JP2002211903A - Fuel reforming apparatus - Google Patents

Fuel reforming apparatus

Info

Publication number
JP2002211903A
JP2002211903A JP2001004703A JP2001004703A JP2002211903A JP 2002211903 A JP2002211903 A JP 2002211903A JP 2001004703 A JP2001004703 A JP 2001004703A JP 2001004703 A JP2001004703 A JP 2001004703A JP 2002211903 A JP2002211903 A JP 2002211903A
Authority
JP
Japan
Prior art keywords
gas
path
reformed
reformed gas
fuel reformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001004703A
Other languages
Japanese (ja)
Inventor
Noboru Yamauchi
昇 山内
Hisashi Aoyama
尚志 青山
Kazuhiko Ishiwatari
和比古 石渡
Hiroshi Komatsu
宏 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001004703A priority Critical patent/JP2002211903A/en
Publication of JP2002211903A publication Critical patent/JP2002211903A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a fuel reforming apparatus capable of transferring the heat generated by the partial oxidation reaction efficiently to the steam reforming reaction part and having excellent durability and energy efficiency in an auto thermal reforming (ATR) type reforming apparatus. SOLUTION: A gaseous material containing a hydrocarbon, steam and air is introduced into a reactor through a gaseous feed material introducing passage and the reformed gas is discharged from a reformed gas discharge passage to flow in opposition to the gaseous feed material introduction passage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭化水素燃料から
水素を生成させる自己熱改質(オートサーマル改質:A
TR)型の燃料改質装置の改良技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to autothermal reforming (autothermal reforming: A) for producing hydrogen from hydrocarbon fuel.
The present invention relates to an improved technology of a TR) type fuel reformer.

【0002】[0002]

【従来の技術】従来から、部分酸化反応で発生する熱量
を利用して水蒸気改質反応を促進させる自己熱改質型
(オートサーマル型)改質装置が提案されている。この
種の改質装置は、発熱反応である部分酸化反応と吸熱反
応である水蒸気改質反応とを同一反応器内で行わせるこ
とで、熱効率を向上させようとするものである(特開平
7−335238号公報、特開2000−203802
号公報等参照)。
2. Description of the Related Art Conventionally, there has been proposed an autothermal reforming type (autothermal type) reforming apparatus in which a steam reforming reaction is promoted by utilizing heat generated in a partial oxidation reaction. This type of reformer is intended to improve the thermal efficiency by causing a partial oxidation reaction, which is an exothermic reaction, and a steam reforming reaction, which is an endothermic reaction, to be performed in the same reactor (Japanese Patent Application Laid-Open No. Hei 7 (1994)). -335238, JP-A-2000-203802
Reference).

【0003】[0003]

【発明が解決しようとする課題】ところが、実際には、
部分酸化反応の反応速度が水蒸気改質反応の反応速度に
比べて極めて速いため、同一流通型の反応器に原料ガス
(炭化水素、水蒸気、空気)を導入すると、反応器の上
流部で部分酸化反応が完結してしまい、下流部で起こる
水蒸気改質反応が部分酸化反応の発熱を十分に利用でき
ない。
However, in practice,
Since the reaction rate of the partial oxidation reaction is much faster than the reaction rate of the steam reforming reaction, when the raw material gas (hydrocarbon, steam, air) is introduced into the reactor of the same flow type, the partial oxidation occurs upstream of the reactor. The reaction is completed, and the steam reforming reaction occurring downstream cannot sufficiently utilize the heat generated by the partial oxidation reaction.

【0004】これに対し、反応器の下流部の温度を上昇
させるため、自己熱改質反応の割合を増加させる等の手
段もあるが、この場合上流部が必要以上に高温化して、
触媒の耐久性の低下や改質装置のエネルギー効率(改質
ガスの生成効率)の低下を招くといった問題があった。
本発明は、以上のような問題に鑑みなされたものであっ
て、部分酸化反応での発熱を水蒸気改質反応部へと効率
的に伝達することができ、触媒の耐久性、エネルギー効
率のすぐれた燃料改質装置を提供することを目的とす
る。
On the other hand, in order to raise the temperature of the downstream portion of the reactor, there is also a means of increasing the rate of the autothermal reforming reaction. In this case, however, the temperature of the upstream portion becomes unnecessarily high.
There has been a problem in that the durability of the catalyst is reduced and the energy efficiency (reformed gas generation efficiency) of the reformer is reduced.
The present invention has been made in view of the above problems, and can efficiently transmit heat generated in a partial oxidation reaction to a steam reforming reaction section, and has excellent durability and energy efficiency of a catalyst. It is an object of the present invention to provide an improved fuel reformer.

【0005】[0005]

【課題を解決するための手段】そのため、請求項1に係
る発明は、炭化水素、水蒸気および空気を含む原料ガス
を、触媒が充填された反応器に導入して水素及び一酸化
炭素を主成分とする改質ガスを生成する燃料改質装置に
おいて、前記反応器は、流れが対向するガス流路と、一
方のガス流路からの流れを折り返して他方のガス流路へ
導く折り返し部と、を含んで構成され、原料ガスが一方
のガス流路である原料ガス導入路から流入し、生成した
改質ガスが他方のガス流路である改質ガス排出路から流
出するよう構成したことを特徴とする。
According to the first aspect of the present invention, a raw material gas containing hydrocarbon, water vapor and air is introduced into a reactor filled with a catalyst, and hydrogen and carbon monoxide are mainly contained. In a fuel reforming apparatus that generates a reformed gas, the reactor has a gas flow path in which flows are opposed to each other, and a turn-back section that turns the flow from one gas flow path to the other gas flow path, And that the source gas flows in from the source gas introduction path which is one gas flow path, and the generated reformed gas flows out from the reformed gas discharge path which is the other gas flow path. Features.

【0006】請求項2に係る発明は、請求項1に係る発
明において、前記折り返し部に前記原料ガス導入路とは
異なる別のガス供給路から空気、炭化水素、水蒸気のう
ち少なくとも1つを供給することを特徴とする。請求項
3に係る発明は、請求項1又は請求項2に係る発明にお
いて、前記折り返し部近傍に点火装置を備えたことを特
徴とする。
According to a second aspect of the present invention, in the first aspect of the invention, at least one of air, hydrocarbon, and water vapor is supplied to the folded portion from another gas supply path different from the source gas introduction path. It is characterized by doing. According to a third aspect of the present invention, in the first or second aspect of the present invention, an ignition device is provided near the folded portion.

【0007】請求項4に係る発明は、請求項2又は請求
項3に係る発明において、前記ガス供給路が前記改質ガ
ス排出路と熱交換することを特徴とする。請求項5に係
る発明は、請求項4に係る発明において、前記ガス供給
路内のガスの流れが前記改質ガス排出路内のガスの流れ
と対向することを特徴とする。
According to a fourth aspect of the present invention, in the second or third aspect, the gas supply path exchanges heat with the reformed gas discharge path. The invention according to claim 5 is the invention according to claim 4, wherein the gas flow in the gas supply path is opposed to the gas flow in the reformed gas discharge path.

【0008】請求項6に係る発明は、請求項1から請求
項3のいずれか1つに係る発明において、前記原料ガス
導入路と改質ガス排出路とが交互に積層され、これらの
一方の開放端が前記折り返し部を構成する空室に連結し
ていることを特徴とする。請求項7に係る発明は、請求
項4又は請求項5に係る発明において、前記原料ガス導
入路と前記改質ガス排出路と前記ガス供給路とが積層さ
れ、これらの一方の開放端が、前記折り返し部を構成す
る空室に連結していることを特徴とする。
According to a sixth aspect of the present invention, in the invention according to any one of the first to third aspects, the raw material gas introduction path and the reformed gas discharge path are alternately laminated, and one of these is provided. An open end is connected to a vacant space constituting the folded portion. In the invention according to claim 7, in the invention according to claim 4 or claim 5, the source gas introduction path, the reformed gas discharge path, and the gas supply path are stacked, and one open end thereof is It is characterized in that it is connected to a vacant room constituting the folded portion.

【0009】請求項8に係る発明は、請求項7に係る発
明において、前記反応器は、原料ガス導入路、改質ガス
排出路、ガス供給路、改質ガス排出路の順に積層して1
つのユニットを形成し、該ユニットを積層して構成され
ていることを特徴とする。請求項9に係る発明は、請求
項1から請求項4のいずれか1つに係る発明において、
前記反応器が、一端側が前記折り返し部を構成する空室
を有する外管と、該外管の内側に配設されて前記空室の
連結する内管と、を備えた2重管により構成され、内管
内に形成されるガス流路内の流れが、外管と内管との間
で形成されるガス流路内の流れと対向することを特徴と
する。
The invention according to claim 8 is the invention according to claim 7, wherein the reactor is formed by sequentially stacking a raw material gas introduction path, a reformed gas discharge path, a gas supply path, and a reformed gas discharge path.
It is characterized by forming one unit and stacking the units. The invention according to claim 9 is the invention according to any one of claims 1 to 4,
The reactor is constituted by a double tube having an outer tube having an empty space on one end side of the folded portion, and an inner tube disposed inside the outer tube and connected to the empty space. The flow in the gas flow path formed in the inner pipe is opposed to the flow in the gas flow path formed between the outer pipe and the inner pipe.

【0010】請求項10に係る発明は、請求項1から請
求項4のいずれか1つに係る発明において、前記反応器
が、一端側に前記折り返し部を構成する空室を有する外
管と、該外管の内側に配設されて前記空室に連結する複
数の内管と、を備えて構成され、各内管内に形成される
ガス流路内の流れが、外管と各内管との間に形成される
ガス流路内の流れと対向することを特徴とする。
A tenth aspect of the present invention is the invention according to any one of the first to fourth aspects, wherein the reactor has an outer tube having an empty chamber on one end side that forms the folded portion; A plurality of inner pipes arranged inside the outer pipe and connected to the empty chamber, wherein a flow in a gas flow path formed in each inner pipe is an outer pipe and each inner pipe. It is characterized by being opposed to the flow in the gas flow path formed between them.

【0011】請求項11に係る発明は、請求項10に係
る発明において、前記内管の1部が、前記ガス供給管を
構成することを特徴とする。請求項12に係る発明は、
請求項1から請求項11のいずれか1つに係る発明にお
いて、原料ガス導入路の容積が、改質ガス排出路の容積
よりも小さいことを特徴とする。
An eleventh aspect of the present invention is the invention according to the tenth aspect, wherein a part of the inner pipe constitutes the gas supply pipe. The invention according to claim 12 is
In the invention according to any one of the first to eleventh aspects, the volume of the source gas introduction path is smaller than the volume of the reformed gas discharge path.

【0012】請求項13に係る発明は、請求項1から請
求項12のいずれか1つに係る発明において、原料ガス
導入路内に充填された触媒の入口側端部が、改質ガス排
出路内に充填された触媒の出口側端部より折り返し部側
に位置するように触媒を配設したことを特徴とする。
According to a thirteenth aspect of the present invention, in the invention according to any one of the first to twelfth aspects, the catalyst-filled inlet end of the raw material gas introduction passage has a reformed gas discharge passage. The catalyst is disposed so as to be located closer to the turn-back portion than the end of the catalyst filled therein.

【0013】[0013]

【発明の効果】請求項1に係る発明によれば、反応速度
が速く、主に反応器内のガスの流れに対して上流部で起
こる発熱反応である部分酸化反応で発生した熱を、下流
部に効率的に伝達することができ、反応速度が遅く、吸
熱反応である水蒸気改質反応で利用できるので、装置の
エネルギー効率(改質ガスの生成効率)を向上させるこ
とができる。このため、上流部が必要以上に高温化する
ようなことを防止でき、触媒の耐久性を向上させること
ができる。
According to the first aspect of the present invention, the reaction speed is high, and the heat generated by the partial oxidation reaction, which is an exothermic reaction occurring mainly in the upstream portion of the gas flow in the reactor, is transferred to the downstream portion. The energy efficiency (reformed gas generation efficiency) of the apparatus can be improved because the energy can be efficiently transmitted to the section, the reaction rate is low, and the reaction can be used in the steam reforming reaction, which is an endothermic reaction. For this reason, it is possible to prevent the temperature of the upstream portion from becoming unnecessarily high, and to improve the durability of the catalyst.

【0014】請求項2に係る発明によれば、ガス供給路
から折り返し部に空気(酸素)を供給することにより、
反応器の上流部のみでなく、より下流側の折り返し部近
傍においても部分酸化反応を行わせることができるの
で、反応器内の温度分布を均一化できる。また、改質ガ
ス排出路内のガスの空気(酸素)、炭化水素、水蒸気の
割合を調整して反応器内の温度分布をより均一化して、
改質ガス生成効率(エネルギー効率)を向上させること
ができる。
According to the second aspect of the present invention, by supplying air (oxygen) from the gas supply path to the turn-back portion,
Since the partial oxidation reaction can be performed not only in the upstream part of the reactor but also in the vicinity of the turning part on the downstream side, the temperature distribution in the reactor can be made uniform. Also, by adjusting the ratio of air (oxygen), hydrocarbons, and water vapor in the gas in the reformed gas discharge passage, the temperature distribution in the reactor is made more uniform,
The reformed gas generation efficiency (energy efficiency) can be improved.

【0015】請求項3に係る発明によれば、例えば、折
り返し部に供給された炭化水素を、起動時に着火して燃
焼反応を起こさせたり、無触媒部分酸化反応を起こさせ
たりすることもできるので、前記原料ガス導入路の上流
部における部分酸化反応による加熱だけでなく、折り返
し部側からも装置内を加熱することができ、装置の起動
時間を短縮できる。
According to the third aspect of the present invention, for example, the hydrocarbon supplied to the folded portion can be ignited at the time of startup to cause a combustion reaction or a non-catalytic partial oxidation reaction. Therefore, not only the heating by the partial oxidation reaction in the upstream portion of the source gas introduction path, but also the inside of the device can be heated from the turn-back portion side, and the startup time of the device can be reduced.

【0016】請求項4に係る発明によれば、原料ガス導
入路における部分酸化反応で発生した熱は改質ガス排出
路における水蒸気改質反応で効率的に利用できると共
に、その余熱あるいは前記折り返し部への空気の供給に
より起こる改質ガス排出路での部分酸化反応による発熱
で、ガス供給路内のガスを加熱して折り返し部に供給で
きるので、各流路における反応効率を維持しながら折り
返し部の温度低下も防止でき、装置のエネルギー効率を
維持できる。
According to the fourth aspect of the present invention, the heat generated by the partial oxidation reaction in the raw material gas introduction passage can be efficiently used in the steam reforming reaction in the reformed gas discharge passage, and the residual heat or the turnback portion The heat generated by the partial oxidation reaction in the reformed gas discharge path caused by the supply of air to the gas supply path can heat the gas in the gas supply path and supply it to the turn-back section. Temperature can be prevented, and the energy efficiency of the device can be maintained.

【0017】請求項5に係る発明によれば、改質ガス排
出路では、折り返し部への空気の供給により折り返し部
近傍にて部分酸化反応が起こる。ガス供給路内のガスの
流れと改質ガス排出路内のガスの流れを対向させること
により、ガス供給路内のガスをより折り返し部に近いと
ころで加熱するので、該加熱を無駄にすることなく、高
温度のガス(空気等)を折り返し部に供給できる。
According to the fifth aspect of the present invention, in the reformed gas discharge path, a partial oxidation reaction occurs near the turning portion due to the supply of air to the turning portion. Since the gas flow in the gas supply path and the gas flow in the reformed gas discharge path are opposed to each other, the gas in the gas supply path is heated closer to the turn-back portion, so that the heating is not wasted. In addition, a high-temperature gas (air or the like) can be supplied to the folded portion.

【0018】請求項6に係る発明によれば、原料ガス導
入路と改質ガス排出路との熱交換部における熱伝達を効
率的に行えるので、小型化してもエネルギー効率の良い
装置とすることができる。また、積層する数を増加させ
るほど、反応器内の発熱部を分散させることができ、反
応器内の温度分布をより均一化できる。
According to the sixth aspect of the present invention, heat can be efficiently transferred in the heat exchange section between the source gas introduction path and the reformed gas discharge path, so that the apparatus is energy efficient even if the apparatus is downsized. Can be. In addition, as the number of stacked layers increases, the heat generating portion in the reactor can be dispersed, and the temperature distribution in the reactor can be made more uniform.

【0019】請求項7に係る発明によれば、原料ガス導
入路と改質ガス排出路との熱交換部での熱伝達を効率的
に行うと共に、ガス供給路と改質ガス排出路との熱伝達
も効率的に行えるので、装置のエネルギー効率を向上さ
せることができる。請求項8に係る発明によれば、主に
発熱反応である部分酸化反応が行われる入口側触媒の上
下を、主に吸熱反応である水蒸気改質反応が行われる出
口側触媒で挟み込む形態となるので、熱収支を効率よく
行うことができる。また、ユニット化することにより反
応器を製造等する際に取り扱いが容易となる。
According to the seventh aspect of the present invention, heat transfer in the heat exchange section between the raw material gas introduction path and the reformed gas discharge path is efficiently performed, and the heat transfer between the gas supply path and the reformed gas discharge path is performed. Since heat transfer can also be performed efficiently, the energy efficiency of the device can be improved. According to the invention according to claim 8, the upper and lower sides of the inlet side catalyst where the partial oxidation reaction which is mainly an exothermic reaction is performed are sandwiched by the outlet side catalyst where the steam reforming reaction which is mainly an endothermic reaction is performed. Therefore, heat balance can be performed efficiently. Further, the unitization facilitates handling when manufacturing a reactor or the like.

【0020】請求項9に係る発明によれば、例えば、内
管内で起こる部分酸化反応での発熱を外管と内管の間で
起こる水蒸気改質反応部へと効率的に伝達できる。な
お、この場合において、前記ガス供給路を設けるとき
は、外管の折り返し部に面した部分に開口部を設け、該
開口部にガス供給路を接続等すればよい。
According to the ninth aspect of the invention, for example, the heat generated by the partial oxidation reaction occurring in the inner tube can be efficiently transmitted to the steam reforming reaction section occurring between the outer tube and the inner tube. In this case, when the gas supply path is provided, an opening may be provided in a portion of the outer tube facing the folded portion, and the gas supply path may be connected to the opening.

【0021】請求項10に係る発明によれば、内管で起
こる部分酸化反応での発熱を、反応器内(外管内)で分
散しつつ、水蒸気改質反応部へと効率的に伝達すること
ができる。請求項11に係る発明によれば、折り返し部
に供給するガスが流れる内管と部分酸化反応部とで熱交
換することで、ガスを加熱し、該加熱したガスを供給し
て温度低下を防止し、装置のエネルギー効率を向上させ
ることができる。
According to the tenth aspect, the heat generated by the partial oxidation reaction occurring in the inner tube is efficiently transmitted to the steam reforming reaction section while being dispersed in the reactor (in the outer tube). Can be. According to the invention according to claim 11, heat is exchanged between the inner pipe through which the gas to be supplied to the turn-back portion flows and the partial oxidation reaction portion, thereby heating the gas and supplying the heated gas to prevent a temperature decrease. Thus, the energy efficiency of the device can be improved.

【0022】請求項12に係る発明によれば、原料ガス
導入路の容積を改質ガス排出路の容積よりも小さくし
て、反応器の上流部、下流部それぞれにおけるガス流速
を変化させることにより、部分酸化反応と水蒸気改質反
応の反応速度の相違を考慮した熱収支のバランス(発熱
と吸熱のバランス)をとることができるので、装置のエ
ネルギー効率をより向上させることができる。
According to the twelfth aspect of the invention, the volume of the raw material gas introduction passage is made smaller than the volume of the reformed gas discharge passage, and the gas flow rates in the upstream part and the downstream part of the reactor are changed. In addition, the balance of heat balance (balance between heat generation and heat absorption) in consideration of the difference between the reaction rates of the partial oxidation reaction and the steam reforming reaction can be taken, so that the energy efficiency of the apparatus can be further improved.

【0023】請求項13に係る発明によれば、入口側触
媒を出口側触媒よりも折り返し部側に偏在させることに
より、入口側触媒上流部で反応が起こる部分酸化反応で
発生する熱を、無駄なく出口側触媒へと伝達できるの
で、装置のエネルギー効率をさらに向上させることがで
きる。
According to the thirteenth aspect of the present invention, the heat generated by the partial oxidation reaction that occurs in the upstream portion of the inlet-side catalyst is wasted by distributing the inlet-side catalyst closer to the folded portion than the outlet-side catalyst. Therefore, the energy can be transmitted to the outlet side catalyst, and the energy efficiency of the apparatus can be further improved.

【0024】[0024]

【発明の実施の形態】以下、本発明の実施形態について
説明する。図1に、本発明に係る燃料改質装置の第1実
施形態を示す。図1に示すように、燃料改質装置は、2
重管構造を有し、内部に触媒が充填された反応器10に
原料ガス導入口1と改質ガス出口7とを形成して構成さ
れている。
Embodiments of the present invention will be described below. FIG. 1 shows a first embodiment of a fuel reforming apparatus according to the present invention. As shown in FIG.
The reactor 10 has a double tube structure and is formed by forming a raw gas inlet 1 and a reformed gas outlet 7 in a reactor 10 filled with a catalyst.

【0025】反応器10は、一端側が改質ガス出口7に
通じ、他端側に折り返し部5を有する外管4と、該外管
4の内側に配設されて一端側が原料ガス導入口1に、他
端側が前記折り返し部5に通じる内管2と、を含んで構
成されている。外管4の折り返し部5に面する部分に
は、空気供給口7が設けられ、空気供給路(図示省略)
に接続される。
The reactor 10 has an outer tube 4 having one end communicating with the reformed gas outlet 7 and a folded portion 5 at the other end, and an inner tube 4 disposed inside the outer tube 4 and having one end connected to the raw material gas inlet 1. And an inner tube 2 whose other end communicates with the folded portion 5. An air supply port 7 is provided in a portion of the outer tube 4 facing the folded portion 5, and an air supply path (not shown) is provided.
Connected to.

【0026】前記折り返し部5は、内管2内を流れてき
たガスを折り返して、外管4と内管2との間へと導く。
内管2の内部及び外管4と内管2との間には、それぞれ
入口側触媒3、出口側触媒6が充填されており、改質反
応(部分酸化反応、水蒸気改質反応)を促進させる。こ
こで、入口側触媒3、出口側触媒6は、改質反応を促進
させるものであればどのようなものでもよく、例えば、
銅系触媒、ニッケル系触媒、パラジウム系触媒、白金系
触媒、ロジウム系触媒がある。
The turning portion 5 turns the gas flowing in the inner tube 2 and guides the gas between the outer tube 4 and the inner tube 2.
The inside of the inner tube 2 and the space between the outer tube 4 and the inner tube 2 are filled with an inlet-side catalyst 3 and an outlet-side catalyst 6, respectively, to promote a reforming reaction (partial oxidation reaction, steam reforming reaction). Let it. Here, the inlet-side catalyst 3 and the outlet-side catalyst 6 may be any as long as they promote the reforming reaction.
There are copper catalysts, nickel catalysts, palladium catalysts, platinum catalysts, and rhodium catalysts.

【0027】次に以上のような構成を有する燃料改質装
置の作用を説明する。蒸発器(図示省略)及び混合器
(図示省略)で調製された炭化水素、水(水蒸気)及び
空気(又は酸素)を含む原料ガスが、原料ガス導入口1
より反応器10内に導入される。導入された原料ガス
は、内管2(原料ガス導入路)に導かれ、入口側触媒3
で1部改質される。入口側触媒3では、主に、反応速度
が速い部分酸化反応が行われる。部分酸化反応は発熱反
応であり、発生した熱は、内管2の管壁を通じて、外管
4と内管2との間(改質ガス排出路)に充填された出口
側触媒6に伝達される。
Next, the operation of the fuel reformer having the above configuration will be described. A raw material gas containing hydrocarbons, water (steam) and air (or oxygen) prepared in an evaporator (not shown) and a mixer (not shown) is supplied to the raw material gas inlet 1.
Is introduced into the reactor 10. The introduced raw material gas is guided to the inner pipe 2 (raw material gas introduction path), and the inlet-side catalyst 3
Is partially reformed. In the inlet-side catalyst 3, a partial oxidation reaction having a high reaction rate is mainly performed. The partial oxidation reaction is an exothermic reaction, and the generated heat is transferred to the outlet catalyst 6 filled between the outer pipe 4 and the inner pipe 2 (reformed gas discharge passage) through the pipe wall of the inner pipe 2. You.

【0028】入口側触媒3で1部改質された原料ガス
は、折り返し部5を通って出口側触媒6へと供給され
る。出口側触媒6では、主に、反応速度が遅く吸熱反応
である水蒸気改質反応が、内管2の管壁を通じて供給さ
れた熱により、進行する。そして、該出口側触媒6で原
料ガス中の炭化水素は全て改質され、改質ガス出口7よ
り排出される。
The raw material gas partially reformed by the inlet-side catalyst 3 is supplied to the outlet-side catalyst 6 through the turnback section 5. In the outlet side catalyst 6, the steam reforming reaction, which is an endothermic reaction having a slow reaction rate, mainly proceeds by the heat supplied through the inner wall of the inner pipe 2. Then, all hydrocarbons in the raw material gas are reformed by the outlet side catalyst 6 and discharged from the reformed gas outlet 7.

【0029】このように、反応器を、導入された原料ガ
スが流れる流路と(流れが)対向する流路によって改質
ガスを排出するように構成することで、部分酸化反応部
での発熱を水蒸気改質反応部へと効率的に伝達でき、装
置のエネルギー効率を向上させることができる。また、
図に示すように、反応速度の速い部分酸化反応が起こる
原料ガス導入路の容積を、反応速度の遅い水蒸気改質反
応の起こる改質ガス排出路の容積よりも小さくすること
で、各々を流れるガスの流速を反応速度に応じた流速と
することができるので、発熱(部分酸化反応)と吸熱
(水蒸気改質反応)とをバランスさせて、装置のエネル
ギー効率を更に向上させることができる。
As described above, by constructing the reactor so that the reformed gas is discharged through the flow path (flow) opposite to the flow path in which the introduced raw material gas flows, the heat generated in the partial oxidation reaction section is generated. Can be efficiently transmitted to the steam reforming reaction section, and the energy efficiency of the apparatus can be improved. Also,
As shown in the figure, the volume of the raw material gas introduction path where the partial oxidation reaction with a high reaction rate occurs is made smaller than the volume of the reformed gas discharge path where the steam reforming reaction with a low reaction rate occurs. Since the flow rate of the gas can be set to a flow rate corresponding to the reaction rate, heat generation (partial oxidation reaction) and endothermic reaction (steam reforming reaction) can be balanced to further improve the energy efficiency of the apparatus.

【0030】ここで、前記折り返し部5に、前記空気供
給口7から空気を供給することにより、入口側触媒3を
通過して1部改質された原料ガスと供給された空気とが
混合されて出口側触媒6へと送られる。これにより、入
口側触媒3の上流側だけでなく、出口側触媒6の上流側
においても部分酸化反応を行わせることができ、図2に
示すように、反応器10内温度を均一化することができ
る。
Here, by supplying air from the air supply port 7 to the turn-back section 5, the raw material gas partially reformed through the inlet-side catalyst 3 and the supplied air are mixed. To the outlet side catalyst 6. As a result, the partial oxidation reaction can be performed not only on the upstream side of the inlet side catalyst 3 but also on the upstream side of the outlet side catalyst 6, and as shown in FIG. Can be.

【0031】なお、本実施形態では、空気供給口7を設
けて、前記折り返し部5に空気(酸素)を供給する構成
としているが、図3に示す実施形態(第2実施形態)で
は、該空気供給口7に代えて、空気、炭化水素、水蒸気
のうち少なくとも1つを供給するガス供給口7'とし、
折り返し部5に点火プラグ8を設けている。これによれ
ば、反応器内のガスの空気、炭化水素、水蒸気の割合を
最適に調整できるので、反応器内の温度分布をより均一
化して、改質反応の効率を向上させることができる。ま
た、折り返し部に供給された炭化水素に着火して燃焼反
応、無触媒部分酸化反応を起こさせることができるの
で、装置の起動時間を短縮できる。
In this embodiment, the air supply port 7 is provided to supply the air (oxygen) to the folded portion 5. However, in the embodiment shown in FIG. A gas supply port 7 'for supplying at least one of air, hydrocarbon, and water vapor instead of the air supply port 7,
An ignition plug 8 is provided in the folded portion 5. According to this, the ratio of the air, hydrocarbon, and steam of the gas in the reactor can be adjusted optimally, so that the temperature distribution in the reactor can be made more uniform, and the efficiency of the reforming reaction can be improved. In addition, since the combustion reaction and the non-catalytic partial oxidation reaction can be caused by igniting the hydrocarbon supplied to the folded portion, the start-up time of the device can be reduced.

【0032】次に本発明に係る燃料改質装置の第3実施
形態について説明する。図4に示すように、本実施形態
は積層型の燃料改質装置である。反応器20は、原料ガ
ス導入路12と改質ガス排出路14と空気供給路19と
を積層して形成されたガス流路と、原料ガス導入路12
を流れてきたガスを折り返して改質ガス排出路14へと
導く折り返し部15とを含んで構成されている。
Next, a third embodiment of the fuel reformer according to the present invention will be described. As shown in FIG. 4, this embodiment is a stacked fuel reformer. The reactor 20 includes a gas flow path formed by laminating a source gas introduction path 12, a reformed gas discharge path 14, and an air supply path 19;
And a turn-back portion 15 for turning the gas flowing through the flow path back to the reformed gas discharge path 14.

【0033】原料ガス導入路12は、一端側が原料ガス
導入口11に、他端側が折り返し部15に通じており、
原料ガス導入口11から導入される原料ガスを反応器2
0内に導く。改質ガス排出路14は、一端側が改質ガス
出口17に、他端側が折り返し部15に通じており、反
応器20で生成された改質ガスを排出する。
The source gas introduction path 12 has one end communicating with the source gas introduction port 11 and the other end communicating with the turn-back portion 15.
The raw material gas introduced from the raw material gas inlet 11 is supplied to the reactor 2
Guide to 0. The reformed gas discharge passage 14 has one end connected to the reformed gas outlet 17 and the other end connected to the turn-back portion 15, and discharges the reformed gas generated in the reactor 20.

【0034】空気供給路19は、一端側が空気導入口1
8に、他端側が折り返し部15に通じており、空気導入
口18から導入される空気を折り返し部15に供給す
る。原料ガス導入路12、改質ガス排出路14内には、
それぞれ入口側触媒13、出口側触媒16が充填されて
おり、改質反応を促進する。なお、本実施形態において
も、原料ガス導入路12の容積は、改質ガス排出路14
の容積よりも小さく、入口側触媒13、出口側触媒16
は、前記第1、2実施形態と同様のものを用いている。
One end of the air supply path 19 is the air inlet 1.
8, the other end side communicates with the folded portion 15, and supplies the air introduced from the air inlet 18 to the folded portion 15. In the raw material gas introduction path 12 and the reformed gas discharge path 14,
The inlet side catalyst 13 and the outlet side catalyst 16 are filled, respectively, to promote the reforming reaction. In this embodiment, also, the volume of the raw material gas introduction path 12 is
, The inlet-side catalyst 13 and the outlet-side catalyst 16
Are the same as those in the first and second embodiments.

【0035】前記第1実施形態と同様に、炭化水素、水
蒸気、空気(又は酸素)を含む原料ガスが原料ガス導入
口11より反応器20内に導入される。導入されたガス
は原料ガス導入路12に導かれ、入口側触媒13により
1部改質される。入口側触媒13(の上流側)では、主
に速い反応速度の部分酸化反応が起こり、発生した熱
は、該原料ガス導入路12に隣接する改質ガス排出路1
4の下流側及び空気供給路19の上流部へ伝達される。
As in the first embodiment, a source gas containing hydrocarbons, water vapor, and air (or oxygen) is introduced into the reactor 20 through the source gas inlet 11. The introduced gas is led to the raw material gas introduction path 12, and is partially reformed by the inlet-side catalyst 13. At (upstream of) the inlet-side catalyst 13, a partial oxidation reaction having a high reaction rate mainly occurs, and the generated heat is transferred to the reformed gas discharge passage 1 adjacent to the raw material gas introduction passage 12.
4 and the upstream portion of the air supply path 19.

【0036】入口側触媒13を通過したガス(1部改質
された原料ガス)は、折り返し部15に送られ、空気供
給路19より供給された空気と混合されて改質ガス排出
路14へ送られる。改質ガス排出路14内に充填された
出口側触媒16の上流側では、折り返し部15に供給さ
れた空気により、発熱反応である部分酸化反応が行われ
る。ここで発生した熱は、隣接する原料ガス導入路12
及び空気供給路19の下流部に伝達される。
The gas (partially reformed raw material gas) that has passed through the inlet-side catalyst 13 is sent to the turn-back section 15 and mixed with the air supplied from the air supply path 19 to the reformed gas discharge path 14. Sent. On the upstream side of the outlet-side catalyst 16 filled in the reformed gas discharge passage 14, a partial oxidation reaction, which is an exothermic reaction, is performed by the air supplied to the turnback portion 15. The heat generated here is transferred to the adjacent source gas introduction path 12.
And transmitted to the downstream portion of the air supply path 19.

【0037】原料ガス導入路12の下流部に伝達された
熱は、ここで起こる水蒸気改質反応に供せられるので、
発生した熱を効率よく利用できる。また、出口側触媒1
6の下流部では、該出口側触媒上流部の部分酸化反応で
発生した熱及び前記原料ガス導入路12から伝達される
熱により、水蒸気改質反応が起こり、原料ガス中の炭化
水素は全て改質されて改質ガス出口17より排出され
る。
The heat transferred to the downstream portion of the raw material gas introduction path 12 is used for the steam reforming reaction occurring here.
The generated heat can be used efficiently. Also, the outlet side catalyst 1
6, a steam reforming reaction occurs due to heat generated by the partial oxidation reaction at the upstream side of the outlet catalyst and heat transferred from the raw material gas introduction passage 12, and all hydrocarbons in the raw material gas are reformed. And is discharged from the reformed gas outlet 17.

【0038】これにより、部分酸化反応で発生する熱を
水蒸気改質反応で効率的に利用できると共に、折り返し
部15に供給される空気を加熱でき、折り返し部15に
おける温度低下を防止できる。ここで、本実施形態で
は、図に示すように、入口側触媒13が、出口側触媒1
6に対して、折り返し部15側に偏在させてあるので、
入口側触媒13の上流部の部分酸化反応により急上昇し
た温度を、無駄にすることなく、下流部及び出口側触媒
16へと伝達できる。
Thus, the heat generated in the partial oxidation reaction can be efficiently used in the steam reforming reaction, and the air supplied to the folded portion 15 can be heated, so that the temperature in the folded portion 15 can be prevented from lowering. Here, in the present embodiment, as shown in FIG.
6 is unevenly distributed on the folded portion 15 side,
The temperature rapidly increased by the partial oxidation reaction in the upstream portion of the inlet-side catalyst 13 can be transmitted to the downstream portion and the outlet-side catalyst 16 without waste.

【0039】以上のように、本実施形態では、入口側触
媒13、出口側触媒16それぞれにおいて、ガスの流れ
に対して上流側で部分酸化反応が起こり、下流側で水蒸
気改質反応が起こると共に、部分酸化反応で発生した熱
を水蒸気改質反応で効率よく利用することができる。な
お、原料ガス導入路12、改質ガス排出路14、空気供
給路19、改質ガス排出路14の順に積層してユニット
化し、該ユニットを積層させるようにしてもよい。この
ようにすれば、主に発熱反応である部分酸化反応となる
入口側触媒部を、主に吸熱反応である水蒸気改質反応と
なる出口側触媒部で確実に挟みこむ構成となるので、熱
収支を効率よく行い、装置のエネルギー効率を向上させ
ることができる。
As described above, in the present embodiment, in each of the inlet-side catalyst 13 and the outlet-side catalyst 16, a partial oxidation reaction occurs on the upstream side with respect to the gas flow, and a steam reforming reaction occurs on the downstream side. In addition, heat generated in the partial oxidation reaction can be efficiently used in the steam reforming reaction. The source gas introduction path 12, the reformed gas discharge path 14, the air supply path 19, and the reformed gas discharge path 14 may be stacked in this order to form a unit, and the units may be stacked. With this configuration, the inlet-side catalyst portion, which is a partial oxidation reaction that is mainly an exothermic reaction, is reliably sandwiched by the outlet-side catalyst portion that is mainly a steam reforming reaction, which is an endothermic reaction. The balance can be efficiently performed, and the energy efficiency of the device can be improved.

【0040】また、図5に示す実施形態(第4実施形
態)では、前記空気供給路19に代えて、折り返し部1
5に空気、炭化水素、水蒸気のうち少なくとも1つを供
給するガス供給路19'とし、折り返し部15に点火プ
ラグ8を設けた。これにより、前記第2実施形態と同
様、反応器内温度分布の均一化、改質反応の効率化、装
置の起動時間の短縮が図れる。
In the embodiment shown in FIG. 5 (fourth embodiment), the folded portion 1
5, a gas supply path 19 ′ for supplying at least one of air, hydrocarbon, and water vapor was provided. Thus, as in the second embodiment, the temperature distribution in the reactor can be made uniform, the reforming reaction can be made more efficient, and the startup time of the apparatus can be reduced.

【0041】次に本発明に係る燃料改質装置の第5実施
形態を説明する。図6に示すように、本実施形態はチュ
ーブ式熱交換型の燃料改質装置である。反応器30は、
一端側が改質ガス出口27に通じ、他端側に折り返し部
25を有する外管24と、該外管24の内側に、原料ガ
ス導入管22と空気導入管29を含んで構成されてい
る。
Next, a fifth embodiment of the fuel reformer according to the present invention will be described. As shown in FIG. 6, the present embodiment is a tube type heat exchange type fuel reformer. The reactor 30
One end communicates with the reformed gas outlet 27, and the other end includes an outer tube 24 having a folded portion 25. Inside the outer tube 24, a raw material gas introduction tube 22 and an air introduction tube 29 are included.

【0042】原料ガス導入管22は、一端側が原料ガス
導入口21に、他端側が折り返し部に通じており、原料
ガス導入口21から導入される原料ガスを反応器30内
に導く。空気導入管29は、一端側が空気導入口21
に、他端側が折り返し部25に通じており、空気導入口
21から導入される空気を折り返し部25に供給する。
The source gas introduction pipe 22 has one end connected to the source gas inlet 21 and the other end connected to the turn-back portion, and guides the source gas introduced from the source gas inlet 21 into the reactor 30. One end of the air introduction pipe 29 is the air introduction port 21.
The other end communicates with the folded portion 25 to supply the air introduced from the air inlet 21 to the folded portion 25.

【0043】折り返し部25は、原料ガス導入管22を
流れてきたガスを折り返して、外管24と原料導入管2
2とで形成する改質ガス排出路へと導く。また、前記他
の実施形態と同様に、原料ガス導入管22内には入口側
触媒23が充填されており、外管24と原料ガス導入管
22との間には出口側触媒26が充填されている。
The turn-back section 25 turns the gas flowing through the raw material gas introduction pipe 22 to form an outer tube 24 and the raw material introduction pipe 2.
2 leads to a reformed gas discharge path formed by Also, as in the other embodiments, the raw material gas introduction pipe 22 is filled with an inlet side catalyst 23, and the space between the outer pipe 24 and the raw material gas introduction pipe 22 is filled with an outlet side catalyst 26. ing.

【0044】なお、本実施形態においても、入口側触媒
23が、出口側触媒26に対して、折り返し部25側に
偏在させており、また、原料ガス導入管22の容積が外
管24と原料ガス導入管22との間の容積よりも小さく
してある。前記他の実施形態と同様に、炭化水素、水蒸
気、空気(又は酸素)を含む原料ガスが原料ガス導入口
21より反応器30内に導入(供給される)。導入され
たガスは原料ガス導入管22に導かれ、入口側触媒23
により1部改質される。
Also in this embodiment, the inlet side catalyst 23 is unevenly distributed on the side of the folded portion 25 with respect to the outlet side catalyst 26, and the volume of the raw material gas introducing pipe 22 is smaller than that of the outer pipe 24 by the raw material. It is smaller than the volume between the gas introduction pipe 22. As in the other embodiments, a source gas containing hydrocarbons, water vapor, and air (or oxygen) is introduced (supplied) into the reactor 30 from the source gas inlet 21. The introduced gas is led to the raw material gas introduction pipe 22 and is supplied to the inlet side catalyst 23.
Is partially reformed.

【0045】入口側触媒23(の上流側)では、主に速
い反応速度の部分酸化反応が起こり、発生した熱は、外
管24と原料ガス導入管22との間に充填された出口側
触媒26(の下流部)及び空気導入管29(の上流部)
へ伝達される。入口側触媒23を通過した(1部改質さ
れた)原料ガスは、折り返し部25に送られ、空気導入
管29より供給された空気と混合されて出口側触媒26
へと送られる。
At the inlet side catalyst 23 (upstream side), a partial oxidation reaction having a high reaction rate mainly occurs, and the generated heat is transferred to the outlet side catalyst filled between the outer tube 24 and the raw material gas introduction tube 22. 26 (downstream) and air introduction pipe 29 (upstream)
Is transmitted to The raw material gas that has passed through the inlet-side catalyst 23 (partially reformed) is sent to the turn-back section 25 and mixed with the air supplied from the air introduction pipe 29 to form the outlet-side catalyst
Sent to.

【0046】出口側触媒26の上流部では、折り返し部
25で供給された空気により、部分酸化反応が行われ
る。この部分酸化反応で発生した熱は、原料ガス導入管
22及び空気導入管29の下流部に伝達される。出口側
触媒26の下流部では、その上流部及び原料ガス導入管
22から伝達される熱により水蒸気改質反応が起こり、
ガス中の炭化水素は全て改質されて改質ガス出口27よ
り排出される。
In the upstream part of the outlet side catalyst 26, a partial oxidation reaction is performed by the air supplied in the turn-back part 25. The heat generated by this partial oxidation reaction is transmitted to the downstream portions of the source gas introduction pipe 22 and the air introduction pipe 29. In the downstream part of the outlet side catalyst 26, a steam reforming reaction occurs by heat transmitted from the upstream part and the raw material gas introduction pipe 22,
All hydrocarbons in the gas are reformed and discharged from the reformed gas outlet 27.

【0047】以上により、部分酸化反応で発生する熱を
水蒸気改質反応で効率的に利用できると共に、折り返し
部25に供給される空気を加熱でき、折り返し部25に
おける温度低下を防止できる。また、図7に示す実施形
態(第6実施形態)では、前記空気導入管29に代え
て、折り返し部25に空気、炭化水素、水蒸気のうち少
なくとも1つを供給するガス導入管29'とし、折り返
し部15に点火プラグ8を設けた。
As described above, the heat generated in the partial oxidation reaction can be efficiently used in the steam reforming reaction, and the air supplied to the folded portion 25 can be heated, so that the temperature in the folded portion 25 can be prevented from lowering. Further, in the embodiment shown in FIG. 7 (sixth embodiment), instead of the air introduction pipe 29, a gas introduction pipe 29 'for supplying at least one of air, hydrocarbon, and steam to the folded portion 25 is provided. The spark plug 8 was provided in the folded portion 15.

【0048】これにより、前記第2、第4実施形態と同
様、反応器内温度分布の均一化、改質反応の効率化、装
置の起動時間の短縮が図れる。
As a result, as in the second and fourth embodiments, the temperature distribution in the reactor can be made uniform, the reforming reaction can be made more efficient, and the start-up time of the apparatus can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る燃料改質装置を示す図(第1実施
形態)。
FIG. 1 is a view showing a fuel reforming apparatus according to the present invention (first embodiment).

【図2】本発明に係る反応器内の位置と触媒温度との関
係を示す図。
FIG. 2 is a diagram showing a relationship between a position in a reactor and a catalyst temperature according to the present invention.

【図3】本発明の第2実施形態に係る燃料改質装置を示
す図。
FIG. 3 is a view showing a fuel reforming apparatus according to a second embodiment of the present invention.

【図4】本発明の第3実施形態に係る燃料改質装置を示
す図。
FIG. 4 is a view showing a fuel reforming apparatus according to a third embodiment of the present invention.

【図5】本発明の第4実施形態に係る燃料改質装置を示
す図。
FIG. 5 is a view showing a fuel reforming apparatus according to a fourth embodiment of the present invention.

【図6】本発明の第5実施形態に係る燃料改質装置を示
す図。
FIG. 6 is a view showing a fuel reforming apparatus according to a fifth embodiment of the present invention.

【図7】本発明の第6実施形態に係る燃料改質装置を示
す図。
FIG. 7 is a view showing a fuel reforming apparatus according to a sixth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、11、21…原料ガス導入口 2…内管 3、13、23…入口側触媒 4、24…外管 5、15、25…折り返し部 6、16、26…出口側触媒 7、17、27…改質ガス出口 8…点火プラグ 10、20、30…反応器 12…原料ガス導入路 14…改質ガス排出路 19…空気導入路 19'…ガス導入路 22…原料ガス導入管 29…空気導入管 29'…ガス導入管 1, 11, 21 ... Source gas inlet 2 ... Inner tube 3, 13, 23 ... Inlet side catalyst 4, 24 ... Outer tube 5, 15, 25 ... Turnback part 6, 16, 26 ... Outlet side catalyst 7, 17, 27 ... Reformed gas outlet 8 ... Ignition plug 10, 20, 30 ... Reactor 12 ... Source gas introduction path 14 ... Reformed gas discharge path 19 ... Air introduction path 19 '... Gas introduction path 22 ... Source gas introduction pipe 29 ... Air inlet pipe 29 '… Gas inlet pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石渡 和比古 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 小松 宏 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 4G040 EA03 EA06 EA07 EB12 EB44 EB46 4G140 EA03 EA06 EA07 EB12 EB44 EB46  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Kazuhiko Ishiwatari Nissan Motor Co., Ltd., 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Prefecture (72) Inventor Hiroshi Komatsu 2 Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Motor F Terms (reference) 4G040 EA03 EA06 EA07 EB12 EB44 EB46 4G140 EA03 EA06 EA07 EB12 EB44 EB46

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】炭化水素、水蒸気および空気を含む原料ガ
スを、触媒が充填された反応器に導入して水素及び一酸
化炭素を主成分とする改質ガスを生成する燃料改質装置
において、 前記反応器は、流れが対向するガス流路と、一方のガス
流路からの流れを折り返して他方のガス流路へ導く折り
返し部と、を含んで構成され、 原料ガスが一方のガス流路である原料ガス導入路から流
入し、生成した改質ガスが他方のガス流路である改質ガ
ス排出路から流出するよう構成したことを特徴とする燃
料改質装置。
1. A fuel reformer for introducing a raw material gas containing hydrocarbons, steam and air into a reactor filled with a catalyst to produce a reformed gas containing hydrogen and carbon monoxide as main components. The reactor is configured to include a gas flow path in which the flows are opposed to each other, and a turn-back portion that turns the flow from one gas flow path and guides the flow to the other gas flow path. Wherein the reformed gas flows in from a source gas introduction path, and the generated reformed gas flows out from a reformed gas discharge path, which is the other gas flow path.
【請求項2】前記折り返し部に、前記原料ガス導入路と
は異なる別のガス供給路から空気、炭化水素、水蒸気の
うち少なくとも1つを供給することを特徴とする請求項
1に記載の燃料改質装置。
2. The fuel according to claim 1, wherein at least one of air, hydrocarbon, and water vapor is supplied to the return portion from another gas supply passage different from the raw material gas introduction passage. Reformer.
【請求項3】前記折り返し部近傍に点火装置を備えたこ
とを特徴とする請求項1又は請求項2に記載の燃料改質
装置。
3. The fuel reformer according to claim 1, wherein an ignition device is provided near the turn-back portion.
【請求項4】前記ガス供給路が前記改質ガス排出路と熱
交換することを特徴とする請求項2又は請求項3に記載
の燃料改質装置。
4. The fuel reformer according to claim 2, wherein the gas supply path exchanges heat with the reformed gas discharge path.
【請求項5】前記ガス供給路内のガスの流れが前記改質
ガス排出路内のガスの流れと対向することを特徴とする
請求項4に記載の燃料改質装置。
5. The fuel reformer according to claim 4, wherein a gas flow in the gas supply path is opposed to a gas flow in the reformed gas discharge path.
【請求項6】前記原料ガス導入路と改質ガス排出路とが
交互に積層され、これらの一方の開放端が前記折り返し
部を構成する空室に連結していることを特徴とする請求
項1から請求項3のいずれか1つに記載の燃料改質装
置。
6. A method according to claim 1, wherein said source gas introduction passage and said reformed gas discharge passage are alternately stacked, and one open end of said passages is connected to a vacant space constituting said folded portion. The fuel reformer according to any one of claims 1 to 3.
【請求項7】前記原料ガス導入路と前記改質ガス排出路
と前記ガス供給路とが積層され、これらの一方の開放端
が、前記折り返し部を構成する空室に連結していること
を特徴とする請求項4又は請求項5に記載の燃料改質装
置。
7. A method according to claim 1, wherein said raw material gas introduction path, said reformed gas discharge path, and said gas supply path are stacked, and one open end of each of them is connected to an empty space constituting said folded portion. The fuel reformer according to claim 4 or claim 5, wherein
【請求項8】前記反応器は、原料ガス導入路、改質ガス
排出路、ガス供給路、改質ガス排出路の順に積層して1
つのユニットを形成し、該ユニットを積層して構成され
ていることを特徴とする請求項7に記載の燃料改質装
置。
8. The reactor is formed by stacking a source gas introduction path, a reformed gas discharge path, a gas supply path, and a reformed gas discharge path in this order.
The fuel reforming apparatus according to claim 7, wherein one unit is formed, and the units are stacked.
【請求項9】前記反応器が、一端側が前記折り返し部を
構成する空室を有する外管と、該外管の内側に配設され
て前記空室に連結する内管と、を備えた2重管により構
成され、内管内に形成されるガス流路内の流れが、外管
と内管との間で形成されるガス流路内の流れと対向する
ことを特徴とする請求項1から請求項4のいずれか1つ
に記載の燃料改質装置。
9. The reactor according to claim 2, wherein the reactor comprises: an outer tube having an empty space on one end side of the folded portion; and an inner tube disposed inside the outer tube and connected to the empty space. The flow in the gas flow path formed by the heavy pipe and formed in the inner pipe is opposed to the flow in the gas flow path formed between the outer pipe and the inner pipe. The fuel reformer according to claim 4.
【請求項10】前記反応器が、一端側に前記折り返し部
を構成する空室を有する外管と、該外管の内側に配設さ
れて前記空室に連結する複数の内管と、を備えて構成さ
れ、各内管内に形成されるガス流路内の流れが、外管と
各内管との間に形成されるガス流路内の流れと対向する
ことを特徴とする請求項1から請求項4のいずれか1つ
に記載の燃料改質装置。
10. The reactor comprises: an outer tube having an empty space on one end side that constitutes the folded portion; and a plurality of inner tubes disposed inside the outer tube and connected to the empty room. The flow in the gas flow path formed in each inner pipe is opposed to the flow in the gas flow path formed between the outer pipe and each inner pipe. The fuel reformer according to any one of claims 1 to 4.
【請求項11】前記内管の1部が、前記ガス供給路を構
成することを特徴とする請求項10に記載の燃料改質装
置。
11. The fuel reformer according to claim 10, wherein a part of the inner pipe forms the gas supply passage.
【請求項12】原料ガス導入路の容積が、改質ガス排出
路の容積よりも小さいことを特徴とする請求項1から請
求項11のいずれか1つに記載の燃料改質装置。
12. The fuel reformer according to claim 1, wherein a volume of the raw gas introduction passage is smaller than a volume of the reformed gas discharge passage.
【請求項13】原料ガス導入路内に充填された触媒の入
口側端部が、改質ガス排出路内に充填された触媒の出口
側端部より折り返し部側に位置するように触媒を配設し
たことを特徴とする請求項1から請求項12のいずれか
1つに記載の燃料改質装置。
13. The catalyst is arranged such that the inlet side end of the catalyst filled in the raw material gas introduction passage is located closer to the turn-back side than the outlet side end of the catalyst filled in the reformed gas discharge passage. The fuel reformer according to any one of claims 1 to 12, wherein the fuel reformer is provided.
JP2001004703A 2001-01-12 2001-01-12 Fuel reforming apparatus Pending JP2002211903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001004703A JP2002211903A (en) 2001-01-12 2001-01-12 Fuel reforming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001004703A JP2002211903A (en) 2001-01-12 2001-01-12 Fuel reforming apparatus

Publications (1)

Publication Number Publication Date
JP2002211903A true JP2002211903A (en) 2002-07-31

Family

ID=18872857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001004703A Pending JP2002211903A (en) 2001-01-12 2001-01-12 Fuel reforming apparatus

Country Status (1)

Country Link
JP (1) JP2002211903A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006514909A (en) * 2002-12-31 2006-05-18 ダナ カナダ コーポレーション Fuel conversion reactor
JP2007039322A (en) * 2005-07-01 2007-02-15 Mitsubishi Heavy Ind Ltd Reforming method and reforming apparatus
WO2008149900A1 (en) * 2007-06-07 2008-12-11 Sumitomo Seika Chemicals Co., Ltd. Hydrogen production method, and reforming reactor
JP2009263185A (en) * 2008-04-28 2009-11-12 Japan Energy Corp Oxidation autothermal reforming apparatus and start method of solid oxide type fuel cell system
JP2009263184A (en) * 2008-04-28 2009-11-12 Japan Energy Corp Oxidation autothermal reforming apparatus and solid oxide type fuel cell system
US7981372B2 (en) * 2005-12-08 2011-07-19 Japan Energy Corporation Oxidative autothermal reformer and oxidative autothermal reforming method using the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5263201A (en) * 1975-11-20 1977-05-25 Toyota Motor Corp Hydrocarbon reformer
JPS5954603A (en) * 1982-09-20 1984-03-29 Matsushita Electric Ind Co Ltd Reforming device for hydrocarbon gas
JPS5973403A (en) * 1982-10-19 1984-04-25 Matsushita Electric Ind Co Ltd Reforming device for hydrocarbon gas
JPS63129002A (en) * 1986-11-17 1988-06-01 Hitachi Ltd Internal heating fuel reformer
JPH0269301A (en) * 1988-07-22 1990-03-08 Imperial Chem Ind Plc <Ici> Hydrogen
JPH09309701A (en) * 1996-05-21 1997-12-02 Sanyo Electric Co Ltd Apparatus for producing hydrogen and its operation
WO1999053561A1 (en) * 1998-04-16 1999-10-21 International Fuel Cells, Llc Catalyzed wall fuel gas reformer
JP2002003201A (en) * 2000-06-15 2002-01-09 Toyota Motor Corp Hydrogen production apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5263201A (en) * 1975-11-20 1977-05-25 Toyota Motor Corp Hydrocarbon reformer
JPS5954603A (en) * 1982-09-20 1984-03-29 Matsushita Electric Ind Co Ltd Reforming device for hydrocarbon gas
JPS5973403A (en) * 1982-10-19 1984-04-25 Matsushita Electric Ind Co Ltd Reforming device for hydrocarbon gas
JPS63129002A (en) * 1986-11-17 1988-06-01 Hitachi Ltd Internal heating fuel reformer
JPH0269301A (en) * 1988-07-22 1990-03-08 Imperial Chem Ind Plc <Ici> Hydrogen
JPH09309701A (en) * 1996-05-21 1997-12-02 Sanyo Electric Co Ltd Apparatus for producing hydrogen and its operation
WO1999053561A1 (en) * 1998-04-16 1999-10-21 International Fuel Cells, Llc Catalyzed wall fuel gas reformer
JP2002003201A (en) * 2000-06-15 2002-01-09 Toyota Motor Corp Hydrogen production apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006514909A (en) * 2002-12-31 2006-05-18 ダナ カナダ コーポレーション Fuel conversion reactor
JP2007039322A (en) * 2005-07-01 2007-02-15 Mitsubishi Heavy Ind Ltd Reforming method and reforming apparatus
US7981372B2 (en) * 2005-12-08 2011-07-19 Japan Energy Corporation Oxidative autothermal reformer and oxidative autothermal reforming method using the same
WO2008149900A1 (en) * 2007-06-07 2008-12-11 Sumitomo Seika Chemicals Co., Ltd. Hydrogen production method, and reforming reactor
JPWO2008149900A1 (en) * 2007-06-07 2010-08-26 住友精化株式会社 Method for producing hydrogen and reforming reactor
JP2009263185A (en) * 2008-04-28 2009-11-12 Japan Energy Corp Oxidation autothermal reforming apparatus and start method of solid oxide type fuel cell system
JP2009263184A (en) * 2008-04-28 2009-11-12 Japan Energy Corp Oxidation autothermal reforming apparatus and solid oxide type fuel cell system

Similar Documents

Publication Publication Date Title
US6413479B1 (en) Reforming apparatus for making a co-reduced reformed gas
US7235217B2 (en) Method and apparatus for rapid heating of fuel reforming reactants
US6096286A (en) System for steam reformation of a hydrocarbon and operating method therefor
US8758459B2 (en) Reforming apparatus and method
RU2465955C2 (en) Device and method for reforming
JP3129670B2 (en) Fuel reformer
US7832364B2 (en) Heat transfer unit for steam generation and gas preheating
KR20030036155A (en) Integrated reactor
JPH11263601A (en) Steam reformer for hydrocarbon
JP2002187705A (en) Single tube cylindrical reformer
KR100848047B1 (en) Highly Efficient, Compact Reformer Unit for Generating Hydrogen from Gaseous Hydrocarbons in the Low Power Range
EP1559679B1 (en) Autooxidation internal heating type steam reforming system
JPH0326326A (en) Modifying equipment for fuel cell
US6981865B2 (en) Catalyst combustion system, fuel reforming system, and fuel cell system
US20060039839A1 (en) Device for cooling and humidifying reformate
US7497881B2 (en) Heat exchanger mechanization to transfer reformate energy to steam and air
JPH11106204A (en) Hydrogen production apparatus and hydrogen production process
JP2002211903A (en) Fuel reforming apparatus
US7638213B2 (en) Multi-stage rapid vaporization apparatus and method
JPH10106606A (en) Hydrogen manufacturing device, and manufacture thereof
EP1886372B1 (en) Fuel processing system
JP2009091181A (en) Reforming apparatus and fuel cell system
JP4163657B2 (en) Fuel reformer
JP2000159501A (en) Hydrogen-containing gas-producing apparatus
JP2004281235A (en) Reformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080319

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207