lattice direction germanium semiconductor substrate. 如申請專利範圍第1項所述之光二極體封裝結構,其中該基板係為一氧化鋁或一氮化鋁材料之陶瓷基板。 The photodiode package structure according to claim 1, wherein the substrate is a ceramic substrate of aluminum oxide or aluminum nitride material. 如申請專利範圍第1項所述之光二極體封裝結構,其中該基板係為以一鋁金屬或一銅金屬所完成之一金屬基板。 The photodiode package structure of claim 1, wherein the substrate is a metal substrate made of an aluminum metal or a copper metal. 如申請專利範圍第1項所述之光二極體封裝結構,其中該承載空間係由複數個斜面環繞而成,且該等斜面與該承載空間底部夾角小於90度。 The optical diode package structure of claim 1, wherein the bearing space is surrounded by a plurality of inclined faces, and the inclined faces are less than 90 degrees from the bottom of the carrying space. 如申請專利範圍第1項所述之光二極體封裝結構,其中該承載空間之形狀係為一錐型、一正立方型、一矩型、一半橢圓型或一半圓錐型。 The photodiode package structure of claim 1, wherein the bearing space has a shape of a cone, a cube, a rectangle, a half ellipse or a half cone. 如申請專利範圍第1項所述之光二極體封裝結構,更包 含一導通孔,其底部開口位於該基板所具有之一第二表面,該導通孔之頂部係連通於該承載空間之底部。 For example, the photodiode package structure described in claim 1 of the patent scope is further included. The bottom opening has a second surface on the substrate, and the top of the via is connected to the bottom of the bearing space. 如申請專利範圍第1項所述之光二極體封裝結構,其中該光學材料層與該微透鏡陣列結構係為具有一定透光率之一熱固型或一熱塑型之光學膠體。 The photodiode package structure of claim 1, wherein the optical material layer and the microlens array structure are optical colloids having a certain light transmittance or a thermoplastic type. 如申請專利範圍第1項所述之光二極體封裝結構,其中該光學材料層係為具有一定透光率之一熱固型或一熱塑型之光學膠體,而該微透鏡陣列結構係為一光敏材料、一熱固型材料或一熱塑型材料。 The photodiode package structure according to claim 1, wherein the optical material layer is a thermocolloid or a thermoplastic optical colloid having a certain light transmittance, and the microlens array structure is A photosensitive material, a thermoset material or a thermoplastic material. 如申請專利範圍第1項所述之光二極體封裝結構,其中該微透鏡陣列結構係透過一模仁壓合於該光學材料層上來完成。 The photodiode package structure of claim 1, wherein the microlens array structure is completed by pressing a mold core onto the optical material layer. 如申請專利範圍第1項所述之光二極體封裝結構,其中該微透鏡陣列結構係由複數個微透鏡結構所構成,而該等微透鏡結構係可為圓弧彎曲向上之一半球形三維微結構或兩軸向長度不等之一半橢圓形三維微結構。 The photodiode package structure according to claim 1, wherein the microlens array structure is composed of a plurality of microlens structures, and the microlens structures may be curved by a circular hemispherical three-dimensional micro A semi-elliptical three-dimensional microstructure with a structure or two axial lengths. 如申請專利範圍第11項所述之光二極體封裝結構,其中該等微透鏡結構係可為圓弧彎曲向下之一半球形三維微結構或兩軸向長度不等之一半橢圓形三維微結構。 The photodiode package structure according to claim 11, wherein the microlens structure is a circular hemispherical three-dimensional microstructure or a semi-elliptical three-dimensional microstructure with two axial lengths. . 如申請專利範圍第11項所述之光二極體封裝結構,其中該等微透鏡結構係可為一三面體錐型微結構或一四面體錐型微結構。 The photodiode package structure of claim 11, wherein the microlens structure is a trihedral pyramid microstructure or a tetrahedral pyramid microstructure. 如申請專利範圍第1項所述之光二極體封裝結構,其中該微透鏡陣列結構係位於該基板之該第一表面上或位於該承載空間內。 The photodiode package structure of claim 1, wherein the microlens array structure is located on or in the first surface of the substrate. 如申請專利範圍第1項所述之光二極體封裝結構,其所應用之該光二極體晶粒係為一發光二極體或一雷射二極體。 The photodiode package structure as claimed in claim 1, wherein the photodiode die is a light emitting diode or a laser diode. 一種光二極體封裝結構,應用於一光二極體晶粒上,該封裝結構包含:一基板,其係具有一第一表面;一承載空間,其頂部開口位於該基板之該第一表面,其底部用以承載該光二極體晶粒;一光學材料層,其係形成於該承載空間中並覆蓋於該光二極體晶粒上;以及一微透鏡陣列結構,其係連接於該光學材料層並位於該光二極體晶粒上方,用以透射該光二極體晶粒所發出之光線及定義光型。 An optical diode package structure is applied to a photodiode die. The package structure comprises: a substrate having a first surface; a bearing space having a top opening on the first surface of the substrate, The bottom portion is for carrying the photodiode crystal grain; an optical material layer is formed in the bearing space and covers the photodiode crystal grain; and a microlens array structure is connected to the optical material layer And being located above the photodiode of the photodiode for transmitting light emitted by the photodiode and defining a light pattern. 如申請專利範圍第16項所述之光二極體封裝結構,其中該基板係為一(100)晶格方向、一(110)晶格方向或一(111)晶格方向之矽半導體基板。 The photodiode package structure according to claim 16, wherein the substrate is a germanium (100) lattice direction, a (110) lattice direction or a (111) lattice direction germanium semiconductor substrate. 如申請專利範圍第16項所述之光二極體封裝結構,其中該基板係為一氧化鋁或一氮化鋁材料之陶瓷基板。 The photodiode package structure according to claim 16, wherein the substrate is a ceramic substrate of aluminum oxide or aluminum nitride material. 如申請專利範圍第16項所述之光二極體封裝結構,其中該基板係為以一鋁金屬或一銅金屬所完成之一金屬基板。 The photodiode package structure of claim 16, wherein the substrate is a metal substrate made of an aluminum metal or a copper metal. 如申請專利範圍第16項所述之光二極體封裝結構,其中該承載空間係由複數個斜面環繞而成,且該等斜面與該承載空間底部夾角小於90度。 The optical diode package structure of claim 16, wherein the bearing space is surrounded by a plurality of inclined faces, and the inclined faces are less than 90 degrees from the bottom of the carrying space. 如申請專利範圍第16項所述之光二極體封裝結構,其 中該承載空間之形狀係為一錐型、一正立方型、一矩型、一半橢圓型或一半圓錐型。 The photodiode package structure as described in claim 16 of the patent application, The shape of the bearing space is a cone shape, a positive cubic shape, a rectangular shape, a half elliptical shape or a half conical shape. 如申請專利範圍第16項所述之光二極體封裝結構,更包含一導通孔,其底部開口位於該基板所具有之一第二表面,該導通孔之頂部係連通於該承載空間之底部。 The photodiode package structure of claim 16, further comprising a via hole, wherein the bottom opening is located on a second surface of the substrate, and the top of the via hole is connected to the bottom of the carrying space. 如申請專利範圍第16項所述之光二極體封裝結構,其中該光學材料層與該微透鏡陣列結構係為具有一定透光率之一熱固型或一熱塑型之光學膠體。 The photodiode package structure of claim 16, wherein the optical material layer and the microlens array structure are optical colloids having a certain light transmittance or a thermoplastic type. 如申請專利範圍第16項所述之光二極體封裝結構,其中該光學材料層係為具有一定透光率之一熱固型或一熱塑型之光學膠體,而該微透鏡陣列結構係為一光敏材料、一熱固型材料或一熱塑型材料。 The photodiode package structure of claim 16, wherein the optical material layer is a thermocolloid or a thermoplastic optical colloid having a certain light transmittance, and the microlens array structure is A photosensitive material, a thermoset material or a thermoplastic material. 如申請專利範圍第16項所述之光二極體封裝結構,其中該微透鏡陣列結構係可以一乾模成形後貼合於該基板之該第一表面與該光學材料層上。 The photodiode package structure of claim 16, wherein the microlens array structure is formed by dry molding and attached to the first surface of the substrate and the optical material layer. 如申請專利範圍第16項所述之光二極體封裝結構,其中該微透鏡陣列結構係由複數個微透鏡結構所構成,而該等微透鏡結構係可為圓弧彎曲向上之一半球形三維微結構或兩軸向長度不等之一半橢圓形三維微結構。 The photodiode package structure of claim 16, wherein the microlens array structure is composed of a plurality of microlens structures, and the microlens structures may be curved upwards and one hemispherical three-dimensional micro A semi-elliptical three-dimensional microstructure with a structure or two axial lengths. 如申請專利範圍第26項所述之光二極體封裝結構,其中該等微透鏡結構係可為圓弧彎曲向下之一半球形三維微結構或兩軸向長度不等之一半橢圓形三維微結構。 The photodiode package structure according to claim 26, wherein the microlens structure is a circular hemispherical three-dimensional microstructure or a semi-elliptical three-dimensional microstructure with two axial lengths. . 如申請專利範圍第26項所述之光二極體封裝結構,其中該等微透鏡結構係可為一三面體錐型微結構或一四面體錐型微結構。 The photodiode package structure of claim 26, wherein the microlens structure is a trihedral pyramid microstructure or a tetrahedral pyramid microstructure. 如申請專利範圍第16項所述之光二極體封裝結構,其中該微透鏡陣列結構係位於該基板之該第一表面上或位於該承載空間內。 The photodiode package structure of claim 16, wherein the microlens array structure is located on or in the first surface of the substrate. 如申請專利範圍第16項所述之光二極體封裝結構,其所應用之該光二極體晶粒係為一發光二極體或一雷射二極體。 The photodiode package structure as claimed in claim 16 is characterized in that the photodiode die is a light emitting diode or a laser diode.
TW98132734A 2009-09-28 2009-09-28 Optical diode package structure TWI423483B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98132734A TWI423483B (en) 2009-09-28 2009-09-28 Optical diode package structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98132734A TWI423483B (en) 2009-09-28 2009-09-28 Optical diode package structure

Publications (2)

Publication Number Publication Date
TW201112448A TW201112448A (en) 2011-04-01
TWI423483B true TWI423483B (en) 2014-01-11

Family

ID=44909283

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98132734A TWI423483B (en) 2009-09-28 2009-09-28 Optical diode package structure

Country Status (1)

Country Link
TW (1) TWI423483B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1049105A (en) * 1996-03-04 1998-02-20 Motorola Inc Integrated photo-electric package
US5739800A (en) * 1996-03-04 1998-04-14 Motorola Integrated electro-optical package with LED display chip and substrate with drivers and central opening
US6809752B2 (en) * 2002-05-28 2004-10-26 Oki Data Corporation Optical head and image forming apparatus
US20060267037A1 (en) * 2005-05-31 2006-11-30 Samsung Electro-Mechanics Co., Ltd. Light emitting diode package

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1049105A (en) * 1996-03-04 1998-02-20 Motorola Inc Integrated photo-electric package
US5739800A (en) * 1996-03-04 1998-04-14 Motorola Integrated electro-optical package with LED display chip and substrate with drivers and central opening
US5818404A (en) * 1996-03-04 1998-10-06 Motorola, Inc. Integrated electro-optical package
US6809752B2 (en) * 2002-05-28 2004-10-26 Oki Data Corporation Optical head and image forming apparatus
US20060267037A1 (en) * 2005-05-31 2006-11-30 Samsung Electro-Mechanics Co., Ltd. Light emitting diode package

Also Published As

Publication number Publication date
TW201112448A (en) 2011-04-01

Similar Documents

Publication Publication Date Title
US8735190B2 (en) Batwing LED with remote phosphor configuration
JP4416731B2 (en) Light emitting diode package and manufacturing method thereof
US8783915B2 (en) Surface-textured encapsulations for use with light emitting diodes
US8310023B2 (en) Light emitting diode package and fabrication method thereof
CN103688378B (en) Optical element, opto-electronic device and their manufacture method
US8172632B2 (en) Method of making white LED package structure having a silicon substrate
TWI550904B (en) System and methods providing semiconductor light emitters
TWI615942B (en) A light emitting device
US20090273005A1 (en) Opto-electronic package structure having silicon-substrate and method of forming the same
US8624280B2 (en) Light emitting device package and method for fabricating the same
CN104094424A (en) Molded lens forming chip scale led package and method of manufacturing the same
WO2012012974A1 (en) Led packaging structure and packaging method thereof
TWI504009B (en) Solid-state radiation transducer devices having flip-chip mounted solid-state radiation transducers and associated systems and methods
JP2012510153A (en) Light emitting device package
JP4914998B1 (en) LED module device and manufacturing method thereof
EP2479810A2 (en) Light-emitting device package and method of manufacturing the same
TWI531091B (en) Light emitting diode package structure and method for manufacturing the same
KR101039974B1 (en) Light emitting device, method for fabricating the same, and light emitting device package
JP6769881B2 (en) Chip scale package type light emitting device having a concave surface and its manufacturing method
TWI423483B (en) Optical diode package structure
US20130248906A1 (en) Light emitting diode package structure and method for fabricating the same
TWI521742B (en) Flip-chip light emitting diode package module and manufacturing method thereof
KR20110130847A (en) Method of manufacturing lens for led package
CN105845674B (en) The method of wafer scale LED array encapsulation
KR20090116970A (en) Wafer lever lens portion and light emitting device package using the same