JP4163657B2 - Fuel reformer - Google Patents

Fuel reformer Download PDF

Info

Publication number
JP4163657B2
JP4163657B2 JP2004142475A JP2004142475A JP4163657B2 JP 4163657 B2 JP4163657 B2 JP 4163657B2 JP 2004142475 A JP2004142475 A JP 2004142475A JP 2004142475 A JP2004142475 A JP 2004142475A JP 4163657 B2 JP4163657 B2 JP 4163657B2
Authority
JP
Japan
Prior art keywords
gas
reformer
raw material
heat exchanger
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004142475A
Other languages
Japanese (ja)
Other versions
JP2005001982A (en
Inventor
貴司 荒井
聡 花井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004142475A priority Critical patent/JP4163657B2/en
Publication of JP2005001982A publication Critical patent/JP2005001982A/en
Application granted granted Critical
Publication of JP4163657B2 publication Critical patent/JP4163657B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は燃料改質装置、特に、燃料電池に燃料を供給すべく、メタノール、炭化水素等の原料ガスから水素を含む改質ガスを製造する装置の改良に関する。   The present invention relates to a fuel reforming apparatus, and more particularly to an improvement of an apparatus for producing a reformed gas containing hydrogen from a raw material gas such as methanol or hydrocarbon in order to supply fuel to a fuel cell.

原料ガスの改質反応において、改質ガスの生成効率を向上させるためには反応温度を高めることが得策である。そこで、改質器に対する断熱構造を確固としたものにすることが必要となる。本出願人は、先に、内側ケースを外側ケースにより覆って、両ケース間に断熱用空間を形成した改質器を開発した(特許文献1参照)。
特開2000−63103号公報
In the reforming reaction of the raw material gas, it is advantageous to increase the reaction temperature in order to improve the generation efficiency of the reformed gas. Therefore, it is necessary to make the heat insulating structure for the reformer solid. The present applicant has previously developed a reformer in which an inner case is covered with an outer case and a space for heat insulation is formed between the two cases (see Patent Document 1).
JP 2000-63103 A

反応温度を高めると、それに伴い放熱量も大となる。反応温度を、経済的に高く維持するためには放熱量を低く抑えることを要求されるが、前記断熱的空間の場合はその断熱効果に自ずと限界があるため前記要求に十分に応ずることができず、この点改良が望まれていた。   When the reaction temperature is increased, the amount of heat release increases accordingly. In order to keep the reaction temperature economically high, it is required to keep the heat dissipation low, but in the case of the adiabatic space, the heat insulation effect is naturally limited, so that the above requirement can be sufficiently met. However, this point improvement was desired.

本発明は、反応温度を高めた場合において、その反応温度を、経済的に高く維持して高い水素生成効率を得ることができ、また小型化を図ることが可能な前記燃料改質装置を提供することを目的とする。   The present invention provides the fuel reformer that can maintain a high reaction temperature economically to obtain a high hydrogen generation efficiency when the reaction temperature is increased, and can be downsized. The purpose is to do.

前記目的を達成するため、請求項1の発明は、原料ガスから水素を含む改質ガスを生成する改質器と、その改質器の入口側に連設され料ガスを拡散させて該改質器に導くガス導入部材と、前記改質器の出口側に連設され、且つ高温の前記改質ガスにより前記原料ガスを加熱する熱交換器と、その熱交換器で加熱された前記原料ガスを前記改質器周りおよび前記ガス導入部材周りを流した後そのガス導入部材の少なくとも1つのガス導入口に導くガス通路を形成すべく、前記改質器および前記ガス導入部材を囲むガス通路形成部材とを有してなる燃料改質装置であって、前記ガス通路形成部材が、前記熱交換器のハウジング周りに前記ガス通路の入口側を形成すべく、そのハウジングの一部をもその全周に亘り囲んでおり、前記熱交換器のハウジングの一部には、その全周に亘り配置されて前記ガス通路の入口側に連通する複数の原料ガス用出口が存することを特徴とし、また請求項2の発明は、原料ガスから水素を含む改質ガスを生成する改質器と、その改質器の入口側に連設され原料ガスを拡散させて該改質器に導くガス導入部材と、前記改質器の出口側に連設され、且つ高温の前記改質ガスにより前記原料ガスを加熱する熱交換器と、その熱交換器で加熱された前記原料ガスを前記改質器周りおよび前記ガス導入部材周りを流した後そのガス導入部材の少なくとも1つのガス導入口に導くガス通路を形成すべく、前記改質器および前記ガス導入部材を囲むガス通路形成部材とを有してなる燃料改質装置であって、前記熱交換器が、筒形のハウジングと、そのハウジングの内周面にそれぞれ固定されて相互間に熱交換室を形成する一対の保持板と、その熱交換室内を複数の小部屋に区画してジグザグ状通路を形成する隔壁板と、それら保持板、小部屋及び隔壁板を貫通して相互に間隔をおいて並ぶ複数のガスパイプとを備え、その各ガスパイプは、一端が前記改質器の出口に連通すると共にその他端が前記ハウジングの改質ガス用出口に連通し、前記ハウジングには、前記複数の小部屋よりなる前記ジグザグ状通路の上流部に連通する原料ガス用入口と、該ジグザグ状通路の下流部を前記ガス通路の入口側に連通させる原料ガス用出口とが設けられることを特徴とする。 To achieve the above object, the invention of claim 1, and a reformer for generating a reformed gas containing hydrogen from a raw material gas, to diffuse the reformer inlet side provided continuously to the raw material gas the A gas introduction member that leads to the reformer; a heat exchanger that is connected to the outlet side of the reformer and that heats the source gas with the high-temperature reformed gas; and the heat exchanger that is heated by the heat exchanger A gas surrounding the reformer and the gas introduction member so as to form a gas passage for introducing the raw material gas around the reformer and the gas introduction member and then leading to at least one gas introduction port of the gas introduction member. a fuel reformer device in which possess a passage forming member, said gas passage forming member, to form an inlet side of the gas passage in the housing around the heat exchanger, also a part of the housing The entire circumference of the heat exchanger is surrounded by A part of the ging includes a plurality of source gas outlets arranged over the entire circumference and communicating with the inlet side of the gas passage. The invention of claim 2 is characterized in that hydrogen is supplied from the source gas. A reformer that generates reformed gas, a gas introduction member that is connected to the inlet side of the reformer and diffuses the raw material gas and leads to the reformer, and is connected to the outlet side of the reformer And a heat exchanger that heats the source gas with the high-temperature reformed gas, and the gas after the source gas heated by the heat exchanger flows around the reformer and the gas introduction member A fuel reformer comprising the reformer and a gas passage forming member surrounding the gas introduction member to form a gas passage leading to at least one gas introduction port of the introduction member, wherein the heat exchange The container has a cylindrical housing and an inner periphery of the housing. A pair of holding plates that are fixed to each other to form a heat exchange chamber, a partition plate that divides the heat exchange chamber into a plurality of small chambers to form a zigzag passage, the holding plates, the small chambers, and A plurality of gas pipes that pass through the partition plate and are spaced apart from each other, each gas pipe having one end communicating with the outlet of the reformer and the other end communicating with the reformed gas outlet of the housing. And the housing has a raw material gas inlet communicating with an upstream portion of the zigzag passage composed of the plurality of small chambers, and a raw gas for communicating a downstream portion of the zigzag passage with the inlet side of the gas passage. And an outlet .

請求項1,2の発明の各特徴によれば、高温の改質ガスにより加熱された原料ガスを改質器周りに流すようにすると、改質器から原料ガスへの熱伝達が十分に抑制されるので、改質器の放熱量が大幅に減少する。これにより改質反応の反応温度を高めた場合において、その反応温度を、経済的に高く維持することができる。つまり、反応温度維持のための燃焼用ガス量を放熱量の減少に伴い低減し、また原料ガスの加熱に高温改質ガスの廃熱を有効に利用する、といったコスト低減策が講じられているのである。よって、改質反応を、反応率の高い高温にて行って水素生成効率を大いに高めることが可能である。 According to the features of the first and second aspects of the invention, when the raw material gas heated by the high-temperature reformed gas is caused to flow around the reformer, heat transfer from the reformer to the raw material gas is sufficiently suppressed. As a result, the heat dissipation of the reformer is greatly reduced. Thereby, when the reaction temperature of the reforming reaction is increased, the reaction temperature can be maintained economically high. In other words, cost reduction measures have been taken, such as reducing the amount of combustion gas for maintaining the reaction temperature as the amount of heat released decreases, and effectively utilizing the waste heat of the high-temperature reformed gas for heating the raw material gas. It is. Therefore, it is possible to perform the reforming reaction at a high temperature with a high reaction rate to greatly increase the hydrogen generation efficiency.

また改質器の放熱量を抑制すると、改質器内部の温度がその全体に亘り均一になるため、ガス温度および触媒温度の制御が容易であると共に一部の触媒が過熱されて劣化する、といった不具合を防止して触媒の耐久性を向上させることができる。さらに改質器の入口側および出口側にそれぞれガス導入部材および熱交換器を連設すると、改質器と、ガス導入部材及び熱交換器との各間の接続管を不要にして装置の小型化を図り、また接続管からの放熱といった不具合を回避することが可能である。   In addition, when the heat release amount of the reformer is suppressed, the temperature inside the reformer becomes uniform throughout the whole, so that it is easy to control the gas temperature and the catalyst temperature, and some catalysts are overheated and deteriorated. Thus, the durability of the catalyst can be improved. Further, when a gas introduction member and a heat exchanger are connected to the inlet side and the outlet side of the reformer, respectively, a connecting pipe between the reformer, the gas introduction member and the heat exchanger is not required, and the apparatus can be made compact. In addition, it is possible to avoid problems such as heat dissipation from the connecting pipe.

また特に請求項1の発明の特徴によれば、ガス通路形成部材が、熱交換器のハウジング周りにガス通路の入口側を形成すべく、そのハウジングの一部をもその全周に亘り囲んでおり、熱交換器のハウジングの一部には、その全周に亘り配置されてガス通路の入口側に連通する複数の原料ガス用出口が存することを特徴とし、このように構成すると、作用効果に加えて、原料ガスを熱交換器よりガス通路の入口側にその全体に亘り均一に送り出して、ガス通路内に原料ガスの均一な流れを形成することが可能であり、これにより改質器の放熱をその全体に亘り均等に抑制することができる。In particular, according to the feature of the invention of claim 1, the gas passage forming member surrounds a part of the housing over the entire circumference so as to form the inlet side of the gas passage around the housing of the heat exchanger. In addition, a part of the housing of the heat exchanger is characterized in that there are a plurality of raw material gas outlets arranged over the entire circumference and communicating with the inlet side of the gas passage. In addition, it is possible to uniformly feed the raw material gas from the heat exchanger to the inlet side of the gas passage over the entire gas passage, thereby forming a uniform flow of the raw material gas in the gas passage. Can be evenly suppressed over the whole.

また請求項の発明は、請求項1又は2の前記特徴に加えて、前記ガス通路に、該ガス通路を通過する原料ガスを拡散させる少なくとも1つの散気部材が備えられていることを特徴とし、このように構成すると、前記作用効果に加えて、加熱された原料ガスをガス導入部材に、そのガス導入口から均等に導入して、ガス導入部材による原料ガスの散気作用をスムーズに、且つ確実に行わせることが可能である。 According to a third aspect of the present invention, in addition to the feature of the first or second aspect, the gas passage is provided with at least one aeration member for diffusing the raw material gas passing through the gas passage. With this configuration, in addition to the above-described effects, the heated source gas is uniformly introduced into the gas introduction member from the gas introduction port so that the source gas is diffused smoothly by the gas introduction member. And it is possible to perform it reliably.

また請求項の発明は、請求項1〜3の何れかの前記特徴に加えて、前記ガス導入部材、前記改質器、前記熱交換器および前記ガス通路形成部材がそれぞれ円筒形をなし、それら四部材が同軸上に配置されていることを特徴とし、このように構成すると、前記作用効果に加えて、装置の小型化を一層推進することが可能である。 In addition to the above-described features of any of claims 1 to 3 , the invention of claim 4 is characterized in that the gas introduction member, the reformer, the heat exchanger, and the gas passage forming member are each cylindrical. These four members are arranged coaxially, and if constituted in this way, it is possible to further promote downsizing of the apparatus in addition to the above-described effects.

また請求項の発明は、請求項1〜の何れかの前記特徴に加えて、前記熱交換器、前記改質器及び前記ガス導入部材が下からこの順で上下に配列されて相互に一体構造となっていることを特徴とし、このように構成すると、前記作用効果に加えて、装置の小型化を図りつつ装置を縦長形態として設置面積を極力低減でき、しかも原料ガスの入口側や改質ガスの出口側を極力低位置に配備できてガス配管を上方に取り回す必要がなく、配管が容易となる。 In addition to the above feature of any one of claims 1 to 4 , the invention of claim 5 is characterized in that the heat exchanger, the reformer, and the gas introduction member are arranged vertically in this order from below. In this way, in addition to the above-described effects, the apparatus can be reduced in size while reducing the installation area as much as possible while reducing the size of the apparatus. there is no need to Torimawasu upward gas pipe exit side of the reformed gas can minimize deployed in low position, piping that easily and Do.

また請求項6の発明は、請求項1〜5の何れかの前記特徴に加えて、前記ガス通路形成部材の全外面が断熱部材により覆われていることを特徴とし、このように構成すると、改質器の放熱量を一層低減することが可能である。   Further, the invention of claim 6 is characterized in that, in addition to the feature of any one of claims 1 to 5, the entire outer surface of the gas passage forming member is covered with a heat insulating member. It is possible to further reduce the heat radiation amount of the reformer.

また請求項7の発明は、請求項1〜6の何れかの前記特徴に加えて、前記ガス導入部材が、ディフューザであることを特徴とし、このように構成すると、改質器の入口側に連設したディフューザ自体の原料ガスに対する絞り・膨張作用により、改質器に向かう原料ガスを効果的に拡散させ、改質器に略均等に導くことができる。   The invention of claim 7 is characterized in that, in addition to the feature of any one of claims 1 to 6, the gas introduction member is a diffuser. Due to the constriction and expansion action of the continuous diffuser itself on the raw material gas, the raw material gas directed to the reformer can be effectively diffused and led to the reformer substantially uniformly.

また請求項8の発明は、請求項1〜7の何れかの前記特徴に加えて、前記ガス導入部材には、該ガス導入部材内に導かれた原料ガスが通過する多数の小孔を有して同原料ガスを拡散させる散気部材、同原料ガスを旋回させるスクリュ形ガイド部材、同原料ガスを膨張させつつ下流側に略均等に案内するコーン形吹出し部材のうちの少なくとも1つが設けられることを特徴とし、このように構成すると、ガス導入部材内において、上記散気部材・スクリュ形ガイド部材・コーン形吹出し部材の少なくとも1つにより、改質器に向かう原料ガスをガス導入部材内で一層効果的に拡散させ、改質器に略均等に導くことができる。   According to an eighth aspect of the present invention, in addition to the above feature of any of the first to seventh aspects, the gas introduction member has a large number of small holes through which the source gas introduced into the gas introduction member passes. And at least one of a diffuser member for diffusing the raw material gas, a screw-type guide member for rotating the raw material gas, and a cone-shaped blowing member for substantially uniformly guiding the raw material gas to the downstream side while expanding the raw material gas. With this configuration, in the gas introduction member, the raw material gas directed to the reformer is fed into the gas introduction member by at least one of the diffuser member, screw-type guide member, and cone-type blowing member. It can be diffused more effectively and led to the reformer substantially evenly.

本発明によれば、高温の改質ガスにより加熱された原料ガスを改質器周りに流すようにしたので、反応温度を高めた場合において、その反応温度を、経済的に高く維持して高い水素生成効率を得ることができ、また改質器の入口側および出口側にそれぞれガス導入部材および熱交換器を連設したので、改質器と、ガス導入部材・熱交換器との各間の接続管を不要にして装置の小型化を図ることがでる。 According to the present invention, since the raw material gas heated by the high-temperature reformed gas is allowed to flow around the reformer, when the reaction temperature is increased, the reaction temperature is economically maintained high and high. Hydrogen generation efficiency can be obtained, and since the gas introduction member and the heat exchanger are connected to the inlet side and the outlet side of the reformer, respectively, between the reformer and the gas introduction member / heat exchanger. that Ki de be made to reduce the size of the apparatus eliminates the need for connection pipes.

また特に請求項1の発明によれば、原料ガスを熱交換器よりガス通路の入口側にその全体に亘り均一に送り出して、ガス通路内に原料ガスの均一な流れを形成することが可能であり、これにより改質器の放熱をその全体に亘り均等に抑制することができる。In particular, according to the first aspect of the present invention, it is possible to uniformly feed the raw material gas from the heat exchanger to the inlet side of the gas passage throughout the gas passage, thereby forming a uniform flow of the raw material gas in the gas passage. With this, the heat radiation of the reformer can be evenly suppressed over the whole.

また特に請求項の発明によれば、加熱された原料ガスをガス導入部材に、そのガス導入口から均等に導入し得るので、ガス導入部材による原料ガスの散気作用をスムーズに、且つ確実に行わせることが可能である。 In particular, according to the invention of claim 3 , since the heated source gas can be uniformly introduced into the gas introduction member from the gas introduction port, the diffuse operation of the source gas by the gas introduction member can be smoothly and reliably performed. Can be performed.

また特に請求項の発明によれば、ガス導入部材、改質器、熱交換器およびガス通路形成部材がそれぞれ円筒形をなし、それら四部材が同軸上に配置されるので、装置の小型化を一層推進することが可能である。 In particular, according to the invention of claim 4 , the gas introduction member, the reformer, the heat exchanger, and the gas passage forming member each have a cylindrical shape, and these four members are coaxially arranged, so that the apparatus can be downsized. Can be further promoted.

また特に請求項の発明によれば、熱交換器、改質器及びガス導入部材が下からこの順で上下に配列されて相互に一体構造とされるので、装置の小型化を図りつつ装置を縦長形態として設置面積を極力低減でき、しかも原料ガスの入口側や改質ガスの出口側を極力低位置に配備できてガス配管を上方に取り回す必要がなく、配管が容易となる。 In particular, according to the invention of claim 5 , since the heat exchanger, the reformer, and the gas introduction member are arranged vertically in this order from the bottom to form an integral structure with each other, the apparatus can be reduced in size. the can be reduced as much as possible the installation area as Vertical mode, yet the outlet side of the inlet side and the reformed gas of the material gas can minimize deployed in low position of the gas pipe is not necessary to Torimawasu upward, piping that easily and Do.

また特に請求項6の発明によれば、ガス通路形成部材の全外面が断熱部材により覆われるので、改質器の放熱量を一層低減することが可能である。   In particular, according to the invention of claim 6, since the entire outer surface of the gas passage forming member is covered with the heat insulating member, it is possible to further reduce the heat radiation amount of the reformer.

また特に請求項7の発明によれば、改質器の入口側に連設したディフューザ自体の原料ガスに対する絞り・膨張作用により、改質器に向かう原料ガスを効果的に拡散させ、改質器に略均等に導くことができる。   In particular, according to the invention of claim 7, the raw material gas directed to the reformer is effectively diffused by the throttling / expansion action of the diffuser itself connected to the inlet side of the reformer with respect to the raw material gas. Can be led almost evenly.

また特に請求項8の発明によれば、ガス導入部材内において、散気部材・スクリュ形ガイド部材・コーン形吹出し部材の少なくとも1つにより、改質器に向かう原料ガスをガス導入部材内で一層効果的に拡散させ、改質器に略均等に導くことができる。   In particular, according to the invention of claim 8, in the gas introduction member, the raw material gas directed to the reformer is further increased in the gas introduction member by at least one of a diffuser member, a screw-type guide member, and a cone-type blowing member. It can be diffused effectively and guided to the reformer substantially evenly.

以下、本発明の実施の形態を、添付図面に例示した本発明の実施例に基づいて以下に具体的に説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below based on examples of the present invention illustrated in the accompanying drawings.

〔第1実施例〕
図1〜3に示した燃料改質装置1は、水素製造方式として部分酸化法を適用し得るように構成されている。その燃料改質装置1は、原料ガスから水素を含む改質ガスを生成する円筒形改質器2と、その改質器2の入口3側、つまり上側に連設されて原料ガスを改質器2に導くガス導入部材としての原料ガス用円筒形ディフューザ4と、改質器2の出口5側、つまり下側に連設され、且つ高温の改質ガスにより原料ガスを加熱する円筒形熱交換器6と、加熱された原料ガスを改質器2周りおよびディフューザ4周りを流した後そのディフューザ4の上端に存するガス導入口7に導くガス通路8を形成すべく、改質器2およびディフューザ4を囲む円筒形ガス通路形成部材9とを有する。それら四部材2,4,6,9は同軸上に配置されていて、装置1の小型化を図る上に有効である。また特に熱交換器6、改質器2及びディフューザ4(ガス導入部材)が下からこの順で上下に配列されて相互に一体構造とされるため、装置1の小型化を図りつつ装置1を縦長形態として設置面積を極力低減でき、しかも装置1における原料ガスの入口側や改質ガスの出口側を極力低位置に配備できてガス配管を上方に取り回す必要がなく、配管が容易となる。
[First embodiment]
The fuel reformer 1 shown in FIGS. 1 to 3 is configured to apply a partial oxidation method as a hydrogen production method. The fuel reformer 1 is provided with a cylindrical reformer 2 that generates a reformed gas containing hydrogen from a raw material gas, and an inlet 3 side, that is, an upper side of the reformer 2, and reforms the raw material gas. A cylindrical diffuser 4 for raw material gas as a gas introduction member leading to the reactor 2 and a cylindrical heat that is connected to the outlet 5 side of the reformer 2, that is, on the lower side, and heats the raw material gas with a high-temperature reformed gas. In order to form a gas passage 8 that leads to the gas inlet 7 existing at the upper end of the exchanger 6 and the diffuser 4 after flowing the heated raw material gas around the reformer 2 and the diffuser 4, And a cylindrical gas passage forming member 9 surrounding the diffuser 4. These four members 2, 4, 6, and 9 are arranged on the same axis, which is effective for reducing the size of the apparatus 1. In particular, the heat exchanger 6, the reformer 2, and the diffuser 4 (gas introduction member) are vertically arranged in this order from the bottom and are integrated with each other, so that the device 1 can be reduced in size while reducing the size of the device 1. As a vertically long form, the installation area can be reduced as much as possible, and the inlet side of the raw material gas and the outlet side of the reformed gas in the apparatus 1 can be arranged as low as possible, so that it is not necessary to route the gas pipe upward, and the pipe becomes easy. .

改質器2は、上側に環状端面により囲まれた入口3を、下側に環状端面により囲まれた出口5をそれぞれ有する円筒形外筒体10と、それら入、出口3,5間において外筒体10内に固定された内筒体11とを有する。内筒体11内には、原料ガス、例えばメタノール、メタン等の炭化水素を含むガスと酸素(空気)とを用いて部分酸化法を行うべく、Pt系、CuZn系、Pd系等の触媒16が充填されており、内筒体11の上側および下側の両端壁12,13にはぞれぞれ複数の流入孔14および流出孔15が形成されている。触媒16は、必要に応じて、耐熱性金属材料またはセラミック材料よりなるハニカム状担体に保持される。   The reformer 2 has an inlet 3 surrounded by an annular end surface on the upper side, a cylindrical outer cylinder 10 having an outlet 5 surrounded by an annular end surface on the lower side, and an outside between these inlets and outlets 3 and 5. And an inner cylinder 11 fixed in the cylinder 10. In the inner cylinder 11, a catalyst 16 such as a Pt-based, CuZn-based, or Pd-based material is used to perform a partial oxidation method using a raw material gas, for example, a gas containing hydrocarbons such as methanol and methane, and oxygen (air). A plurality of inflow holes 14 and outflow holes 15 are formed in the upper and lower end walls 12 and 13 of the inner cylinder 11, respectively. The catalyst 16 is held on a honeycomb-shaped carrier made of a heat-resistant metal material or a ceramic material as necessary.

ディフューザ4は、1つのガス導入口7を有する首部17と、その首部17の下側に連なる肩部18と、その肩部18に連なり、下端を改質器2の外筒体10に突合せてそれに取付けられた胴部19とを有する。   The diffuser 4 has a neck portion 17 having a single gas introduction port 7, a shoulder portion 18 that continues to the lower side of the neck portion 17, a shoulder portion 18, and a lower end that abuts against the outer cylinder 10 of the reformer 2. And a barrel 19 attached thereto.

熱交換器6は、上側に環状端面により囲まれた入口20を、下側に環状端面により囲まれた出口21をそれぞれ有する円筒形ハウジング22と、それら入、出口20,21近傍において、ハウジング22の内周面にそれぞれ固定されて熱交換室23を形成する2つの円形保持板24,25と、両保持板24,25に、それらの全体に均等に分散し、且つそれらを貫通するように固定された複数のガスパイプ26とを有する。下側の保持板25近傍においてハウジング22に、熱交換室23に連通するように原料ガス用入口27を有する接続パイプ28が設けられている。   The heat exchanger 6 includes a cylindrical housing 22 having an inlet 20 surrounded by an annular end surface on the upper side and an outlet 21 surrounded by an annular end surface on the lower side, and a housing 22 in the vicinity of the inlet and outlet 20 and 21. The two circular holding plates 24 and 25 that are fixed to the inner peripheral surface of each of the two holding plates 24 and 25 to form the heat exchanging chamber 23, and the two holding plates 24 and 25 are distributed evenly and entirely through them. A plurality of gas pipes 26 which are fixed. In the vicinity of the lower holding plate 25, a connection pipe 28 having a raw material gas inlet 27 is provided in the housing 22 so as to communicate with the heat exchange chamber 23.

熱交換室23内には、その内部を、上下方向に並んで互に連通する4つの小部屋29〜32に区画する3つの隔壁板33〜35が配設されており、それら隔壁板33〜35を複数のガスパイプ26の一部が貫通している。図3に明示するように、各隔壁板33〜35は円形板の一部を三ケ月形に切除された形状を有し、その円弧状外周部36はハウジング22内周面に固着され、その弦状部37とハウジング22内周面の一部とによって形成された通路38〜40により上、下2つの小部屋29,30;30,31;31,32間が連通してジグザグ状通路を形成するようになっている。 In the heat exchange chamber 23, there are arranged three partition plates 33 to 35 that divide the interior into four small chambers 29 to 32 that are lined up in the vertical direction and communicate with each other. 35, a part of the plurality of gas pipes 26 penetrates. As clearly shown in FIG. 3, each of the partition plates 33 to 35 has a shape obtained by cutting a part of a circular plate into a crescent shape, and its arc-shaped outer peripheral portion 36 is fixed to the inner peripheral surface of the housing 22, and its string by Jo portion 37 and the passage 38 to 40 formed by a part of the housing 22 peripheral surface, up, down two small chambers 29 and 30; the zigzag passage and communicating with between 31 and 32; 30, 31 It comes to form .

熱交換を効率良く行うべく、下側の通路40は原料ガス用入口27から最も遠い位置に在り、また中間の通路39は原料ガス用入口27の上方に在り、さらに上側の通路38は下側の通路40の上方に在る。   In order to perform heat exchange efficiently, the lower passage 40 is located farthest from the raw material gas inlet 27, the intermediate passage 39 is located above the raw material gas inlet 27, and the upper passage 38 is located on the lower side. Above the passage 40.

原料ガス用入口27は、前記小部屋29〜32よりなる前記ジグザグ状通路の上流部に連通している。また、原料ガス用出口41は、前記小部屋29〜32よりなる前記ジグザグ状通路の下流部に連通するものであって、上側の通路38から最も遠い位置、つまり原料ガス用入口27の上方においてハウジング22に形成されている。円筒形ガス通路形成部材9の下部は、熱交換器6のハウジング22の一部、つまり上部をその全周に亘って囲んでおり、その部材9の下端部は出口41よりも下方においてハウジング22外周面に固着されている。これにより出口41はガス通路8の入口側に連通する。尚、原料ガス用出口41を、ハウジング22の外周に周方向に間隔をおいて複数個設けてもよい。 The raw material gas inlet 27 communicates with the upstream portion of the zigzag passage formed of the small chambers 29 to 32. The source gas outlet 41 communicates with the downstream portion of the zigzag passage composed of the small chambers 29 to 32 , and is located farthest from the upper passage 38, that is, above the source gas inlet 27. A housing 22 is formed. The lower part of the cylindrical gas passage forming member 9 surrounds a part of the housing 22 of the heat exchanger 6, that is, the upper part over the entire circumference, and the lower end portion of the member 9 is below the outlet 41 and the housing 22. It is fixed to the outer peripheral surface. Thereby, the outlet 41 communicates with the inlet side of the gas passage 8. Note that a plurality of source gas outlets 41 may be provided on the outer periphery of the housing 22 at intervals in the circumferential direction.

ガス通路形成部材9内周面と、ディフューザ4の胴部19外周面および改質器2の外筒体10外周面との間にそれぞれ環状散気部材42,43が挟着されている。それら散気部材42,43は周方向に分散する複数の小孔44を有する。散気部材42,43は、パンチングメタル、焼結金属体、発泡金属体等から選択される一種または二種以上を組合せたものよりなる。   Annular diffusers 42 and 43 are sandwiched between the inner peripheral surface of the gas passage forming member 9 and the outer peripheral surface of the body 19 of the diffuser 4 and the outer peripheral surface of the outer cylinder 10 of the reformer 2. These air diffusers 42 and 43 have a plurality of small holes 44 dispersed in the circumferential direction. The diffuser members 42 and 43 are made of one or a combination of two or more selected from a punching metal, a sintered metal body, a foam metal body and the like.

次に、燃料改質装置1の作動について説明する。   Next, the operation of the fuel reformer 1 will be described.

先ず、メタノールと空気との燃焼ガスを熱交換器6の熱交換室23、ガス通路8、ディフューザ4、改質器2および熱交換器6の各ガスパイプ26を通じて流すことにより触媒16の温度ならびにディフューザ4および熱交換器6の温度を上昇させる。触媒16の温度がメタノールと空気とよりなる原料ガスを部分酸化反応させるに十分な温度、例えば350℃に上昇したとき、燃焼ガスの流通を止め、次いで原料ガスを熱交換室23、ガス通路8およびディフューザ4を流して改質器2に導入する。改質器2では触媒の存在下で原料ガスの一部が酸化反応により燃焼し、その燃焼熱により原料ガスの改質反応が惹起されて水素を含む改質ガスが生成される。300〜350℃程度の改質ガスは改質器2から熱交換器6の各ガスパイプ26内を流れた後外部に導出される。   First, the temperature of the catalyst 16 and the diffuser are caused by flowing combustion gas of methanol and air through the heat exchange chamber 23 of the heat exchanger 6, the gas passage 8, the diffuser 4, the reformer 2, and the gas pipes 26 of the heat exchanger 6. 4 and the temperature of the heat exchanger 6 are raised. When the temperature of the catalyst 16 rises to a temperature sufficient to cause partial oxidation reaction of the raw material gas composed of methanol and air, for example, 350 ° C., the flow of the combustion gas is stopped, and then the raw material gas is transferred to the heat exchange chamber 23 and the gas passage 8. And the diffuser 4 is introduced and introduced into the reformer 2. In the reformer 2, a part of the raw material gas is combusted by an oxidation reaction in the presence of the catalyst, and the reforming reaction of the raw material gas is caused by the combustion heat to generate a reformed gas containing hydrogen. The reformed gas at about 300 to 350 ° C. is led out from the reformer 2 after flowing through the gas pipes 26 of the heat exchanger 6.

熱交換器6の入口27から熱交換室23に導入された原料ガスは4つの小部屋32,31,30,29を順次流通する間に各ガスパイプ26を介して高温の改質ガスにより加熱され、その加熱された原料ガスは改質器2周りに流される。これにより改質器2から原料ガスへの熱伝達が十分に抑制されて、改質器2の放熱量が大幅に減少するので、改質反応の反応温度を高めた場合において、その反応温度を、経済的に高く維持することができる。つまり、反応温度維持のための燃焼用ガス量を放熱量の減少に伴い低減し、また原料ガスの加熱に高温改質ガスの廃熱を有効に利用する、といったコスト低減策が講じられているのである。よって、改質反応を、反応率の高い高温にて行って水素生成効率を大いに高めることが可能である。   The raw material gas introduced into the heat exchange chamber 23 from the inlet 27 of the heat exchanger 6 is heated by the high-temperature reformed gas through the gas pipes 26 while sequentially flowing through the four small chambers 32, 31, 30 and 29. The heated raw material gas is flowed around the reformer 2. As a result, heat transfer from the reformer 2 to the raw material gas is sufficiently suppressed, and the amount of heat released from the reformer 2 is greatly reduced. Therefore, when the reaction temperature of the reforming reaction is increased, the reaction temperature is reduced. Can be kept high economically. In other words, cost reduction measures have been taken, such as reducing the amount of combustion gas for maintaining the reaction temperature as the amount of heat released decreases, and effectively utilizing the waste heat of the high-temperature reformed gas for heating the raw material gas. It is. Therefore, it is possible to perform the reforming reaction at a high temperature with a high reaction rate to greatly increase the hydrogen generation efficiency.

また改質器2の放熱量を抑制すると、改質器2内部の温度がその全体に亘り均一になるため、ガス温度および触媒温度の制御が容易であると共に一部の触媒16が過熱されて劣化する、といった不具合を防止することができる。   Further, if the heat release amount of the reformer 2 is suppressed, the temperature inside the reformer 2 becomes uniform over the whole, so that control of the gas temperature and catalyst temperature is easy and a part of the catalyst 16 is overheated. Problems such as deterioration can be prevented.

さらに改質器2の入口3側および出口5側にそれぞれディフューザ4および熱交換器6をそれぞれ連設すると、改質器2と、ディフューザ4および熱交換器6との間の接続管を不要にして装置の小型化を図り、また接続管からの放熱といった不具合を回避することが可能である。   Further, if the diffuser 4 and the heat exchanger 6 are respectively connected to the inlet 3 side and the outlet 5 side of the reformer 2, the connection pipe between the reformer 2, the diffuser 4 and the heat exchanger 6 becomes unnecessary. Therefore, it is possible to reduce the size of the apparatus and avoid problems such as heat dissipation from the connecting pipe.

またガス通路8に少なくとも1つ、実施例では2つの散気部材42,43を備えると、加熱された原料ガスをディフューザ4に、そのガス導入口7から均等に導入して、ディフューザ4による原料ガスの散気作用をスムーズに、且つ確実に行わせることができる。   Further, when at least one, in the embodiment, two diffuser members 42 and 43 are provided in the gas passage 8, the heated source gas is uniformly introduced into the diffuser 4 from the gas inlet 7, and the source by the diffuser 4 is introduced. The gas diffusing action can be performed smoothly and reliably.

〔第2実施例〕
図4に示した燃料改質装置1は、ディフューザ4の胴部19内に、改質器2の入口3に対向するように、パンチングメタル等よりなる円板形散気部材45を配設したものである。他の構成は第1実施例(図2参照)と同じである。
[Second Embodiment]
In the fuel reformer 1 shown in FIG. 4, a disk-shaped air diffuser 45 made of punching metal or the like is disposed in the body portion 19 of the diffuser 4 so as to face the inlet 3 of the reformer 2. Is. Other configurations are the same as those of the first embodiment (see FIG. 2).

このように構成すると、散気部材45の多数の小孔46により原料ガスを改質器2の入口3に、その全体に亘りほぼ均等に分散して流入させ、触媒16のほぼ全体を有効に利用して水素の生成効率を向上させることができる。   With such a configuration, the raw material gas is made to flow almost uniformly throughout the inlet 3 of the reformer 2 by the large number of small holes 46 of the diffuser member 45, and the entire catalyst 16 is effectively made effective. Utilization can improve the production efficiency of hydrogen.

〔第3実施例〕
図5に示した燃料改質装置1は、ディフューザ4の首部17内に、原料ガスを旋回させるスクリュ形ガイド部材47を配設したものである。その他の構成は第2実施例(図4参照)と同じである。
[Third embodiment]
In the fuel reforming apparatus 1 shown in FIG. 5, a screw-type guide member 47 that turns the raw material gas is disposed in the neck portion 17 of the diffuser 4. Other configurations are the same as those of the second embodiment (see FIG. 4).

このように構成すると、スクリュ形ガイド部材47により原料ガスを旋回させながら胴部19内に分散させ、その後、円板形散気部材45にほぼ均等に流入させることが可能となり、これにより第2実施例の効果をさらに向上させることができる。   If comprised in this way, it will become possible to disperse | distribute the raw material gas in the trunk | drum 19 while turning with the screw-shaped guide member 47, and to flow in into the disk-shaped diffuser member 45 substantially uniformly after that, by this, 2nd The effects of the embodiment can be further improved.

〔第4実施例〕
図6に示した燃料改質装置1は、ディフューザ4の首部17内に内、外二重の通路48,49を有するコーン形吹出し部材50を配設し、またその部材50の外周にも通路51を形成したものである。その他の構成は第2実施例(図4参照)と同じである。
[Fourth embodiment]
In the fuel reformer 1 shown in FIG. 6, a cone-shaped blowing member 50 having inner and outer double passages 48 and 49 is disposed in the neck portion 17 of the diffuser 4, and the passage is also provided on the outer periphery of the member 50. 51 is formed. Other configurations are the same as those of the second embodiment (see FIG. 4).

このように構成すると、原料ガスをコーン形吹出し部材50の外周の通路51およびその内部の両通路48,49を通じて胴部19内に分散させ、その後、円板形散気部材45にほぼ均等に流入させることが可能となり、これにより第2実施例の効果をさらに向上させることができる。   If comprised in this way, source gas will be disperse | distributed in the trunk | drum 19 through the channel | path 51 of the outer periphery of the cone-shaped blowing member 50, and both the channel | paths 48 and 49 inside it, and it will be substantially equal to the disk shaped air diffusion member 45 after that. It becomes possible to flow in, and this can further improve the effect of the second embodiment.

〔第5実施例〕
図7に示した燃料改質装置1は、ディフューザ4の首部17を第2実施例(図4参照)よりも細くして、そのガス導入口を蓋52により閉鎖し、また首部17および肩部18にそれぞれ複数の小径のガス導入口7を形成したものである。その他の構成は第2実施例(図4参照)と同じである。
[Fifth embodiment]
In the fuel reformer 1 shown in FIG. 7, the neck 17 of the diffuser 4 is made thinner than that of the second embodiment (see FIG. 4), and the gas inlet is closed by a lid 52. A plurality of small-diameter gas inlets 7 are formed in 18 respectively. Other configurations are the same as those of the second embodiment (see FIG. 4).

このように構成すると、原料ガスを複数の小径ガス導入口7を通じて胴部19内に分散させて導入し、次いで、円板形散気部材45にほぼ均等に流入させることが可能となり、これにより第2実施例の効果をさらに向上させることができる。   If comprised in this way, it will become possible to disperse | distribute and introduce raw material gas in the trunk | drum 19 through the some small diameter gas inlet 7, and then it will flow into the disk-shaped diffuser member 45 substantially uniformly, The effect of the second embodiment can be further improved.

〔第6実施例〕
図8に示した燃料改質装置1は、図5の第3実施例におけるガス通路形成部材9の全外面を断熱部材53により覆ったものである。図示例では、断熱部材53はガス通路形成部材11との間に密閉空間54を形成する外殻体55を有し、その密閉空間54を真空状態にしたものである。密閉空間54には空気よりも小さな熱伝導度を有する気体、例えばアルゴンガス等を封じ込めてもよい。その他の構成は第2実施例(図4参照)と同じである。
[Sixth embodiment]
The fuel reformer 1 shown in FIG. 8 has a heat insulating member 53 covering the entire outer surface of the gas passage forming member 9 in the third embodiment of FIG. In the illustrated example, the heat insulating member 53 has an outer shell 55 that forms a sealed space 54 between the gas passage forming member 11 and the sealed space 54 is in a vacuum state. The sealed space 54 may contain a gas having a lower thermal conductivity than air, such as argon gas. Other configurations are the same as those of the second embodiment (see FIG. 4).

このように構成すると、改質器2の放熱を一層低減することが可能である。   If comprised in this way, it is possible to further reduce the heat dissipation of the reformer 2. FIG.

〔第7実施例〕
図9,10に示した燃料改質装置1は、そのガス通路形成部材9が、前記第1実施例等と同様に、熱交換器6のハウジング22周りにガス通路8の入口側を形成すべく、そのハウジング22の一部、つまり上部をその全周に亘り囲んでおり、また熱交換器6のハウジング22の一部には、その全周に亘り略等間隔に配置されてガス通路8の入口側に連通する複数の原料ガス用出口41が存するようになっている。その他の構成は第1実施例と同じである。
[Seventh embodiment]
In the fuel reformer 1 shown in FIGS. 9 and 10, the gas passage forming member 9 forms the inlet side of the gas passage 8 around the housing 22 of the heat exchanger 6 as in the first embodiment. Therefore, a part of the housing 22, that is, the upper part is surrounded over the entire circumference, and the part of the housing 22 of the heat exchanger 6 is arranged at substantially equal intervals over the whole circumference to provide the gas passage 8. There are a plurality of source gas outlets 41 communicating with the inlet side. Other configurations are the same as those of the first embodiment.

このように構成すると、原料ガスを熱交換器6よりガス通路8の入口側にその全体に亘り均一に送り出して、ガス通路8内に原料ガスの均一な流れを形成し、これにより改質器2の放熱をその全体に亘り均等に抑制することができる。   If comprised in this way, source gas will be uniformly sent over the whole to the inlet side of the gas channel 8 from the heat exchanger 6, and the uniform flow of source gas will be formed in the gas channel 8, and, thereby, reformer The heat radiation of 2 can be evenly suppressed over the whole.

〔第8実施例〕
図11に示した燃料改質装置1は、水素製造方式として水蒸気改質法を適用し得るように構成されていて、触媒16を加熱するための加熱パイプ56を備えている。その加熱パイプ56は外側パイプ57と内側パイプ58とよりなり、その外側パイプ57は、ガス通路形成部材9の天井壁59外面近傍で折曲がってその天井壁59、ディフューザ4のガス導入口7からその内部および改質器2の内筒体11を貫通して底壁60を改質器2の出口5に位置させている。一方、内側パイプ58は外側パイプ57の折曲がり部を貫通してその内部に伸びており、出口61は底壁60内面近傍に位置する。その他の構成は、第7実施例(図9参照)と同じである。
[Eighth embodiment]
The fuel reformer 1 shown in FIG. 11 is configured to apply a steam reforming method as a hydrogen production method, and includes a heating pipe 56 for heating the catalyst 16. The heating pipe 56 includes an outer pipe 57 and an inner pipe 58, and the outer pipe 57 is bent near the outer surface of the ceiling wall 59 of the gas passage forming member 9, and passes through the ceiling wall 59 and the gas inlet 7 of the diffuser 4. The bottom wall 60 is positioned at the outlet 5 of the reformer 2 through the inside and the inner cylinder 11 of the reformer 2. On the other hand, the inner pipe 58 extends through the bent portion of the outer pipe 57 and the outlet 61 is positioned in the vicinity of the inner surface of the bottom wall 60. Other configurations are the same as those of the seventh embodiment (see FIG. 9).

この場合、原料ガスは、例えばメタノールと水蒸気とよりなり、また触媒16は、例えばPt系触媒、CuZn系触媒、Pd系触媒等よりなる。排ガス、燃焼ガス等の高温ガスが加熱パイプ56の内側パイプ58に供給され、そのガスは内側パイプ58内、その出口61、内側パイプ58外周面および外側パイプ57内周面間ならびに外側パイプ57内を順次流れて外部に排出される。   In this case, the source gas is made of, for example, methanol and water vapor, and the catalyst 16 is made of, for example, a Pt-based catalyst, a CuZn-based catalyst, a Pd-based catalyst, or the like. High-temperature gas such as exhaust gas and combustion gas is supplied to the inner pipe 58 of the heating pipe 56, and the gas is inside the inner pipe 58, its outlet 61, between the outer peripheral surface of the inner pipe 58 and the outer peripheral surface of the outer pipe 57, and in the outer pipe 57. Are sequentially discharged to the outside.

なお、出力が十数kWの燃料電池に燃料を供給する燃料改質装置1においては、改質器2周りにおけるガス通路8の半径方向幅は10mm以下に設定されている。これは、ガス通路形成部材9および外殻体55間の間隔についても同じである。   In the fuel reformer 1 that supplies fuel to a fuel cell having an output of several tens of kW, the radial width of the gas passage 8 around the reformer 2 is set to 10 mm or less. The same applies to the distance between the gas passage forming member 9 and the outer shell 55.

〔第9実施例〕
図12に示した燃料改質装置1は、ガス導入部材として第1実施例(図2参照)に示したディフューザ4に代えて、横断面が各部一様で両端開放の円筒状ガイド筒4′が使用される。そして、このガイド筒4′の開放下端が改質器2の入口3側、つまり上側に一体的に結合され、またそのガイド筒4′の開放上端がガス導入口7を形成している。さらにガイド筒4′の内面には、改質器2の入口3に対向するように、パンチングメタル等よりなる少なくとも1つ(図示例では上下に間隔をおいて一対)の円板形散気部材45が配設、固定される。またこの第1〜第8実施例では、ガス通路形成部材9内周面と、ディフューザ4の胴部19外周面および改質器2の外筒体10外周面との各間にそれぞれ環状散気部材42,43が挟着されていたが、このような環状散気部材は、第9実施例では省略されている。その他の構成は、第1実施例(図2参照)と同じである。
[Ninth embodiment]
In the fuel reformer 1 shown in FIG. 12, instead of the diffuser 4 shown in the first embodiment (see FIG. 2) as a gas introduction member, a cylindrical guide cylinder 4 ′ having a uniform cross section and open both ends. Is used. The lower open end of the guide tube 4 ′ is integrally connected to the inlet 3 side, that is, the upper side of the reformer 2, and the open upper end of the guide tube 4 ′ forms a gas inlet 7. Further, on the inner surface of the guide cylinder 4 ', at least one (a pair of upper and lower in the illustrated example) disc-shaped air diffuser made of punching metal or the like so as to face the inlet 3 of the reformer 2. 45 is disposed and fixed. Further, in the first to eighth embodiments, an annular diffuser is provided between the inner peripheral surface of the gas passage forming member 9 and the outer peripheral surface of the body 19 of the diffuser 4 and the outer peripheral surface of the outer cylinder 10 of the reformer 2. The members 42 and 43 are sandwiched, but such an annular diffuser member is omitted in the ninth embodiment. Other configurations are the same as those of the first embodiment (see FIG. 2).

而してこの第9実施例では、ガス導入部材がディフューザではなく円筒状ガイド筒4′より構成されるが、そのガイド筒4′内に導入された原料ガスは、散気部材45の多数の小孔46による散気作用によって、改質器2の入口3にその全体に亘りほぼ均等に分散して流入し、触媒16の略全体を有効に利用して水素の生成効率を向上させることができる。またこの第9実施例では、ガス導入部材がディフューザではなく単純形状の円筒状ガイド筒4′より構成されるため、構成が簡単で製造が容易であり、コスト節減が図られる。その上、この第9実施例では、上記環状散気部材42,43を省略したことにより、構成が一層簡単で製造がより容易となる。   Thus, in this ninth embodiment, the gas introducing member is not a diffuser but is constituted by a cylindrical guide cylinder 4 ′. The raw material gas introduced into the guide cylinder 4 ′ is a large number of diffuser members 45. By the aeration action by the small holes 46, it flows into the inlet 3 of the reformer 2 while being distributed almost evenly throughout, and the hydrogen generation efficiency can be improved by effectively using the entire catalyst 16. it can. In the ninth embodiment, the gas introducing member is not a diffuser but a simple cylindrical guide tube 4 '. Therefore, the structure is simple, the manufacturing is easy, and the cost is reduced. Moreover, in the ninth embodiment, the annular diffuser members 42 and 43 are omitted, so that the configuration is simpler and the manufacture is easier.

ところで以上の各実施例では、熱交換器6において保持板24,25、隔壁板33〜35を貫通する複数のガスパイプ26の外径が比較的小さい(即ちガスパイプ26の配列ピッチと同等かそれより小さい)ものが使用されているが、本発明では、図13に例示したように、ガスパイプ26の外径が比較的大きい(即ちガスパイプ26の配列ピッチより大きい)ものを使用してもよい。この場合、図13(a)のように各列のガスパイプ26の配列ピッチが揃う正方配列の場合よりも、(b)のように隣り合う二列のガスパイプ26の配列ピッチが半ピッチずれた千鳥配列の場合の方が、単位面積当たりのパイプ本数を増やして伝熱面積を大きくとることができ、これにより、熱交換器6の小型化が可能となり、各ガスパイプ26の短縮を図る上で有利となる。   In each of the above embodiments, the outer diameters of the plurality of gas pipes 26 passing through the holding plates 24 and 25 and the partition plates 33 to 35 in the heat exchanger 6 are relatively small (that is, equal to or smaller than the arrangement pitch of the gas pipes 26). In the present invention, as shown in FIG. 13, the gas pipe 26 having a relatively large outer diameter (that is, larger than the arrangement pitch of the gas pipes 26) may be used. In this case, the arrangement pitch of the adjacent two rows of gas pipes 26 is shifted by a half pitch as shown in FIG. 13B, rather than the case of the square arrangement in which the arrangement pitches of the rows of gas pipes 26 are aligned as shown in FIG. In the case of the arrangement, the heat transfer area can be increased by increasing the number of pipes per unit area. This makes it possible to reduce the size of the heat exchanger 6 and is advantageous in shortening each gas pipe 26. It becomes.

第1実施例の正面図である。It is a front view of 1st Example. 図1の2−2線断面図である。FIG. 2 is a sectional view taken along line 2-2 of FIG. 図2の3−3線断面図である。FIG. 3 is a sectional view taken along line 3-3 in FIG. 2. 第2実施例の断面図で、図2に対応する。It is sectional drawing of 2nd Example, and respond | corresponds to FIG. 第3実施例の断面図で、図2に対応する。It is sectional drawing of 3rd Example, and respond | corresponds to FIG. 第4実施例の断面図で、図2に対応する。It is sectional drawing of 4th Example and respond | corresponds to FIG. 第5実施例の断面図で、図2に対応する。It is sectional drawing of 5th Example, and respond | corresponds to FIG. 第6実施例の断面図で、図2に対応する。It is sectional drawing of 6th Example and respond | corresponds to FIG. 第7実施例の断面図で、図2に対応する。It is sectional drawing of 7th Example, and respond | corresponds to FIG. 図9の10−10線断面図で、図3に対応する。FIG. 10 is a sectional view taken along line 10-10 in FIG. 9 and corresponds to FIG. 第8実施例の断面図で、図2に対応する。It is sectional drawing of 8th Example and respond | corresponds to FIG. 第9実施例の断面図で、図2に対応する。It is sectional drawing of 9th Example and respond | corresponds to FIG. 熱交換器の変形例を示す断面図で、図3に対応する。It is sectional drawing which shows the modification of a heat exchanger, and respond | corresponds to FIG.

符号の説明Explanation of symbols

1…………燃料改質装置
2…………改質器
3…………入口
4…………ガス導入部材としてのディフューザ
4′………ガス導入部材としての円筒状ガイド筒
5…………出口
6…………熱交換器
7…………ガス導入口
8…………ガス通路
9…………ガス通路形成部材
21………改質ガス用出口
22………ハウジング
23………熱交換室
24,25……保持板
26………ガスパイプ
27………原料ガス用入口
29〜32……小部屋
33〜35……隔壁板
41………原料ガス用出口
42………散気部材
43………散気部材
45………散気部材
46………小孔
47………スクリュ形ガイド部材
50………コーン形吹出し部材
DESCRIPTION OF SYMBOLS 1 ......... Fuel reformer 2 ......... Reformer 3 ......... Inlet 4 ......... Diffuser 4 'as gas introduction member ... Cylindrical guide cylinder 5 as gas introduction member ... ……… Exit 6 ………… Heat exchanger 7 ………… Gas inlet 8 ………… Gas passage 9 ………… Gas passage forming member
21 .... Reform gas outlet 22 .... Housing
23 ……… Heat Exchange Room
24, 25 ... Holding plate
26 ... Gas pipe
27 ……… Inlet for raw material gas
29-32 ... Small room
33-35 ... Partition plate
41 ......... Material gas outlet 42 ......... Air diffuser member 43 ......... Air diffuser member 45 ......... Air diffuser member 46 ......... Small hole 47 ......... Screw guide member 50 ......... Cone-shaped outlet Element

Claims (8)

原料ガスから水素を含む改質ガスを生成する改質器(2)と、その改質器(2)の入口(3)側に連設され料ガスを拡散させて該改質器(2)に導くガス導入部材(4,4′)と、前記改質器(2)の出口(5)側に連設され、且つ高温の前記改質ガスにより前記原料ガスを加熱する熱交換器(6)と、その熱交換器(6)で加熱された前記原料ガスを前記改質器(2)周りおよび前記ガス導入部材(4,4′)周りを流した後そのガス導入部材(4,4′)の少なくとも1つのガス導入口(7)に導くガス通路(8)を形成すべく、前記改質器(2)および前記ガス導入部材(4,4′)を囲むガス通路形成部材(9)とを有してなる燃料改質装置であって、
前記ガス通路形成部材(9)は、前記熱交換器(6)のハウジング(22)周りに前記ガス通路(8)の入口側を形成すべく、そのハウジング(22)の一部をもその全周に亘り囲んでおり、前記熱交換器(6)のハウジング(22)の一部には、その全周に亘り配置されて前記ガス通路(8)の入口側に連通する複数の原料ガス用出口(41)が存することを特徴とする燃料改質装置。
Reformer for generating a reformed gas containing hydrogen from a raw material gas (2) and its reformer (2) of the inlet (3) by diffusing consecutively by raw material gas side reformer (2 ) And a heat exchanger (4) connected to the outlet (5) side of the reformer (2) and heating the raw material gas with the high-temperature reformed gas ( 6), and after the raw material gas heated by the heat exchanger (6) flows around the reformer (2) and the gas introduction member (4, 4 '), the gas introduction member (4, 4) 4 ') gas passage forming member (8) surrounding the reformer (2) and the gas introduction member (4, 4') to form a gas passage (8) leading to at least one gas inlet (7). 9) and a Yes to the fuel reformer device in which a,
The gas passage forming member (9) has a part of the housing (22) partially formed so as to form an inlet side of the gas passage (8) around the housing (22) of the heat exchanger (6). For a plurality of source gases that surround the circumference and are arranged over the entire circumference of a part of the housing (22) of the heat exchanger (6) and communicate with the inlet side of the gas passage (8). A fuel reformer having an outlet (41) .
原料ガスから水素を含む改質ガスを生成する改質器(2)と、その改質器(2)の入口(3)側に連設され原料ガスを拡散させて該改質器(2)に導くガス導入部材(4,4′)と、前記改質器(2)の出口(5)側に連設され、且つ高温の前記改質ガスにより前記原料ガスを加熱する熱交換器(6)と、その熱交換器(6)で加熱された前記原料ガスを前記改質器(2)周りおよび前記ガス導入部材(4,4′)周りを流した後そのガス導入部材(4,4′)の少なくとも1つのガス導入口(7)に導くガス通路(8)を形成すべく、前記改質器(2)および前記ガス導入部材(4,4′)を囲むガス通路形成部材(9)とを有してなる燃料改質装置であって、
前記熱交換器(6)は、筒形のハウジング(22)と、そのハウジング(22)の内周面にそれぞれ固定されて相互間に熱交換室(23)を形成する一対の保持板(24,25)と、その熱交換室(23)内を複数の小部屋(29〜32)に区画してジグザグ状通路を形成する隔壁板(33〜35)と、それら保持板(24,25)、小部屋(29〜32)及び隔壁板(33〜35)を貫通して相互に間隔をおいて並ぶ複数のガスパイプ(26)とを備え、
その各ガスパイプ(26)は、一端が前記改質器(2)の出口(5)に連通すると共にその他端が前記ハウジング(22)の改質ガス用出口(21)に連通し、
前記ハウジング(22)には、前記複数の小部屋(29〜32)よりなる前記ジグザグ状通路の上流部に連通する原料ガス用入口(27)と、該ジグザグ状通路の下流部を前記ガス通路(8)の入口側に連通させる原料ガス用出口(41)とが設けられることを特徴とする料改質装置。
A reformer (2) for generating a reformed gas containing hydrogen from the source gas, and the reformer (2) connected to the inlet (3) side of the reformer (2) to diffuse the source gas And a heat exchanger (6) connected to the outlet (5) side of the reformer (2) and heating the raw material gas with the high-temperature reformed gas. ) And the raw material gas heated by the heat exchanger (6) flow around the reformer (2) and the gas introduction member (4, 4 '), and then the gas introduction member (4, 4). A gas passage forming member (9) surrounding the reformer (2) and the gas introduction member (4, 4 ') to form a gas passage (8) leading to at least one gas inlet (7) of') And a fuel reformer comprising:
The heat exchanger (6) includes a cylindrical housing (22) and a pair of holding plates (24) fixed to the inner peripheral surface of the housing (22) to form a heat exchange chamber (23) therebetween. , 25), partition plates (33-35) that divide the inside of the heat exchange chamber (23) into a plurality of small chambers (29-32) to form a zigzag passage, and the holding plates (24, 25) A plurality of gas pipes (26) penetrating through the small chambers (29-32) and the partition plates (33-35) and arranged at intervals from each other,
Each gas pipe (26) has one end communicating with the outlet (5) of the reformer (2) and the other end communicating with the reformed gas outlet (21) of the housing (22).
The housing (22) includes a raw material gas inlet (27) communicating with an upstream portion of the zigzag passage composed of the plurality of small chambers (29 to 32), and a downstream portion of the zigzag passage through the gas passage. fuel reforming apparatus characterized by the raw material gas outlet (41) for communicating is provided on the inlet side (8).
記ガス通路(8)に、該ガス通路(8)を通過する原料ガスを拡散させる少なくとも1つの散気部材(42,43)が備えられていることを特徴とする、請求項1又は2記載の燃料改質装置。 Before SL gas passage (8), characterized in that at least one aeration member diffusing the raw material gas passing through the gas passage (8) (42, 43) are provided, according to claim 1 or 2 The fuel reformer as described. 記ガス導入部材(4,4′)、前記改質器(2)、前記熱交換器(6)および前記ガス通路形成部材(9)がそれぞれ円筒形をなし、それら四部材(4,4′,2,6,9)が同軸上に配置されていることを特徴とする、請求項1〜3の何れかに記載の燃料改質装置。 Before SL gas introducing member (4, 4 '), the reformer (2), said heat exchanger (6) and said gas passage forming member (9) forms the respective cylinder, which four members (4,4 ', 2, 6, 9) are arranged coaxially, The fuel reformer according to any one of claims 1 to 3 characterized by things. 記熱交換器(6)、前記改質器(2)及び前記ガス導入部材(4,4′)が下からこの順で上下に配列されて相互に一体構造となっていることを特徴とする、請求項1〜のいずれかに記載の燃料改質装置。 Before Stories heat exchanger (6), and wherein the reformer (2) and the gas introducing member (4, 4 ') are integrated structure to each other are arranged vertically in this order from the bottom The fuel reformer according to any one of claims 1 to 4 . 前記ガス通路形成部材(9)の全外面が断熱部材(53)により覆われていることを特徴とする、請求項1〜5のいずれかに記載の燃料改質装置。   The fuel reformer according to any one of claims 1 to 5, wherein the entire outer surface of the gas passage forming member (9) is covered with a heat insulating member (53). 前記ガス導入部材が、ディフューザ(4)であることを特徴とする、請求項1〜6のいずれかに記載の燃料改質装置。   The fuel reformer according to any one of claims 1 to 6, wherein the gas introduction member is a diffuser (4). 前記ガス導入部材(4,4′)には、該ガス導入部材(4,4′)内に導かれた原料ガスが通過する多数の小孔(46)を有して同原料ガスを拡散させる散気部材(45)、同原料ガスを旋回させるスクリュ形ガイド部材(47)、同原料ガスを膨張させつつ下流側に略均等に案内するコーン形吹出し部材(50)のうちの少なくとも1つが設けられることを特徴とする、請求項1〜7のいずれかに記載の燃料改質装置。   The gas introduction member (4, 4 ') has a large number of small holes (46) through which the source gas introduced into the gas introduction member (4, 4') passes to diffuse the source gas. At least one of a diffuser member (45), a screw-type guide member (47) for rotating the raw material gas, and a cone-shaped blowing member (50) for guiding the raw material gas to the downstream side substantially uniformly is provided. The fuel reformer according to any one of claims 1 to 7, wherein
JP2004142475A 2003-05-16 2004-05-12 Fuel reformer Expired - Fee Related JP4163657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004142475A JP4163657B2 (en) 2003-05-16 2004-05-12 Fuel reformer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003139235 2003-05-16
JP2004142475A JP4163657B2 (en) 2003-05-16 2004-05-12 Fuel reformer

Publications (2)

Publication Number Publication Date
JP2005001982A JP2005001982A (en) 2005-01-06
JP4163657B2 true JP4163657B2 (en) 2008-10-08

Family

ID=34106320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004142475A Expired - Fee Related JP4163657B2 (en) 2003-05-16 2004-05-12 Fuel reformer

Country Status (1)

Country Link
JP (1) JP4163657B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5224651B2 (en) * 2006-03-31 2013-07-03 Jx日鉱日石エネルギー株式会社 Solid oxide fuel cell
JP4990045B2 (en) * 2007-06-28 2012-08-01 Jx日鉱日石エネルギー株式会社 Hydrogen production apparatus and fuel cell system

Also Published As

Publication number Publication date
JP2005001982A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
JP4736298B2 (en) Partial oxidation reformer
US6835482B2 (en) Fuel reforming apparatus for polymer electrolyte membrane fuel cell
KR100848047B1 (en) Highly Efficient, Compact Reformer Unit for Generating Hydrogen from Gaseous Hydrocarbons in the Low Power Range
RU2008102375A (en) COMPACT REFORM REDUCER
JP5152811B2 (en) Reformer
WO2015069749A4 (en) Liquid fuel cpox reformers and methods of cpox reforming
JP2009096705A (en) Reforming apparatus for fuel cell
JP4663321B2 (en) Preferred oxidation reactor and process
JP2008514536A (en) Apparatus and method for selective oxidation of carbon monoxide
US7497881B2 (en) Heat exchanger mechanization to transfer reformate energy to steam and air
JP4163657B2 (en) Fuel reformer
JP2000169102A (en) Fuel reformer
KR102315289B1 (en) Steam Reformer with Multi Reforming Reactor
US7267804B2 (en) Membrane reactor for gas extraction
JP2009184889A (en) Cylindrical steam reformer
CN112151831B (en) Reformer and fuel cell power generation system thereof
JP4278984B2 (en) Membrane reactor for gas extraction
JP2002211903A (en) Fuel reforming apparatus
US6805850B2 (en) Co-shift device
GB2384726A (en) Heating of autothermal hydrocarbon reformation reactor
JP4450756B2 (en) Fuel reformer
JP2002293509A (en) Co remover
US20040136883A1 (en) Membrane reactor for gas extraction
JPS5978906A (en) Steam reforming furnace
JP2005247617A (en) Shift reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080724

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees