JP6769881B2 - Chip scale package type light emitting device having a concave surface and its manufacturing method - Google Patents

Chip scale package type light emitting device having a concave surface and its manufacturing method Download PDF

Info

Publication number
JP6769881B2
JP6769881B2 JP2017003282A JP2017003282A JP6769881B2 JP 6769881 B2 JP6769881 B2 JP 6769881B2 JP 2017003282 A JP2017003282 A JP 2017003282A JP 2017003282 A JP2017003282 A JP 2017003282A JP 6769881 B2 JP6769881 B2 JP 6769881B2
Authority
JP
Japan
Prior art keywords
resin member
semiconductor die
led semiconductor
package structure
led element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017003282A
Other languages
Japanese (ja)
Other versions
JP2017175113A (en
Inventor
チェン チェ−
チェン チェ−
ワン ツォン−シ
ワン ツォン−シ
チュン ジュン−ウェイ
チュン ジュン−ウェイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maven Optronics Co Ltd
Original Assignee
Maven Optronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maven Optronics Co Ltd filed Critical Maven Optronics Co Ltd
Publication of JP2017175113A publication Critical patent/JP2017175113A/en
Application granted granted Critical
Publication of JP6769881B2 publication Critical patent/JP6769881B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92244Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages

Description

関連出願の引用参照See citation of related application

本願は、2016年1月12日出願の台湾特許出願第105100783号、ならびに当該台湾特許出願の優先権を主張する2016年1月19日出願の中国特許出願第201610033392.0号に対する利益および優先権を主張するものであり、両出願の開示全体を参照により本願に取り込む。 This application claims the benefit and priority of Taiwan Patent Application No. 105100783 filed on January 12, 2016, and China Patent Application No. 201610033392.0 filed on January 19, 2016 claiming priority of the Taiwanese patent application. The entire disclosures of both applications are incorporated herein by reference.

背景background

技術分野
本開示は、発光素子およびその製造方法に関するものであり、特に、動作時に電磁放射を行う発光ダイオード(LED)半導体ダイを含むチップスケールパッケージ型発光素子に関する。
関連技術の説明
Technical Field The present disclosure relates to a light emitting device and a method for manufacturing the same, and more particularly to a chip scale package type light emitting device including a light emitting diode (LED) semiconductor die that emits electromagnetic radiation during operation.
Description of related technology

LEDは、信号灯、バックライト装置、一般照明器具、携帯機器、自動車用照明等を含む様々な応用分野において広く使用されている。一般的に、LED半導体ダイは、リードフレームなどのパッケージ構造体内に配設して、パッケージLED素子を形成する。さらに、これに蛍光体などのフォトルミネセンス材を配して被覆し、蛍光体変換された白色LED素子を形成してもよい。 LEDs are widely used in various application fields including signal lights, backlight devices, general lighting fixtures, portable devices, automobile lighting and the like. Generally, the LED semiconductor die is arranged in a package structure such as a lead frame to form a package LED element. Further, a photoluminescent material such as a phosphor may be arranged and coated on the photoluminescent material to form a phosphor-converted white LED element.

LED素子は、通常、例えばリフローはんだ付けや共晶接合などの接合法によって基板に取り付けられて、電気エネルギーが用途基板の接続用電極を伝わり、LED素子が動作時に電磁放射を発生することができる。 The LED element is usually attached to the substrate by a bonding method such as reflow soldering or eutectic bonding, electrical energy is transmitted through the connection electrode of the application substrate, and the LED element can generate electromagnetic radiation during operation. ..

チップスケールパッケージ(CSP)型LED素子の最近の開発は、有望な利点を有することからますます多くの注目を集めている。典型的な例として、白色光のCSP型LED素子は、一般的に、コンパクトチップスケールサイズの青色光LED半導体ダイとLED半導体ダイを覆うパッケージ構造体とで構成される。リード付きプラスチック製チップキャリア(PLCC)型LED素子と比べて、CSP発光素子は、以下の長所を示す。(1)ボンディングワイヤおよびリードフレームの使用を省くことで、材料費が著しく安くなる。(2)LED半導体ダイと、通常はプリント回路基板(PCB)である取付け基板との間にリードフレームを使用しないことで、両者間の熱抵抗が一層低減する。そのため、駆動電流が同じでも、LEDの動作温度が低下する。言い換えると、CSP型LED素子の電気エネルギー消費が少なくても、より多くの光出力が得られる。(3)動作温度がより低いため、CSP型LED素子のLED半導体量子効率がより高くなる。(4)光源の形状係数がはるかに小さいため、モジュールレベルでのLED装置の設計自由度がより高くなる。(5)CSP型LED素子の発光領域が小さくて点光源に近いため、二次的な光学装置の設計が容易になる。CSP型LED素子がコンパクトなため、自動車のヘッドライトなどの投影型照明用でエタンデュの小さい光を高光照度で発するように設計できる。 Recent developments in chip-scale package (CSP) LED devices are receiving more and more attention due to their promising advantages. As a typical example, a white light CSP type LED element is generally composed of a compact chip scale size blue light LED semiconductor die and a package structure covering the LED semiconductor die. Compared to leaded plastic chip carrier (PLCC) type LED devices, CSP light emitting devices show the following advantages. (1) By omitting the use of bonding wires and lead frames, the material cost is significantly reduced. (2) By not using a lead frame between the LED semiconductor die and the mounting board, which is usually a printed circuit board (PCB), the thermal resistance between the two is further reduced. Therefore, even if the drive current is the same, the operating temperature of the LED drops. In other words, even if the CSP type LED element consumes less electrical energy, more light output can be obtained. (3) Since the operating temperature is lower, the LED semiconductor quantum efficiency of the CSP type LED element becomes higher. (4) Since the shape coefficient of the light source is much smaller, the degree of freedom in designing the LED device at the module level is higher. (5) Since the light emitting region of the CSP type LED element is small and close to a point light source, the design of a secondary optical device becomes easy. Since the CSP type LED element is compact, it can be designed to emit a small amount of light with high light illuminance for projection type lighting such as automobile headlights.

CSP型LED素子は、主にLED半導体ダイとLED半導体ダイを覆うパッケージ構造体とから成るが、金線および表面実装リードフレームを有さないので、PCBなどの用途基板に直に取り付けることができ、それによって、CSP型LED素子内部のフリップチップ半導体ダイの電極は、用途基板の接続用電極に電気的に接続可能となる。フリップチップ半導体ダイの電極は、さらに、CSP型LED素子の動作時に発生した熱を用途基板に伝達して放散するという、別の重要な機能を果たす。LED半導体ダイは無機材料から成り、パッケージ構造体は主に有機樹脂材から成ってLED半導体ダイを被覆するため、高温のリフローはんだ付け工程または共晶接合工程時における有機パッケージ構造体は、熱膨張が無機LED半導体ダイよりもはるかに大きくなる。特に、パッケージ構造体は、LED半導体ダイに比べて垂直方向が大きく膨張可能であり、言い換えると、パッケージ構造体は、下層の接続用基板より大きく膨張可能であり、LED半導体ダイ内部の電極が下層の接続用基板から「持ち上がって」しまうため、高温のはんだ付け/結合工程時にはLED半導体ダイと用途基板接続用電極の間に無駄な間隙が発生することになる。 そのため、CSP型LED素子は基板上に適切に接合されず、その結果、電気接続ができない状態となる。その他の障害状態として、電気接続抵抗が高いためにLED消費電力がより高くなり、または熱抵抗が高いために放熱が悪くなることがあり、これらはすべて、半導体ダイの電極を基板の接続用電極にうまく溶接できないために起こる。そのため、用途基板に取り付けられたCSP型LED素子全体の効率性および信頼性が低下する。 The CSP type LED element mainly consists of an LED semiconductor die and a package structure that covers the LED semiconductor die, but since it does not have a gold wire or a surface mount lead frame, it can be directly mounted on an application board such as a PCB. As a result, the electrodes of the flip-chip semiconductor die inside the CSP type LED element can be electrically connected to the connection electrodes of the application substrate. The electrodes of the flip-chip semiconductor die also perform another important function of transferring and dissipating the heat generated during the operation of the CSP type LED element to the application substrate. Since the LED semiconductor die is made of an inorganic material and the package structure is mainly made of an organic resin material to cover the LED semiconductor die, the organic package structure during the high temperature reflow soldering step or the eutectic joining step is thermally expanded. Is much larger than an inorganic LED semiconductor die. In particular, the package structure can expand more in the vertical direction than the LED semiconductor die, in other words, the package structure can expand more than the lower layer connecting substrate, and the electrodes inside the LED semiconductor die are in the lower layer. Since it is "lifted" from the connection board of the LED semiconductor die, a useless gap is generated between the LED semiconductor die and the application board connection electrode during the high temperature soldering / bonding process. Therefore, the CSP type LED element is not properly bonded on the substrate, and as a result, electrical connection is not possible. Other failure conditions include high LED power consumption due to high electrical connection resistance, or poor heat dissipation due to high thermal resistance, all of which are electrodes for connecting semiconductor dies to substrates. It happens because it cannot be welded well. Therefore, the efficiency and reliability of the entire CSP type LED element mounted on the application board are lowered.

前記の問題を改善するために、考えられる解決策として、金‐錫バンプなどの厚いはんだバンプをCSP型LED素子の電極の下に配置することにより、CSP型LED素子のパッケージ構造体の底面がより高い位置に上昇し、パッケージ構造体の底面とその下の用途基板との間に余間隙が形成される。この余間隙は、次に行われるはんだ付け/接合工程時に生じるパッケージ構造体の熱膨張のために確保されたものである。このように、CSP型LED素子のパッケージ構造体は、はんだ付け中になおも垂直方向に熱膨張するのは避けられないが、用途基板に接触しないため、LED半導体ダイの電極が無理に持ち上げられて用途基板から離れることはない。しかし、厚いはんだ付けバンプを付加することによって、CSP型LED素子を製造する材料費が大幅に上昇し、調整不良によるバンプ付加時の接合工程の製造歩留りが低下するおそれがある。 To remedy the above problem, a possible solution is to place thick solder bumps, such as gold-tin bumps, under the electrodes of the CSP LED element to reduce the bottom surface of the CSP LED element package structure. It rises to a higher position, forming a margin between the bottom surface of the package structure and the underlying substrate. This extra gap is reserved for the thermal expansion of the package structure that occurs during the next soldering / joining process. In this way, the package structure of the CSP type LED element still inevitably expands vertically during soldering, but since it does not come into contact with the application substrate, the electrodes of the LED semiconductor die are forcibly lifted. It never leaves the application board. However, by adding thick soldering bumps, the material cost for manufacturing the CSP type LED element increases significantly, and the manufacturing yield of the joining process at the time of bump addition due to improper adjustment may decrease.

このような観点から、上述の欠点を解消する解決策を提供して、CSP型LED素子を使用する実際の応用を促進する必要がある。 From this point of view, it is necessary to provide a solution that eliminates the above-mentioned drawbacks and promote the practical application using the CSP type LED element.

概要Overview

本開示のいくつかの実施形態による目的の1つは、CSP型LED素子をサブマウント基板または他の用途基板に信頼性をもって容易に接合可能なCSP型LED素子とその製造方法を提供することにある。 One of the objects according to some embodiments of the present disclosure is to provide a CSP type LED element and a method for manufacturing the CSP type LED element which can be reliably and easily bonded to a submount substrate or another application substrate. is there.

上述の目的を達成するために、本開示のいくつかの実施形態によるCSP型LED素子は、LED半導体ダイおよびパッケージ構造体を備える。LED半導体ダイは、上面、実質的に平行で且つ対向する下面、縁面、および1組の電極を有するフリップチップLED半導体ダイである。縁面は、上面の外縁と下面の外縁との間に形成されて延伸し、1組の電極はLED半導体ダイの下面に配設される。本パッケージ構造体はLED半導体ダイ上に配設されてその上面および縁面を覆い、パッケージ構造体は上部樹脂部材および下部樹脂部材を備える。下部樹脂部材は、LED半導体ダイの上面および縁面を覆い、上部樹脂部材は、下部樹脂部材上に配設されて積み重ねられる。パッケージ構造体の底面は、上方向に反り返って下に凹状空間を形成する。 To achieve the above object, the CSP type LED element according to some embodiments of the present disclosure comprises an LED semiconductor die and a package structure. An LED semiconductor die is a flip-chip LED semiconductor die having a top surface, a substantially parallel and opposed bottom surface, an edge surface, and a set of electrodes. The edge surface is formed and stretched between the outer edge of the upper surface and the outer edge of the lower surface, and a set of electrodes is arranged on the lower surface of the LED semiconductor die. The package structure is arranged on the LED semiconductor die and covers the upper surface and the edge surface thereof, and the package structure includes an upper resin member and a lower resin member. The lower resin member covers the upper surface and the edge surface of the LED semiconductor die, and the upper resin member is arranged and stacked on the lower resin member. The bottom surface of the package structure bends upward to form a concave space below.

上述の目的を達成するために、本開示のいくつかの実施形態による別のCSP型LED素子は、LED半導体ダイおよびパッケージ構造体を備える。LED半導体ダイは、上面、下面、縁面、および1組の電極を有するフリップチップLED半導体ダイである。縁面は、上面の外縁と下面の外縁との間に形成されて延伸し、1組の電極はLED半導体ダイの下面上に配置される。本パッケージ構造体は、LED半導体ダイの上面および縁面を覆う単層の樹脂部材によって構成され、単層の樹脂部材の底面は、上方向に反り返って下に凹状空間を形成する。 To achieve the above object, another CSP type LED element according to some embodiments of the present disclosure comprises an LED semiconductor die and a package structure. An LED semiconductor die is a flip-chip LED semiconductor die having an upper surface, a lower surface, an edge surface, and a set of electrodes. The edge surface is formed and stretched between the outer edge of the upper surface and the outer edge of the lower surface, and a set of electrodes is arranged on the lower surface of the LED semiconductor die. The package structure is composed of a single-layer resin member that covers the upper surface and the edge surface of the LED semiconductor die, and the bottom surface of the single-layer resin member bends upward to form a concave space below.

上述の目的を達成するために、本開示のいくつかの実施形態によるCSP型LED素子の製造方法は、樹脂部材によってフリップチップLED半導体ダイの上面および縁面を覆い、加熱硬化によって樹脂材を固化させて樹脂部材の収縮により上方に反った底面を有するパッケージ構造体を形成することを含む。 In order to achieve the above object, the method for manufacturing a CSP type LED element according to some embodiments of the present disclosure covers the upper surface and the edge surface of the flip chip LED semiconductor die with a resin member, and solidifies the resin material by heat curing. This includes forming a package structure having a bottom surface curved upward due to shrinkage of the resin member.

本開示のいくつかの実施形態のCSP型LED素子およびその製造方法は、少なくとも以下の利点をもたらす。CSP型LED素子のパッケージ構造体(樹脂部材)は上方に反った底面を有することで下に凹状空間を形成するため、CSP型LED素子がリフローはんだ付け法または共晶接合法を用いてサブマウント基板(または他の用途基板)上に取り付けられると、それによってパッケージ構造体が加熱されて熱膨張し、底面が下方へ変形する。しかし、CSP型LED素子の底面が凹状であることにより空間が形成され、高温による接合工程中に底面が下方に膨張するのに適応する。この技術的特徴によって、CSP型LED素子の電極が持ち上がってLED半導体ダイの電極と用途基板の接続用電極の間に間隙が形成され、はんだ付けによる接続不良が生じるのを防ぐことができる。よって、本開示のいくつかの実施形態による凹状の特徴を有するCSP型LED素子の1組の電極は、リフローはんだ付け法、共晶接合法または他の接合法によって用途基板に確実に電気的に接続され、それによってCSP型LED素子と基板との間の電気的接続の不良または障害を回避することができる。 The CSP type LED device and the manufacturing method thereof of some embodiments of the present disclosure provide at least the following advantages. Since the package structure (resin member) of the CSP type LED element has a bottom surface curved upward to form a concave space underneath, the CSP type LED element is submounted using the reflow soldering method or the eutectic bonding method. When mounted on a substrate (or other application substrate), it heats the package structure to thermally expand and deform the bottom surface downward. However, the concave bottom surface of the CSP type LED element creates a space, which is suitable for the bottom surface to expand downward during the joining process due to high temperature. Due to this technical feature, it is possible to prevent the electrode of the CSP type LED element from being lifted to form a gap between the electrode of the LED semiconductor die and the connection electrode of the application substrate, resulting in poor connection due to soldering. Thus, a set of electrodes of a CSP type LED element having concave features according to some embodiments of the present disclosure can be reliably electrically applied to the application substrate by reflow soldering, eutectic bonding or other bonding methods. Connected, thereby avoiding poor or impaired electrical connection between the CSP type LED element and the substrate.

さらに、接合品質が良いため、CSP型LED素子と用途基板との間の熱抵抗を低減でき、それによって動作時のCSP型LED素子の接合部温度がより低くなる。したがって、CSP型LED素子の信頼性を大幅に向上できる。また、接合部温度がより低くなるため、動作時のLED半導体ダイの量子効率がより高くなる。さらに、接合品質が良いと、CSP型LED素子と用途基板との間のオーム接触も低減でき、順電圧がより低くなる。その結果、全体的な電力損失が減り、発光効率がより高くなる。 Further, since the bonding quality is good, the thermal resistance between the CSP type LED element and the application substrate can be reduced, whereby the joint temperature of the CSP type LED element during operation becomes lower. Therefore, the reliability of the CSP type LED element can be significantly improved. In addition, since the junction temperature is lower, the quantum efficiency of the LED semiconductor die during operation is higher. Further, if the bonding quality is good, the ohm contact between the CSP type LED element and the application substrate can be reduced, and the forward voltage becomes lower. As a result, the overall power loss is reduced and the luminous efficiency is higher.

本開示の他の態様および実施形態も考えられ得る。上述の概要および以下の詳細な説明は、本開示をいずれの特定の実施形態にも限定するものでなく、本開示の一部の実施形態について述べているにすぎない。 Other aspects and embodiments of the present disclosure may also be considered. The above overview and the detailed description below do not limit this disclosure to any particular embodiment, but merely describe some embodiments of the present disclosure.

およびand およびand およびand 本開示の一実施形態によるCSP型LED素子の断面を示す概略図である。It is the schematic which shows the cross section of the CSP type LED element by one Embodiment of this disclosure. 比較するCSP型LED素子の熱膨張の断面を示す概略図である。It is the schematic which shows the cross section of the thermal expansion of the CSP type LED element to compare. 本開示の一実施形態によるCSP型LED素子の熱膨張の断面を示す概略図である。It is the schematic which shows the cross section of the thermal expansion of the CSP type LED element by one Embodiment of this disclosure. 本開示の別の実施形態によるCSP型LED素子の断面を示す概略図である。It is the schematic which shows the cross section of the CSP type LED element by another embodiment of this disclosure. 本開示の別の実施形態によるCSP型LED素子の断面を示す概略図である。It is the schematic which shows the cross section of the CSP type LED element by another embodiment of this disclosure. 本開示の別の実施形態によるCSP型LED素子の断面を示す概略図である。It is the schematic which shows the cross section of the CSP type LED element by another embodiment of this disclosure. 本開示の別の実施形態によるCSP型LED素子の断面を示す概略図である。It is the schematic which shows the cross section of the CSP type LED element by another embodiment of this disclosure. 本開示の別の実施形態によるCSP型LED素子の断面を示す概略図である。It is the schematic which shows the cross section of the CSP type LED element by another embodiment of this disclosure. およびand およびand およびand およびand 本開示の実施形態によるCSP型LED素子を製造する製造工程の概略図である。It is the schematic of the manufacturing process for manufacturing the CSP type LED element by the embodiment of this disclosure. およびand およびand およびand およびand およびand 本開示の別の実施形態による別のCSP型LED素子を製造する製造工程の概略図である。It is the schematic of the manufacturing process which manufactures another CSP type LED element by another embodiment of this disclosure. およびand およびand およびand 本開示の別の実施形態による別のCSP型LED素子を製造する製造工程の概略図である。It is the schematic of the manufacturing process which manufactures another CSP type LED element by another embodiment of this disclosure.

詳細な説明Detailed explanation

定義
本開示のいくつかの実施形態に関して述べる技術態様の一部に、以下の定義を適用する。これらの定義は、本明細書中で同じように拡大してもよい。
Definitions The following definitions apply to some of the technical aspects described with respect to some embodiments of the present disclosure. These definitions may be extended in the same manner herein.

本明細書中で使用する単数扱いの用語は、非特定と特定とを問わず、文脈上特に指示しない限り、複数の対象を含むものとする。したがって、例えば、1つの層に関する説明は、特に明示しない限り複数の層を含む場合がある。 Singular terms as used herein, whether unspecified or specified, shall include multiple objects unless otherwise specified in the context. Therefore, for example, the description of one layer may include a plurality of layers unless otherwise specified.

本明細書中で使用する用語「1組」は、1または複数の構成要素の集まりを意味する。したがって、例えば、1組の層は単一の層または複数の層を含む場合がある。また、1組の構成要素とは、その1組のうちの複数の部材を意味する場合がある。1組のうちの複数の構成要素は同じものでも、または異なるものでもよい。一部の例では、1組の構成要素は1または複数の共通する特性を含んでもよい。 As used herein, the term "set" means a collection of one or more components. Thus, for example, a set of layers may include a single layer or multiple layers. Further, a set of components may mean a plurality of members in the set. A plurality of components in a set may be the same or different. In some examples, a set of components may contain one or more common properties.

本明細書中で使用する用語「隣接する」は、近くにあるか、または隣り合うことを意味する。隣接する構成要素は、互いに離れて存在してもよく、または互いに実際に、すなわち直接に接触していてもよい。いくつかの例では、隣接する構成要素は互いに接続している場合があり、または互いに一体形成されている場合もある。いくつかの実施形態の記載では、他の構成要素「に」または他の構成要素の「上に」設けられた構成要素とは、前者の構成要素が後者の構成要素の上に(例えば、直接物理的に接触して)直接設けられる場合と、1または複数の介在要素が前者の構成要素と後者の構成要素との間に設けられる場合を含んでもよい。いくつかの実施形態の記載では、別の構成要素の「下に」設けられた構成要素とは、前者の構成要素が後者の構成要素の直下に(例えば、直接的な物理的接触によって )設けられる場合と、1または複数の介在要素が前者の構成要素と後者の構成要素との間に設けられる場合を含んでもよい。 As used herein, the term "adjacent" means close or adjacent. Adjacent components may exist apart from each other or may actually be in direct contact with each other. In some examples, adjacent components may be connected to each other or integrally formed with each other. In some embodiments, a component provided "on" or "on" another component means that the former component is on top of the latter component (eg, directly). It may include cases where it is provided directly (in physical contact) and cases where one or more intervening elements are provided between the former component and the latter component. In some embodiments, a component provided "below" another component means that the former component is provided directly below the latter component (eg, by direct physical contact). It may include the case where one or more intervening elements are provided between the former component and the latter component.

本明細書中で使用する用語「接続する」、「接続された」および「接続」は、動作上の連結または関連を意味する。接続された構成要素は、互いに直接連結させてもよく、または他の1組の構成要素などによって互いに間接的に連結させてもよい。 As used herein, the terms "connect," "connected," and "connect" mean operational concatenation or association. The connected components may be directly connected to each other, or may be indirectly connected to each other by another set of components or the like.

本明細書中で使用する用語「約」、「実質的に」、および「実質的な」は、考慮すべき度合いまたは程度を意味する。事象または状況に関連付けて用いられる場合、本用語は、当該事象または状況が間違いなく発生する場合の他に、当該事象または状況がほぼ発生する、例えば本明細書に記載される製造作業の典型的な許容レベルを占めるような近接さの場合を含んでもよい。例えば、数値に関連して使用される場合、本用語は、その数値±10%以内の変動範囲を含んでいてもよく、例えば±5%以内、±4%以内、±3%以内、±2%以内、±1%以内、±0.5%以内、±0.1%以内、または±0.05%以内の範囲を含む。 As used herein, the terms "about," "substantially," and "substantially" mean the degree or degree to be considered. When used in connection with an event or situation, the term is typically used in the manufacturing operations described herein, eg, where the event or situation almost occurs, as well as when the event or situation definitely occurs. It may include the case of proximity that occupies a certain permissible level. For example, when used in connection with a number, the term may include a range of variation within ± 10% of that number, eg ± 5%, ± 4%, ± 3%, ± 2. Includes the range within%, within ± 1%, within ± 0.5%, within ± 0.1%, or within ± 0.05%.

本明細書中でフォトルミネセンスに関して使用される用語「効率」または「量子効率」は、入力光子数に対する出力光子数の比を表す。 As used herein with respect to photoluminescence, the term "efficiency" or "quantum efficiency" refers to the ratio of the number of output photons to the number of input photons.

本明細書中で使用する用語「大きさ」は、特徴的寸法を意味する。対象物が球形(例えば粒子)の場合、対象物の大きさとは対象物の直径を意味するものでよい。対象物が非球形の場合、対象物の大きさとは対象物の様々な直交寸法の平均値を意味する。したがって、例えば、楕円体の対象物の大きさは、対象物の長軸と短軸の平均値を指すものでよい。特定の大きさを有する1組の対象物について言及する場合、対象物はその特定の大きさの周囲にいくつかの大きさが分布するものと考えられる。したがって、本明細書で用いるように、1組の対象物の大きさは、大きさの平均値、中間値またはピーク値などの大きさ分布の一般的な大きさを意味するものでよい。 As used herein, the term "size" means characteristic dimensions. When the object is spherical (for example, particles), the size of the object may mean the diameter of the object. When the object is non-spherical, the size of the object means the average value of the various orthogonal dimensions of the object. Therefore, for example, the size of an ellipsoidal object may indicate the average value of the major axis and the minor axis of the object. When referring to a set of objects having a particular size, the objects are considered to have several sizes distributed around the particular size. Therefore, as used herein, the size of a set of objects may mean the general size of a size distribution such as an average, median or peak value of size.

図1Aに示すように、本開示によるCSP型LED素子1Aの第1の実施形態は、LED半導体10およびパッケージ構造体20を含む。以下に、技術内容について述べる。 As shown in FIG. 1A, the first embodiment of the CSP type LED element 1A according to the present disclosure includes the LED semiconductor 10 and the package structure 20. The technical contents will be described below.

LED半導体ダイ10は、上面11、下面12、縁面13、および1組の電極14を有するフリップチップLED半導体ダイである。上面11および下面12は実質的に平行に形成され、互いに対向している。縁面13は、上面11と下面12との間に形成され、上面11の外縁と下面12の外縁を接続する。1組の電極14、すなわち複数の電極は、下面12に配設される。電気エネルギーが1組の電極14を通してLED半導体ダイ10に印加されることでエレクトロルミネセンスが発生する。この特定の構造に関しては、エレクトロルミネセンスを発生させる活性領域は、通常、フリップチップLED半導体ダイ10の低位の近く(下面12の近く)に位置する。そのため、活性領域によって生成された光は、上面11および縁面13を通って外に向かって出射する。したがって、フリップチップLED半導体ダイ10は、上面11および縁面13(4つの周囲縁面)から光を発する、つまり、5面発光型LED半導体ダイが形成される。 The LED semiconductor die 10 is a flip-chip LED semiconductor die having an upper surface 11, a lower surface 12, an edge surface 13, and a set of electrodes 14. The top surface 11 and the bottom surface 12 are formed substantially parallel and face each other. The edge surface 13 is formed between the upper surface 11 and the lower surface 12, and connects the outer edge of the upper surface 11 and the outer edge of the lower surface 12. A set of electrodes 14, that is, a plurality of electrodes, is arranged on the lower surface 12. Electroluminescence is generated by applying electrical energy to the LED semiconductor die 10 through a set of electrodes 14. For this particular structure, the active region that produces electroluminescence is typically located near the lower end of the flip-chip LED semiconductor die 10 (near the bottom surface 12). Therefore, the light generated by the active region is emitted outward through the upper surface 11 and the edge surface 13. Therefore, the flip-chip LED semiconductor die 10 emits light from the upper surface 11 and the edge surface 13 (four peripheral edge surfaces), that is, a five-sided light emitting LED semiconductor die is formed.

パッケージ構造体20は、全体として2つの機能を提供する。すなわち、1.LED半導体ダイ10を外側の周囲環境から保護し、2.LED半導体ダイ10の発する光の波長をダウンコンバートする。形状的には、パッケージ構造体20は、上面21、下面22および縁面23を有する。上面21および下面22は、互いに対向するように配置され、縁面23は上面21と下面22との間に形成されて、上面21の外縁を下面22の外縁に接続する。 The package structure 20 provides two functions as a whole. That is, 1. 2. Protect the LED semiconductor die 10 from the outside ambient environment. Down-converts the wavelength of light emitted by the LED semiconductor die 10. In terms of shape, the package structure 20 has an upper surface 21, a lower surface 22, and an edge surface 23. The upper surface 21 and the lower surface 22 are arranged so as to face each other, and the edge surface 23 is formed between the upper surface 21 and the lower surface 22 to connect the outer edge of the upper surface 21 to the outer edge of the lower surface 22.

さらに、パッケージ構造体20は、LED半導体ダイ10の上に配設されてLED半導体ダイ10の上面11および縁面13を覆い、パッケージ構造体20によってLED半導体ダイ10を周囲環境に直接曝さないように保護して、汚染や破損を防止する。パッケージ構造20の上面21はLED半導体ダイ10の上面11から間隔を開けて配置され、パッケージ構造体20の縁面23もLED半導体ダイ10の縁面13から間隔を開けて配置される。LED半導体ダイ10の上面11とパッケージ構造体20の上面21との間の空間内にフォトルミネセンス材を設けるのが望ましく、それによってLED半導体ダイ10から上面11を通って出射する青色光の波長をフォトルミネセンス材で部分的に変換することができる。さらに、フォトルミネセンス材は、望ましくはLED半導体ダイ10の縁面13とパッケージ構造体20の縁面23との間の空間内に設けて、LED半導体ダイ10から上面13を通って出射する青色光の波長をフォトルミネセンス材で部分的に変換してもよい。パッケージ構造体20がLED半導体ダイ10の下面12を覆わないか、または少なくとも一部を露出させることで、1組の電極14が露出して、後に用途基板に接合されることが理解されよう。 Further, the package structure 20 is arranged on the LED semiconductor die 10 to cover the upper surface 11 and the edge surface 13 of the LED semiconductor die 10 so that the package structure 20 does not directly expose the LED semiconductor die 10 to the surrounding environment. Protect to prevent contamination and damage. The upper surface 21 of the package structure 20 is arranged at a distance from the upper surface 11 of the LED semiconductor die 10, and the edge surface 23 of the package structure 20 is also arranged at a distance from the edge surface 13 of the LED semiconductor die 10. It is desirable to provide a photoluminescence material in the space between the top surface 11 of the LED semiconductor die 10 and the top surface 21 of the package structure 20, thereby emitting blue light from the LED semiconductor die 10 through the top surface 11. Can be partially converted with a photoluminescent material. Further, the photoluminescence material is preferably provided in the space between the edge surface 13 of the LED semiconductor die 10 and the edge surface 23 of the package structure 20, and emits blue light from the LED semiconductor die 10 through the upper surface 13. The wavelength of light may be partially converted with a photoluminescent material. It will be appreciated that the package structure 20 does not cover the bottom surface 12 of the LED semiconductor die 10 or exposes at least a portion of it, exposing a set of electrodes 14 and later joining to the application substrate.

また、パッケージ構造体20は、上部樹脂部材30および下部樹脂部材40を備える。上部樹脂部材30は、下部樹脂部材40の上に重ねて配設される。下部樹脂部材40がLED半導体ダイ10の上面11および縁面13を覆っているため、上部樹脂部材30はLED半導体ダイ10に直接または物理的に接触しない。上部樹脂部材30の上面はパッケージ構造体20の上面21であり、下部樹脂部材40の下面はパッケージ構造体20の下面22である。上部樹脂部材30の縁面および下部樹脂部材40の縁面が合わさってパッケージ構造体20の縁面23を構成する。LED半導体ダイ10から出射した光は、下部樹脂部材40および上部樹脂部材30の両方を透過する。樹脂部材30および40は、それぞれ、必要に応じて、少なくとも1つのフォトルミネセンス材料および/または光散乱粒子(例えばTiO2)を含む。例えば、下部樹脂部材40はフォトルミネセンス材を含むように構成し、上部樹脂部材30は光散乱粒子を含むように構成することができる。上部樹脂部材30および下部樹脂部材40は、同じ樹脂材を含んでも、あるいは異なる樹脂材を含んでいてもよい。 Further, the package structure 20 includes an upper resin member 30 and a lower resin member 40. The upper resin member 30 is arranged so as to be superposed on the lower resin member 40. Since the lower resin member 40 covers the upper surface 11 and the edge surface 13 of the LED semiconductor die 10, the upper resin member 30 does not come into direct or physical contact with the LED semiconductor die 10. The upper surface of the upper resin member 30 is the upper surface 21 of the package structure 20, and the lower surface of the lower resin member 40 is the lower surface 22 of the package structure 20. The edge surface of the upper resin member 30 and the edge surface of the lower resin member 40 are combined to form the edge surface 23 of the package structure 20. The light emitted from the LED semiconductor die 10 passes through both the lower resin member 40 and the upper resin member 30. Resin members 30 and 40 each include at least one photoluminescent material and / or light scattering particles (eg, TiO 2 ), if desired. For example, the lower resin member 40 can be configured to include a photoluminescent material, and the upper resin member 30 can be configured to include light scattering particles. The upper resin member 30 and the lower resin member 40 may contain the same resin material or may contain different resin materials.

これにより、LED半導体ダイ10から出射した青色光が下部樹脂部材40を透過する際に、LED半導体ダイ10による青色光の波長の一部をフォトルミネセンス材によって変換できる。このようにして、フォトルミネセンス材およびLED半導体ダイ10の発光する様々な波長の光は所定の比で混合され、所望の色の光、例えば様々な色温度の白色光が生成される。しかしながら、光の波長は散乱粒子を含む上部樹脂部材30を透過する時には変化しない。 As a result, when the blue light emitted from the LED semiconductor die 10 passes through the lower resin member 40, a part of the wavelength of the blue light emitted by the LED semiconductor die 10 can be converted by the photoluminescence material. In this way, the light of various wavelengths emitted by the photoluminescence material and the LED semiconductor die 10 is mixed in a predetermined ratio to produce light of a desired color, for example, white light of various color temperatures. However, the wavelength of light does not change when it passes through the upper resin member 30 containing the scattered particles.

上部樹脂部材30および下部樹脂部材40はどちらも、樹脂材の熱硬化によって形成される。一般的に、熱硬化工程における樹脂材の体積収縮は、2つの力によって引き起こされる。すなわち、化学反応によって発生する第1の収縮力と、温度が下がる時に起こる物理的収縮現象によって発生する第2の力である。熱硬化時の樹脂材の架橋は化学反応であり、この反応によって樹脂材の体積を一度で収縮させることができる。温度変化による樹脂材の熱膨張および収縮は、固有の材料特性である。温度がより高い硬化温度、例えば約150℃から常温まで下がると、材料の熱膨張と収縮によって樹脂材は体積が収縮可能となる。 Both the upper resin member 30 and the lower resin member 40 are formed by thermosetting the resin material. Generally, the volume shrinkage of the resin material in the thermosetting step is caused by two forces. That is, the first contraction force generated by a chemical reaction and the second contraction force generated by a physical contraction phenomenon that occurs when the temperature drops. Cross-linking of the resin material during thermosetting is a chemical reaction, and the volume of the resin material can be shrunk at once by this reaction. Thermal expansion and contraction of the resin material due to temperature changes are inherent material properties. As the temperature drops from a higher curing temperature, for example about 150 ° C., to room temperature, the thermal expansion and contraction of the material allows the resin material to shrink in volume.

他の無機材料を有機樹脂材内に分散させると、複合樹脂材全体の有効熱膨張係数(CTE)が変わることは理解されよう。したがって、全体的な体積収縮量は、それに応じて変化し得る。例えば、CTE(熱膨張係数)が低い無機材料(例えばフォトルミネセンス材料)を樹脂材中に分散すると、複合樹脂材全体の有効CTEが低下する。本実施形態による上部樹脂部材30または下部樹脂部材40は、必要に応じてフォトルミネセンス材料または光散乱粒子を含んでもよく、フォトルミネセンス材料または光散乱粒子は、一般的に無機材料である。したがって、フォトルミネセンス材料または光散乱粒子を含む上部樹脂部材30または下部樹脂部材40の有効CTEは、通常、低い。 It will be understood that the effective coefficient of thermal expansion (CTE) of the entire composite resin material changes when other inorganic materials are dispersed in the organic resin material. Therefore, the overall volume shrinkage can vary accordingly. For example, when an inorganic material having a low CTE (coefficient of thermal expansion) (for example, a photoluminescence material) is dispersed in a resin material, the effective CTE of the entire composite resin material is lowered. The upper resin member 30 or the lower resin member 40 according to the present embodiment may include a photoluminescence material or light scattering particles, if necessary, and the photoluminescence material or light scattering particles are generally an inorganic material. Therefore, the effective CTE of the upper resin member 30 or the lower resin member 40 containing the photoluminescent material or light scattering particles is usually low.

CSP型LED素子1Aの下の凹状空間は、化学反応によって起こる体積収縮と物理的熱収縮を含む上述の2つの力の組合せを用いたLED素子1Aの製造工程で形成できる。その詳細について以下に述べる。 The concave space under the CSP type LED element 1A can be formed in the manufacturing process of the LED element 1A using the combination of the above two forces including the volumetric shrinkage and the physical heat shrinkage caused by the chemical reaction. The details will be described below.

本実施形態で開示するCSP型LED素子1Aは、主に2つの段階によって製造する。図1Bに示すように、第1の製造段階時に、下部樹脂部材40を熱硬化させて、LED半導体ダイ10を形成する。第2の製造段階では、図1Cに示すように、上部樹脂部材30を下部樹脂部材40の上に配設し、その後熱硬化させる。 The CSP type LED element 1A disclosed in the present embodiment is mainly manufactured in two steps. As shown in FIG. 1B, the lower resin member 40 is thermoset to form the LED semiconductor die 10 during the first manufacturing stage. In the second manufacturing stage, as shown in FIG. 1C, the upper resin member 30 is arranged on the lower resin member 40 and then thermosetting.

第1の段階のLED素子1Aの製造工程では、図1Bに示すように、下部樹脂部材40を熱硬化させてLED半導体ダイ10上に形成する。その間に、下部樹脂部材40で起こる化学反応によって、1度の体積収縮が起こる。例えば、シリコーン樹脂材は、一般的に、重合反応の後に約6%の体積収縮(約2%の線形な寸法収縮)を示す。これに対し、LED半導体ダイ10は、約6.5ppm/℃のCTEを有する無機材料であり、そのCTE値は下部樹脂部材40の形成に用いるシリコーン樹脂材のCTEよりもはるかに小さい(約200ppm/℃)。したがって、樹脂材の重合反応およびその後の硬化温度(約150℃)から常温(約25℃)への冷却によって生じる下部樹脂部材40の体積収縮は、LED半導体ダイ10の体積収縮よりはるかに大きい。下部樹脂部材40の体積収縮とLED半導体ダイ10の樹脂部材の体積収縮には大きな差があるために、体積収縮量が大きい下部樹脂部材40は、体積収縮量が小さいLED半導体ダイ10によって拡大または圧縮される。境界面で生じた内部応力により、下部樹脂部材40自体の形状がゆがみ、下面を上方向に変形させる。これにより、下部樹脂部材40の下に凹状空間が形成される。これが、CSP型LED素子1Aの凹型構造を形成する第1の主要な歪曲メカニズムである。 In the manufacturing process of the LED element 1A in the first stage, as shown in FIG. 1B, the lower resin member 40 is thermoset and formed on the LED semiconductor die 10. During that time, the chemical reaction that occurs in the lower resin member 40 causes one volume contraction. For example, silicone resin materials generally exhibit about 6% volume shrinkage (about 2% linear dimensional shrinkage) after the polymerization reaction. On the other hand, the LED semiconductor die 10 is an inorganic material having a CTE of about 6.5 ppm / ° C, and its CTE value is much smaller than the CTE of the silicone resin material used for forming the lower resin member 40 (about 200 ppm / ° C). ℃). Therefore, the volume shrinkage of the lower resin member 40 caused by the polymerization reaction of the resin material and the subsequent cooling from the curing temperature (about 150 ° C.) to room temperature (about 25 ° C.) is much larger than the volume shrinkage of the LED semiconductor die 10. Since there is a large difference between the volume shrinkage of the lower resin member 40 and the volume shrinkage of the resin member of the LED semiconductor die 10, the lower resin member 40 having a large volume shrinkage can be expanded or expanded by the LED semiconductor die 10 having a small volume shrinkage. It is compressed. The internal stress generated at the boundary surface distorts the shape of the lower resin member 40 itself and deforms the lower surface upward. As a result, a concave space is formed under the lower resin member 40. This is the first major distortion mechanism that forms the concave structure of the CSP type LED element 1A.

図1Cに示すように、本実施形態によるCSP型LED素子1Aの製造工程の第2の段階では、上部樹脂部材30を下部樹脂部材40上に形成し、次いで、熱によって重合させる。同様に、上部樹脂部材30に生じる化学反応によって一度の体積収縮が起きるが、すでに固化した下部樹脂部材40は別の化学反応で更なる体積収縮を呈することはない。したがって、上部樹脂部材30では下部樹脂部材40における体積収縮よりもはるかに大きな体積収縮が起こる。すなわち、上部樹脂部材30によって、上部樹脂部材30と下部樹脂部材40との間の境界面に沿って下部樹脂部材40に対する圧縮応力が生じ、下部樹脂部材40が上方に変形する。この効果は、いわゆるバイモルフ効果である。図1Dに示すように、このバイモルフ効果は下部樹脂部材40の下面を上方向に反らせる。破線は変形前の幾何学形状を表し、実線は変形後の形状を表している。つまり、パッケージ構造体20の下面22は、LED半導体ダイ10の下面12から上方向に変形し(例えば、下面22は下面12から上方へ徐々に曲がるか、または変位する)、凹形状を形成する。これが、CSP型LED素子1Aの凹状底面を形成する第2の主要な歪曲メカニズムである。 As shown in FIG. 1C, in the second stage of the manufacturing process of the CSP type LED element 1A according to the present embodiment, the upper resin member 30 is formed on the lower resin member 40 and then polymerized by heat. Similarly, the chemical reaction that occurs in the upper resin member 30 causes one volume shrinkage, but the already solidified lower resin member 40 does not exhibit further volume shrinkage in another chemical reaction. Therefore, the volume shrinkage of the upper resin member 30 is much larger than that of the lower resin member 40. That is, the upper resin member 30 generates compressive stress on the lower resin member 40 along the boundary surface between the upper resin member 30 and the lower resin member 40, and the lower resin member 40 is deformed upward. This effect is the so-called bimorph effect. As shown in FIG. 1D, this bimorph effect causes the lower surface of the lower resin member 40 to warp upward. The broken line represents the geometric shape before deformation, and the solid line represents the shape after deformation. That is, the lower surface 22 of the package structure 20 deforms upward from the lower surface 12 of the LED semiconductor die 10 (for example, the lower surface 22 gradually bends or displaces upward from the lower surface 12) to form a concave shape. .. This is the second major distortion mechanism that forms the concave bottom surface of the CSP type LED element 1A.

また、本開示のいくつかの実施形態による下部樹脂部材40はさらに、無機フォトルミネセンス材を含む。したがって、フォトルミネセンス材のCTEが樹脂材のCTEよりはるかに小さいため、下部樹脂部材40全体の有効CTEはより小さい。上部樹脂部材30はフォトルミネセンス材を含まないことが望ましく、そのためその全体的な有効CTEは下部樹脂部材40のそれよりも高い。したがって、本開示のいくつかの実施形態によるLED素子1Aを形成する製造工程中、CTEが高い上部樹脂部材30では、温度が高温の硬化温度から常温まで下がると、体積収縮が下部樹脂部材40の体積収縮よりも大きくなる。それに応じて、下部樹脂部材40と上部樹脂部材30との間に界面応力が誘発され、別のバイモルフ効果が生じて、さらに大きな凹形状が生じることになる。これが、LED素子1Aの下に凹状空間を形成する第3の主要な歪曲メカニズムである。 In addition, the lower resin member 40 according to some embodiments of the present disclosure further comprises an inorganic photoluminescent material. Therefore, the effective CTE of the entire lower resin member 40 is smaller because the CTE of the photoluminescence material is much smaller than the CTE of the resin material. It is desirable that the upper resin member 30 does not contain a photoluminescent material, so that its overall effective CTE is higher than that of the lower resin member 40. Therefore, during the manufacturing process of forming the LED element 1A according to some embodiments of the present disclosure, in the upper resin member 30 having a high CTE, when the temperature drops from the high curing temperature to room temperature, the volume shrinkage of the lower resin member 40 It becomes larger than the volume shrinkage. Correspondingly, an interfacial stress is induced between the lower resin member 40 and the upper resin member 30, another bimorph effect is generated, and a larger concave shape is generated. This is the third major distortion mechanism that forms a concave space under the LED element 1A.

上述の3つの歪曲メカニズムによっても、上部樹脂部材30の上面(パッケージ構造体20の上面21)が、図1Dに示すように、凹曲に変形することは理解されよう。また、パッケージ構造体20の縁面23も、LED半導体ダイ10の下面12に対して変形するか、あるいは垂直配向から逸れて、少なくとも縁面23の一部が下面12に対して90度未満の角度、例えば、88度以下、87度以下、86度以下、85度以下となる。 It will be understood that the upper surface of the upper resin member 30 (upper surface 21 of the package structure 20) is also deformed into a concave shape as shown in FIG. 1D by the above-mentioned three distortion mechanisms. Further, the edge surface 23 of the package structure 20 is also deformed with respect to the lower surface 12 of the LED semiconductor die 10 or deviates from the vertical orientation, and at least a part of the edge surface 23 is less than 90 degrees with respect to the lower surface 12. Angles are, for example, 88 degrees or less, 87 degrees or less, 86 degrees or less, 85 degrees or less.

その結果、パッケージ構造体20の下面22は上方向に変形し、それによって凹状の空間が下面22の下に形成される。LED素子1Aをリフローはんだ付け法、共晶接合法または同様の接合法によって用途基板に取り付ける場合、パッケージ構造体20が熱膨張して、下面22が下方に変形することがある。しかし、下面22の予め凹状に形成した空間によって、高温状態下のパッケージ構造体20の更なる熱膨張に対応できる。このように、この凹状構造の技術的特徴は、比較対象のCSP型LED素子に関連してよく遭遇する問題、すなわち、LED半導体ダイ10の1組の電極14が高温での接合工程時に持ち上がって1組の電極14と用途基板の接続用電極との間に間隙が発生し(図1Dには示さず)、両者間の接合部分のはんだ付け不良または障害の問題を効果的に解決することができる。 As a result, the lower surface 22 of the package structure 20 is deformed upward, whereby a concave space is formed under the lower surface 22. When the LED element 1A is attached to the application substrate by a reflow soldering method, a eutectic bonding method or a similar bonding method, the package structure 20 may thermally expand and the lower surface 22 may be deformed downward. However, the pre-concave space on the lower surface 22 can accommodate further thermal expansion of the package structure 20 under high temperature conditions. As described above, the technical feature of this concave structure is a problem often encountered in relation to the CSP type LED element to be compared, that is, a set of electrodes 14 of the LED semiconductor die 10 is lifted during the bonding process at high temperature. A gap is created between one set of electrodes 14 and the connecting electrodes of the application substrate (not shown in FIG. 1D), which can effectively solve the problem of poor soldering or failure of the joint between the two. it can.

そのうえ、リフローはんだ付けまたは共晶接合などの加熱工程時に、凹型LED素子1Aは、LED半導体ダイ10の1組の電極14と用途基板の電極との間に正確で一貫したはんだ付け用隙間を維持して、適切な厚さと密度ではんだ付け用隙間をはんだ(図1Dには図示せず)で満たすことができる。言い換えると、はんだ付け用隙間内のはんだは、低品質の溶接や低熱伝導率の原因となる間隙、非連続的なはんだ材または他の欠陥をもたらす外力によって押し出されことがない。それにより、CSP型LED素子1Aと用途基板との間の溶接品質が高くなり、その結果、熱伝導性が高まって(例えば、熱抵抗が低下し)、動作時にLED半導体ダイ10の発生する熱を用途基板に迅速に伝えることができる。このように、CSP型LED素子1Aは、動作時の接合部温度が低くなるため、量子効率が改善されて、信頼性が向上し、CSP型LED素子1Aの動作寿命が延びる。 Moreover, during heating processes such as reflow soldering or eutectic bonding, the concave LED element 1A maintains an accurate and consistent soldering gap between a pair of electrodes 14 on the LED semiconductor die 10 and the electrodes on the application board. Then, the soldering gap can be filled with solder (not shown in FIG. 1D) with an appropriate thickness and density. In other words, the solder in the soldering crevices is not extruded by external forces that result in poor quality welds, crevices that cause low thermal conductivity, discontinuous solder material or other defects. As a result, the welding quality between the CSP type LED element 1A and the application substrate is improved, and as a result, the thermal conductivity is increased (for example, the thermal resistance is decreased), and the heat generated by the LED semiconductor die 10 during operation is increased. Can be quickly transmitted to the application substrate. As described above, since the joint temperature of the CSP type LED element 1A is lowered during operation, the quantum efficiency is improved, the reliability is improved, and the operating life of the CSP type LED element 1A is extended.

さらに、はんだ付け品質が優れるため、LED半導体10の1組の電極14と用途基板の接続用電極との間のオーミック接触を減らすことができ、それによって、CSP型LED素子1Aを駆動する順電圧を低減し、電力損失を減少できる。LED素子1Aの発光効率も、同様に向上できる。 Furthermore, due to the excellent soldering quality, ohmic contact between a set of electrodes 14 of the LED semiconductor 10 and the connection electrodes of the application substrate can be reduced, thereby driving the forward voltage of the CSP type LED element 1A. Can be reduced and power loss can be reduced. The luminous efficiency of the LED element 1A can be improved in the same manner.

要約すると、下面22の下側に凹状の空間を有するCSP型LED素子1Aは、LED素子1Aと基板との間に優れた溶接品質をもたらすことができ、よってLED素子1Aは、より信頼性の高い性能や、より高い発光効率などを呈する。 In summary, the CSP type LED element 1A, which has a concave space underneath the bottom surface 22, can provide excellent welding quality between the LED element 1A and the substrate, thus making the LED element 1A more reliable. It exhibits high performance and higher luminous efficiency.

図1Eは、共晶接合工程で一般的に見られる高温環境(約250℃)時の、凹部構成を有さない比較用のCSP型LED素子の熱膨張の影響を表すシミュレーション結果を示す。このシミュレーションの状況では、パッケージ構造体20は、長さが1500μm、厚さが600μmあり、下部樹脂部材40の厚さは、80μmである。パッケージ構造体20内に配設されるLED半導体ダイ10は、長さ850μm、厚さ150μmである。CSP型LED素子が、例えば共晶接合工程中に高温環境になった場合、CSP型LED素子の各構成要素は、温度上昇によって生じる熱膨張によって変形する。パッケージ構造体20の変形量は、LED半導体ダイ10の変形量よりもはるかに大きい。図1Eに示すシミュレーションの例では、破線は常温25℃におけるCSP型LED素子の外郭を表し、実線は250℃より高い温度におけるCSP型LED素子の外郭を表す。CSP型LED素子の各樹脂要素は、要素間の境界条件の制約の下での熱膨張によってかなり形状変化することがはっきり観測されている。その結果、パッケージ構造体20の下面22は、当初、熱膨張前にLED半導体ダイ10の下面12と整合させた水平位置から20.2μm下方に変形している。この変形量によりLED素子10の1組の電極14が垂直に20.2μm持ち上がり、1組の電極14と基板の電極との間をはんだ材で満たすには大きすぎる間隙が生じてしまう。このように、凹部構成を有さない比較用のCSP型LED素子を使用した場合、優れた溶接品質を保証し得ない。 FIG. 1E shows a simulation result showing the effect of thermal expansion of a comparative CSP type LED element having no recessed structure in a high temperature environment (about 250 ° C.) generally seen in a eutectic bonding process. In the situation of this simulation, the package structure 20 has a length of 1500 μm and a thickness of 600 μm, and the lower resin member 40 has a thickness of 80 μm. The LED semiconductor die 10 arranged in the package structure 20 has a length of 850 μm and a thickness of 150 μm. When the CSP type LED element becomes a high temperature environment, for example, during the eutectic bonding process, each component of the CSP type LED element is deformed by thermal expansion caused by a temperature rise. The amount of deformation of the package structure 20 is much larger than the amount of deformation of the LED semiconductor die 10. In the simulation example shown in FIG. 1E, the broken line represents the outer shell of the CSP type LED element at room temperature of 25 ° C., and the solid line represents the outer shell of the CSP type LED element at a temperature higher than 250 ° C. It has been clearly observed that each resin element of the CSP type LED element changes its shape considerably due to thermal expansion under the constraint of the boundary condition between the elements. As a result, the lower surface 22 of the package structure 20 is initially deformed 20.2 μm downward from the horizontal position aligned with the lower surface 12 of the LED semiconductor die 10 before thermal expansion. Due to this amount of deformation, a set of electrodes 14 of the LED element 10 is lifted vertically by 20.2 μm, and a gap that is too large to fill the space between the set of electrodes 14 and the electrodes of the substrate is created. As described above, when a comparative CSP type LED element having no concave structure is used, excellent welding quality cannot be guaranteed.

図1Fは、例えば250℃の高温での接合工程環境において、本開示のいくつかの実施形態による凹状LED素子1Aの熱膨張効果を表す別の数値シミュレーション結果を示し、CSP素子1Aの幾何学的寸法は、図1Eに示すように、比較用の素子の幾何学的寸法と同じである。同様に、破線は常温250℃におけるLED素子1Aの元の外郭を表し、実線は250℃より高い温度におけるCSP型LED素子1Aの外郭を表す。常温25℃では、LED素子1Aのパッケージ構造体20の下面22の上方への変形量(凹状空間)は20.9μmであり、パッケージ構造体20の外縁に最大の凹状隙間が生じている。高温(250℃)での接合工程時、LED素子1Aは熱膨張し、破線(25℃)で規定する外郭から実線(250℃)で示す外郭まで変形する。パッケージ構造体20の外縁に生じる下面22の最高点では、下方に19.5μmの変形が起こっている。パッケージ構造体20の下方への変形量(19.5μm)は、LED素子1Aの下に備わった凹状空間(20.9μm)よりも小さいため、下面22によって1組の電極14が持ち上がることがなく、1組の電極14と用途基板の接続用電極との間に極端に大きな間隙が生じることはない。したがって、LED素子1Aを使用する優れた溶接接続品質をしかるべく達成できる。 FIG. 1F shows another numerical simulation result showing the thermal expansion effect of the concave LED element 1A according to some embodiments of the present disclosure in a joining process environment at a high temperature of, for example, 250 ° C., and shows the geometric of the CSP element 1A. The dimensions are the same as the geometric dimensions of the elements for comparison, as shown in FIG. 1E. Similarly, the dashed line represents the original outline of the LED element 1A at room temperature 250 ° C., and the solid line represents the outline of the CSP type LED element 1A at a temperature higher than 250 ° C. At room temperature of 25 ° C., the amount of upward deformation (concave space) of the lower surface 22 of the package structure 20 of the LED element 1A is 20.9 μm, and the maximum concave gap is formed on the outer edge of the package structure 20. During the joining process at high temperature (250 ° C), the LED element 1A undergoes thermal expansion and deforms from the outer shell specified by the broken line (25 ° C) to the outer shell shown by the solid line (250 ° C). At the highest point of the lower surface 22 that occurs on the outer edge of the package structure 20, a deformation of 19.5 μm occurs downward. Since the amount of downward deformation (19.5 μm) of the package structure 20 is smaller than the concave space (20.9 μm) provided under the LED element 1A, the lower surface 22 does not lift a set of electrodes 14 and 1 There is no extremely large gap between the pair of electrodes 14 and the connecting electrodes of the application substrate. Therefore, excellent weld connection quality using LED element 1A can be achieved accordingly.

さらに、LED半導体10の1組の電極14と基板の電極との間に配されたはんだ材の湿潤領域(はんだ接合領域)は、溶接品質を反映するものとなろう。 一般的に、はんだ材の湿潤領域が大きくなるほど、溶接品質はより優れたものになる。これは、はんだ付け領域がより大きいことでCSP型LED素子1Aが1組の電極14と用途基板の接続用電極との間の熱抵抗が低下し、それによって、伝導性によって熱が用途基板に効果的に伝わり、CSP型LED素子1Aの内部に熱が蓄積するのを防ぐことができる。はんだ材の湿潤領域のCSP素子温度に対する効果を説明する一例として、表1に示すように、湿潤領域をX線検査で測定する。はんだ材の湿潤領域が電極領域の約70%を下回る場合(試験条件1)、はんだ接合品質が不十分なモデルを表し、LED素子の上面で測定された温度は、110℃を上回る。はんだ材の湿潤領域が電極領域の約95%を上回る場合(試験条件3)、CSP型LED素子の熱放散がより良好なモデルを表し、LED素子の上面で測定された温度は、105℃を下回る。同じ試験条件で、凹部構成を有するLED素子1Aの上面21での測定温度は、103℃であり、これは試験条件3(湿潤領域が約95%超)の測定温度を下回る。これらの試験結果は、本開示のいくつかの実施形態の凹部構成によって溶接品質が大幅に向上し、それによって熱抵抗および動作温度を低減できることを示す。
Further, the wet region (solder joint region) of the solder material arranged between the set of electrodes 14 of the LED semiconductor 10 and the electrodes of the substrate will reflect the welding quality. In general, the larger the wet area of the solder material, the better the weld quality. This is because the larger soldering area reduces the thermal resistance between the electrode 14 of the CSP type LED element 1A and the connection electrode of the application board, which causes heat to be transferred to the application board due to conductivity. It is effectively transmitted and can prevent heat from accumulating inside the CSP type LED element 1A. As an example of explaining the effect of the wet region of the solder material on the CSP element temperature, the wet region is measured by X-ray inspection as shown in Table 1. When the wet region of the solder material is less than about 70% of the electrode region (test condition 1), it represents a model with inadequate solder joint quality, and the temperature measured on the top surface of the LED element is above 110 ° C. When the wet area of the solder material exceeds about 95% of the electrode area (test condition 3), it represents a model with better heat dissipation of the CSP type LED element, and the temperature measured on the upper surface of the LED element is 105 ° C. Below. Under the same test conditions, the measured temperature on the upper surface 21 of the LED element 1A having the concave structure is 103 ° C., which is lower than the measured temperature of the test condition 3 (wet region is more than about 95%). These test results show that the recessed configurations of some embodiments of the present disclosure can significantly improve weld quality, thereby reducing thermal resistance and operating temperature.

溶接品質の改善を達成するために、LED素子1Aの下面22は、所定量の上方向の変形(下側の凹状空間)を保持するように構成される。図1Aを参照すると、下面22の下に設けられる所望の凹状空間は、次のように規定される。すなわち、LED素子1Aの凹状下面22は縁端221を備える。縁端221は、半導体ダイ10の縁面13から水平距離Xの間隔を開けるとともに、半導体ダイ10の縁面13(または下面22の最下点)から垂直距離Yの間隔を開けて設けられる。垂直距離Yを水平距離Xで割った比(Y/X)は、本開示のいくつかの実施形態によるCSP型LED素子1Aでは約0.022以上であり、例えば約0.025以上、約0.03以上、または約0.035以上であることが望ましい。 In order to achieve improved welding quality, the lower surface 22 of the LED element 1A is configured to retain a predetermined amount of upward deformation (lower concave space). With reference to FIG. 1A, the desired concave space provided below the lower surface 22 is defined as follows. That is, the concave lower surface 22 of the LED element 1A includes an edge 221. The edge edge 221 is provided at a horizontal distance X from the edge surface 13 of the semiconductor die 10 and at a vertical distance Y from the edge surface 13 (or the lowest point of the lower surface 22) of the semiconductor die 10. The ratio (Y / X) of the vertical distance Y divided by the horizontal distance X is about 0.022 or more for the CSP type LED element 1A according to some embodiments of the present disclosure, for example, about 0.025 or more, about 0.03 or more, or about. It is desirable that it is 0.035 or more.

また、パッケージ構造体20の幾何学的寸法は、CSP型LED素子1Aの製造工程時に下面22の凹み量に影響を及ぼすことがある。パッケージ構造体20の水平方向の寸法(幅または長さ)が増加すると、下面22の凹み量(例えば、垂直距離Y)は、パッケージ構造体20を熱硬化させれば、それに応じて増加する。パッケージ構造体20の垂直方向の寸法(厚さ)が増加すると、下面22の凹み量(例えば、垂直距離Y)も、パッケージ構造体20を熱硬化させれば、それに応じて増加する。 Further, the geometrical dimensions of the package structure 20 may affect the amount of dent on the lower surface 22 during the manufacturing process of the CSP type LED element 1A. As the horizontal dimension (width or length) of the package structure 20 increases, the amount of depression (eg, vertical distance Y) of the bottom surface 22 increases as the package structure 20 is thermoset. As the vertical dimension (thickness) of the package structure 20 increases, the amount of depression (for example, vertical distance Y) of the lower surface 22 also increases as the package structure 20 is thermoset.

しかし、パッケージ構造体20の厚さが一定の程度まで増加すると、下面22の漸次増加した凹み量は徐々に飽和する。これは、パッケージ構造体20の厚みが増すことによってパッケージ構造体20の上面21が下面22からさらに離れるためであり、それによって、パッケージ構造体20の上部の収縮が下面22の変形に与える影響はより少なくなる。パッケージ構造体20の上面21をLED半導体ダイ10の上面11から約50μm〜約1000μm離すことで、全体としてより良好な利点を達成することが望ましい。 However, when the thickness of the package structure 20 increases to a certain degree, the gradually increasing amount of dents on the lower surface 22 gradually saturates. This is because the upper surface 21 of the package structure 20 is further separated from the lower surface 22 by increasing the thickness of the package structure 20, so that the influence of the contraction of the upper part of the package structure 20 on the deformation of the lower surface 22 is exerted. Less. It is desirable to achieve better overall advantages by separating the top surface 21 of the package structure 20 from the top surface 11 of the LED semiconductor die 10 by about 50 μm to about 1000 μm.

そのうえ、CSP型LED素子1Aの本実施形態では、上部樹脂部材30と下部樹脂部材40の両方ともが光を通すことができ、それぞれが必要に応じて少なくともフォトルミネセンス材および/または光散乱粒子(TiO2など)を含んでもよい。例えば、下部樹脂部材40はフォトルミネセンス材を含むように構成されるが、上部樹脂部材30はフォトルミネセンス材も光散乱粒子も含まないように構成される。そのため、LED半導体ダイ10の発光した光が下部樹脂部材40を透過する際、フォトルミネセンス材によって光の波長を変換できる。しかし、上部樹脂部材30は光の波長を変換することはない。さらに、上部樹脂部材30または下部樹脂部材40は、単層構造(図1Aに示すように、単一の硬化工程で複合材料を固化させることによって形成される)、または多層構造(図1Aには図示しないが、複数の硬化工程で複合部材を固化させることによって形成される)として形成してもよい。 Moreover, in this embodiment of the CSP type LED element 1A, both the upper resin member 30 and the lower resin member 40 can transmit light, each of which is at least a photoluminescent material and / or a light scattering particle as required. It may contain (such as TiO 2 ). For example, the lower resin member 40 is configured to include a photoluminescent material, while the upper resin member 30 is configured to contain neither a photoluminescent material nor light scattering particles. Therefore, when the light emitted from the LED semiconductor die 10 passes through the lower resin member 40, the wavelength of the light can be converted by the photoluminescence material. However, the upper resin member 30 does not convert the wavelength of light. Further, the upper resin member 30 or the lower resin member 40 has a single-layer structure (formed by solidifying the composite material in a single curing step as shown in FIG. 1A) or a multi-layer structure (in FIG. 1A). Although not shown, it may be formed as (formed by solidifying the composite member in a plurality of curing steps).

下部樹脂部材40の実施例の形状について以下に述べる。下部樹脂部材40は、上部41、端部42および拡張部43を含む。これら3つの部分はすべて単一の製造工程で同時に形成できる。具体的には、上部41はLED半導体ダイ10の上面11上に設けられ、端部42はLED半導体ダイ10の縁面13を覆い、拡張部43は端部42から外側に向かって拡張している(例えば、縁面13から離れる方向に拡張する)。端部42および拡張部43はどちらも、LED半導体ダイ10を取り囲む矩形の形状をとる。 The shape of the example of the lower resin member 40 will be described below. The lower resin member 40 includes an upper 41, an end 42 and an extension 43. All three parts can be formed simultaneously in a single manufacturing process. Specifically, the upper portion 41 is provided on the upper surface 11 of the LED semiconductor die 10, the end portion 42 covers the edge surface 13 of the LED semiconductor die 10, and the expansion portion 43 extends outward from the end portion 42. (For example, it extends away from the edge surface 13). Both the end 42 and the extension 43 have a rectangular shape surrounding the LED semiconductor die 10.

上記の各段落は、LED素子1Aに関する実施形態の詳細な説明である。本開示によるLED素子のその他の実施形態に関する詳細について、以下に述べる。以下のLED素子の実施形態に見られる特徴および利点の詳細な説明は、LED素子1Aに関する説明と同様であるため省略して、説明を簡略にする。 Each of the above paragraphs is a detailed description of an embodiment relating to the LED element 1A. Details regarding other embodiments of the LED device according to the present disclosure will be described below. Since the detailed description of the features and advantages found in the following embodiments of the LED element is the same as the description regarding the LED element 1A, the description thereof will be simplified.

図2は、本開示の別の実施形態によるCSP型LED素子1Bの断面を表す概略図を示す。LED素子1BとLED素子1Aとの違いは、少なくとも、LED素子1Bの下部樹脂部材40が光透過樹脂部材44および反射樹脂部材45を備えていることである。光透過樹脂部材44は、任意でフォトルミネセンス材または光散乱粒子を含む透明な樹脂部材でよい。反射樹脂部材45は、LED半導体ダイ10の縁面13を覆うが、上面11は覆わない。光透過樹脂部材44は、LED半導体ダイ10の上面11および反射樹脂部材45の上面451の両方を覆う。本明細書では、CSP型LED素子1Bの反射樹脂部材45の下面22は、CSP型LED素子1Aのパッケージ構造体20の下面22と同様、LED半導体ダイ10の下面12に対して上方向に変形する。 FIG. 2 shows a schematic view showing a cross section of the CSP type LED element 1B according to another embodiment of the present disclosure. The difference between the LED element 1B and the LED element 1A is that at least the lower resin member 40 of the LED element 1B includes the light transmitting resin member 44 and the reflective resin member 45. The light transmitting resin member 44 may optionally be a photoluminescent material or a transparent resin member containing light scattering particles. The reflective resin member 45 covers the edge surface 13 of the LED semiconductor die 10, but does not cover the upper surface 11. The light transmitting resin member 44 covers both the upper surface 11 of the LED semiconductor die 10 and the upper surface 451 of the reflective resin member 45. In the present specification, the lower surface 22 of the reflective resin member 45 of the CSP type LED element 1B is deformed upward with respect to the lower surface 12 of the LED semiconductor die 10 like the lower surface 22 of the package structure 20 of the CSP type LED element 1A. To do.

反射樹脂部材45が縁面13を覆うので、半導体ダイ10の縁面13に向かって発光した光は反射されて戻り、最終的に、主に上面11から、もしくは上面11のみから出射される。したがって、LED素子1Bの空間的光放出は比較的小さい視野角に制限される。そのため、CSP型LED素子1Bは特定の投影光源の用途に適している。 Since the reflective resin member 45 covers the edge surface 13, the light emitted toward the edge surface 13 of the semiconductor die 10 is reflected and returned, and finally is emitted mainly from the upper surface 11 or only from the upper surface 11. Therefore, the spatial light emission of the LED element 1B is limited to a relatively small viewing angle. Therefore, the CSP type LED element 1B is suitable for a specific projection light source application.

図3は、本開示の別の実施形態よるCSP型LED素子1Cの断面を表す概略図を示す。LED素子1CとLED素子1Bとの違いは、光透過樹脂部材44が上面11上に配置され、反射樹脂部材45はLED半導体ダイ10の縁面13と光透過樹脂部材44の縁面441の両方を覆っていることである。それによって、反射樹脂部材45はさらに、光が光透過樹脂部材44の縁面441を通して漏れ出るのを防ぐことができる。したがって、CSP型LED素子1Cの空間的光放出の視野角をさらに狭い角度に制限できる。様々な視野角にわたる色の均一性は、CSP型LED素子1Bの実施形態よりもCSP型LED素子1Cの実施形態のほうがより向上する。 FIG. 3 shows a schematic view showing a cross section of the CSP type LED element 1C according to another embodiment of the present disclosure. The difference between the LED element 1C and the LED element 1B is that the light transmitting resin member 44 is arranged on the upper surface 11, and the reflective resin member 45 is both the edge surface 13 of the LED semiconductor die 10 and the edge surface 441 of the light transmitting resin member 44. Is to cover. Thereby, the reflective resin member 45 can further prevent light from leaking through the edge surface 441 of the light transmitting resin member 44. Therefore, the viewing angle of the spatial light emission of the CSP type LED element 1C can be limited to a narrower angle. The color uniformity over various viewing angles is more improved in the embodiment of the CSP LED element 1C than in the embodiment of the CSP LED element 1B.

図4は、本開示の別の実施形態によるCSP型LED素子1Dの断面を表す概略図を示す。発光素子1DはLED半導体ダイ10および単層樹脂部材50を含み、単層樹脂部材50は前述のLED素子1Aのパッケージ構造体20と同じ機能を有する。しかし、CSP型LED素子1Dの単層樹脂部材50は単一の層の樹脂材を有するが、CSP型LED素子1Aのパッケージ構造体20は少なくとも2層の樹脂材、すなわち上部樹脂部材30および下部樹脂部材40を有する。 FIG. 4 shows a schematic view showing a cross section of the CSP type LED element 1D according to another embodiment of the present disclosure. The light emitting element 1D includes the LED semiconductor die 10 and the single-layer resin member 50, and the single-layer resin member 50 has the same function as the package structure 20 of the LED element 1A described above. However, while the single layer resin member 50 of the CSP type LED element 1D has a single layer resin material, the package structure 20 of the CSP type LED element 1A has at least two layers of resin material, that is, the upper resin member 30 and the lower part. It has a resin member 40.

単層樹脂部材50は、上面51、下面52および縁面53を備える。上面51および下面52は実質的に平行に形成され、互いに対向する。縁面53は、上面51と下面52との間に形成されて延伸し、上面51の外縁を下面52の外縁に接続する。 The single-layer resin member 50 includes an upper surface 51, a lower surface 52, and an edge surface 53. The top surface 51 and the bottom surface 52 are formed substantially parallel and face each other. The edge surface 53 is formed and stretched between the upper surface 51 and the lower surface 52, and connects the outer edge of the upper surface 51 to the outer edge of the lower surface 52.

単層樹脂部材50はLED半導体ダイ10上に配置され、LED半導体ダイ10の上面11および縁面13を覆っている。このように、単層樹脂部材50の別の機能は、LED半導体ダイ10を周囲環境に直接曝されないように保護して、汚染または破損を防止することにある。単層樹脂部材50の上面51は、LED半導体ダイ10の上面11から間隔を開けて設けられる。同様に、単層樹脂部材50の縁面53は、LED半導体ダイ10の縁面13から間隔を開けて設けられる。 The single-layer resin member 50 is arranged on the LED semiconductor die 10 and covers the upper surface 11 and the edge surface 13 of the LED semiconductor die 10. As described above, another function of the single-layer resin member 50 is to protect the LED semiconductor die 10 from being directly exposed to the surrounding environment to prevent contamination or damage. The upper surface 51 of the single-layer resin member 50 is provided at a distance from the upper surface 11 of the LED semiconductor die 10. Similarly, the edge surface 53 of the single-layer resin member 50 is provided at a distance from the edge surface 13 of the LED semiconductor die 10.

望ましくは、フォトルミネセンス材は単層樹脂部材50内に組み込むことにより、LED半導体ダイ10の上面11および縁面13から発光した青色光の波長の一部をフォトルミネセンス材によって変換できる。このようにして、フォトルミネセンス材によってダウンコンバートされLED半導体ダイ10で生成された様々な波長の光を所定の比で混合して、所望の色の光、例えば様々な色温度の白色光を生成する。単層樹脂部材50がLED半導体ダイ10の下面12を覆っていないか、または少なくとも下面の一部を露出させることにより1組の電極14を露出させて、後に用途基板に接合させることは理解されよう。 Desirably, the photoluminescence material can be incorporated into the single-layer resin member 50 so that a part of the wavelength of blue light emitted from the upper surface 11 and the edge surface 13 of the LED semiconductor die 10 can be converted by the photoluminescence material. In this way, light of various wavelengths down-converted by the photoluminescence material and generated by the LED semiconductor die 10 is mixed at a predetermined ratio to produce light of a desired color, for example, white light of various color temperatures. Generate. It is understood that the single-layer resin member 50 does not cover the lower surface 12 of the LED semiconductor die 10 or exposes a set of electrodes 14 by exposing at least a portion of the lower surface and later joins to the application substrate. Yeah.

本実施形態によるLED素子1Dでは、単層樹脂部材50は大部分が有機樹脂材から構成される。高温での硬化工程時に化学的重合反応によって、単層樹脂部材50の一度の体積収縮が発生することになる。ここでも、LED半導体ダイ10は、単層樹脂部材50を形成する有機物のCTEよりも著しく小さいCTEを有する無機物から成る。このため、熱硬化後の冷却工程中に、熱収縮の物理的現象によって発生する単層樹脂部材50の体積収縮は、LED半導体ダイ10の体積収縮よりも著しく大きくなる。 In the LED element 1D according to the present embodiment, the single-layer resin member 50 is mostly composed of an organic resin material. During the curing step at a high temperature, the single-layer resin member 50 undergoes a single volume shrinkage due to a chemical polymerization reaction. Again, the LED semiconductor die 10 is made of an inorganic material having a CTE significantly smaller than the organic CTE forming the single layer resin member 50. Therefore, the volume shrinkage of the single-layer resin member 50 generated by the physical phenomenon of heat shrinkage during the cooling step after the thermosetting is significantly larger than the volume shrinkage of the LED semiconductor die 10.

そのため、単層樹脂部材50の体積収縮はLED半導体ダイ10の体積収縮よりもはるかに大きく、1)温度の低下による材料収縮の物理的現象と、2)重合反応による材料収縮の化学的現象とに起因するそれぞれの力を合わせ持つ。それにより、下面52は、上述したCSP型LED素子1Aの下側に凹状の空間を形成する第1の主要な歪曲メカニズムと同様に、上方向に変形して凹状の空間を形成する。言い換えると、下面52は、LED半導体ダイ10の下面12から(または下面52の最下点から)上方向に変形する。同時に、樹脂部材の収縮は、図4に示すように、単層樹脂部材50の上面51に凹部を形成する。 Therefore, the volume shrinkage of the single-layer resin member 50 is much larger than the volume shrinkage of the LED semiconductor die 10, and 1) the physical phenomenon of material shrinkage due to a decrease in temperature and 2) the chemical phenomenon of material shrinkage due to the polymerization reaction. It has each power caused by. As a result, the lower surface 52 is deformed upward to form a concave space, similar to the first main distortion mechanism for forming a concave space under the CSP type LED element 1A described above. In other words, the bottom surface 52 deforms upward from the bottom surface 12 of the LED semiconductor die 10 (or from the lowest point of the bottom surface 52). At the same time, the shrinkage of the resin member forms a recess on the upper surface 51 of the single-layer resin member 50, as shown in FIG.

定量的には、下面52の凹形状は次のように規定される。すなわち、凹状下面52は外縁端521を有する。縁端521は、半導体ダイ10の縁面13から水平距離Xだけ間隔を開けて配設されるとともに、半導体ダイ10の下面12(または下面52の最下点)から垂直距離Yだけ間隔を開けて配設される。垂直距離Yの水平距離Xに対する比(すなわちY/X)は約0.022以上であり、例えば約0.025以上、約0.03以上、もしくは約0.035以上であることが望ましい。 Quantitatively, the concave shape of the lower surface 52 is defined as follows. That is, the concave lower surface 52 has an outer edge end 521. The edge 521 is arranged with a horizontal distance X from the edge surface 13 of the semiconductor die 10 and a vertical distance Y from the lower surface 12 (or the lowest point of the lower surface 52) of the semiconductor die 10. Is arranged. The ratio of the vertical distance Y to the horizontal distance X (ie, Y / X) is about 0.022 or more, preferably about 0.025 or more, about 0.03 or more, or about 0.035 or more.

別のシミュレーションの結果を用いて、類似の樹脂硬化温度条件における第1の実施形態によるCSP型LED素子1Aと同じデバイスパラメータ(幾何学的寸法、CTEなど)を有するCSP型LED素子1Dの熱膨張反応について述べる。シミュレーション結果は、CSP型LED素子1Dの製造後に、単層樹脂部材50の下面52が、25℃の常温で17.8μmの凹部深さになることを示している。CSP型LED素子1Dが、250℃のより高い接合/はんだ付け温度を経ると、単層樹脂部材50の下面52は熱膨張して、17.0μm下方に変形する。下への膨張量は凹部深さを下回るので、下面52の熱膨張によって1組の電極14が基板の接続用電極から持ち上がることはない。このようにして、LED素子1Dと基板との間の接合品質を確実に良好にできる。 Using the results of another simulation, the thermal expansion of the CSP LED element 1D with the same device parameters (geometric dimensions, CTE, etc.) as the CSP LED element 1A according to the first embodiment under similar resin curing temperature conditions. The reaction will be described. The simulation results show that after manufacturing the CSP type LED element 1D, the lower surface 52 of the single-layer resin member 50 has a recess depth of 17.8 μm at room temperature of 25 ° C. When the CSP type LED element 1D undergoes a higher bonding / soldering temperature of 250 ° C., the lower surface 52 of the single-layer resin member 50 thermally expands and deforms downward by 17.0 μm. Since the amount of downward expansion is less than the depth of the recess, the set of electrodes 14 will not be lifted from the connecting electrodes of the substrate due to the thermal expansion of the lower surface 52. In this way, the bonding quality between the LED element 1D and the substrate can be reliably improved.

第1の実施形態のCSP型LED素子1Aと同様、単層樹脂部材50の厚みが増すと、徐々に増加する下面52の凹み量が飽和状態になる。そのために、効果的な全体利益を達成するには、単層樹脂部材50の上面51からLED半導体ダイ10の上面11までの望ましい距離は、約50μm〜約1000μmである。 Similar to the CSP type LED element 1A of the first embodiment, as the thickness of the single-layer resin member 50 increases, the gradually increasing amount of dent on the lower surface 52 becomes saturated. Therefore, in order to achieve an effective overall benefit, the desired distance from the top surface 51 of the single layer resin member 50 to the top surface 11 of the LED semiconductor die 10 is about 50 μm to about 1000 μm.

図5は、本開示の別の実施形態によるCSP型LED素子1Eの断面を表す概略図を示す。LED素子1EとCSP型LED素子1Dとの違いは、CSP型LED素子1Eのパッケージ構造体の樹脂部材50が光透過樹脂部材60を含むだけでなく、反射樹脂部材70も含む点である。光透過樹脂部材60は、LED半導体ダイ10の上面11を選択的に覆い、反射樹脂部材70はLED半導体ダイ10の縁面13および光透過樹脂部材60の縁面61の両方を覆って、隣接する。 FIG. 5 shows a schematic view showing a cross section of the CSP type LED element 1E according to another embodiment of the present disclosure. The difference between the LED element 1E and the CSP type LED element 1D is that the resin member 50 of the package structure of the CSP type LED element 1E includes not only the light transmitting resin member 60 but also the reflective resin member 70. The light transmitting resin member 60 selectively covers the upper surface 11 of the LED semiconductor die 10, and the reflective resin member 70 covers both the edge surface 13 of the LED semiconductor die 10 and the edge surface 61 of the light transmitting resin member 60 so as to be adjacent to each other. To do.

反射樹脂部材70はLED半導体ダイ10の縁面13および光透過樹脂部材60の縁面61の両方を覆い、縁面13および縁面61に向かって進む光は、反射されて戻り、最終的には主に上面22から、または上面22のみから出射する。このように、LED素子1Eの光出射をより狭い空間的範囲に制限することにより、視野角をより小さくできる。 The reflective resin member 70 covers both the edge surface 13 of the LED semiconductor die 10 and the edge surface 61 of the light transmitting resin member 60, and the light traveling toward the edge surface 13 and the edge surface 61 is reflected and returned, and finally. Emits mainly from the top surface 22 or only from the top surface 22. In this way, the viewing angle can be made smaller by limiting the light emission of the LED element 1E to a narrower spatial range.

図6は、本開示の別の実施形態によるCSP型LED素子1Fの断面を表す概略図である。CSP型LED素子1FとCSP型LED素子1Eとの違いは、CSP型LED素子1Fの反射樹脂部材70がLED半導体ダイ10の縁面13を選択的に覆い、これに対しCSP型LED素子1Fの光透過樹脂部材60はLED半導体ダイ10の上面11および反射樹脂部材70の上面71の両方を覆う点である。 FIG. 6 is a schematic view showing a cross section of the CSP type LED element 1F according to another embodiment of the present disclosure. The difference between the CSP type LED element 1F and the CSP type LED element 1E is that the reflective resin member 70 of the CSP type LED element 1F selectively covers the edge surface 13 of the LED semiconductor die 10, whereas the CSP type LED element 1F The light transmitting resin member 60 is a point that covers both the upper surface 11 of the LED semiconductor die 10 and the upper surface 71 of the reflective resin member 70.

要約すると、本開示によるいくつかの実施形態のCSP型LED素子1A〜1Fは、下面22または52を上方に反らせて下側に凹状の空間を構成するという共通の技術的特徴を具体化することによって、様々な所望の光学特性を実現することができる。CSP型LED素子1A〜1Fの凹状下面の構成上の特徴によって、CSP型LED素子と関連する用途基板との間の接合品質の低下および電気接続不良などの短所を効果的に改善することができる。それにより、より高い信頼性およびより高い発光効率が適宜達成される。 In summary, the CSP type LED elements 1A-1F of some embodiments according to the present disclosure embody the common technical feature that the lower surface 22 or 52 is bent upward to form a concave space on the lower side. Therefore, various desired optical characteristics can be realized. The structural features of the concave lower surface of the CSP type LED elements 1A to 1F can effectively improve the disadvantages such as deterioration of the bonding quality between the CSP type LED element and the related application board and poor electrical connection. .. Thereby, higher reliability and higher luminous efficiency are appropriately achieved.

本開示によるCSP型LED素子のいくつかの実施形態を製造する製造方法について、以下の段落で述べる。CSP型LED素子1A〜1Fを製造する製造方法は、それぞれ図1〜図6に示すように、基本的に同じでよい。したがって、製造方法の変形例に関するいくつかの詳細な説明を省略して、説明の簡潔化を図ることを理解されたい。 A manufacturing method for manufacturing some embodiments of the CSP type LED device according to the present disclosure will be described in the following paragraphs. As shown in FIGS. 1 to 6, the manufacturing method for manufacturing the CSP type LED elements 1A to 1F may be basically the same. Therefore, it should be understood that the description will be simplified by omitting some detailed explanations regarding the modified examples of the manufacturing method.

CSP型LED素子の製造方法は、2つの主な段階を含む。第1に、LED半導体ダイの上面および縁面を1つ以上の熱硬化樹脂材で覆い、第2に、特定の加熱工程によって樹脂材を硬化させて、上方に反った下面を有するパッケージ構造体を形成する。技術的な内容について、以下にさらに述べる。 The method for manufacturing a CSP type LED element includes two main steps. First, the upper surface and the edge surface of the LED semiconductor die are covered with one or more thermosetting resin materials, and secondly, the resin material is cured by a specific heating step, and the package structure has an upwardly curved lower surface. To form. The technical content is further described below.

図7A〜図7Eは、本開示による製造方法の第1の実施形態を示す。図7Aに示すように、離型膜などの離型層80を準備し、さらに、シリコン基板やガラス基板などの担体基板(図示せず)の上に配置してもよい。次に、LED半導体ダイ10のアレイを離型層80の上に配列する。各LED半導体ダイ10の1組の電極14を離型層80の内部に埋め込んで、LED半導体ダイ10の下面12を離型層80に接着して、離型層を覆うことが望ましい。このようにして、後続の製造工程中に1組の電極14が汚染されるのを防止する。 7A-7E show a first embodiment of the manufacturing method according to the present disclosure. As shown in FIG. 7A, a release layer 80 such as a release film may be prepared and further arranged on a carrier substrate (not shown) such as a silicon substrate or a glass substrate. Next, an array of LED semiconductor dies 10 is arranged on the release layer 80. It is desirable to embed a set of electrodes 14 of each LED semiconductor die 10 inside the release layer 80 and bond the lower surface 12 of the LED semiconductor die 10 to the release layer 80 to cover the release layer. In this way, a set of electrodes 14 is prevented from being contaminated during the subsequent manufacturing process.

図7Bに示すように、下部樹脂部材40’は、図1Aに示すLED素子1Aの下部樹脂部材40の製造材料に相当するものであり、さらには、熱硬化樹脂材を使用して例えばスプレー塗装またはスピンコーティングによって形成して、各LED半導体ダイ10の上面11および縁面13を覆う。当該製造段階では、下部樹脂部材の層40’は、まだ硬化(固化)していない。 As shown in FIG. 7B, the lower resin member 40'corresponds to the manufacturing material of the lower resin member 40 of the LED element 1A shown in FIG. 1A, and further, for example, spray coating using a thermosetting resin material. Alternatively, it is formed by spin coating to cover the top surface 11 and the edge surface 13 of each LED semiconductor die 10. At the manufacturing stage, the layer 40'of the lower resin member has not yet been cured (solidified).

下部樹脂部材の層40’は、次に、例えば、約150℃の硬化温度まで加熱して、一定の期間この温度を維持することで下部樹脂部材の層40’が固化し、体積が収縮し始める。硬化工程が完了し、温度が常温まで下がると、図1Aに示すLED素子1Aの下部樹脂部材40に対応する硬化された下部樹脂部材層40’が形成される。下部樹脂部材40’とLED半導体ダイ10との間に内部界面応力が生じ、そのため、離型層80が除去されると、前述の第1の主要歪曲メカニズムによって凹状の空間が形成される。下部樹脂部材層40’はフォトルミネセンス材から成ることが望ましく、米国特許出願公開公報第US2010/0119839号で開示される蛍光体層の形成方法が下部樹脂部材層40’を形成する当該処理段階に適している。その技術的内容全体を参照により本明細書に取り込む。 The layer 40'of the lower resin member is then heated to, for example, a curing temperature of about 150 ° C. and maintained at this temperature for a certain period of time so that the layer 40' of the lower resin member solidifies and shrinks in volume. start. When the curing step is completed and the temperature drops to room temperature, the cured lower resin member layer 40'corresponding to the lower resin member 40 of the LED element 1A shown in FIG. 1A is formed. An internal interfacial stress is generated between the lower resin member 40'and the LED semiconductor die 10, so that when the release layer 80 is removed, a concave space is formed by the first major distortion mechanism described above. The lower resin member layer 40'is preferably made of a photoluminescent material, and the method for forming the phosphor layer disclosed in US Patent Application Publication No. US2010 / 0119839 is the treatment step of forming the lower resin member layer 40'. Suitable for. The entire technical content is incorporated herein by reference.

図7Cに示すように、上部樹脂部材の層30’は、図1Aに示すLED素子1Aの上部樹脂部材30に相当するが、熱硬化樹脂材を使用して、これを硬化した下部樹脂部材層40’に隣接して配置し、積み重ねる。この製造段階では、上部樹脂部材層30’はまだ硬化していない。この製造段階は、スプレー塗装、プリントまたは調製などの製造法を使用して実現できる。 As shown in FIG. 7C, the layer 30'of the upper resin member corresponds to the upper resin member 30 of the LED element 1A shown in FIG. 1A, but the lower resin member layer obtained by curing the upper resin member 30 using a thermosetting resin material. Place adjacent to 40'and stack. At this manufacturing stage, the upper resin member layer 30'has not been cured yet. This manufacturing step can be achieved using manufacturing methods such as spray painting, printing or preparation.

次に、上部樹脂部材層30’を所望温度まで加熱すると、熱硬化し、それに応じて体積が収縮する。硬化工程が完了し、温度が常温まで下がると、図1Aに示すCSP型LED素子1Aの下部樹脂部材30に対応する硬化した上部樹脂部材層30’が形成される。この製造段階では、硬化した上部樹脂部材層30’と硬化した下部樹脂部材層40’との間に内部界面応力が生じて凹部空間が形成されるが、凹部空間は、離型層80が除去されると、前述の第2および第3の主要な歪曲メカニズムによりCSP型LED素子1Aの下面22をさらに上方に変形させることになる。 Next, when the upper resin member layer 30'is heated to a desired temperature, it is thermosetting and its volume shrinks accordingly. When the curing step is completed and the temperature drops to room temperature, the cured upper resin member layer 30'corresponding to the lower resin member 30 of the CSP type LED element 1A shown in FIG. 1A is formed. In this manufacturing stage, an internal interfacial stress is generated between the cured upper resin member layer 30'and the cured lower resin member layer 40' to form a recessed space, but the recessed space is removed by the release layer 80. Then, the lower surface 22 of the CSP type LED element 1A is further deformed upward by the above-mentioned second and third main distortion mechanisms.

硬化した下部樹脂部材層40’および上部樹脂部材層30’は上方に反った下面22を有する接続されたパッケージ構造体20’のアレイを構成し、当該アレイは図1Aに示すLED素子1Aのパッケージ構造体20に相当するものでよい。 The cured lower resin member layer 40'and upper resin member layer 30' constitute an array of connected package structures 20' having an upwardly curved lower surface 22, which array is the package of the LED element 1A shown in FIG. 1A. It may correspond to the structure 20.

図7Dに示すように、離型層80は、上部樹脂部材層30’および下部樹脂部材層40’を順次硬化させた後に除去する。下部樹脂部材層40’と離型層80との間の応力が取り除かれると、接続されたパッケージ構造体20’のアレイは、全体として凹形状を呈する。最後に、図7Eに示すように、接続されたパッケージ構造体20’のアレイを個別分離工程によって分離して、図1Aに示すCSP型LED素子1Aに相当する複数のCSP型LED素子1A’を得る。 As shown in FIG. 7D, the release layer 80 is removed after the upper resin member layer 30'and the lower resin member layer 40' are sequentially cured. When the stress between the lower resin member layer 40'and the release layer 80 is removed, the array of connected package structures 20'shows a concave shape as a whole. Finally, as shown in FIG. 7E, the array of the connected package structures 20'is separated by an individual separation step, and a plurality of CSP type LED elements 1A' corresponding to the CSP type LED element 1A shown in FIG. 1A are separated. obtain.

要約すると、LED素子1A’を製造するには、2つの連続する硬化段階を実行して少なくとも2つの熱硬化樹脂部材の層を固化させ、上方向に反った下面22を有するパッケージ構造体20’のアレイを形成する。 In summary, to manufacture LED element 1A', a package structure 20' has two consecutive curing steps to solidify layers of at least two thermosetting resin members and has an upwardly curved bottom surface 22. Form an array of.

図8A〜図8Fは、本開示によるCSP型LED素子1Cの別の実施形態を製造する製造方法を示す。 8A-8F show a manufacturing method for manufacturing another embodiment of the CSP type LED element 1C according to the present disclosure.

図8Aに示すように、LED半導体ダイ10のアレイを離型層80上に配列する。次に、図8Bに示すように、硬化した複数の光伝送樹脂部材体44’をLED半導体ダイ10のアレイの上面11に隣接させて配置する。この製造段階では、光透過樹脂部材体44’は、熱硬化ペースト(図示しないが、例えばシリコーン樹脂)によって各LED半導体ダイ10の上面11に接着でき、これにより、加熱処理によって光伝送樹脂部材体44’をLED半導体ダイ10により確実に接合できる。 As shown in FIG. 8A, an array of LED semiconductor dies 10 is arranged on the release layer 80. Next, as shown in FIG. 8B, a plurality of cured optical transmission resin member bodies 44'are arranged adjacent to the upper surface 11 of the array of the LED semiconductor die 10. At this manufacturing stage, the light transmitting resin member body 44'can be adhered to the upper surface 11 of each LED semiconductor die 10 with a thermosetting paste (not shown, for example, silicone resin), whereby the light transmitting resin member body is heat-treated. 44'can be reliably bonded by the LED semiconductor die 10.

次に、図8Cに示すように、液状反射樹脂部材体45’をアレイの溝間に配して、LED半導体ダイ10の縁面13と光伝送樹脂部材体44’の縁面441’(図3に示すLED素子1Cの光透過樹脂部材44の縁面441に相当する)を覆う。液状反射樹脂部材体45’は熱硬化によって固化し、材料の体積収縮を起こす。硬化した反射樹脂部材体45’の下面22は、図3に示すCSP型LED素子1Cの反射樹脂部材45に相当し、LED半導体ダイ10の下面12から上方向に変形する。 Next, as shown in FIG. 8C, the liquid reflective resin member body 45'is arranged between the grooves of the array, and the edge surface 13 of the LED semiconductor die 10 and the edge surface 441'of the optical transmission resin member body 44'(FIG. 8C). It covers the edge surface 441 of the light transmitting resin member 44 of the LED element 1C shown in 3.). The liquid reflective resin member body 45'solidifies by thermosetting and causes volume shrinkage of the material. The lower surface 22 of the cured reflective resin member body 45'corresponds to the reflective resin member 45 of the CSP type LED element 1C shown in FIG. 3, and is deformed upward from the lower surface 12 of the LED semiconductor die 10.

次に、図8Dに示すように、硬化した光透過樹脂部材層44’および硬化した反射樹脂部材体45’の両方を覆う上澄み液層として上部樹脂部材層30’を配置する。そこで、熱硬化によって固化させることで、体積収縮を引き起こす。この製造段階では、上述の第2および第3の歪曲メカニズムによって反射樹脂部材体45’の下面22がさらに上方に変形して、凹状空間を形成する。 Next, as shown in FIG. 8D, the upper resin member layer 30'is arranged as a supernatant liquid layer that covers both the cured light transmitting resin member layer 44'and the cured reflective resin member body 45'. Therefore, volume shrinkage is caused by solidifying by thermosetting. In this manufacturing stage, the lower surface 22 of the reflective resin member body 45'is further deformed upward by the above-mentioned second and third distortion mechanisms to form a concave space.

硬化した上部樹脂部材層30’、光透過樹脂部材層44’および反射樹脂部材体45’によって、接続されたパッケージ構造体20’のアレイを構成することができる。最後に、離型層80の除去後に、図8Eに示すように、上方向に反った下面22’を有する接続されたパッケージ構造体20’のアレイを個別分離工程によって分離して、図8Fに示すように、図3に示すLED素子1Cに相当する複数のCSP型LED素子1C’を得る。 The cured upper resin member layer 30', the light transmitting resin member layer 44', and the reflective resin member body 45' can form an array of connected package structures 20'. Finally, after removal of the release layer 80, as shown in FIG. 8E, an array of connected package structures 20'with an upwardly curved bottom surface 22' is separated by an individual separation step and shown in FIG. 8F. As shown, a plurality of CSP type LED elements 1C'corresponding to the LED element 1C shown in FIG. 3 are obtained.

図8A〜図8Fに例示する本開示による製造方法の本実施形態において、図8Dに示す製造段階を省略すると(すなわち、上部上澄み樹脂部材30’を省くと)、製造後のCSP型LED素子は図5に示すLED素子に相当することは理解されよう。 In the present embodiment of the manufacturing method according to the present disclosure illustrated in FIGS. 8A to 8F, if the manufacturing step shown in FIG. 8D is omitted (that is, if the upper supernatant resin member 30'is omitted), the CSP type LED element after manufacturing is It will be understood that it corresponds to the LED element shown in FIG.

さらに、図2に示すCSP型LED素子1Bに相当するCSP型LED素子を製造する工程シーケンスについて、以下に述べる。本開示による図8A〜図8Fに例示する製造方法のこの実施例では、図8Aに示す製造段階が完了すると、図8Bに示す製造段階を省略して、図8Cに示す対応する製造段階を用いて、反射樹脂部材体45’を形成して縁面13を選択的に覆う一方で、LED半導体ダイ10の上面11は覆わない。反射樹脂部材体45’を熱硬化させた後、光透過樹脂部材層44’をLED半導体ダイ10の上面11および反射樹脂部材体45’の上面の両方に接合するように配設する。それに応じて、図8D〜図8Fに例示する後続の製造段階を引き続き実行する。このようにして、図2に示すCSP型LED素子1Bに相当するCSP型LED素子が得られる。図8Dに示す対応する製造段階を省略すると(すなわち、上部上澄み樹脂部材30’を使用しないと)、製造後のCSP型LED素子は図6に示すCSP型LED素子に相当することは理解されよう。 Further, a process sequence for manufacturing the CSP type LED element corresponding to the CSP type LED element 1B shown in FIG. 2 will be described below. In this embodiment of the manufacturing method illustrated in FIGS. 8A-8F according to the present disclosure, when the manufacturing step shown in FIG. 8A is completed, the manufacturing step shown in FIG. 8B is omitted and the corresponding manufacturing step shown in FIG. 8C is used. Therefore, while the reflective resin member body 45'is formed to selectively cover the edge surface 13, the upper surface 11 of the LED semiconductor die 10 is not covered. After the reflective resin member 45'is thermoset, the light transmitting resin member layer 44'is arranged so as to be joined to both the upper surface 11 of the LED semiconductor die 10 and the upper surface of the reflective resin member 45'. Accordingly, subsequent manufacturing steps illustrated in FIGS. 8D-8F will continue to be performed. In this way, the CSP type LED element corresponding to the CSP type LED element 1B shown in FIG. 2 can be obtained. It will be appreciated that if the corresponding manufacturing step shown in FIG. 8D is omitted (ie, without the use of the upper supernatant resin member 30'), the manufactured CSP type LED element corresponds to the CSP type LED element shown in FIG. ..

図9A〜図9Dは、本開示による製造方法の別の実施形態として、別の製造シーケンスを示す。 9A-9D show different manufacturing sequences as another embodiment of the manufacturing method according to the present disclosure.

図9Aに示すように、LED半導体ダイ10のアレイを離型層80の上に配設する。次に、図9Bに示すように、熱硬化樹脂層50’を各LED半導体ダイ10の上面11および縁面13を覆うように配設する。その後、樹脂層50’を熱硬化させて体積収縮を引き起こす。硬化した樹脂層50’は、図4に示すLED素子1Dの単層樹脂部材50に相当する。当該製造段階では、樹脂層50’の下面52は、上述の第1の主要歪曲メカニズムによって半導体ダイ10の下面12からさらに上方向に変形して、凹状の空間を形成する。 As shown in FIG. 9A, an array of LED semiconductor dies 10 is arranged on the release layer 80. Next, as shown in FIG. 9B, the thermosetting resin layer 50'is arranged so as to cover the upper surface 11 and the edge surface 13 of each LED semiconductor die 10. Then, the resin layer 50'is thermoset to cause volume shrinkage. The cured resin layer 50'corresponds to the single-layer resin member 50 of the LED element 1D shown in FIG. At the manufacturing stage, the lower surface 52 of the resin layer 50'is further deformed upward from the lower surface 12 of the semiconductor die 10 by the above-mentioned first main distortion mechanism to form a concave space.

図9Cに示すように、離型層80は、樹脂層50’の硬化後に除去する。次に、図9Dに示すように、樹脂層50’を個別分離工程によって分離し、図4に示すCSP型LED素子1Dに相当する複数のCSP型LED素子1D’を得る。 As shown in FIG. 9C, the release layer 80 is removed after the resin layer 50'is cured. Next, as shown in FIG. 9D, the resin layer 50'is separated by an individual separation step to obtain a plurality of CSP type LED elements 1D' corresponding to the CSP type LED element 1D shown in FIG.

上記に鑑みれば、上方向に反った下面を有して下方に凹状空間を形成する様々なCSP型LED素子を製造する製造方法のいくつかの実施形態が開示される。開示された方法は、バッチタイプの大量生産工程によく適している。 In view of the above, some embodiments of a manufacturing method for manufacturing various CSP type LED elements having an upwardly curved lower surface and forming a concave space downward are disclosed. The disclosed method is well suited for batch type mass production processes.

本開示では特定の実施形態に関して述べてきたが、添付の特許請求の範囲に定義される本開示の真の趣旨およびその範囲から逸脱することなく様々な変更を行うことができ、均等のものと置き換え可能であることは、当業者であれば理解の及ぶことであろう。さらに、様々な変更を行って、本開示の目的、趣旨および範囲に対して、特定の状況、材料、物の構成、方法またはプロセスを適用することもできるだろう。このような変更はすべて、添付の特許請求の範囲内に含まれることを意図している。特に、本明細書に開示した方法は、特定の順序で実行される特定の動作に関して述べてきたが、これらの動作を組み合わせたり、さらに分割したり、または順序を組み替えたりして、本開示の教示から逸脱しない範囲で均等の方法を構成することができることを理解されよう。したがって、ここに特に指定しない限り、各動作の順序およびグループ化は、本開示を限定するものではない。
Although the present disclosure has described specific embodiments, various changes can be made without departing from the true meaning and scope of the present disclosure as defined in the appended claims and are equal. Being replaceable will be understood by those skilled in the art. In addition, various changes may be made to apply specific circumstances, materials, composition, methods or processes to the purposes, intent and scope of this disclosure. All such changes are intended to be within the scope of the appended claims. In particular, the methods disclosed herein have been described with respect to specific actions performed in a particular order, but these actions may be combined, subdivided, or rearranged in the present disclosure. It will be understood that an equal method can be constructed without departing from the teachings. Therefore, unless otherwise specified herein, the order and grouping of each operation does not limit this disclosure.

Claims (10)

上面、該上面に対向する下面、縁面および1組の電極を含み、前記縁面は前記上面と前記下面との間に延び、前記1組の電極が前記下面に配設されているフリップチップ発光ダイオード(LED)半導体ダイと、
該LED半導体ダイの前記上面および該LED半導体ダイの前記縁面を覆うパッケージ構造体とを含み、該パッケージ構造体は、前記LED半導体ダイの前記上面から間隔を開けて設けられた凹曲変形する上面、該上面に対向し前記LED半導体ダイの前記下面から上に向かって反った下面、および前記パッケージ構造体の前記上面と該パッケージ構造体の前記下面との間に伸びる縁面を含む発光素子において、
前記パッケージ構造体は、前記LED半導体ダイの前記上面と該LED半導体ダイの前記縁面を覆う下部樹脂部材と、該下部樹脂部材に配設された上部樹脂部材とを含み、
前記パッケージ構造体の前記縁面が、前記LED半導体ダイの前記下面に対して垂直配向から逸れており、且つ、傾斜しており、
前記パッケージ構造体の前記下面の外縁は、前記LED半導体ダイの前記縁面から水平方向に距離をとり、該LED半導体ダイの前記下面から上方向に変位して垂直方向に距離をとることにより、該垂直方向の距離を前記水平方向の距離で割った比が0.022を下回らないようにする、発光素子。
A flip chip that includes an upper surface, a lower surface facing the upper surface, an edge surface, and a set of electrodes, the edge surface extending between the upper surface and the lower surface, and the set of electrodes arranged on the lower surface. Light emitting diode (LED) semiconductor die and
The package structure includes the upper surface of the LED semiconductor die and the package structure covering the edge surface of the LED semiconductor die, and the package structure is concavely deformed provided at a distance from the upper surface of the LED semiconductor die. A light emitting element including an upper surface, a lower surface facing the upper surface and warping upward from the lower surface of the LED semiconductor die, and an edge surface extending between the upper surface of the package structure and the lower surface of the package structure. In
The package structure includes a lower resin member that covers the upper surface of the LED semiconductor die and the edge surface of the LED semiconductor die, and an upper resin member disposed on the lower resin member.
The edge surface of the package structure deviates from the vertical orientation with respect to the lower surface of the LED semiconductor die and is inclined .
The outer edge of the lower surface of the package structure is horizontally distanced from the edge surface of the LED semiconductor die, and is displaced upward from the lower surface of the LED semiconductor die to be vertically distanced. A light emitting element such that the ratio of the vertical distance divided by the horizontal distance does not fall below 0.022 .
前記パッケージ構造体の前記上面と前記LED半導体ダイの前記上面との間の距離は50μm〜1000μmの範囲である請求項1に記載の発光素子。 The light emitting element according to claim 1, wherein the distance between the upper surface of the package structure and the upper surface of the LED semiconductor die is in the range of 50 μm to 1000 μm. 前記下部樹脂部材は、前記LED半導体ダイの前記上面を覆う上部と、該LED半導体ダイの前記縁面を覆う端部と、該端部から水平に広がる拡張部とを含む請求項1に記載の発光素子。 The lower resin member according to claim 1, wherein the lower resin member includes an upper portion that covers the upper surface of the LED semiconductor die, an end portion that covers the edge surface of the LED semiconductor die, and an extension portion that extends horizontally from the end portion. Light emitting element. 前記下部樹脂部材は単層構造または多層構造のいずれかであり、前記上部樹脂部材は単層構造または多層構造のいずれかである請求項1に記載の発光素子。 The light emitting device according to claim 1, wherein the lower resin member has either a single-layer structure or a multi-layer structure, and the upper resin member has either a single-layer structure or a multi-layer structure. 前記パッケージ構造体はさらに、フォトルミネセンス材、光散乱粒子、またはその両方を含む請求項1に記載の発光素子。 The light emitting device according to claim 1, wherein the package structure further includes a photoluminescent material, light scattering particles, or both. 前記下部樹脂部材は、前記LED半導体ダイの前記縁面を覆う反射樹脂部材と、該LED半導体ダイの前記上面および前記反射樹脂部材の上面の両方に配設されてこれらを覆う光透過樹脂部材とを含む請求項1に記載の発光素子。 The lower resin member includes a reflective resin member that covers the edge surface of the LED semiconductor die, and a light transmitting resin member that is disposed on both the upper surface of the LED semiconductor die and the upper surface of the reflective resin member and covers them. The light emitting element according to claim 1. 前記下部樹脂部材は、前記LED半導体ダイの前記上面を覆う光透過樹脂部材と、該LED半導体ダイの前記縁面および前記光透過樹脂部材の縁面の両方を覆う反射樹脂部材とを含む請求項1に記載の発光素子。 The lower resin member includes a light transmitting resin member that covers the upper surface of the LED semiconductor die, and a reflective resin member that covers both the edge surface of the LED semiconductor die and the edge surface of the light transmitting resin member. The light emitting element according to 1. LED半導体ダイのアレイを離型層の上に配列する工程、
熱硬化樹脂材を吹付け、塗装、プリント、または調製してLED半導体ダイの上面及び縁面を覆う下部樹脂部材を形成し、加熱によって前記下部樹脂部材の熱硬化樹脂材を固化させる工程、
続いて、熱硬化樹脂材を吹付け、塗装、プリント、または調製して前記下部樹脂部材上に上部樹脂部材を形成し、加熱によって前記上部樹脂部材の熱硬化樹脂材を固化させて接続されたパッケージ構造体のアレイを形成する工程であり、上部樹脂部材と前記下部樹脂部材の順次起こる固化の間に順次起こる体積収縮によって前記上部樹脂部材と前記下部樹脂部材との間に内部界面応力が生じる工程、
前記離型層を除去して前記接続されたパッケージ構造体のアレイの内部界面応力を取り除き、前記接続されたパッケージ構造体の凹形状のアレイを形成する工程、及び、
前記接続されたパッケージ構造体のアレイを個別分離して複数個のパッケージ構造体を形成する工程、
を含み
前記複数個のパッケージ構造体はそれぞれ、上面、下面、縁面を含み、前記前記複数個のパッケージ構造体の下面が前記LED半導体ダイの下面から上方向に変形しており、前記前記複数個のパッケージ構造体の上面が凹曲しており、前記前記複数個のパッケージ構造体の縁面が前記LED半導体ダイの前記下面に対して垂直配向から逸れており、且つ、傾斜しており、
前記複数個のパッケージ構造体の前記下面の外縁は、前記LED半導体ダイの前記縁面から水平方向に距離をとり、該LED半導体ダイの前記下面から上方向に変位して垂直方向に距離をとることにより、該垂直方向の距離を前記水平方向の距離で割った比が0.022を下回らないようにする、発光素子の製造方法。
The process of arranging an array of LED semiconductor dies on a release layer,
A step of spraying, painting, printing, or preparing a thermosetting resin material to form a lower resin member covering the upper surface and the edge surface of the LED semiconductor die, and solidifying the thermosetting resin material of the lower resin member by heating.
Subsequently, the thermosetting resin material was sprayed, painted, printed, or prepared to form the upper resin member on the lower resin member, and the thermosetting resin material of the upper resin member was solidified and connected by heating. In the step of forming an array of the package structure, an internal interfacial stress is generated between the upper resin member and the lower resin member due to volume shrinkage that occurs sequentially during the sequential solidification of the upper resin member and the lower resin member. Process,
A step of removing the release layer to remove the internal interfacial stress of the array of connected package structures to form a concave array of the connected package structures, and
A step of individually separating an array of connected package structures to form a plurality of package structures.
Each of the plurality of package structures includes an upper surface, a lower surface, and an edge surface, and the lower surface of the plurality of package structures is deformed upward from the lower surface of the LED semiconductor die. The upper surface of the package structure is concave, and the edge surface of the plurality of package structures is deviated from the vertical orientation with respect to the lower surface of the LED semiconductor die and is inclined .
The outer edge of the lower surface of the plurality of package structures is horizontally distanced from the edge surface of the LED semiconductor die, and is displaced upward from the lower surface of the LED semiconductor die to be vertically distanced. A method for manufacturing a light emitting element so that the ratio of the vertical distance divided by the horizontal distance does not fall below 0.022 .
前記下部樹脂部材は、前記LED半導体ダイの前記上面に配設された硬化した光透過樹脂材と、前記LED半導体ダイの前記縁面および前記硬化した光透過樹脂材の端部の両方を覆う反射樹脂部材体とを含み、前記上部樹脂部材が前記硬化した光透過樹脂材と反射樹脂部材体の両方に配設され、前記上部樹脂部材の前記熱硬化樹脂材を固化させる前に、先に前記反射樹脂部材体を固化させる請求項に記載の発光素子の製造方法。 The lower resin member is a reflection that covers both the cured light transmitting resin material disposed on the upper surface of the LED semiconductor die, the edge surface of the LED semiconductor die, and the end portion of the cured light transmitting resin material. The upper resin member includes a resin member body, and the upper resin member is disposed on both the cured light transmitting resin material and the reflective resin member body, and the upper resin member is first described before being solidified. The method for manufacturing a light emitting element according to claim 8 , wherein the reflective resin member is solidified. 前記下部樹脂部材は、さらに、前記LED半導体ダイの前記縁面を覆う反射樹脂材と、該LED半導体ダイの前記上面および該反射樹脂材の上面の両方を覆う光透過樹脂材とを含み、該光透過樹脂材を固化させる前に、先に前記反射樹材を固化させる請求項に記載の発光素子の製造方法。 The lower resin member further includes a reflective resin material that covers the edge surface of the LED semiconductor die, and a light transmitting resin material that covers both the upper surface of the LED semiconductor die and the upper surface of the reflective resin material. The method for manufacturing a light emitting element according to claim 8 , wherein the reflective tree material is first solidified before the light transmitting resin material is solidified.
JP2017003282A 2016-01-12 2017-01-12 Chip scale package type light emitting device having a concave surface and its manufacturing method Active JP6769881B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW105100783 2016-01-12
TW105100783A TWI586000B (en) 2016-01-12 2016-01-12 Recessed chip scale packaging light emitting device and manufacturing method of the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018211686A Division JP2019096871A (en) 2016-01-12 2018-11-09 Chip scale packaging light emitting element with recessed face and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2017175113A JP2017175113A (en) 2017-09-28
JP6769881B2 true JP6769881B2 (en) 2020-10-14

Family

ID=59443363

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017003282A Active JP6769881B2 (en) 2016-01-12 2017-01-12 Chip scale package type light emitting device having a concave surface and its manufacturing method
JP2018211686A Pending JP2019096871A (en) 2016-01-12 2018-11-09 Chip scale packaging light emitting element with recessed face and method of manufacturing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2018211686A Pending JP2019096871A (en) 2016-01-12 2018-11-09 Chip scale packaging light emitting element with recessed face and method of manufacturing the same

Country Status (3)

Country Link
JP (2) JP6769881B2 (en)
KR (1) KR101933927B1 (en)
TW (1) TWI586000B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110534628B (en) * 2018-05-24 2021-03-09 光宝光电(常州)有限公司 Light emitting device and method for manufacturing the same
JP7208478B2 (en) * 2018-09-28 2023-01-19 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP7189451B2 (en) 2020-06-30 2022-12-14 日亜化学工業株式会社 Light emitting module, liquid crystal display

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1693904B1 (en) * 2005-02-18 2020-03-25 Nichia Corporation Light emitting device provided with lens for controlling light distribution characteristic
JP5508244B2 (en) * 2010-11-15 2014-05-28 シチズンホールディングス株式会社 Manufacturing method of semiconductor light emitting device
WO2013112435A1 (en) * 2012-01-24 2013-08-01 Cooledge Lighting Inc. Light - emitting devices having discrete phosphor chips and fabrication methods
WO2013151387A1 (en) * 2012-04-06 2013-10-10 주식회사 씨티랩 Method for manufacturing semiconductor device structure
JP6118575B2 (en) * 2013-02-12 2017-04-19 日亜化学工業株式会社 Light emitting device
KR102123039B1 (en) * 2013-07-19 2020-06-15 니치아 카가쿠 고교 가부시키가이샤 Light emitting device and method of manufacturing the same
JP2015207754A (en) * 2013-12-13 2015-11-19 日亜化学工業株式会社 light-emitting device

Also Published As

Publication number Publication date
TW201725758A (en) 2017-07-16
KR101933927B1 (en) 2019-03-25
TWI586000B (en) 2017-06-01
KR20170084701A (en) 2017-07-20
JP2017175113A (en) 2017-09-28
JP2019096871A (en) 2019-06-20

Similar Documents

Publication Publication Date Title
JP6599295B2 (en) LIGHT EMITTING ELEMENT HAVING BELT ANGLE REFLECTOR AND MANUFACTURING METHOD
KR102253516B1 (en) Light-emitting device
US9728686B2 (en) Method of fabricating white LED devices
EP3193379B1 (en) Packaging for light emitting device and manufacturing method of the same
JP4044078B2 (en) High power light emitting diode package and manufacturing method
CN104716247B (en) Light emitting device
JP5134229B2 (en) Light emitting diode element, method for manufacturing light emitting diode element, and light emitting diode element fixing structure
US11114583B2 (en) Light emitting device encapsulated above electrodes
US20140299898A1 (en) Light emitting device module and method of manufacturing the same
EP1996860A2 (en) Led illumination assembly with compliant foil construction
TW201246636A (en) Flexible LED device and method of making
TWI786126B (en) Light-emitting device, manufacturing method thereof and display module using the same
JP6587499B2 (en) Light emitting device and manufacturing method thereof
JP6769881B2 (en) Chip scale package type light emitting device having a concave surface and its manufacturing method
KR101945057B1 (en) Base for optical semiconductor device and method for preparing the same, and optical semiconductor device
JP6582827B2 (en) Substrate, light emitting device, and method of manufacturing light emitting device
KR102091534B1 (en) Chip scale packaging light emitting device and manufacturing method of the same
JP7425354B2 (en) Light-emitting device and method for manufacturing the light-emitting device
KR101865272B1 (en) Light emitting diode module and method for manufacturing the same
US20220416132A1 (en) Semiconductor light-emitting device and method for manufacturing semiconductor light-emitting device
JP2012049162A (en) Semiconductor light-emitting module and method of manufacturing the same
JP2011044752A (en) Method of manufacturing optical semiconductor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181109

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20181109

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20181127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181129

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190129

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20190205

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190322

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20190326

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20190611

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20191015

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20191112

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200311

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200410

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200507

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20200728

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20200908

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200924

R150 Certificate of patent or registration of utility model

Ref document number: 6769881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250