200911683 九、發明說明: 【發明所屬之技術領域】 本發明係關於藉由自動熱改質法從含碳 混合原料,得到含氫改質氣體的方法,^原料的 行此方法的改質反應器。 ^適當地進 【先前技術】 工業上製造氫氣的方法中,已知是,组合部分氧化法及 水蒸氣改質法的自動熱改質法。在此自動熱改質法中: 用作為氫氣產生源的碳化氫系原料,於部分氧化法中,夢 由具發熱反應之部分氧化改質反應,從碳化氯系原_ 氣中產生氫氣與二氧化碳’再於水蒸氣改質法中,藉由具 吸熱反應之水蒸氣改質反應,從碳化氫系原料與水中產^ 氫氣與一氧化碳。自動教改質法φ,於丁 μ …又貝忐中,係平衡依據部分氧化 改質反應之發熱量與依據水蒸氣改f反應之吸熱量,而為 可進行理想不需外部加熱的熱獨立型改質反應的方法。例 如使用作為礙化氫系原料之甲醇時的部分氧化改質反應及 水蒸氣改質反應的反應式係如下述式(1)及式(2)所示。此 反應必須藉由相關之任一觸媒以進行。自動熱改質法中— 般是使用銅-鋅系觸媒。 CH3〇H+l/2〇2-> 2H2 + CO2+發熱...(1) CH3〇H + H2〇-^ 3H2 + CO2+吸熱...(2) 自動熱改質法中,上述式(丨)所示之發熱反應發生時較 仫疋直接於附近發生上述式(2 )的吸熱反應,以較有效率地 5 2215-9734-PF;Ahddub 200911683 進行熱的收授。然而,實際上,部分氧化改質反應的反應 速度比水蒸氣改質反應的反應速度還快。為此’例如將含 有石厌化氫系原料、氧氣和水的混合原料供給至改質反應器 中,於改質反應器内氣體流路上流側,部分氧化改質反應 會比水蒸氣改質反應還要優先發生,而引起過度地溫度上 昇而損害觸媒活性。另-方面,纟改f反應器氣體流路下 μ側由於水黑·氣改質反應會比部分氧化改質反應還要優 先發生,接著,溫度降低導致水蒸氣改質反應無法進行完 全。還有,改質觸媒(銅-鋅系觸媒)中,也會受到氧氣的影 響而降低觸媒活性。 ,對於上述觸媒活性降低的問題,係提出有於改質觸媒 中力貝&屬以抑制觸媒活性的降低,並定期還元改質觸 媒以恢復觸媒活性的方法。(例如請參照專利文獻” ':而’定期還元改質觸媒的習知方法中,在包含改質 :…,氫氣H系統内,長時間連續運轉後會發生氫氣 I造效率的惡化。再加上卜,+,士 Α 上述中起因於部分氧化改質反應 :::改質反應間反應速度相[而使改質反應器内熱 所 "作為自動熱改質法系統全體的自動赦 改貝反應無法長時間持續的問題。 、 [專利文獻1]日本專利特開2GQ1_2261 G3號公報。 【發明内容】 本發明係在上 熱改質法之氫氣製 述情形下思考而得,目的是在依據自動 I- | 防止觸媒活性降低,以長時間連 22l5-9734-PF;Ahddub 6 200911683 續運轉。 依據本發明第一側面所提供之氫氣製造方法,在用以 從含有氣態碳化氫系原料、氧氣與水的混合原料產生含有 氫氣改質氣體的改質反應器内部,藉由一併發生部分氧化 改質反應及水蒸氣改質反應的自動熱改質反應,以製造氬 氣的方法中,上述改質反應器係包括第丨區域及第2區域。 第1區域具有既定氣體流路及用以引起主要為發熱反應之 f 部分乳化改質反應的第i觸媒。帛2區域具有既定氣體流 路及用以引起主要為吸熱反應之水蒸氣&質反應的第2觸 媒上述第1區域中部分氧化改質反應係從前述第1區威 中間位置開始,且上述第i區域與上述第2區域之間係進 行熱傳導。 ,依據本發明第二側面所提供之改質反應器,係為藉由 -併發生部分氧化改質反應及水蒸氣改質反應的自動熱改 質反應以從含有氣態碳化氫系原料、氧氣與水的混合原料 產生含有氫氣改質氣體的改質反庫 人貝叹應為。上述改質反應器係 包括第1區域及第2區域。篦】卩+ 、 ^ 弟1 £域具有既定氣體流路及 用以引起主要為發教反廣少都八& …汉應之°卩分乳化改質反應的第1觸 媒。第2區域具有既定氣體流路及用以引起主要為吸熱反 應之水蒸氣改質反應的第2觸媒。上述第ι區域與上述第 2區域係以鄰接央持熱傳導 ^ 寸守汪刀隔壁方式配置。上述第1 觸媒係填充於上述第1區域中 … 矛1 硃中攸中間位置至下流側之間。 上述第1觸媒較佳是加埶至摄 '、,、王躡氏300度以上的銅-鋅系 觸媒。 2215-9734-PF;Ahddub 7 200911683 種 、第1觸媒較佳是包括金屬銅或氧化銅中至少 上述碳化氫系原料較 丁平乂住疋選自於甲醇、乙醇及-甲其 醚所組成之族群。 汉一 τ基 上述苐1區域及上述笫p 工述弟2 &域較佳是上述第丨 流側位置同時也Η卜、+、斤〇 步i匕哎上 疋上迷弟2區域下流側位置,以 1區域氣體流路下流沪伽,、+、结0 义工义弟 而^上述第2區域氣體流路上流端連 通的結構。 〜 應之 上述弟1觸媒較佳是以不會伴隨部分氧化改質反 填充材料稀釋狀態配置。 上述第1區域氣體流路上流部較 八"A c L 1权1土疋填充不會伴隨部 刀氧化反應的填充材料。 本發明其他特徵及優點可益由 叹1良點Ί々日由下述麥照所附圖 詳細說明方式更明瞭。 iT 【實施方式】 第1圖係續'示本發明改質及廂哭 貝反應益1概(结構的剖面 圖。此改質反應器1可藉由組合部分 刀羊L化改質反應及水墓 耽改質反應的自動熱改質反應’從含氣化狀態之 :、 原料產生含氫氣的改質氣體。改質反應器1具有包括:卜;則 容器2與内管3的雙重管结構,前汁认 ' X里g ',口稱刖述外側容器2與内技 所規定之空間内具有改質反應部4。 外側容器2具有封閉端管狀結構,其下端係設有 導入口 2卜下端附近設有改質氣體導出口 &。外側容器 8 2215-9734-PF;Ahddub 200911683 例如是以不銹鋼所形成。 如第1圖及第2圖所示,内管3係為具有一定厚度壁 面的圓筒狀結構,並設於外側容器2内部。内管3下端係 :例如是溶接等方式安裝於外側容器2内底面。内管3下 女而在與原料導入口 21連通之同時’内管3下浐 τ門g d下端與外側容器 &面之間不存在間隙。内管3上端係開放於外側容号2 二猎此,外側容器2内部,藉由内管3内部空間、外側 谷為2上部空間及外側容器2與内管3之間的空間, 從原料導入口 21 风 — 至改貝亂體泠出口 22供氣體流通的流 路。内官3係由不銹鋼等具熱傳導性的材料所構成。 〃改質反應部4係為填充改質觸媒的部位,係由位於内 管3内側的圓柱狀第!區域4卜位於與前述第i區域c 4接夹持内管3之位置(外側容器2與内管3之間)的圓柱 狀第2區域42以及連通前述第i區域41與前述第2區域 42的,通區域43所構成。帛1區域41係由内管3及離間 於内管3轴方向的—對隔斷構件5所規定。第2區域42曰 由卜側谷益2、内管3及於外側容器2與内管3之間且離 間於内管S 4b t a & m 轴方向的—對隔斷構件6所規定。此結果 3、係擔任了作為間隔壁劃分相鄰接之第i區域41及第200911683 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD The present invention relates to a method for obtaining a hydrogen-containing reformed gas from a carbon-containing mixed raw material by an automatic thermal reforming method, and a reforming reactor for the raw material. . ^Properly Advance [Prior Art] Among the methods for industrially producing hydrogen, an automatic thermal reforming method combining a partial oxidation method and a steam reforming method is known. In this automatic thermal reforming method: using a hydrocarbon-based raw material as a hydrogen generating source, in a partial oxidation method, a partial oxidation-modification reaction with a pyrolysis reaction generates hydrogen and carbon dioxide from a carbonized chlorine-based raw gas. 'In the steam reforming method, hydrogen and carbon monoxide are produced from a hydrocarbon-based raw material and water by a steam reforming reaction having an endothermic reaction. The automatic teaching reforming method φ, in Ding μ ... and Beibei, is based on the heat generation of the partial oxidation-modification reaction and the heat absorption according to the reaction of water vapor, and is a heat-independent type that can be ideally and without external heating. The method of upgrading the reaction. For example, a reaction formula using a partial oxidation reforming reaction and a steam reforming reaction when methanol as a raw material for a hydrogenation-based material is used is represented by the following formulas (1) and (2). This reaction must be carried out by any of the related catalysts. In the automatic thermal reforming method, a copper-zinc catalyst is generally used. CH3〇H+l/2〇2-> 2H2 + CO2+ fever...(1) CH3〇H + H2〇-^ 3H2 + CO2+ endotherm...(2) In the automatic thermal reforming method, the above formula ( The pyrolysis reaction shown in 丨) occurs when the endothermic reaction of the above formula (2) occurs directly in the vicinity, and the heat is more efficiently carried out by 5 2215-9734-PF; Ahddub 200911683. However, in practice, the partial oxidative upgrading reaction has a faster reaction rate than the steam reforming reaction. For this reason, for example, a mixed raw material containing a stone-anaerobic hydrogen-based raw material, oxygen, and water is supplied to the reforming reactor, and the partial oxidation-modifying reaction is more modified than the steam in the reforming reactor. The reaction also takes place preferentially, causing excessive temperature rise and impairing catalyst activity. On the other hand, the smear-reactor gas flow path under the μ side will preferentially occur due to the water black gas reforming reaction than the partial oxidation reforming reaction. Then, the temperature reduction causes the water vapor reforming reaction to be impossible. Also, in the modified catalyst (copper-zinc catalyst), the catalytic activity is also reduced by the influence of oxygen. For the problem that the above-mentioned catalyst activity is lowered, a method for suppressing the decrease in the activity of the catalyst in the modified catalyst, and periodically modifying the catalyst to restore the activity of the catalyst is proposed. (For example, please refer to the patent document "': And in the conventional method of periodically changing the catalyst, in the hydrogen-containing H system, the hydrogen gas production efficiency will deteriorate after continuous operation for a long time. Adding Bu, +, Gentry The above is caused by partial oxidation modification reaction::: The reaction rate between the reforming reactions [and the heat in the reforming reactor] is automatically used as the whole system of the automatic thermal reforming system. [Patent Document 1] Japanese Patent Laid-Open Publication No. 2GQ1_2261 G3. SUMMARY OF THE INVENTION The present invention is based on the description of hydrogen in the upper thermal reforming method, and the purpose is to In accordance with the automatic I- | to prevent the decrease of the catalytic activity, the continuous operation of 22l5-9734-PF; Ahddub 6 200911683 continued. According to the first aspect of the present invention, the hydrogen production method is used to contain a gaseous hydrocarbon system. The raw material, the mixed raw material of oxygen and water generates a reforming reactor containing a hydrogen-modified gas, and an argon gas is produced by an automatic thermal reforming reaction of a partial oxidation reforming reaction and a steam reforming reaction. In the method, the reforming reactor includes a second region and a second region. The first region has a predetermined gas flow path and an ith catalyst for causing a partial f-emulsification modification reaction mainly for a heat generation reaction. The region has a predetermined gas flow path and a second catalyst for causing a water vapor and mass reaction mainly for endothermic reaction. The partial oxidation reforming reaction in the first region starts from the intermediate position of the first region, and the above The heat transfer between the i region and the second region is performed. The reforming reactor provided according to the second aspect of the present invention is an automatic thermal reform by-and partial oxidation reforming and steam reforming reaction. The qualitative reaction is to produce a modified anti-coiner containing a hydrogen-modified gas from a mixed raw material containing a gaseous hydrocarbon-based raw material and oxygen and water. The reforming reactor includes a first region and a second region. 】 卩+, ^ brother 1 £ domain has a given gas flow path and the first catalyst used to cause the emulsification modification reaction of the 八 & & 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Established gas flow path and a second catalyst that causes a steam reforming reaction mainly for an endothermic reaction. The first region and the second region are disposed adjacent to each other by a heat transfer system. The first catalyst is filled in the above-mentioned In the first area... Spear 1 Between the middle position and the downstream side of Zhu Zhongyu. The first catalyst is preferably a copper-zinc catalyst that is twisted to a temperature of 300 degrees or more. 9734-PF; Ahddub 7 200911683, the first catalyst preferably comprises at least the above-mentioned hydrocarbon-based raw material, such as metal copper or copper oxide, which is selected from the group consisting of methanol, ethanol and methyl acetate. The Han τ 基 苐 苐 区域 区域 区域 区域 区域 区域 区域 区域 区域 区域 汉 汉 汉 汉 汉 汉 汉 汉 汉 汉 汉 汉 汉 汉 汉 汉 汉 汉 汉 汉 汉 汉 汉 汉 汉 汉 汉 汉 汉 汉 汉 汉 汉 汉 汉 汉The side position is a structure in which the gas flow path of the first region is connected to the flow channel of the second region gas stream by the flow of the gamma, the +, and the 0 volunteers. ~ The above-mentioned 1st catalyst is preferably disposed in a state in which it is not diluted with the partial oxidation-modified anti-filling material. The above-mentioned first region gas flow path portion is filled with a material which is not accompanied by a partial oxidation reaction of the &A<A c L 1 11 soil. Other features and advantages of the present invention will be apparent from the following detailed description of the drawings. iT [Embodiment] Fig. 1 is a cross-sectional view showing the structure of the present invention and the modification of the car. The reforming reactor 1 can be modified by a combination of a knife and a water. The automatic thermal reforming reaction of the tomb tempering reaction 'from the gasification state: the raw material generates a reformed gas containing hydrogen. The reforming reactor 1 has a double tube structure including: the container 2 and the inner tube 3 The front juice recognizes 'X Li g', and the outer container 2 and the space defined by the internal technology have a reforming reaction portion 4. The outer container 2 has a closed end tubular structure, and the lower end is provided with an introduction port 2 There is a modified gas outlet port & the outer container 8 2215-9734-PF; Ahddub 200911683 is formed of stainless steel, for example. As shown in Fig. 1 and Fig. 2, the inner tube 3 is a wall having a certain thickness. The cylindrical structure is provided inside the outer container 2. The lower end of the inner tube 3 is attached to the inner bottom surface of the outer container 2 by, for example, welding, and the inner tube 3 is connected to the raw material introduction port 21 while the inner tube 3 is under the inner tube. There is no gap between the lower end of the 浐 gate gd and the outer container & face. The upper end of the tube 3 is open to the outer side of the container 2, and the inside of the outer container 2, the inner space of the inner tube 3, the outer valley is the space of the upper space 2, and the space between the outer container 2 and the inner tube 3, from the raw material introduction port. 21 Wind - The flow path for the gas flow to the exit of the shell and the gas. The inner 3 is made of a material with thermal conductivity such as stainless steel. The modified reaction unit 4 is a part filled with the modified catalyst. The cylindrical second region 4 located inside the inner tube 3 is located in a cylindrical second region 42 and connected to the position of the inner tube 3 (between the outer container 2 and the inner tube 3). The i-th region 41 and the second region 42 are formed by the through region 43. The 帛1 region 41 is defined by the inner tube 3 and the partition member 5 in the axial direction of the inner tube 3. The second region 42曰It is defined by the partition member 6 between the outer side container 2 and the inner tube 3 and between the outer container 2 and the inner tube 3 and in the direction of the inner tube S 4b ta & m axis. As the partition wall, the adjacent i-th region 41 and the
域4 2的任務。隔斷M 丨阳蚵構件5、6係由例如是鑽孔板所形成, 可U工&化狀態的混合原料或改質氣體通過,但封入改„ 觸媒。 貝 :第區域41氣體流路上流部411,填充不會伴隨部 分虱化改質反應的填充材料。此填充材料例如是具有儲熱 2215-9734-PF;Ahddub 9 200911683Domain 4 2 tasks. The partitioning M 丨 蚵 蚵 5 5 5 5 5 5 5 5 5 5 5 5 5 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : The flow portion 411 fills a filling material which is not accompanied by a partial deuteration modification reaction. The filling material has, for example, a heat storage 2215-9734-PF; Ahddub 9 200911683
功能的氧化鋁盤。在第1 P 仕弟1 £域41氣體流路下流部412, 充第1觸媒。此第丨觸媒主 、 1# 要疋與部分氧化改質反應有關 的物貝,例如可以用加熱至攝 " 氏3 0 0度以上之氧化觸媒轉 換而得之銅-鋅系觸媒。特 了叫的疋加熱至攝氏350度以上 時,雖會喪失對上述式(2) _ 八1所不之改質反應的活性,但會對 上述式⑴所示之部分氧化改f反應的活性則會顯著& 現。所以’此熱處理過之銅—鋅觸媒較佳是使用氧化物(氧 化銅+氧化辞)的型離。!古,, ^還有,在本較佳實施例中,上述第 1觸媒可以用氧化鋁盤箄盔g 寺…、關邛为氧化改質反應之填充材 料成稀釋狀態下填充。上述篦〗 处弟1觸媒混合比率例如是1 0體 積百分率至70體積百分率。 第2區域42及速i甬. 逻逋&域43中,係填充第2觸媒。此 第2觸媒主要是與水蒗氣改晳 ,.、、孔汉貝反應有關的物質,例如是未 施加加熱處理的銅-鋅系觸媒。 驅動包含上述改質反應3 i的氫氣製造系統(未圖示 全體:)時’混合原料係從原料氣體導人口 21導人外側容器 2内。混合原料係包括碳化氫系原料、氧氣及水,並以例 如是未圖示之氣化器預先加熱成氣化狀態。此氣化器中, 係加熱至後述改貝反應器2改質反應所必須之既定反應溫 度(例如攝氏200度至攝氏25〇度)止。上述碳化氫系原料 例如是甲醇、乙醇、二曱基醚。在以下較佳實施例說明中, 係以使用甲醇作為碳化氫系原料為例所作之說明。混合原 料所含之氧氣供給源例如是空氣或氧濃度較高的富含氧氣 2215-9734-PF;Ahddub 10 200911683 經由原料氣體導入口 21供給至改質反應器丨的氣化狀 態混合原料,係通過位於内# 3内侧上流側㈣丄區域Ο, 並從内管3上端進入連通區域43,再通過位於外側容器2 與内:3間下流側的第2區域42,而導至改質氣體導出口 22。弟1圖所示之箭頭即表示外側容器2内氣體的流動方 向。改質反應部4中,藉由改質觸媒的作用,可以一併引 發作為發熱反應之甲醇部分氧化改f反應及作為吸熱反應 之曱醇水蒸氣改質反應,而從混合原料產生含有氫氣的改 質氣體。 區域41上流部411中,混合原料係發 著’第1區域41下流部412中,主要 具體而言,第1 生反應並通過之D接 是進行曱醇的部分氧化改質反應。亦即,#由第ι觸媒的 氧化作用’可以引起上述式⑴反應式所示之發熱反應。還 有,也會引起作為副反應之如下述式(3)反應式所示發熱反 CH3〇H+l/2〇2~>HCHO + H2〇 +發熱…(3) 在此,混合原料進入下流部412,進行反應速度比較 :的:分氧化改質反應,下流部412内溫度急遽上昇。此 結果是第1區域41氣體流路中間位置中’係、具溫度分佈岭 值的高溫部所在位置。 在連通區域43及第2區域42中,主要是進行甲醇水 蒸氣改質反應。亦即’藉由帛2觸媒的作用,可以引起上 述式(2)反應式所*之吸熱反應。還有,也會引起作為副反 應之如上述式(3)所產生的甲㉟,到引起下述式⑷反應式 2215-9734-PF/Ahddub 11 200911683 所示改質反應(發熱反應)。 HCH0 +2H2 + CO2 + 發熱 …(4) 本較佳實施例中’改質反應部4内溫度不僅維持於既 定範圍内,也設定了各反應所消耗之曱醇比例(亦即各反應 的比率)。亦即改質反應部4中進行自動熱改質反應。 鈾述改質反應裔1所生成之含氫氣改質氣體,藉由適 當方法精製。使用化學方法之情形下,以鹼溶液處理主要 包括氫氣、二氧化碳、一氧化碳的改質氣體,以去除二氧 化碳及一氧化碳。還有,使用空氣作為混合原料氧氣源時, 從更有效去氮氣的觀點來看,較佳是使用填充有吸附劑的 多個吸附塔,進行以PSA氣體分離法分離氫氣的動作: 本較佳實施例中,改質反應部4上流侧第丨區域41與 下肌侧第2區域42係為鄰接夾持熱傳導性内管3 (間隔壁) 配置的結構,以解決起因於作為發熱反應之部分氧化改質 反應與作為吸熱反應之水蒸氣改質反應的反應速度相里而 造成之改質反應部4熱平衡不穩定的情形。經由連通區域 43折返流通第2區域42的氣體係因優先進行作為吸熱反 應之水蒸氣改質反應而慢慢降低溫度,此時藉由上述第1 S域41中間位置溫度峰值的高溫部,即可藉由從此高溫部 經内管3導埶方式传、$ 〜U式使⑽度再度上昇,進而使作為吸熱反應 7热乳改質反應完全進行,以改善全體甲醇反應率。 ^述令’使用上述改質反應器1進行之氫氣製造,因 疋、'且口 β分氧化改質反應及水蒸氣改質反應的自動熱改質 反應’故得以县昧ρ卩杖綠 ’、 、 、曰1持、、Λ進行,並提高氫氣生成效率。 2215-9734-PF;Ahddub u 200911683 還有,本較佳實施例 媒,也可以用具有儲熱 、—於第1區域41的第ί觸 依據第1區域41 $欢“、、功此之氧化鋁盤進行稀釋。藉此, W之發熱反鹿(邻八备儿 的溫度上昇。再加上第1°刀乳化改質反應)抑制過度 並保持為高溫區域 =41溫度峰值後溫度降低趨緩 其中第1區域41笫〗J提回朝第2區域42的傳熱效果。 整改質反Μ 4 % _係為被稀釋的結構,不僅可以調 貝汉應冲4内溫度分 门 發揮傳熱效果。 還可以藉由折返結構而有效 以上’本發明較佳告:# v , w 並不以上述較佳實二Γ 用以說明,本發明範圍 改質反應器之氫氣·m 月改負反應器及使用此 想之範圍内進行種種變更。 7在不脫離發明思 例如配設於第!區域41第!觸媒 化銅。銅觸媒的情形下,因^ …屬銅或乳 故大多的古土 ’、 ,°予作為虱化觸媒的功能, 的方法可以製作。從增加表面積的觀 銅也可彻爆隸_結射式構_觸看媒金屬 套管的結構例如是將外側容器2外周捲繞成 4套官部也可以流經加熱媒體。藉由上士 依據朝外側容器的放熱,得以彌補熱 二:。, [實施例] Η貝失邛刀。 接著,藉由實施例說明本發明的有用性。 …在本實施例中,係使用具有下述具體結構的改質反声 “’從由甲醇、空氣及水所構成之混合 的改質氣體。 生3虱孔 2215-9734-PF;Ahddub 13 200911683 (改質反應器) 改質反應器"卜側容器2係由不錄麵管(外徑:i56公 ^ ’内控:150公釐,全長:1〇5〇公釐)所構成。内管3係 由=錢賴外m内徑:8Q公釐,全長:_ 所構成。第1區域41上流部川係填充有填充高度 為3。。公釐的氧化銘盤(粒徑:3公釐)。第】區域ο下流 fFunctional alumina tray. In the first P 1st field 41 gas channel downflow portion 412, the first catalyst is charged. This third catalyst main, 1# is related to the partial oxidation reaction, such as copper-zinc catalyst, which can be converted to an oxidation catalyst heated to a temperature of more than 300 degrees Celsius. . When the ytterbium is heated to a temperature of 350 ° C or higher, the activity of the modification reaction of the above formula (2) _ 八1 is lost, but the activity of the partial oxidative reaction of the above formula (1) is changed. Will be significant & now. Therefore, the heat-treated copper-zinc catalyst is preferably a type of oxide (copper oxide + oxidized). ! In the preferred embodiment, the first catalyst may be filled in a diluted state by using an alumina disk, a girdle, and a filler material for the oxidative reforming reaction. The above-mentioned 1 1 brother-to-catalyst mixing ratio is, for example, 10% by volume to 70% by volume. The second area 42 and the speed area are filled with the second catalyst. The second catalyst is mainly a substance related to the modification of water and helium gas, and the Kong Hanbei reaction, and is, for example, a copper-zinc catalyst which is not subjected to heat treatment. When the hydrogen production system including the above-described reforming reaction 3 i is driven (not shown in the entirety), the mixed raw material is guided from the raw material gas to the outside of the container 2 . The mixed raw material includes a hydrocarbon-based raw material, oxygen gas, and water, and is heated to a vaporized state by, for example, a gasifier (not shown). In this gasifier, it is heated to a predetermined reaction temperature (e.g., 200 degrees Celsius to 25 degrees Celsius) necessary for the modification reaction of the modified reactor 2 described later. The above hydrocarbon-based raw material is, for example, methanol, ethanol or dimethyl ether. In the following description of the preferred embodiments, the use of methanol as a hydrocarbon-based raw material is taken as an example. The oxygen supply source contained in the mixed raw material is, for example, oxygen-rich 2215-9734-PF having a high air or oxygen concentration; and Ahddub 10 200911683 is supplied to the gasification state mixed raw material of the reforming reactor via the raw material gas introduction port 21, The modified gas guide is guided through the upper side (4) 丄 region 内侧 located inside the inner 3 3, and enters the communication region 43 from the upper end of the inner tube 3, and then passes through the second region 42 located on the downstream side of the outer container 2 and the inner 3 Exit 22. The arrow shown in Fig. 1 indicates the flow direction of the gas in the outer container 2. In the reforming reaction unit 4, by the action of the reforming catalyst, the methanol partial oxidation-reversing reaction as the exothermic reaction and the methanol-hydrogen reforming reaction as the endothermic reaction can be simultaneously initiated, and hydrogen is generated from the mixed raw material. Modified gas. In the upper portion 411 of the region 41, the mixed raw material is generated in the lower portion 412 of the first region 41. Specifically, the first raw reaction and the D connection are carried out to carry out a partial oxidation reforming reaction of decyl alcohol. Namely, # by the oxidation of the first catalyst can cause the exothermic reaction represented by the above formula (1). Further, it also causes a reaction as shown in the following formula (3) as a side reaction, such as heat generation reaction CH3〇H+l/2〇2~>HCHO + H2〇+heating... (3) Here, the mixed raw material enters The downstream portion 412 performs a comparison of the reaction rates: the oxidation-modification reaction, and the temperature in the downstream portion 412 rises sharply. This result is the position of the high temperature portion having the temperature distribution ridge value in the middle position of the gas passage in the first region 41. In the communication region 43 and the second region 42, the methanol water vapor reforming reaction is mainly performed. That is, by the action of the ruthenium 2 catalyst, the endothermic reaction of the above formula (2) can be caused. Further, as a side reaction, a 35 produced by the above formula (3) is caused to cause a reforming reaction (heating reaction) shown by the following formula (4): 2215-9734-PF/Ahddub 11 200911683. HCH0 + 2H2 + CO2 + heat generation (4) In the preferred embodiment, the temperature in the reforming reaction unit 4 is not only maintained within a predetermined range, but also the ratio of sterol consumed in each reaction (that is, the ratio of each reaction) ). That is, the automatic heat reforming reaction is performed in the reforming reaction unit 4. The hydrogen-containing reforming gas produced by the uranium reforming reaction 1 is refined by an appropriate method. In the case of using a chemical method, a reforming gas mainly including hydrogen, carbon dioxide, and carbon monoxide is treated with an alkali solution to remove carbon dioxide and carbon monoxide. Further, when air is used as the oxygen source for the mixed raw material, from the viewpoint of more effective nitrogen removal, it is preferred to carry out the action of separating the hydrogen by the PSA gas separation method using a plurality of adsorption columns packed with the adsorbent: In the embodiment, the upper flow side second region 41 and the lower muscle side second region 42 of the reforming reaction portion 4 are arranged adjacent to each other with the thermally conductive inner tube 3 (partition wall) interposed therebetween, so as to solve the problem as a part of the heat generation reaction. The thermal equilibrium of the reforming reaction unit 4 is unstable due to the reaction rate of the oxidative reforming reaction and the steam reforming reaction as the endothermic reaction. The gas system that has been folded back into the second region 42 via the communication region 43 is gradually lowered in temperature by preferentially performing the steam reforming reaction as the endothermic reaction, and at this time, the high temperature portion of the intermediate position temperature peak in the first S domain 41 is From the high temperature portion, the inner tube 3 can be guided by the inner tube 3, and the value of (10) can be increased again by the U-type, and the heat-removing reaction as the endothermic reaction 7 can be completely performed to improve the overall methanol reaction rate. ^Describe 'the use of the above-mentioned reforming reactor 1 for hydrogen production, because of the 疋, 'and the β-point oxidative upgrading reaction and the automatic thermal reforming reaction of the steam reforming reaction' , , , 曰 1 holding, Λ, and improve hydrogen production efficiency. 2215-9734-PF; Ahddub u 200911683 Also, the medium of the preferred embodiment can also use the heat storage, the first touch of the first region 41 according to the first region 41 $, ", oxidation The aluminum pan is diluted. Thereby, the heat of the W anti-deer (the temperature of the neighboring eight children is increased. In addition, the 1° knife emulsification modification reaction) suppresses excessively and maintains the high temperature region = 41 temperature peak after the temperature decrease slows down. Among them, the first region 41笫J raises the heat transfer effect toward the second region 42. The rectification Μ 4 % _ is a diluted structure, which can not only adjust the temperature of the Benedictine 4 to the heat transfer effect. It can also be effective by the folding structure. The present invention is better than: # v , w is not described by the above preferred embodiment, and the hydrogen/m month modified negative reactor of the modified reactor of the present invention In the case of the use of the copper, the copper is the most important thing in the case of the copper. Soil ', , ° ° as a function of sputum catalyst, the method can be made. From the increase table The copper of the area can also be blasted. The structure of the metal sleeve is, for example, the outer circumference of the outer container 2 is wound into four sets of official parts and can also flow through the heating medium. The exothermic heat of the outer container can compensate for the heat two. [Example] The mussel is lost. Next, the usefulness of the present invention will be described by way of examples. In the present embodiment, the following specific structure is used. The modified anti-sound "'from a mixed modified gas consisting of methanol, air and water. Raw 3 boring 2215-9734-PF; Ahddub 13 200911683 (modified reactor) Modified reactor " side container 2 is a non-recording tube (outer diameter: i56 gong ^ 'internal control: 150 mm, full length : 1〇5〇 mm). The inner tube 3 is composed of = inner diameter of m: 8Q mm and full length: _. The upper portion of the first region 41 is filled with a filling height of three. . Metric oxidation dial (particle size: 3 mm). The first area ο downstream f
部仍,係填充有填充高度$ 45()公釐之作為第工觸媒之 :處理完畢的銅-鋅系觸媒(粒徑:3公釐)及氧化銘盤(粒 k . 3公釐)的混合物。觸媒與氧化銘盤的混合比率為3比 7。熱處理完畢的銅-鋅系觸媒,係在攝氏4〇〇度以上高溫 下處理的物品。第2區域42及連通區域43中,填充有填 充阿度為7 5 0公釐且未施加熱處理的銅—鋅系觸媒(粒徑:3 公釐)作為第2觸媒。 [氫氣的製造] 供給至改質反應器1的混合原料供給量係為曱醇〇. 46 千莫爾/小時、水〇. 69千莫爾/小時、空氣80標準立方公 尺/分鐘(N :標準狀態)(純氧換算為0. 〇 4 4 6構準立方公尺/ 分鐘)的流量。該混合原料係於氣化器中加熱成氣化狀態供 給至改質反應器1。朝改質反應器1的導入時,混合原料 溫度係為攝氏2 3 〇度。 從改質反應器1導出之改質氣體,藉由pSA氣體分離 I置將氫氣濃縮分離,得到純度約百分之9 9. 8的產品氫氣 氣體。此產品氫氣氣體的取得量係為21標準立方公尺/小 時。還有’相對於所投入之曱醇量的全反應率(全體甲醇反 14 22l5-9734-PF;Ahddub 200911683 應率)約百分之93,改質氣體乾計嘗 百分之67、二氧化碳為百分之25:二概略組成是氫氣為 氧化碳為百分之。.5、氬為百分之〇:广為百分之7.4、一 [改質反應部的溫度分佈] 本實施例中,正常驅動時調杳 佈。溫度分佈調查是對設定在第「區=應部4的溫度分 2區域42的多個測量點溫度進行測量W下流物及第 區域U及第2區域42中,設定成:述測量點在第! 定轴上變位區域41及第2區:方向於既 述轴移動之情形下,配置且^在可沿著上 _ 文位亚依次對測量點進行測晋氣加 刚述測量點溫度均測量之。 、里母個 Q Γ圖錢示第1區域41及"區域-溫度分佈的 圖。同一圖橫軸是第以 又刀佈的 向經過路徑長γ 及弟2 &域42氣體流動方 羞、第^ 餐(第1區域41填充高度為㈣公 域41 填充高度為750公釐等的合計 —的上流側端部為基準點,朝氣體流動方向 =位量。同—圖的縱軸係表示前述測量點的測量I;。 依據第3圖所示,篦]ρ * 皿度。 簕 區域41 (同一圖橫軸到750公釐的 中,具溫度峰值的高溫部(約攝氏45〇 位於中間位置。進入笛9「+ - 乂上)確, 釐的範圍)時,優先進-1Γ42(同一圖横軸超過辦 —θ、 先進仃作為吸熱反應之水蒸氣改質反應。 ::度降低則在下次就會成為攝氏23〇纟。此時 中主要進行部分氧化改質反應,故所生成之熱能會 22l5-9734-PF;^i1cidub 15 200911683 經由内管3傳遞至第2區域42。因此,第2區域42中間 位置藉由來自第1區域41溫度峰值區域的傳熱,而再度提 昇溫度。而且,第2區域42後半部分可以在下回達到攝氏 230度。此時’係由來自第i區域41上流部41丨所填充之 氧化鋁盤的導熱所供給.上述中,第2區域42較佳是全體 通過攝氏23。度以上’水蒸氣改質反應會完全進行。王 【圖式簡單說明】 第1圖係繪示本發明改質反應器概略結構的剖面圖 第2圖係繪示沿第1圖11-II線的剖面圖。 第 改質反應部溫度分佈 圖係繪示本發明較佳實施例 的圖。 【主要元件符號說明】 1〜 改質反應器; 3〜 内管; 5〜 隔斷構件; 21- -原料導入口 41 - -第1區域; 43、 “連通區域; 412 〜下流部。 2〜外側容器; 4〜改質反應部; 6〜隔斷構件; 22〜改質氣體導出 42〜第2區域; 411〜上流部; 2215-9734-PF;AhddubThe department is still filled with a filling height of $45 () mm as the working catalyst: treated copper-zinc catalyst (particle size: 3 mm) and oxidized dial (granule k. 3 mm) )mixture. The mixing ratio of the catalyst to the oxidized dial is 3 to 7. The heat-treated copper-zinc catalyst is an article treated at a high temperature of 4 degrees Celsius or higher. The second region 42 and the communication region 43 were filled with a copper-zinc catalyst (particle diameter: 3 mm) having a filling degree of 750 mm and no heat treatment was applied as the second catalyst. [Production of Hydrogen] The supply amount of the mixed raw material supplied to the reforming reactor 1 is decyl hydrazine. 46 kmol/hr, hydrazine. 69 kmol/hr, air 80 standard cubic meters/min (N : Standard state) (Pure oxygen conversion is 0. 〇4 4 6 constitutive cubic meters / minute) flow. The mixed raw material is supplied to the reforming reactor 1 by heating in a gasification state to a vaporized state. At the time of introduction of the reforming reactor 1, the temperature of the mixed raw material was 2 3 deg. The reformed gas derived from the reforming reactor 1 is concentrated and separated by pSA gas separation to obtain a product hydrogen gas having a purity of about 9.98. The amount of hydrogen gas obtained in this product is 21 standard cubic meters per hour. There is also a total reaction rate relative to the amount of sterol input (the total methanol reverse 14 22l5-9734-PF; Ahddub 200911683 rate) about 93 percent, the modified gas is 67%, the carbon dioxide is 25 percent: The second rough composition is that hydrogen is carbon oxide as a percentage. .5. Argon is 〇%: 7.4% wide, one [temperature distribution of the reforming reaction unit] In this embodiment, the cloth is tuned during normal driving. In the temperature distribution survey, the temperature is measured at a plurality of measurement point temperatures set in the second region 42 of the region=the portion 4, and the first region U and the second region 42 are set to be: The fixed-axis upper displacement region 41 and the second region: in the case where the direction moves in the above-mentioned axis, the configuration and the temperature of the measurement point can be measured in the order of the upper and lower The measurement of the first parental Q Γ 钱 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第The flow side is shy, and the upper end portion of the first meal 41 (the filling height of the first region 41 is (4) the total height of the common field 41 is 750 mm or the like) is the reference point, and the gas flow direction = the amount of the bit. The vertical axis indicates the measurement of the aforementioned measurement point I. According to Fig. 3, 篦]ρ * the degree of the dish. 簕 area 41 (the horizontal axis of the same figure to 750 mm, the high temperature part with temperature peak (about Celsius) 45〇 is in the middle position. When entering the flute 9 "+ - 乂", the range of PCT, the priority is -1Γ42 (the same picture More than the θ, the advanced 仃 as the endothermic reaction of the steam reforming reaction. :: Degree reduction will become 23 摄 in the next. At this time, the main oxidative modification reaction, so the heat generated will be 22l5 -9734-PF; ^i1cidub 15 200911683 is transmitted to the second region 42 via the inner tube 3. Therefore, the intermediate position of the second region 42 is again raised by the heat transfer from the temperature peak region of the first region 41. The second half of the region 42 can reach 230 degrees Celsius in the next time. At this time, it is supplied by the heat conduction of the alumina disk filled from the upper portion 41 of the i-th region 41. In the above, the second region 42 is preferably passed through. At 23 degrees Celsius or above, the 'steam reforming reaction will be carried out completely. Wang [Simplified description of the drawings] Fig. 1 is a cross-sectional view showing the schematic structure of the reforming reactor of the present invention. Fig. 2 is a diagram along line 1 -II line cross-sectional view. The first modified intermediate part temperature distribution diagram is a diagram showing a preferred embodiment of the present invention. [Main element symbol description] 1~ reforming reactor; 3~ inner tube; 5~ partition member; 21- - Raw material introduction port 41 - - first region; 43, "connected region; 412 ~ downstream portion. 2 ~ outer container; 4 - modified reaction portion; 6 - partition member; 22 - modified gas export 42 to 2nd region; 411 - upper portion; 2215-9734-PF; Ahddub