TWI381993B - 反應器室溫啟動甲醇氧化蒸氣重組之低溫製氫製程 - Google Patents

反應器室溫啟動甲醇氧化蒸氣重組之低溫製氫製程 Download PDF

Info

Publication number
TWI381993B
TWI381993B TW097139301A TW97139301A TWI381993B TW I381993 B TWI381993 B TW I381993B TW 097139301 A TW097139301 A TW 097139301A TW 97139301 A TW97139301 A TW 97139301A TW I381993 B TWI381993 B TW I381993B
Authority
TW
Taiwan
Prior art keywords
copper
catalyst
reactor
room temperature
zinc
Prior art date
Application number
TW097139301A
Other languages
English (en)
Other versions
TW201014786A (en
Inventor
Yuh Jeen Huang
Chuin Tih Yeh
Chien Te Ho
Liang Chor Chung
Original Assignee
Nat Univ Tsing Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Tsing Hua filed Critical Nat Univ Tsing Hua
Priority to TW097139301A priority Critical patent/TWI381993B/zh
Priority to US12/347,541 priority patent/US20100092380A1/en
Priority to US12/730,625 priority patent/US20100179056A1/en
Publication of TW201014786A publication Critical patent/TW201014786A/zh
Priority to US13/107,213 priority patent/US20110212019A1/en
Application granted granted Critical
Publication of TWI381993B publication Critical patent/TWI381993B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8953Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • C01B3/326Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1011Packed bed of catalytic structures, e.g. particles, packing elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1642Controlling the product
    • C01B2203/1647Controlling the amount of the product
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1642Controlling the product
    • C01B2203/1647Controlling the amount of the product
    • C01B2203/1652Measuring the amount of product
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1642Controlling the product
    • C01B2203/1647Controlling the amount of the product
    • C01B2203/1652Measuring the amount of product
    • C01B2203/1661Measuring the amount of product the product being carbon monoxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

反應器室溫啟動甲醇氧化蒸氣重組之低溫製氫製程
本發明是有關於一種製造氫氣的方法,特別是反應器室溫啟動之低溫氫氣製程。
燃料電池為發展中的技術,可高效率地轉換燃料的化學能成為電能,又能兼顧環保的需求。在各種發展的燃料電池(fuel cell)中,質子交換膜燃料電池(proton exchange membrane fuel cell;PEMFC)擁有低操作溫度的優勢,因此頗具發展潛能。但是PEMFC技術上有氫氣燃料具有不易儲存及不易輸送的缺點。目前可藉由使用碳氫化合物作為PEMFC的外來主要(primary)燃料,將其在現場(on site)轉換成富氫氣體(hydrogen rich gas;HRG)來克服之。而富氫氣體是氫氣含量高的混和氣體,是適合燃料電池使用的燃料之一。
在碳氫化合物轉換供給PEMFC氫氣燃料的研究中,藉由甲醇的化學反應來提供氫氣已被廣泛研究,這是因為甲醇具有高的化學活性、產量大和價格低的優點。因此,已經開發出許多以甲醇製造富氫氣體的製程。開發較早的有甲醇的蒸氣重組反應(SRM,steam reforming of methanol,反應(1)),和甲醇的部分氧化反應(POM,partial oxidation of methanol,反應(2)):CH3 OH+H2 O → 3H2 +CO2 △H=49 kJ mol-1 (1)
CH3 OH+1/2 O2 → 2H2 +CO2 △H=-192 kJ mol-1 (2)
SRM雖然可以每消耗一莫耳的甲醇就製造出3莫耳的氫氣,但是SRM的產物中總存在有大量的CO污染物(>1%)。CO已知會毒化鉑觸媒,導致催化活性急遽下降而影響電池效能。此外,SRM為吸熱反應,由勒沙特列原理(Le Chatelier’s Principle)的角度來看,降低反應溫度並不利於SRM的進行,也就是需要在高溫下才能有效進行SRM的反應。
對於POM反應而言,雖然其為放熱反應,較適宜在低溫下進行反應。但是每消耗一莫耳的甲醇,理論上最多只能製造出2莫耳的氫氣,不及SRM理論值的3莫耳氫氣。
較先進的甲醇重組則利用水和氧氣的混和氣作為氧化劑,這新的反應稱為甲醇的氧化蒸氣重組(oxidative steam reforming of methanol,OSRM),也就是反應(1)及(2),可以以不同比例結合在一起。例如,使淨反應熱幾乎為零時,理論計算比例約為3.9:1。在SRM與POM以適當比例的結合條件下,可以讓OSRM的RH2值(消耗每莫耳甲醇所產生之氫氣的莫耳數)逼近2.75。並且因為氧的存在,OSRM所製造出的氫氣中,CO含量還可以較低。
文獻上可以看到許多應用在OSRM方法中的觸媒研究。有的使用Cu/ZnO-Al2 O3 及Cu/ZrO2 等銅觸媒,例如Hozle等之第2002/0019324號美國公開專利,Nojima等之第6576217號美國專利,以及Schlogl等之WO第2004/083116號之公開專利等。Tsai等人於2005年所發表(WO 2005/009612 A1號美國公開專利),其所使用的銅鋁合金與過渡金屬觸媒(不含銅)可增加銅觸媒之穩定度及降低成本,但反應溫度皆高於240℃才能啟動。有的使用Pd/CeO2 -ZrO2 鈀觸媒(Kanekim等之第2001/0021469A1及2001/0016188 A1號美國公開專利),以及Pd-Cu/ZnO的合 金觸媒(Edwards等之WO第96/00186號公開專利)。這些觸媒都需要大於200℃的溫度才能催化OSRM的反應,而且富氫氣體中的CO污染仍然相當高(>2%)。若使用分散在鋅、鋁和鋯混合氧化物上的銅觸媒,可使富氫氣體中的CO污染降低至1%左右(Suzuki等之第2005/7025947美國公開專利),然而此種觸媒仍需要200℃以上的反應溫度。Yeh等人於2006年所發表(US2006269469公開專利),所使用之金觸媒則可在150℃重組甲醇產生低CO濃度之富氫氣體,但無法於反應器室溫啟動,需額外提供熱源起動製氫反應。
下表一為其他已知公開文獻中,不同觸媒系統對於甲醇氧化蒸氣重組反應之結果比較。可以觀察到,這些觸媒系統組合都要在大於200℃的溫度條件下才能有效催化OSRM的反應。
註:(1) Perez-Hernandez, R., Gutierrez-Martinez, A., Gutierrez-Wing, C.E., Int. J. Hydrogen Energy. 32, 2888-2894 (2007); (2) Tetsuya Shishido, Yoshihiro Yamamotob, Hiroyuki Morioka, Katsuomi Takehira., J. Mol. Catal. A: Chem. 268, 185-194 (2007); (3) Velu, S., Suzuki, K., Kapoor, M. P., Ohashi, F., and Osaki, T., Appl. Catal. A: 213, 47 (2001); (4) Shen, J-P., and Song C., Catal. Today 77, 89 (2002); (5) Velu, S., and Suzuki, K., Topics in Catal. 22, 235 (2003); (6) Nobuhiro Iwasa, Masayoshi Yoshikawa, Wataru Nomura, Masahiko Arai., Appl. Catal., A 292, 215-222 (2005) (7) Lenarda, M., Storaro, L., Frattini, R., Casagrande, M., Marchiori, M., Capannelli, G., Uliana, C., Ferrari, F., Ganzerla, R., Catal. Commun. 8, 467-470 (2007) (8) Liu, S., Takahashi, K., and Ayabe, M., Catal. Today 87, 247 (2003)。
根據上述,於是需要一種快速啟動的甲醇之氧化蒸氣重組製程,在低於200℃的反應溫度下,可產生低CO含量之氫氣,且每單位的甲醇消耗有較高的氫氣產出率RH2
為解決上述問題,本發明目的之一係提供一種可反應器室溫啟動之低溫氫氣製程及其觸媒,此製程的氫氣產出率(RH2 )大於2。
本發明目的之一係提供一種可反應器室溫啟動之低溫氫氣製程及其觸媒,可不需額外提供熱源啟動甲醇氧化蒸氣重組反應,所產生之氫氣可應用於燃料電池使用。
為達到上述目的,本發明一實施例可反應器室溫啟動之低溫氫氣製程,係包括下列步驟:混合甲醇水溶液蒸汽與氧氣獲得一混合氣體;將混合氣體通過一反應器之一銅鋅觸媒,其中銅鋅觸媒為一銅鈀鋅觸媒或一銅銠鋅觸媒;一甲醇氧化蒸氣重組反應於反應器室溫下被催化啟動且自動升溫,其中反應器之室溫係低於140℃;以及溫度到達一反應溫度約大於等於140℃及小於200℃時產生氫氣,其中氫氣之一氧化碳含量約小於等於1莫耳百分比。
本發明另一實施例可反應器室溫啟動之低溫氫氣製程之觸媒係為一銅鋅觸媒。此銅鋅觸媒為一銅鈀鋅觸媒或一銅銠鋅觸媒;銅鋅觸媒係為係以一共沉澱法所製備而成之一支撐性銅觸媒;銅鋅觸媒之銅含量約為10重量百分比至35重量百分比;銅鋅觸媒中的氧化鋅含量約為60.0重量百分比以上;銅鋅觸媒中之氧化銅粒徑小於等於5奈米(nm)。
本發明利用支撐性銅鈀鋅或銅銠鋅觸媒,於反應器室溫下催化甲醇氧化蒸氣重組反應,以生產一富氫氣體。本發明觸媒即使在較低的反應溫度(TR 140℃)下,仍具有高甲醇轉化率(CMeOH )及低CO選擇率(SCO )的優點。均勻分散在適當支撐物上的微小銅與鈀顆粒或銠,可使得銅鈀鋅或銅銠鋅觸媒具有良好的催化活性表現。
觸媒的製備方法
本發明中所用之支撐性銅鋅觸媒,一般而言是以共沉澱法(co-precipitation)來製備。於一實施例中,將硝酸銅、硝酸鈀、硝酸鋅之混和70℃水溶液中快速加入1M的碳酸氫鈉水溶液,調整沉澱pH值6至9時產生一灰黑色沉澱物。所得沉澱物在100℃下烘乾後在400℃下鍛燒,得到新鮮的Cu/PdxZnO-y觸媒(x為氧化鈀的百分比重,y為沉澱時的pH值)。利用上述之共沉澱法,所製得銅鈀鋅觸媒的銅含量可從10%到35%不等。
甲醇氧化蒸氣重組之反應系統與測試催化反應的方法
本發明一實施例之可反應器室溫啟動之低溫氫氣製程反應所設置的甲醇重組製氫反應系統如圖1所示。在固定床反應器(fixed bed reactor)或絕熱反應器100中,先取0.1 g還原過的觸媒樣品(60~80 mesh)放置於內徑為4 mm的石英反應管內,並用石英棉固定觸媒位置。而在反應氣體方面,首先使用液態幫浦來控制甲醇水溶液的流量並以預熱器加以氣化;氧氣和載流氣體(Ar)則分別藉由質流控制器控制流速,連同甲醇與水之氣體一同輸入混合槽內均勻混合(2.89% O2 ,15.02% H2 O,11.56% CH3 OH,70.53% Ar;nH2 O/nMeOH=1.3,nO2 /nMeOH=0.5),然後再將混合氣體(反應物300)通過絕熱反應器100之觸媒床200(catalyst bed)。
之後,反應產物300藉由兩臺氣相層析儀(gas chromatography,GC)來進行定性的分離(其中H2 和CO是用Molecular Sieve 5A層析管來分離;H2 O、CO2 、CH3 OH則是用Porapak Q層析管來分離,並用熱傳導偵測器(TCD)來做定量分析。
經由熱傳導偵測器作定量分析之後,計算甲醇轉化率(CMeOH ),一氧化碳(SCO )選擇率其定義如下:CMeOH =(nMeOH,in -nMeOH,out )/nMeOH,in ×100%
SCO =nCO /(nCO2 +nCO )×100%
RH2 =nH2 /(nMeOH,in -nMeOH,out )
對甲醇氧氧化蒸氣重組反應來說CMeOH 越高,代表反應過程中參與反應的甲醇量越多。在甲醇氧氧化蒸氣重組產生氫氣的同時,氫氣也有可能被反應氣體中的氧給氧化。SCO 越高,表示甲醇脫氫之後,甲醇中的碳容易以一氧化碳的形式脫附,相對的以二氧化碳形式脫附的比率就比較小。
甲醇氧化蒸氣重組之反應系統與測試催化反應的方法
在固定床反應器(fixed bed reactor)中,以固定流量(1.2毫升/小時)的甲醇水溶液通過100毫克的觸媒樣品來測試。由液體進料槽控制甲醇水溶液中水對甲醇的莫耳比(水醇比,w),而氧氣對甲醇的莫耳比(氧醇比,x)則是由氧氣流速來控制,總反應物進料的流速由做為攜帶氣體之氬氣來控制在每分鐘100毫升。因此,反應的接觸時間保持在Wcat /F=1 10-3 min g ml-1 左右。
反應物經預熱氣化後再送入反應器中。參與反應的所有觸媒皆在反應前,以氫氣在200℃下還原一個小時使之活化後才使用。改變不同變因之實驗結果列於表二。
在Cu/ZnO觸媒加入Rh和Pd的影響
表2中之實驗1係以不含鈀金屬的銅鋅(Cu/ZnO)觸媒在x=0.25、w=1.3之狀態下進行反應,此觸媒在反應溫度低於190℃時轉化率即低至40%且無法在反應器室溫啟動,另外從實驗2~7中可發現,添加入鈀金屬之銅鋅觸媒可在反應器室溫啟動。於一實施例中,以同為4d軌域之過渡金屬銠(Rh),形成銅銠鋅(CuRh/ZnO)觸媒進行催化反應,比較表2之實驗8、9後顯示,此觸媒雖亦可在反應器室溫啟動,但其轉化率與CO選擇率皆無法較銅觸媒有效改善,且其RH2 值亦低於POM反應之理想值,故此銅銠鋅觸媒不若銅鈀鋅觸媒為佳。
水醇比對甲醇氧化蒸氣重組反應的影響
在表2之實驗1至7中,反應溫度為170℃與190℃,改變反應物水醇比(x),探討反應物氧醇比對銅鈀觸媒之甲醇轉化率(CMeOH )、氫氣產出率(RH2 )與CO選擇率(SCO )的 影響。在此使用鈀含量為2%的Cu30 Pd2 ZnO為觸媒,並固定氧醇比(x)為0.25。
比較實驗3、5、7之結果可以看出,在x=0.25下,雖然含有鈀金屬之銅鋅觸媒皆可在反應器室溫啟動,但由於其w=1.0時之CO選擇率高達10%,且w=1.5時CO選擇率亦高於3%。CO含量過高會毒化質子交換膜燃料電池中之Pt電極,不符合氫氣重組器內富氫氣體之低CO濃度的目標,故以w=1.3時為最佳選擇。
氧醇比對甲醇氧化蒸氣重組反應的影響
在表2之實驗4、5與10至13中,反應溫度為170℃與190℃,改變反應物氧醇比(x),探討反應物氧醇比對銅鈀觸媒之甲醇轉化率(CMeOH )、氫氣產出率(RH2 )與CO選擇率(SCO )的影響。在此使用鈀含量為2%的Cu30 Pd2 ZnO為觸媒,並固定水醇比(w)為1.3。
結果顯示,x在等於或小於0.1時,由於反應較偏向於SRM之吸熱反應,所以即使銅鋅觸媒添加鈀金屬仍無法在反應器室溫即可啟動,在x=0.25與x=0.5時反應皆可藉由POM放熱反應而從反應器室溫啟動,所得之甲醇轉化率隨著反應物氧醇比的上升而增加。此外,氫氣產出率亦隨氧醇比的上升而增加,這代表適當之氧醇比有利將甲醇之氫氣轉化率最佳化。如前所述,CO濃度過高即會毒化Pt電極,但在此CO選擇率並無太大差異(2%~3%),其順序為x=0.5時之CO選擇率大於x=0.1時之CO選擇率大於x=0.25時之CO選擇率。在實驗14中,銅鈀鋅觸媒在x=0.5,w=1.3時在140℃即可進行OSRM反應,其轉化率高達97%,除了RH2 稍嫌不足之外,CO選擇率也維持在2.5%,更重要的是此OSRM反應可從反應器室溫啟動至 反應溫度。若增加氧醇比(實驗15)至0.6,則其RH2 在170℃下將遠小於2,且反應將從反應器室溫啟動至170度,顯示在此狀態下,反應明顯趨向POM及甲醇完全氧化,故考慮啟動溫度與RH2 之影響,x=0.5為較佳選擇。
於一實施例中,可反應器室溫啟動之低溫氫氣製程包括下列步驟:混合甲醇水溶液與氧氣獲得一混合氣體;於反應器室溫下將混合氣體通過一銅鋅觸媒,其中銅鋅觸媒為一銅鈀鋅觸媒或一銅銠鋅觸媒;一甲醇氧化蒸氣重組反應於反應器室溫下被催化啟動且自動升溫;以及溫度到達一反應溫度約大於等於140℃時產生氫氣,其中氫氣之一氧化碳含量約小於等於1莫耳百分比。
於一實施例中,一種可反應器室溫啟動之低溫氫氣製程的觸媒係為一銅鋅觸媒。此銅鋅觸媒為一銅鈀鋅觸媒或一銅銠鋅觸媒;銅鋅觸媒係為係以一共沉澱法所製備而成之一支撐性銅觸媒;銅鋅觸媒之銅含量約為10重量百分比至35重量百分比;銅鋅觸媒中的氧化鋅含量約為60.0重量百分比以上。
綜合上述,本發明提出一種可反應器室溫啟動之低溫氫氣製程及其觸媒。先將水對甲醇之莫耳比約為1至1.5之甲醇溶液與氧氣混合,使氧氣對甲醇之莫耳比小於等於0.5。然後由反應器室溫使甲醇水溶液與氧氣的混合氣體通過銅鋅觸媒以催化甲醇之氧化蒸氣重組反應。在無額外提供熱源的情況下,溫度會自發性升高至反應溫度而使甲醇轉化率與消耗每莫耳甲醇所產生的氫氣量達成理想值。
本發明一較佳實施例中,氧氣之來源可為純氧或空氣。觸媒可為在含有氧化鋅撐體上之銅微粒。其中銅微粒的含量可約為10至35重量百分比,而氧化銅微粒之粒徑 不大於約5.0 nm;鈀微粒的含量可為1至4重量百分比,而氧化鈀微粒之粒徑不大於10.0 nm。
甲醇之氧化蒸氣重組反應在低至約140℃進行反應,可配合氫氣燃料電池的運轉溫度(<200℃)。最重要的是,本發明毋需額外提供熱源啟動反應,反應溫度可自發性升至所需的反應溫度。
綜合上述,所例示快速啟動之低溫甲醇氧化蒸氣重組反應製氫製程,其中使用本發明之CuPd/ZnO觸媒是關鍵。使用CuPd/ZnO觸媒在反應器室溫即可啟動,使其在低溫下(140℃)仍可催化甲醇氧化蒸氣重組反應,大大減少氫氣重組器中之能源供應與啟動時間,而達到高甲醇轉化率、高氫氣產出率的目標。而本發明之應用,可能會影響到石油工業、燃料電池技術和氫氣經濟的發展。質子交換膜燃料電池(proton exchange membrane fuel cell)目前被認為極有可能做為未來如筆記型電腦、手機與數位錄相機上的電力來源,而本發明所發展出之使用CuPd/ZnO觸媒可在反應器室溫啟動甲醇部分氧化重組反應並獲得高氫氣產率,可應用於質子交換膜燃料電池上。
本發明之應用,可能會影響到石油工業、燃料電池技術和氫氣經濟的發展。質子交換膜燃料電池(proton exchange membrane fuel cell)目前被認為極有可能做為未來如筆記型電腦、手機與數位錄相機上的電力來源,而本發明所發展出之使用銅鋅觸媒所催化之反應器室溫啟動且低溫甲醇氧化蒸氣重組反應與其高氫產率將可應用於質子交換膜燃料電池上。
以上所述之實施例僅係為說明本發明之技術思想及特點,其目的在使熟習此項技藝之人士能夠瞭解本發明之內容並據以 實施,當不能以之限定本發明之專利範圍,即大凡依本發明所揭示之精神所作之均等變化或修飾,仍應涵蓋在本發明之專利範圍內。
100‧‧‧絕熱反應器
200‧‧‧觸媒床
300‧‧‧反應物
400‧‧‧反應產物
圖1所示為根據本發明一實施例之示意圖。
100‧‧‧絕熱反應器
200‧‧‧觸媒床
300‧‧‧反應物
400‧‧‧反應產物

Claims (14)

  1. 一種可反應器室溫啟動之低溫氫氣製程,係包含:混合一甲醇水溶液蒸汽與一氧氣獲得一混合氣體;將該混合氣體通過一反應器之一銅鋅觸媒,其中該銅鋅觸媒為一銅鈀鋅觸媒或一銅銠鋅觸媒;一甲醇氧化蒸氣重組反應於該反應器之室溫下被催化啟動且自動升溫,其中該反應器之室溫係低於140℃;以及溫度到達一反應溫度約大於等於140℃及小於200℃時產生氫氣,其中該氫氣之一氧化碳含量約小於等於1莫耳百分比。
  2. 如申請專利範圍第1項所述之可反應器室溫啟動之低溫氫氣製程,在啟動後不需要外部供給熱量。
  3. 如申請專利範圍第1項所述之可反應器室溫啟動之低溫氫氣製程,其中氧氣之來源可為純氧氣或空氣。
  4. 如申請專利範圍第1項所述之可反應器室溫啟動之低溫氫氣製程,其中該甲醇水溶液中之水與甲醇之莫耳比約為1至1.5。
  5. 如申請專利範圍第1項所述之可反應器室溫啟動之低溫氫氣製程,其中該混合氣體中該氧氣與該甲醇之莫耳比約小於等於0.5。
  6. 如申請專利範圍第1項所述之可反應器室溫啟動之低溫氫氣製程,其中該銅鋅觸媒係為係以一共沉澱法所製備而成之一支撐性銅觸媒。
  7. 如申請專利範圍第6項所述之可反應器室溫啟動之低溫氫氣製程,其中該共沉澱法使用之沉澱劑係為一碳酸氫鈉水溶液。
  8. 如申請專利範圍第6項所述之可反應器室溫啟動之低溫氫氣製程,其中該共沉澱法之沉澱PH值約為6至9。
  9. 如申請專利範圍第1項所述之可反應器室溫啟動之低溫氫氣製程,其中該銅鋅觸媒之銅含量約為10重量百分比至35重量百分比。
  10. 如申請專利範圍第1項所述之可反應器室溫啟動之低溫氫氣製程,其中該銅鋅觸媒中的氧化鋅含量約為60.0重量百分比以上。
  11. 如申請專利範圍第1項所述之可反應器室溫啟動之低溫氫氣製程,其中該銅鈀鋅觸媒的鈀含量約為1至4重量百分比。
  12. 一種可反應器室溫啟動之低溫氫氣製程的觸媒,該觸媒係為一銅鋅觸媒,該銅鋅觸媒為一銅鈀鋅觸媒或一銅銠鋅觸媒;該銅鋅觸媒係為係以一共沉澱法所製備而成之一支撐性銅觸媒;該銅鋅觸媒之銅含量約為10重量百分比至35重量百分比;該銅鋅觸媒中的氧化鋅含量約為60.0重量百分比以上;該銅鋅觸媒中之氧化銅粒徑小於等於5奈米(nm)。
  13. 如申請專利範圍第12項所述之可反應器室溫啟動之低溫氫氣製程的觸媒,其中該銅鈀鋅觸媒中之氧化鈀粒徑小於等於10奈米(nm)。
  14. 如申請專利範圍第12項所述之可反應器室溫啟動之低溫氫氣製程的觸媒,其中該銅鈀鋅觸媒的鈀含量約為1至4重量百分比。
TW097139301A 2008-10-14 2008-10-14 反應器室溫啟動甲醇氧化蒸氣重組之低溫製氫製程 TWI381993B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW097139301A TWI381993B (zh) 2008-10-14 2008-10-14 反應器室溫啟動甲醇氧化蒸氣重組之低溫製氫製程
US12/347,541 US20100092380A1 (en) 2008-10-14 2008-12-31 Process for initiation of oxidative steam reforming of methanol at room temperature
US12/730,625 US20100179056A1 (en) 2008-10-14 2010-03-24 Process for initiation of oxidative steam reforming of methanol at room temperature
US13/107,213 US20110212019A1 (en) 2008-10-14 2011-05-13 Process for initiation of oxidative steam reforming of methanol at evaporation temperature of aqueous methanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097139301A TWI381993B (zh) 2008-10-14 2008-10-14 反應器室溫啟動甲醇氧化蒸氣重組之低溫製氫製程

Publications (2)

Publication Number Publication Date
TW201014786A TW201014786A (en) 2010-04-16
TWI381993B true TWI381993B (zh) 2013-01-11

Family

ID=42099019

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097139301A TWI381993B (zh) 2008-10-14 2008-10-14 反應器室溫啟動甲醇氧化蒸氣重組之低溫製氫製程

Country Status (2)

Country Link
US (2) US20100092380A1 (zh)
TW (1) TWI381993B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201425824A (zh) * 2012-12-22 2014-07-01 Prometheus Energy Technology Co 製氫用的觸媒轉換裝置
CN103816921B (zh) * 2014-01-29 2017-01-18 上海摩醇动力技术有限公司 甲醇水蒸气重整制氢催化剂及其制备方法、制氢方法
CN104237464B (zh) * 2014-09-09 2016-04-06 上海纳米技术及应用国家工程研究中心有限公司 纳米氧化锌负载钯-铜多孔结构的气敏传感材料及制备
CN110937574A (zh) * 2019-12-27 2020-03-31 北京蓝玖新能源科技有限公司 一种甲醇重整制氢设备、包含其的制氢系统
US20230074054A1 (en) * 2020-02-12 2023-03-09 University Of Houston System Inhibition-free low-temperature engine exhaust oxidation catalyst

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020039965A1 (en) * 2000-07-18 2002-04-04 Konosuke Hagihara Catalyst for steam reforming of methanol and method for producing hydrogen therewith
US7048897B1 (en) * 2000-08-28 2006-05-23 Motorola, Inc. Hydrogen generator utilizing ceramic technology
US20060269469A1 (en) * 2005-05-24 2006-11-30 National Tsing Hua University Low temperature reforming process for production of hydrogen from methanol

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116517A (ja) * 1993-10-29 1995-05-09 Takeshi Masumoto メタノール改質用触媒およびその製造方法並びにメタノールの改質法
JP3743995B2 (ja) * 1999-12-15 2006-02-08 日産自動車株式会社 メタノール改質触媒
JP3759406B2 (ja) * 1999-12-15 2006-03-22 日産自動車株式会社 メタノール改質触媒、メタノール改質装置及びメタノール改質方法
JP3496051B2 (ja) * 2000-06-07 2004-02-09 独立行政法人産業技術総合研究所 メタノールの酸化的水蒸気改質反応による水素ガス製造触媒及びその製造法
DE10111198A1 (de) * 2001-03-08 2002-09-19 Basf Ag Methanolreformierungskatalysator mit verringertem Volumenschwund
TW200616711A (en) * 2004-11-19 2006-06-01 Ind Tech Res Inst Process for the production of a hydrogen-rich reformate gas by methanol autothermal reforming reaction
US7659227B2 (en) * 2006-05-22 2010-02-09 University Of Notre Dame Du Lac Catalysts for hydrogen production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020039965A1 (en) * 2000-07-18 2002-04-04 Konosuke Hagihara Catalyst for steam reforming of methanol and method for producing hydrogen therewith
US7048897B1 (en) * 2000-08-28 2006-05-23 Motorola, Inc. Hydrogen generator utilizing ceramic technology
US20060269469A1 (en) * 2005-05-24 2006-11-30 National Tsing Hua University Low temperature reforming process for production of hydrogen from methanol

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
民國93年7月,顏世偉,成功大學碩士論文,"用於甲醇蒸氣重組反應產製氫氣之銅鋅氧化物擔體觸媒之研究" *

Also Published As

Publication number Publication date
US20100179056A1 (en) 2010-07-15
TW201014786A (en) 2010-04-16
US20100092380A1 (en) 2010-04-15

Similar Documents

Publication Publication Date Title
Callaghan Kinetics and catalysis of the water-gas-shift reaction: A microkinetic and graph theoretic approach
Cavallaro et al. Hydrogen production by auto-thermal reforming of ethanol on Rh/Al2O3 catalyst
Goula et al. Hydrogen production by ethanol steam reforming over a commercial Pd/γ-Al2O3 catalyst
US6524550B1 (en) Process for converting carbon monoxide and water in a reformate stream
Dagle et al. Selective CO methanation catalysts for fuel processing applications
Kusakabe et al. Methane steam reforming over Ce–ZrO2-supported noble metal catalysts at low temperature
Peela et al. Oxidative steam reforming of ethanol over Rh based catalysts in a micro-channel reactor
Hu et al. Formic acid dehydrogenation over PtRuBiOx/C catalyst for generation of CO-free hydrogen in a continuous-flow reactor
Zhang et al. Ethanol steam reforming on Rh catalysts: theoretical and experimental understanding
Batista et al. Evaluation of the water-gas shift and CO methanation processes for purification of reformate gases and the coupling to a PEM fuel cell system
TWI381993B (zh) 反應器室溫啟動甲醇氧化蒸氣重組之低溫製氫製程
Ighalo et al. Recent advances in the catalysis of steam reforming of methane (SRM)
Konishcheva et al. The influence of CO, CO2 and H2O on selective CO methanation over Ni (Cl)/CeO2 catalyst: On the way to formic acid derived CO-free hydrogen
TWI301824B (en) Process for producing hydrogen with high yield under low temperature
Galvita et al. Production of hydrogen with low COx-content for PEM fuel cells by cyclic water gas shift reactor
Shejale et al. Noble metal promoted Ni–Cu/La 2 O 3–MgO catalyst for renewable and enhanced hydrogen production via steam reforming of bio-based n-butanol: effect of promotion with Pt, Ru and Pd on catalytic activity and selectivity
Chen et al. Hydrogen production via autothermal reforming of ethanol over noble metal catalysts supported on oxides
Iulianelli et al. Steam reforming, preferential oxidation, and autothermal reforming of ethanol for hydrogen production in membrane reactors
Kawamura et al. Hydrogen production by oxidative methanol reforming with various oxidants over Cu-based catalysts
Kim et al. Compact ATR–WGS-Integrated Bioethanol Fuel Processor for Portable and On-board Fuel Cell Applications
Castaldo et al. Low temperature-ethanol steam reforming over Ni-based catalysts supported on CeO2
US8529864B2 (en) Process for hydrogen production
TWI403459B (zh) 低溫製氫製程
Wan et al. Ignition of methanol partial oxidation over supported platinum catalyst
Kolb et al. A complete fuel processor for propylene glycol as hydrogen supply for a 5 kW low temperature PEM fuel cell–Interim report on single reactors and system performance

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees