TWI403459B - 低溫製氫製程 - Google Patents

低溫製氫製程 Download PDF

Info

Publication number
TWI403459B
TWI403459B TW099119430A TW99119430A TWI403459B TW I403459 B TWI403459 B TW I403459B TW 099119430 A TW099119430 A TW 099119430A TW 99119430 A TW99119430 A TW 99119430A TW I403459 B TWI403459 B TW I403459B
Authority
TW
Taiwan
Prior art keywords
catalyst
methanol
steam reforming
low temperature
reforming process
Prior art date
Application number
TW099119430A
Other languages
English (en)
Other versions
TW201144214A (en
Inventor
Yuh Jeen Huang
Ke-Lun Ng
Original Assignee
Nat Univ Tsing Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Tsing Hua filed Critical Nat Univ Tsing Hua
Priority to TW099119430A priority Critical patent/TWI403459B/zh
Priority to US12/871,280 priority patent/US20110305628A1/en
Publication of TW201144214A publication Critical patent/TW201144214A/zh
Application granted granted Critical
Publication of TWI403459B publication Critical patent/TWI403459B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • C01B3/326Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8953Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • B01J35/393
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1223Methanol
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

低溫製氫製程
本發明是關於一種低溫製氫製程,尤其是一種使用金銅鋅觸媒的OSRM及SRM反應。
燃料電池為發展中的技術,可高效率地轉換燃料的化學能成為電能,又能兼顧環保的需求。在各種發展的燃料電池(fuel cell)中,質子交換膜燃料電池(proton exchange membrane fuel cell;PEMFC)擁有低操作溫度的優勢,因此頗具發展潛能。但是PEMFC技術上有氫氣燃料具有不易儲存及不易輸送的缺點。目前可藉由使用碳氫化合物作為PEMFC的外來主要(primary)燃料,將其在現場(on site)轉換成富氫氣體(hydrogen rich gas;HRG)來克服之。而富氫氣體是氫氣含量高的混和氣體,是適合燃料電池使用的燃料之一。
在碳氫化合物轉換供給PEMFC氫氣燃料的研究中,藉由甲醇的化學反應來提供氫氣已被廣泛研究,這是因為甲醇具有高的化學活性、產量大和價格低的優點。因此,已經開發出許多以甲醇製造富氫氣體的製程。開發較早的有甲醇蒸氣重組反應(SRM,steam reforming of methanol,反應(1)),和甲醇部分氧化反應(POM,partial oxidation of methanol,反應(2)):
CH3 OH+H2 O→3H2 +CO2  ΔH=49kJ mol-1  (1)
CH3 OH+O2 →2H2 +CO2  ΔH=-192kJ mol-1  (2)
SRM雖然可以每消耗一莫耳的甲醇就製造出3莫耳的氫氣,但是SRM的產物中總存在有大量的CO污染物(>1%)。CO已知會毒化鉑觸媒,導致催化活性急遽下降而影響電池效能。此外,SRM為吸熱反應,由勒沙特列原理(Le Chatelier’s Principle)的角度來看,降低反應溫度並不利於SRM的進行,也就是需要在高溫下才能有效進行SRM的反應。
對於POM反應而言,雖然其為放熱反應,較適宜在低溫下進行反應。但是每消耗一莫耳的甲醇,理論上最多只能製造出2莫耳的氫氣,不及SRM理論值的3莫耳氫氣。
較先進的甲醇重組則利用水和氧氣的混和氣體作為氧化劑,這新的反應稱為甲醇的氧化蒸氣重組(oxidative steam reforming of methanol,OSRM),也就是反應(1)及(2),可以以不同比例結合在一起。例如,使淨反應熱幾乎為零時,理論計算比例約為3.9:1。在SRM與POM以適當比例的結合條件下,可以讓OSRM的RH2 值(消耗每莫耳甲醇所產生之氫氣的莫耳數)逼近2.75。並且因為氧的存在,OSRM所製造出的氫氣中,CO含量可以降低。
由於文獻中用在OSRM反應的銅或鈀觸媒需要的反應溫度都在250℃以上,因此燃料重組器開始使用時必須先經過燃料預熱(pre-heating)及點燃的(start-up)步驟,勢必成為啟動時間的瓶頸,影響了PEMFC的實用性。如果能降低OSRM反應的起燃溫度,就能縮短PEMFC、電動車以及電子產品的啟動時間,同時也能降低能源的耗費及節省成本。此外起燃溫度之降低可提升觸媒之穩定性及壽命。
綜合上述,相較於POM,SRM反應及OSRM反應具有高RH2 值之優勢,因此如何降低SRM反應及OSRM反應之反應溫度,並降低SRM反應之CO含量,以獲得到高效率之SRM反應及OSRM反應,是目前努力的目標。此外PEMFC的操作溫度約為80-180℃,因此需要降低SRM反應及OSRM反應的起燃溫度,才能使SRM反應及OSRM反應運用於PEMFC。
此外,在製備觸媒部分,銅、鋅、鈰、鋯、鋁等金屬常通過不同的製備方法合成各種組合的催化劑,被用在甲醇重組製氫反應,其中又以銅鋅雙金屬催化劑具便宜、高反應活性、製作方法簡單等優勢,但是大量一氧化碳副產物限制了銅鋅催化劑的應用。
另一方面,目前已知金可作為觸媒,金顆粒本身即可進行產氫反應,並且具有進行一氧化碳選擇性氧化的能力,因此添加金奈米粒子於催化劑中可預期能夠增加製程反應的選擇性以及專一性。
張奉文教授等人於台灣專利I315999中揭示利用共沈澱法製備成氧化銅和氧化鋅複合擔體奈米金觸媒,其目的在於發展甲醇部分氧化反應製備氫氣的程序,用來提高氫氣純度降低一氧化碳含量之方法。
葉君棣教授等人於美國專利號7459000之中揭示,所使用之金及氧化鋅觸媒則可在150℃重組甲醇產生低CO濃度之富氫氣體,然後在低溫(TR >150℃)下,讓混合的反應氣體通過高活性的支撐金觸媒以催化甲醇之氧化蒸氣重組反應。然而其所用的Au/ZnO觸媒在反應之前需要於高溫以氫氣進行預還原,因此減少其於PEMFC之運用。
綜合上述,如何克服OSRM反應及SRM反應所需的高溫缺點,並且不需預還原觸媒,以期運用於PEMFC,是目前亟需努力的目標。
本發明之目的為提供一種OSRM反應及SRM反應,其可降低反應的起燃溫度,以克服OSRM反應及SRM反應所需的高溫缺點。
依據本發明之一實施例,一種低溫甲醇氧化水蒸氣重整製程,包括:提供一混合氣體,其包含甲醇、水及氧氣;以及使混合氣體通過一觸媒進行甲醇氧化水蒸氣重整反應以得到氫氣,其中觸媒包含AuCu/ZnO成份,該混合氣體之起燃溫度為大約低於175℃。
依據本發明之另一實施例,一種低溫甲醇水蒸氣重整製程,包括提供一混合氣體,其包含甲醇及水;以及使混合氣體通過一觸媒進行甲醇水蒸氣重整反應以得到氫氣,其中該觸媒包含AuCu/ZnO成份。
本發明上述及其他態樣、特性及優勢可由附圖及實施例之說明而可更加了解。
本發明利用金銅鋅(AuCu//ZnO)觸媒催化甲醇氧化蒸氣重組(OSRM)反應以及甲醇蒸氣重組(SRM)反應,以生產一富氫氣體。本發明觸媒可有效降低OSRM反應的起燃溫度,並使OSRM反應仍具有高甲醇轉化率(CMeOH )及低CO選擇率(SCO )的優點。此外,金銅鋅觸媒在催化SRM反應部分亦具有良好效率。
AuCu/ZnO觸媒之製備
在一實施例中,將0.5M硝酸銅與鋅混合,滴入500ml,70℃劇烈攪拌的超純水,同時加入超音波震盪。接著利用2M碳酸鈉將pH維持在7,待滴完後熟成至pH8。烘乾後將沈澱物研磨,倒入500ml水中,升溫至70℃並劇烈攪拌。逐滴滴入0.01M AuCl4 溶液,並用2M碳酸鈉將pH維持在7。滴完氯酸金溶液後,熟成1小時,並用10%HCl將pH維持在7。一小時後,利用真空抽濾,並以4L超純水清洗,再以105℃烘乾12小時。烘乾後將沈澱物研磨,並以400℃、30ml/min空氣煅燒兩小時。得到Au3 Cu30 /ZnO觸媒。
其他不同比例之Au0.8 Cu30 /ZnO及Au4.3 Cu30 /ZnO觸媒、及對照組之Cu30 /ZnO及Au2.4 /ZnO觸媒亦可由相似的實驗步驟製備。
1. OSRM反應 :4CH3 OH(g) +O2(g) +3H2 O(g) →11H2 +4CO2
圖1為示意圖顯示本發明一實施例之甲醇氧化水蒸氣重整製氫反應系統。在固定床反應器(fixed bed reactor)或絕熱反應器100中,先取100 mg的金銅鋅觸媒放置於內徑為4mm的石英反應管內,並用石英棉固定觸媒位置。而在反應氣體方面,首先使用液態幫浦來控制甲醇水溶液的流量並以預熱器加以氣化;氧氣和載流氣體(Ar)則分別藉由質流控制器控制流速,連同甲醇與水之氣體一同輸入混合槽內均勻混合,然後再將混合氣體(反應物300)通過絕熱反應器100之觸媒床200(catalyst bed)以產生氫氣及二氧化碳(產物400)。其中混合氣體之中氧氣對甲醇之莫耳比為0至0.7間,水對甲醇莫耳比為0.7至2.5間,以及氧氣可由空氣或是純氧提供。產物400可經由熱傳導偵測器作定量分析之後,計算甲醇轉化率(CMeOH ),一氧化碳(SCO )選擇率其定義如下:
CMeOH =(nMeOH,in -nMeOH,out )/nMeOH,in ×100%
SCO =nCO /(nCO2 +nCO )×100%
在金銅鋅觸媒之比例部分,銅相較於金銅鋅之含量為20至50重量百分比,金相較於金銅鋅之含量為0.1至10重量百分比,較佳者為1至5重量百分比,觸媒中的金微粒之顆粒粒徑不大於10.0 nm,其中觸媒可以不需預還原處理。在金銅鋅觸媒的催化之下,混合氣體進行OSRM反應之起燃溫度為大約低於175 ℃,較佳為大約低於155 ℃。所得的氫氣具有低CO含量(SCO ≦2%),且每莫耳甲醇消耗有大於2的氫氣。
請參照表1,在氧醇比為0.25且水醇比為1.0的反應條件之下,同樣的銅鋅觸媒在沒有經過還原的情況下其起燃溫度維持在195℃。經過還原的銅鋅觸媒則將起燃溫度降為185℃。相較於銅鋅觸媒,使用未還原的金銅鋅觸媒之起燃溫度較低(<175℃,其中Au0.8 Cu30 /ZnO觸媒為170℃;Au3 Cu30 /ZnO觸媒為155℃;以及Au4.3 Cu30 /ZnO觸媒為145℃)。此外Au2.4 /ZnO觸媒之起燃溫度則為80℃。
請參照表2,在氧醇比為0.25、水醇比為1.0且反應溫度為250℃的反應條件之下,金鋅觸媒的催化效率為最差(CMeOH =41.7%,產氫速率為64.9 mmols-1 kg-1 ,以及SCO =6.6%),未還原的金銅鋅觸媒之催化效率為最高(CMeOH =96.3%,產氫速率為220.6 mmols-1 kg-1 ,以及SCO =1.4%)。本發明之金銅鋅觸媒相較於銅鋅觸媒幾乎有相同的催化能力,並且能夠在不損失活性的情況下將啟動溫度降低。
因此,本發明之金銅鋅觸媒在不需預還原之情形之下,可以降低OSRM的起燃溫度(<175℃),並且可維持相當不錯的催化效率。因此可做為OSRM之催化觸媒。並可達到降低啟動時間、降低能源耗費及節省成本,並可提升觸媒之穩定性及壽命。
此外在一實施例之中,可以同時使用起燃溫度低之觸媒及催化效率高之觸媒,由於OSRM為放熱反應,一旦起燃之後,則可促進反應發生,再由催化效率高的觸媒催化高效率的產氫反應。
2. SRM反應:CH 3 OH (g) +H 2 O (g) → 3H 2 +CO 2
圖2為示意圖顯示本發明一實施例之甲醇水蒸氣重整製氫反應系統。在固定床反應器或絕熱反應器100中,先取100 mg的金銅鋅觸媒放置於內徑為4mm的石英反應管內,並用石英棉固定觸媒位置。然後再將混合氣體(反應物300)通過絕熱反應器100之觸媒床200(catalyst bed)以產生氫氣。其中混合氣體之中水對甲醇莫耳比為0.7至2.5間,其中氫氣具有低CO含量(SCO ≦2%),且每莫耳甲醇消耗產生大於2.2的氫氣。此外金銅鋅觸媒的比例及性質已於上述,在此不再重覆。
其中,在水醇比1.0,氣體流速100 mL/min以及催化劑100 mg,反應溫度為300℃的反應條件之下,發現相較於OSRM,SRM反應必須在比較高的溫度才能夠達到比較好的轉換率。此外在反應條件為水醇比為1.0且反應溫度為300℃的SRM反應之中,金銅鋅觸媒的催化效率較未還原銅鋅催化劑更好(Au4.3 Cu30 /ZnO之CMeOH 為99.5%,產氫速率為251.6 mmols-1 kg-1 ,以及SCO 為4.5%),其中金銅鋅觸媒的金含量較低時,SCO 可低於還原後的銅鋅觸媒(Au0.8 Cu30 /ZnO之SCO =2.2%,Au3 Cu30 /ZnO之SCO =3.6%);金銅鋅觸媒的金含量較高時,其CMeOH 可高於還原後的銅鋅觸媒(Au4.3 Cu30 /ZnO之CMeOH =99.5%)。
本發明之應用可能會影響到石油工業、燃料電池技術和氫氣經濟的發展。質子交換膜燃料電池(proton exchange membrane fuel cell)目前被認為極有可能做為未來如筆記型電腦、手機與數位錄相機上的電力來源,而本發明所發展出之使用銅鋅觸媒所催化之室溫啟動且低溫甲醇氧化蒸氣重組反應與其高氫產率將可應用於質子交換膜燃料電池上。
綜合上述,本發明之金銅鋅觸媒可降低OSRM的起燃溫度,並且不需經過還原處理即可在OSRM及SRM反應之中維持良好的催化效率。因此可以減少系統複雜度並增加商業化條件。
以上所述之實施例僅是為說明本發明之技術思想及特點,其目的在使熟習此項技藝之人士能夠瞭解本發明之內容並據以實施,當不能以之限定本發明之專利範圍,即大凡依本發明所揭示之精神所作之均等變化或修飾,仍應涵蓋在本發明之專利範圍內。
100‧‧‧反應器
200‧‧‧觸媒床
300‧‧‧反應物
400‧‧‧產物
圖1為示意圖顯示本發明一實施例之甲醇氧化水蒸氣重整製氫反應系統。
圖2為示意圖顯示本發明一實施例之甲醇水蒸氣重整製氫反應系統。
100...反應器
200...觸媒床
300...反應物
400...產物

Claims (15)

  1. 一種低溫甲醇氧化水蒸氣重整製程,包含:提供一混合氣體,其包含甲醇、水及氧氣;以及使該混合氣體通過一觸媒進行甲醇氧化水蒸氣重整反應以得到氫氣,其中該觸媒包含AuCu/ZnO成份,該觸媒未經預還原處理,該混合氣體之起燃溫度為大約低於175℃,其中氫氣之SCO ≦2%。
  2. 如申請專利範圍第1項所述之低溫甲醇氧化水蒸氣重整製程,其中該混合氣體之起燃溫度為大約低於155℃。
  3. 如申請專利範圍第1項所述之低溫甲醇氧化水蒸氣重整製程,其中氫氣之SCO ≦1.4%,且每莫耳甲醇消耗產生大於2的氫氣。
  4. 如申請專利範圍第1項所述之低溫甲醇氧化水蒸氣重整製程,其中該混合氣體之中氧氣對甲醇之莫耳比為0至0.7間,水對甲醇莫耳比為0.7至2.5間。
  5. 如申請專利範圍第1項所述之低溫甲醇氧化水蒸氣重整製程,其中該觸媒之中的銅相較於金銅鋅之含量為20至50重量百分比。
  6. 如申請專利範圍第1項所述之低溫甲醇氧化水蒸氣重整製程,其中該觸媒中的金相較於金銅鋅之含量為0.1至10重量百分比。
  7. 如申請專利範圍第1項所述之低溫甲醇氧化水蒸氣重整製程,其中該觸媒中的金相較於金銅鋅之含量為1至5重量百分比。
  8. 如申請專利範圍第1項所述之低溫甲醇氧化水蒸氣重整製程,其中該觸媒中的金微粒之顆粒粒徑不大於10.0 nm。
  9. 一種低溫甲醇水蒸氣重整製程,包含:提供一混合氣體,其包含甲醇及水;以及使該混合氣體通過一觸媒進行甲醇水蒸氣重整反應以得到氫氣,其中該觸媒包含AuCu/ZnO成份,該觸媒未經預還原處理,氫氣之SCO ≦5%。
  10. 如申請專利範圍第9項所述之低溫甲醇水蒸氣重整製程,其中氫氣之SCO ≦4.5%,且每莫耳甲醇消耗產生大於2.2的氫氣。
  11. 如申請專利範圍第9項所述之低溫甲醇水蒸氣重整製程,其中該混合氣體之中水對甲醇莫耳比為0.7至2.5間。
  12. 如申請專利範圍第9項所述之低溫甲醇水蒸氣重整製程,其中該觸媒之中的銅相較於金銅鋅之含量為20至50重量百分比。
  13. 如申請專利範圍第9項所述之低溫甲醇水蒸氣重整製程,其中該觸媒中的金相較於金銅鋅之含量為0.1至10重量百分比。
  14. 如申請專利範圍第9項所述之低溫甲醇水蒸氣重整製程,其中該觸媒中的金相較於金銅鋅之含量為1至5重量百分比。
  15. 如申請專利範圍第9項所述之低溫甲醇水蒸氣重整製程,其中該觸媒中的金微粒之顆粒粒徑不大於10.0 nm。
TW099119430A 2010-06-15 2010-06-15 低溫製氫製程 TWI403459B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW099119430A TWI403459B (zh) 2010-06-15 2010-06-15 低溫製氫製程
US12/871,280 US20110305628A1 (en) 2010-06-15 2010-08-30 Process for producing hydrogen at low temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099119430A TWI403459B (zh) 2010-06-15 2010-06-15 低溫製氫製程

Publications (2)

Publication Number Publication Date
TW201144214A TW201144214A (en) 2011-12-16
TWI403459B true TWI403459B (zh) 2013-08-01

Family

ID=45096372

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099119430A TWI403459B (zh) 2010-06-15 2010-06-15 低溫製氫製程

Country Status (2)

Country Link
US (1) US20110305628A1 (zh)
TW (1) TWI403459B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI551542B (zh) * 2015-04-17 2016-10-01 國立清華大學 光催誘發甲醇部分氧化重組製氫製程及光觸媒材料
WO2017180880A1 (en) 2016-04-13 2017-10-19 Northwestern University Efficient catalytic greenhouse gas-free hydrogen and aldehyde formation from alcohols
CN109686497B (zh) * 2018-12-18 2020-04-28 太原理工大学 基于气相还原氧化铜制备铜纳米网格透明电极的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200640780A (en) * 2005-05-24 2006-12-01 Chuintih Yeh Process for producing hydrogen with high yield under low temperature
TW200842106A (en) * 2007-04-17 2008-11-01 Univ Nat Central Hydrogen production via partial oxidation of methanol over Au-Cu/TiO2 catalysts
TW200911683A (en) * 2007-06-07 2009-03-16 Sumitomo Seika Chemicals Hydrogen production method, and reforming reactor
TW201012746A (en) * 2008-09-26 2010-04-01 Nat Univ Tsing Hua Self-started process for hydrogen production

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3496051B2 (ja) * 2000-06-07 2004-02-09 独立行政法人産業技術総合研究所 メタノールの酸化的水蒸気改質反応による水素ガス製造触媒及びその製造法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200640780A (en) * 2005-05-24 2006-12-01 Chuintih Yeh Process for producing hydrogen with high yield under low temperature
TW200842106A (en) * 2007-04-17 2008-11-01 Univ Nat Central Hydrogen production via partial oxidation of methanol over Au-Cu/TiO2 catalysts
TW200911683A (en) * 2007-06-07 2009-03-16 Sumitomo Seika Chemicals Hydrogen production method, and reforming reactor
TW201012746A (en) * 2008-09-26 2010-04-01 Nat Univ Tsing Hua Self-started process for hydrogen production

Also Published As

Publication number Publication date
TW201144214A (en) 2011-12-16
US20110305628A1 (en) 2011-12-15

Similar Documents

Publication Publication Date Title
Garcia et al. A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability
Laosiripojana et al. Catalytic steam reforming of ethanol over high surface area CeO2: The role of CeO2 as an internal pre-reforming catalyst
Kusakabe et al. Methane steam reforming over Ce–ZrO2-supported noble metal catalysts at low temperature
MXPA05004061A (es) Uso de catalizadores de cobre con soporte metalico para la reformacion de alcoholes.
Rosha et al. Hydrogen enrichment of biogas via dry and autothermal-dry reforming with pure nickel (Ni) nanoparticle
Matus et al. Hydrogen production through autothermal reforming of CH4: Efficiency and action mode of noble (M= Pt, Pd) and non-noble (M= Re, Mo, Sn) metal additives in the composition of Ni-M/Ce0. 5Zr0. 5O2/Al2O3 catalysts
Dasireddy et al. Cu–Mn–O nano-particle/nano-sheet spinel-type materials as catalysts in methanol steam reforming (MSR) and preferential oxidation (PROX) reaction for purified hydrogen production
TWI294413B (en) Method for converting co and hydrogen into methane and water
Ge et al. Chemical looping oxidation of CH4 with 99.5% CO selectivity over V2O3‐based redox materials using CO2 for regeneration
TWI301824B (en) Process for producing hydrogen with high yield under low temperature
TW200838607A (en) Preparation of mangania-iron-supported nano-gold catalysts and using the same
TWI403459B (zh) 低溫製氫製程
TW201220588A (en) Fuel reforming apparatus and the method thereof
TWI381993B (zh) 反應器室溫啟動甲醇氧化蒸氣重組之低溫製氫製程
JP3756565B2 (ja) 水素ガス中のcoの除去方法
Wang et al. Pt nanoparticles supported LaCoO3 as highly efficient catalysts for photo-thermal catalytic CO2 methanation
CN102285639B (zh) 低温制氢方法
US8529864B2 (en) Process for hydrogen production
Tayade et al. Conventional ethanol reforming technology developments for the production of hydrogen
KR101136234B1 (ko) 폐열을 이용한 바이오가스 개질 시스템 및 바이오가스 개질 방법
TWI381992B (zh) 反應器室溫啟動的低溫氫氣製程
TWI551542B (zh) 光催誘發甲醇部分氧化重組製氫製程及光觸媒材料
JP2021195316A (ja) Coの選択的酸化触媒を備えたco2メタネーション反応装置およびガス中のcoの除去方法
CN110038565A (zh) 一种高空速的甲醇水制氢催化剂及其制备方法与应用
Schumacher Ceria Supported Bimetallic Overlayer Catalysts to Aid in the Dry Reforming of Methane

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees