TW200842106A - Hydrogen production via partial oxidation of methanol over Au-Cu/TiO2 catalysts - Google Patents

Hydrogen production via partial oxidation of methanol over Au-Cu/TiO2 catalysts Download PDF

Info

Publication number
TW200842106A
TW200842106A TW096113574A TW96113574A TW200842106A TW 200842106 A TW200842106 A TW 200842106A TW 096113574 A TW096113574 A TW 096113574A TW 96113574 A TW96113574 A TW 96113574A TW 200842106 A TW200842106 A TW 200842106A
Authority
TW
Taiwan
Prior art keywords
gold
catalyst
reaction
methanol
tio2
Prior art date
Application number
TW096113574A
Other languages
Chinese (zh)
Inventor
Feg-Wen Chang
Ti-Cheng Ou
Original Assignee
Univ Nat Central
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Central filed Critical Univ Nat Central
Priority to TW096113574A priority Critical patent/TW200842106A/en
Publication of TW200842106A publication Critical patent/TW200842106A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

Selective production of hydrogen by partial oxidation of methanol (CH3OH +1/2O2→2H2 + CO2) over Au-Cu/TiO2 catalysts was studied. This application improves purity of hydrogen and reduces CO content. The Au-Cu/TiO2 catalysts exhibit spherical gold and copper particles. They are distributed homogeneously over the support and exhibited a narrow size (about 1.8 nm) distribution over Au-Cu/TiO2 catalysts prepared by deposition-precipitation (DP) method. The Au-Cu/TiO2 catalysts were prepared from HAuCl4 solution, Cu(NO3) 2. 2.5H2O solution and TiO2 by DP method. The solutions and TiO2 were separately added drop wise to a stirred solution of NaOH at 70 DEG C. The pH value of the aged solution keeps at 7. The final solid was filtered, dried at 100 DEG C. The Au-Cu/TiO2 catalysts were tested by the partial oxidation of methanol reaction (POM) at 200 to 300 DEG C. The catalysts precipitated at pH 7 and uncalcined show highest activity for hydrogen generation. There is a small quantity of carbon monoxide detected, when the O2/CH3OH molar ratio in the feed is 0.3.

Description

200842106 九、發明說明: 【發明所屬之技術領域】 本發明利用沈澱固著法製備氧化鈦擔體奈米金-銅雙金屬觸媒,目的在 發展甲醇部分氧化反應(CH3〇h + 1/2〇2 — 2H2 + c〇2)製備氫氣的程序,用 來提高氯氣純度降低一氧化碳含量之方法。本發明製備氧化鈦擔體奈米金_ 銅雙金屬觸媒其特徵為直徑約等於18奈米,外形呈現圓球型的金晶粒與銅 晶粒、。觸媒以沈澱固著法為製備方法,先取氯酸金水溶液和硝酸銅水溶液 混合並,用〇J莫耳濃度的氫氧化鈉將水溶液的酸鹼度pH值控制在7,再 加入一。氧化欽擔體,在7〇°C下逐漸沈澱2小時,待沈澱後經過水洗、過濾, f 100 C下乾燥,製備成氧化鈦擔體奈米金-銅雙金屬觸媒;改變不同烺燒 皿,20(M〇〇 〇C。在測〜3〇〇〇c反應溫度下進行甲醇部分氧化反應,能發 揮最U雜和魏選擇率。未細纔程序的金銅比為[⑽獨氧化鈦擔 體至-銅雙金屬觸媒,當進料比例〇2/CH3〇h為G 3,反應溫度為25此,以 二上、7n備條,下’曱醇轉化率可達到91 %,而氫氣選擇率為90 % ’ :二里-氧化石反的產生。顯然地,金銅觸媒對於催化甲醇部份氧化反應 =、醇轉化率並且能選擇性氧化一氧化碳,使得氫氣產物中只有 少ϊ一乳化碳的污染。 0 【先前技術】 可以,梅上’又錄催化劑。觸媒 而低污染的能源,是萬t同面臨的危機。因此開發高效率 發電的技術,經過不斷地改 ^ 氯能"(hyd哪n energy) 廢氣的污染,也避免了迦ml業化的W景指日可待。不但可以降低 上有相當的嶋,所以仙辦的嗎。由於氫氣的運輸和儲存 的燃料。而目前所使用的主要二適當的氫氣來源料燃料電池所使用 醇、天然氣、輕油等碳氫化合物做為替 6 200842106 代性的氫氣來源。其中甲醇的燃料品質較高、價格便宜、取得方便、儲存 容易、運輸方便(Joensen 和 Rostmp-Nuelsen,在/· Power 5b肌奶,vol.105, pl95,2002年發表);且在低的反應溫度200〜400°C下可反應生成氫氣。和傳 統的汽油燃料做比較,所生成的二氧化碳(C02)大約是減少了 50%,而且並 不會有NOx、SOx、碳氫化合物等空氣污染源產生,這對於研究應用電動車 上的燃料電池來說是一大利多。 金長久以來因為其化學鈍性(chemical inertness)和高度分散的困難,被 呑忍為是不太具活性的觸媒。直到Hamta等人在J· Cata/·,vol.155, p301,1989 年發現擔體金觸媒具有低溫氧化一氧化碳的能力後,才廣泛被研究。 ^ 要從曱醇製備氫氣可經由下列四種催化反應途徑得到: ⑴ (2) ⑶ (4) 曱醇分解(methanol decomposition,MD)反應200842106 IX. Description of the invention: [Technical field to which the invention pertains] The present invention utilizes a precipitation fixation method to prepare a titanium oxide supported nano-gold-copper bimetallic catalyst for the purpose of developing a partial oxidation reaction of methanol (CH3〇h + 1/2) 〇2 — 2H2 + c〇2) A procedure for preparing hydrogen to increase the purity of chlorine by reducing the carbon monoxide content. The preparation of the titanium oxide support nano gold_copper bimetallic catalyst is characterized by a diameter of about 18 nm and a spherical shape of gold crystal grains and copper crystal grains. The catalyst is prepared by a precipitation solidification method. First, a gold chlorate aqueous solution and an aqueous copper nitrate solution are mixed, and the pH of the aqueous solution is controlled to be 7 by using sodium hydroxide of 莫J molar concentration, and then one is added. The oxidized chin is gradually precipitated at 7 ° C for 2 hours. After washing, it is washed with water, filtered, and dried at f 100 C to prepare a titanium oxide-supported nano-copper bimetallic catalyst. Dish, 20 (M〇〇〇C. Partial oxidation of methanol at the reaction temperature of ~3〇〇〇c, can exert the most U and Wei selectivity. The ratio of gold to copper in the non-fine procedure is [(10) titanium oxide alone The support to copper bimetallic catalyst, when the feed ratio 〇 2 / CH3 〇 h is G 3, the reaction temperature is 25, with the second, 7n strip, the lower sterol conversion can reach 91%, and The hydrogen selectivity is 90% ': the production of the Erli-Oxide counter. Obviously, the gold-copper catalyst catalyzes the partial oxidation of methanol = alcohol conversion and selectively oxidizes carbon monoxide, so that there is only a small amount of hydrogen in the product. Emulsified carbon pollution. 0 [Prior Art] Yes, Meishang's catalyst is also recorded. Catalyst and low-pollution energy is a crisis facing Wantong. Therefore, the technology for developing high-efficiency power generation has been continuously changed. "(hyd which n energy) pollution of the exhaust gas, also avoids the W scene of the industrialization of the city It's just around the corner. Not only can it be reduced, but it's so good. Because of the transportation and storage of hydrogen, the main two suitable hydrogen source fuel cells used today are alcohol, natural gas, and light oil. Hydrocarbons are used as a source of hydrogen for the 200842106. Among them, methanol has high fuel quality, low price, easy access, easy storage and convenient transportation (Joensen and Rostmp-Nuelsen, in /· Power 5b muscle milk, vol. 105, pl95, published in 2002); and can generate hydrogen at a low reaction temperature of 200~400 ° C. Compared with traditional gasoline fuel, the generated carbon dioxide (C02) is reduced by about 50%, and There will be no air pollution sources such as NOx, SOx, and hydrocarbons, which is a big advantage for research and application of fuel cells on electric vehicles. Kim has long been difficult due to its chemical inertness and high dispersion. It is a less active catalyst. Until Hamta et al. found in J. Cata/·, vol.155, p301, 1989, the gold catalyst of the support has low temperature oxidation of carbon monoxide. After ability, it is widely studied ^ Yue from the production of hydrogen via reaction of alcohols of the following four ways to obtain catalyst:. ⑴ (2) ⑶ (4) Yue alcoholysis (methanol decomposition, MD) reaction

CH3OH 2H2 +CO 曱醇蒸汽重組(steam reforming of methanol,SRM)反應 CH3OH + H20 ^ 3H2 + C02 曱醇部分氧化反應(partial oxidation of methanol,POM)反應 CH3OH +1/2 02 2//2 + C02 甲醇氧化性蒸汽重組(oxidation steam reforming of methanol,OSRM)反 應 2CH3OH +1/202 + H20 -> 5H2 + 2C02 工業上氫氣的製造常使用蒸汽重組反應。一般以銅觸媒較能達到催化 效果,在200。(:有不錯的反應活性。可惜會有大量的一氧化碳(>p/。)出現於 甲醇水蒸氣重組產物中,造成質子交換膜燃料電池的鉑電極毒化導致電池 功率下降(Sekizawa等人在却;7/.〇論/”人¥〇1.169,0291,1998年)。所以還需 要選擇性透氫膜(Emonts 等人 J· Power νο1·71,p288, 1998 年)、選擇 性CO氧化、水氣轉移反應等附加設備來降低一氧化碳的量。 文獻上常見的金觸媒製備方法有共沈殿法(c〇_precipitati〇n) (Haruta, 7 200842106CH3OH 2H2 +CO steam reforming of methanol (SRM) reaction CH3OH + H20 ^ 3H2 + C02 sterol partial oxidation of methanol (POM) reaction CH3OH +1/2 02 2//2 + C02 Oxidation steam reforming of methanol (OSRM) reaction 2CH3OH +1/202 + H20 -> 5H2 + 2C02 Industrial hydrogen production is often carried out using steam recombination. Generally, the catalytic effect can be achieved with a copper catalyst at 200. (: There is good reactivity. Unfortunately, a large amount of carbon monoxide (>p/.) appears in the methanol steam recombination product, causing the poisoning of the platinum electrode of the proton exchange membrane fuel cell to cause the battery power to drop (Sekizawa et al. ; 7 /. Paradox / "People 〇 1.69, 0291, 1998). Therefore, a selective hydrogen permeable membrane is required (Emonts et al. J. Power νο1·71, p288, 1998), selective CO oxidation, water Additional equipment such as gas shift reaction to reduce the amount of carbon monoxide. The common method for preparing gold catalysts in the literature is the method of co-precipitation (c〇_precipitati〇n) (Haruta, 7 200842106)

Cato/. νο1·36, pi53, 1997 年)、含浸法(impregnation) (Lin 等人,Cato/· vol.17, p245,1993 年)、沈澱固著法(deposition-precipitation) (Hamta 等 人 vol.144, pl75,1993 年)、氣相接枝法(gas-phase grafting) (Okumura C7z·· Leii·,p315, 1998 年)、液相接枝法(iiqUi(j-phase grafting)、膠體混合法 (colloid-mixing)。 下面將簡單描述各種常見製備金擔體觸媒方法的過程。 (1) 共沈殿法:先將含氯酸金水溶液和硝酸鹽類金屬混和,與碳酸鈉水 溶液滴定生成氫氧化物或碳酸鹽共沈澱物。觸媒前驅物經過水洗、過濾、 乾燥,最後在空氣下煅燒。 (2) 沈澱固著法:在氧化物擔體加入氯酸金水溶液,使用碳酸鈉水溶液 调整pH值在6到10之間。熟化一個小時,在觸媒表面產生氫氣化金。觸 媒前驅物經過水洗、過濾、乾燥,最後在空氣下烺燒。 (3) 含浸法:首先將氯酸金溶於水中,再將配製好的溶液與所要負載之 擔體充分混合。乾燥後,得到新鮮的樣品。 (4) 共濺鍍法·在一大氣壓下,氧、金及金屬氧化物同時濺鍍沈積在一 基板上使形成一薄膜,最後在空氣下勤化(anneaj)。 各種不同的製備方法都有其優、缺點。含浸法製備出的金觸媒分散度 車义低,催化活性較差。金顆粒大小大約在8_3〇奈米(Haruta在』^^如人, νο1·144, pl75, 1993年發表)。而造成活性低的原因可能是因為金的前驅物 鲁 (precursor)通常為氯化物。低溫緞燒會有大量氯離子殘留在擔體而毒化觸 媒,高溫卻又引起燒結現象。通常真正要做到小顆粒金擔體觸媒(<5^^), 車义苇使用的製備法是共沈殿法和沈澱固著法。而1_1批111^在2〇〇3年提到製備 方法對各種不同的觸媒擔體會有不一樣的影響,上述方法可在金屬氧化物 表面上產生熱穩疋性佳的半圓球的金晶粒等人在』 vol.186, P458-p469, 1999年研究則指出氧化錯擔載金觸媒4〇〇 〇c煅燒下, 晶粒會成長到4-6奈米或改變形狀成為對稱的六角形。 反應活性常決定於觸媒的活性位置(active site)。Mavrikakis等人^如人 1机,ν〇1·64, ρ104-Ρ1〇6, 2_年發現金的反應活性與其氧化物擔體有密切的 關係。金晶體越小時邊緣金原子的相齡量急速增加。邊緣金原子與擔體 8 200842106 強触互_。而互相侧因為變形侧會讓邊緣金原子附近有 較南的氧原子濃度及較高的氧化活性QB_zzi等人^u·44, H20!1年㈣麵溫平面上的金軒不會韻—氧化破,其只會吸附在 IV 、緣及^角的金原子上。Park和Lee在1999年研究不同锻燒溫度 下觸媒气面的金屬.㈣金咖咖吨和氧化態的金(Au(〇H)”細⑻^ f現到越高的煅燒溫度會使_絲面的金麟的金增加。但是對一氧化 碳^化反應則沒有明顯的活性增加,所以氧化態的金對一氧化碳氧化反應 而。比至屬的金更具活性。但是,H耐&在/见抑,被%心3, 1997 年和 Gnsel 等人 c_/· Γο却,ν〇ΐ·72, 1-2, pl23-pl32, 2002 年則持相反 纽。他們認為金舰的金對-氧化碳氧化反應才是潍位置。 ^傳、、充石彳隨衣&關接加熱方式進行蒸汽重組反應,會生成富氮的重 、、氣〃巾氧化石屄,辰度約在13〜20 % (in抑),通常再經由水氣轉移反應 (Water’Gas Shift,WGS)將-氧化碳降至〇5〜2 %。傳統石化業通常使用 • Fe3〇4_Cr〇3/A12〇3及Cu-Zn〇/Al2〇3觸媒進行催化反應。如此㈣等人j ν〇1·1=,p354, I9%年則嘗試利用氧化鐵擔載金觸媒和氧化銘擔載金 觸媒催化水療氣重組反應,指出在低溫時氧化鐵擔載金觸媒便有活性但是 氧化銘擔載金觸媒則無,而且在高溫時三氧化二鐵擔載金觸媒的活性也遠 大^化紹擔載金觸媒和其他商用觸媒。氫氧化鎳擔載金觸媒也被發現對 水療氣重組反應有活性。在經過比較三氧化二鐵擔載金觸媒、四氧化三録 • 擔載金觸媒、二氧化鈦擔載金觸媒的催化效果之後,發現二氧化鈦擔載金 觸媒對水蒸氣重組反應而言是比較有效率的觸媒。 在學術研究巾’早期也通常制綱媒顧於甲醇部份氧化反應裡。 這是另-種主要的製氫途徑。Huang和Wang在^^ Μ % ρ28λ 1986年在甲醇条汽重組反應巾加人氧氣,發現可以得雜高的氫氣產率。 從曱醇部份氧化反應動力學機讎討中Huang和Chren在你κ νο1·40,Ρ43, 1988年確定甲醇轉化率會因為氧氣添加而提升。而甲醇分解吸 附(dissociative adsorption)為速率決定步驟。近年來,Cubeir〇 _在 义处/· AV〇L,168,P307-p322, 1998年發表則以鈀觸媒進行甲醇部份氧 化反應研究。觀察到即使觸媒表面積有相當大的差異,不論是氧化辞或氧 9 200842106 化锆都有不錯的催化活性。但是以i加%二氧化锆擔載鈀觸媒進行甲醇部 份氧化反應,則生成大量的一氧化碳。這是因為反應傾向於甲醇直接分解 反應。 在電動車燃料電池的應用上,甲醇蒸汽重組反應(steam reforming 〇f me^anol,SRM)以及甲醇部分氣化反應〇心倾011 〇f瓜她肪冰poM) ^利用來產生氫氣。射曱醇部份氧化反應為放熱反應,不但可以使用 氧氣(〇2)取代蒸汽作為氧化劑也不需要額外的加熱源來持續地供應熱量,所 以近年來大量的被研究。Huang和Wang却p/. Cate/.,νο1·24,ρ287, 1986年首 先在甲醇水療氧重組反應中加入氧氣,使用銅-辞觸媒進行催化甲醇部份氧 化反應。Kumar等人(1992)則在Argon國家實驗室發表以氧化鋅擔載銅觸媒 催化甲醇。陪氧化反應。後來,Alej〇等人咖^ Cato/,A,v〇i162,p28i_p297, 1997抑f究發現氧化鋅擔細觸媒活性和銅金屬喊面積有直接的關係。 另外’他們也添加三氧化二铭於氧化鋅擔載銅觸中,雖然三氧化二叙有 _助於增加觸的穩定性和延長制的賴,但減地也會職降低甲醇的 轉化率。Wa^ig等人J· Mo/. Cte” A,v〇U9i,叩冲34, 2〇〇3年嘗試添加辞在 銅/釔和一氧化石夕擔載銅觸媒中。研究指出添加鋅不僅可以提升觸媒的活 性:而觸制穩定性也雜大崎助。但是添加過量騎則會造成大顆粒 一氧化一銅的生成,反而使得活性降低。 有些學者_非銅觸媒進行曱醇部份氧化催化反應。Cubeirc and Fi⑽ • 在C—·,A,V〇1·168, P307, 年發表選擇以把觸媒來做催化研究。 研〆S巧叙氧鱗或二氧化鉻為支撐物都林錯雜化潍。但是以1 wt%二氧傾擔雜觸媒進行憎部份氧化反應,反細向於情直接分 解反應生成大量的一氧化碳。 ,葉君棣教授等人S2002年的反應工程研討會論文中比較以沈殿固著法 製^撐性金觸媒進行甲醇部份氧化反應活性測試,發現甲醇的轉化率會 Ik著严/甲醇進料莫耳比例上升而增加。在氧氣/甲醇進料莫耳比例約等於 〇·5 ^其氫,的產量會最高。所製_金綱都林錯的部分氧化活性,而 且-乳化碳的選擇率也比銅觸媒低的多。其中氧化辞擔載金觸媒擁有不錯 的催化活性和t氣選擇率,而且一氧化碳的產生小於1000鹏。但是氧化 200842106 銘擔載金縣統的轉雜差,會生紅量卿酸fs|。本研究室c et d.在 ¥ ⑽/· A,vol. 290, p. 138,2〇〇5 年和㈣ 3〇2, p i57,細6 年 論文,發現個氧化鈦和祕鈦·輸鋪齡觸可喊生低—氧化^ 篁之風氣’因錄有機會可以應驗質子交_崎電池情卿C)。火 筆君專利有關金觸媒專利大部分都在—氧化碳氧化上的應用。 =君捸荨人,明以氧化鋅為擔體製備擔载金觸媒,在低溫下進行甲醇部份 12263G8’ _年)’但沒有如本案所用氧化鈦擔 媒在甲醇部份氧化產製氫氣的專利。關目前有關金Cato/. νο1·36, pi53, 1997), impregnation (Lin et al., Cato/. vol. 17, p245, 1993), deposition-precipitation (Hamta et al. vol .144, pl75, 1993), gas-phase grafting (Okumura C7z·· Leii·, p315, 1998), liquid phase grafting (iiqUi (j-phase grafting), colloidal mixing Colloid-mixing. The following is a brief description of various common processes for preparing gold-supported catalysts. (1) Commonly-prepared method: first mixing gold chlorate solution with nitrate metal and titrating with sodium carbonate solution a hydroxide or carbonate coprecipitate. The catalyst precursor is washed with water, filtered, dried, and finally calcined in air. (2) Precipitation fixation method: adding a gold chlorate aqueous solution to an oxide support, using an aqueous sodium carbonate solution Adjust the pH between 6 and 10. After curing for one hour, hydrogenation gold is generated on the surface of the catalyst. The catalyst precursor is washed with water, filtered, dried, and finally calcined under air. (3) Impregnation method: first chlorine The acid gold is dissolved in water, and the prepared solution and the desired load are The support is thoroughly mixed. After drying, a fresh sample is obtained. (4) Co-sputtering method: Under a large pressure, oxygen, gold and metal oxide are simultaneously sputter deposited on a substrate to form a film, and finally under air. The anneaj. Various preparation methods have their advantages and disadvantages. The gold catalyst prepared by the impregnation method has low dispersion and low catalytic activity. The gold particle size is about 8_3 nanometers (Haruta is in the ^) ^如人, νο1·144, pl75, published in 1993). The reason for the low activity may be that the precursor of gold is usually chloride. The low-temperature satin burns a lot of chloride ions on the support. Poisoning catalyst, high temperature but causing sintering phenomenon. Usually, the small particle gold carrier catalyst (<5^^) is really needed. The preparation method used by Cheyi is the common method and the sedimentation method. Batch 111^ mentioned in 2〇〇3 years that the preparation method has different effects on various catalyst carriers. The above method can produce gold crystal grains of semi-spherical ball with good thermal stability on the surface of metal oxide. People in vol.186, P458-p469, 1999 Under the calcination of the oxidized fault-loaded gold catalyst 4〇〇〇c, the crystal grains will grow to 4-6 nm or change the shape to become a symmetrical hexagon. The reactivity is often determined by the active site of the catalyst. Mavrikakis et al., such as human 1 machine, ν〇1·64, ρ104-Ρ1〇6, found that the reactivity of gold is closely related to its oxide support. The smaller the gold crystal, the sharper the age of the gold atoms at the edge. Edge gold atom and carrier 8 200842106 Strong mutual _. On the other side, because of the deformation side, there will be a souther oxygen atom concentration near the edge gold atom and a higher oxidation activity. QB_zzi et al. ^u·44, H20!1 (4) The surface of the gold surface will not rhyme-oxidize Broken, it will only adsorb on the gold atoms of the IV, the edge and the ^ corner. Park and Lee studied the metal of the catalyst gas surface at different calcining temperatures in 1999. (4) Gold coffee y ton and oxidized gold (Au (〇H)" fine (8) ^ f now the higher the calcination temperature will make _ The gold of the silk surface increases, but there is no significant increase in the activity of carbon monoxide, so the oxidation of gold reacts with carbon monoxide. It is more active than the gold of the genus. However, H resistance & Seeing, by % heart 3, 1997 and Gnsel et al. c_/· Γο, ν〇ΐ·72, 1-2, pl23-pl32, in 2002, they held the opposite. They believed that the gold ship’s gold-oxidation The carbon oxidation reaction is the position of the ruthenium. ^Transmitted, and filled with stone 彳 & & amp 关 关 加热 加热 加热 加热 加热 关 关 关 关 关 关 关 关 关 关 关 关 关 关 关 关 关 关 关 关 关 关 关 蒸汽 蒸汽 蒸汽 蒸汽 蒸汽 蒸汽% (inhibition), usually by water-gas transfer reaction (Water'Gas Shift, WGS) to reduce carbon monoxide to 〇 5~2 %. Traditional petrochemical industry usually uses • Fe3〇4_Cr〇3/A12〇3 and Cu -Zn〇/Al2〇3 catalyst for catalytic reaction. So (4) et al. j ν〇1·1=, p354, I9% year tried to use iron oxide to carry gold catalyst and oxidized inlaid gold The catalytic reaction of the gas-catalyzed hydrothermal gas indicates that the iron oxide-supported gold catalyst is active at low temperatures, but the oxidation-supporting gold-loaded catalyst is not, and the activity of the ferric oxide-supporting gold catalyst is also great at high temperatures. The gold catalyst and other commercial catalysts were supported. The nickel hydroxide-supported gold catalyst was also found to be active in the recombination reaction of the hydrothermal gas. After comparing the ferric oxide-supported gold catalyst, the oxidized three After carrying the catalytic effect of the gold catalyst and the titanium dioxide-supported gold catalyst, it was found that the titanium dioxide-supported gold catalyst is a more efficient catalyst for the steam recombination reaction. Considering the partial oxidation of methanol. This is another major hydrogen production route. Huang and Wang are in ^^ Μ % ρ28λ. In 1986, oxygen was added to the reaction strip of methanol strip, and it was found that hydrogen can be produced. Rate. From the kinetics of the sterol partial oxidation reaction, Huang and Chren determined in your κ νο1·40, Ρ43, 1988 that the methanol conversion rate will increase due to the addition of oxygen. The rate of dissociative adsorption is the rate. Decision In recent years, Cubeir〇_在义处/· AV〇L, 168, P307-p322, published in 1998, conducted a partial oxidation reaction of methanol with a palladium catalyst. It was observed that even if there is a considerable difference in the surface area of the catalyst. Zirconium oxide has good catalytic activity, whether it is oxidation or oxygen 9 200842106. However, the partial oxidation of methanol by i plus % zirconium dioxide supported palladium catalyst generates a large amount of carbon monoxide. Direct decomposition of methanol. In the application of electric vehicle fuel cells, methanol reforming reaction (steam reforming 〇f me^anol, SRM) and methanol partial gasification reaction 011 〇 瓜 瓜 瓜 她 她 肪 肪 肪 肪 她 她 她 她 她 她 她 她 她 她 她 她 她 她 她 她 她 她 她 她 她 她 她 她 她The partial oxidation reaction of sterol is an exothermic reaction, and not only oxygen (〇2) can be used instead of steam as an oxidant, and an additional heating source is not required to continuously supply heat, so that a large amount of research has been conducted in recent years. Huang and Wang were p/. Cate/., νο1·24, ρ287. In 1986, oxygen was first added to the methanol hydrothermal recombination reaction, and a copper-catalyst was used to catalyze the partial oxidation of methanol. Kumar et al. (1992) published a catalyst for catalyzing methanol with zinc oxide supported copper catalyst at the Argon National Laboratory. Accompanying the oxidation reaction. Later, Alej〇 et al., Cato/, A, v〇i162, p28i_p297, 1997, found that there is a direct relationship between the activity of zinc oxide and the area of copper metal shouting. In addition, they also added bismuth oxide in the zinc oxide-supported copper touch. Although the oxidized bismuth has the effect of increasing the stability of the contact and prolonging the system, the reduction of the land will also reduce the conversion rate of methanol. Wa^ig et al. J· Mo/. Cte” A, v〇U9i, 叩冲34, 2〇〇3 years attempted to add rhetoric in copper/bismuth and monoxide-supported copper catalyst. Not only can the activity of the catalyst be improved: but the stability of the contact is also helpful. However, adding excessive riding will cause the formation of large particles of copper oxide, which will reduce the activity. Some scholars _ non-copper catalyst for sterol Oxidation-catalyzed reaction. Cubeirc and Fi(10) • In C-·, A, V〇1·168, P307, the year published a choice to use catalytic catalysts for catalysis research. Research S Sodium sulphur scale or chromium dioxide as support Du Lin is miscellaneous. However, a partial oxidation reaction is carried out with a 1 wt% dioxane-bearing heterocatalyst, and a large amount of carbon monoxide is formed by direct decomposition of the reaction. Professor Ye Junxi et al. S2002 Reaction Engineering Seminar In the paper, the methanol partial oxidation reaction was tested by the method of stagnation of the stagnation of the gold, and it was found that the conversion rate of methanol increased with the increase of the molar ratio of the methanol feed. The oxygen/methanol feed was not increased. The ear ratio is approximately equal to 〇·5^ and its hydrogen production will be highest. The partial oxidation activity of the system, and the selectivity of the emulsified carbon is also much lower than that of the copper catalyst. Among them, the oxidized gold-loaded catalyst has good catalytic activity and t gas selectivity, and the production of carbon monoxide Less than 1000 Peng. But the oxidation of 200842106 Ming loaded with Jinxian County's turning miscellaneous, will produce red amount of acid fs|. This laboratory c et d. in ¥ (10) / · A, vol. 290, p. 138, 2 〇〇5 years and (4) 3〇2, p i57, a fine 6-year paper, found that a titanium oxide and secret titanium · the age of the shop can be shouted low - oxidation ^ 篁 风 ' ' because of the opportunity to test the protons _ Saki Battery Essence C). Most of the patents related to the Golden Caterpillar patent are in the oxidation of carbon oxide. = Jun Yiren, the use of zinc oxide as a support for the preparation of supporting gold catalyst, at low temperatures The methanol part is 12263G8'_year), but there is no patent for the partial oxidation of methanol to produce hydrogen in the case of the titanium oxide used in this case.

,纖峨綱:°美目目前有關金觸 專糊於表三。由已公開專利中,未有如本發明所揭示细氧化欽 擔體奈米金-銅雙金屬觸媒產製氫氣的方法。 ^ 查二^f内關於金¥媒 公告號 公告曰 專利名稱 1 00534833 2003/06/01 用於乙酸乙烯酯製造中之鈀一 金觸媒 2 00222233 1994/04/11 一氧化碳氧化之金觸媒的製備 方法 3 00145039 1990/11/01 應用於二氧化碳雷射之放電驅 動黃金觸媒 表二·國内關於產製氫氣相關專利 公告號 公告曰 專利名稱 1 1226308 2005/1/11 氫氣的低溫製程 2 00553898 2003/09/21 以熱前處理促進生物污泥生產 11 200842106 氫氣之方法 表三·美國關於金觸媒相關專利 公告號 公告曰 專利名稱 1 6,509,293 January 21,2003 Gold based heterogeneous carbonylation catalysts 2 6,506,933 January 14, 2003 Vapor phase carbonylation process using gold catalysts 3 6,022,823 February 8, 2000 Process for the production of supported palladium-gold catalysts 4 5,550,093 August 27, 1996 Preparation of supported gold catalysts for carbon monoxide oxidation 5 5,336,802 August 9, 1994 Pretreatment of palladium- gold catalysts useful in vinyl acetate synthesis 6 5,051,394 September 24, 1991 Method for production of ultra-fine gold particle-immobilized oxides, 峨 峨 : : : : : : : ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° From the published patent, there is no method for producing hydrogen gas from the fine oxidized nano gold-copper bimetallic catalyst disclosed in the present invention. ^ 查二^fAbout the gold ¥ media announcement number announcement 曰 patent name 1 00534833 2003/06/01 palladium-gold catalyst used in the manufacture of vinyl acetate 2 00222233 1994/04/11 gold catalyst for carbon monoxide oxidation Preparation Method 3 00145039 1990/11/01 Discharge-driven gold catalyst for carbon dioxide laser Table II. Domestic Patent Publication No. Announcement on Production of Hydrogen 曰 Patent Name 1 1226308 2005/1/11 Hydrogen Low Temperature Process 2 00553898 2003/09/21 Promoting bio-sludge production by thermal pretreatment 11 200842106 Method of hydrogen Table 3 · US Bulletin on Bullion-related patents Announcement 曰 Patent name 1, 6,509, 293 January 21, 2003 Gold based heterogeneous carbonylation catalysts 2 6,506,933 January 14 2003 Vapor phase carbonylation process using gold catalysts 3 6,022,823 February 8, 2000 Process for the production of supported palladium-gold catalysts 4 5,550,093 August 27, 1996 Preparation of supported gold catalysts for carbon monoxide oxidation 5 5,336,802 August 9, 1994 Pretreatment of palladium- Gold catalysts us Eful in vinyl acetate synthesis 6 5,051,394 September 24, 1991 Method for production of ultra-fine gold particle-immobilized oxides

【發明内容】 本發明糊>綴目著法製備氧化簡體奈綠·銅雙金細媒,目的在 發,部分氧化反應(CH3〇H + "2〇2〜2氏+ c〇2)製備氫氣的程序,用 來=南氫氣純度降低-氧化碳含量之方法。本發明製餘化鈦擔體奈米金-銅又孟屬觸其特徵為餘約祕外形呈現圓球型的金晶粒與銅 媒以沈顧著法為製備方法,先取氯酸金水溶液和_銅水溶液 二口、二肖〇1料浪度的氫氧化鈉將水溶液的酸驗度pH值控制在7,再 ίΐΓ欽擔體,在旋下逐漸沈殿2小時,待沈殿後經過水洗、過濾, 下麵,製備絲化鈦擔體奈米金·峨金屬麟;改變不同锻燒 12 200842106 溫度20(K400 C。在200〜3〇(TC反應溫度下進行曱醇部分氧化反應,能發 揮最佳的活性和氫氣選擇率。未經煅燒程序的金銅比為的氧化欽擔 體金-銅雙金屬觸媒,當進料比例〇2/CH3〇h為〇·3,反應溫度為2實,以 pH為7曰的條件下,甲醇轉化率可達到% %,而氯氣選擇率為卯 只有少里:氧化石反的產生。顯然地,金,觸媒對於催化曱醇部份氧化反應 能,達,高帽轉辨並且能選擇性氧化—氧化碳,使得氫氣產物中只有 少里-氧化石反的污染。射金先驅物為氯酸金水溶液最好為_莫耳濃度 製備’製備完過濾後的濾餅需經二次以上五次以下7〇〇c 7欠洗以去除氯離子。 【實施方式】 實遮芕4-L製備氧化鈦擔體奈米金-銅雙金屬觸媒 本發明使用沈澱固著法製備氧化鈦擔體奈米金_銅雙金屬觸媒,步驟是 以o.lg氯酸金與0.18g硝酸銅,混合4.9 g氧化鈦擔體於2〇〇mi的去離子水 中,以沈澱固著法製備氧化鈦擔體奈米金•銅雙金屬觸媒,主要步驟是使用 氫氣化鈉水溶液調整酸鹼度pH值,在觸媒表面產生含金與銅的前驅物經過 水洗、過濾、乾觫及锻燒等前處理。茲將氧化鈦擔體奈米金_銅(1:1斯%)雙 金屬觸媒的製備步驟,描述如下:秤取〇jg氯酸金與〇J8g硝酸銅分別配 製成10毫升的溶液,逐滴加入於200毫升,70QC的去離子水中,再加入 4.9g的氧化鈦。在上步驟的懸浮液中以〇1|^灿011控制卩11值維持在7, _ 將溫度維持在C ’繼續攪拌2小時,即得一沈殿液,待沈積沈殿後,以 抽氣裝置過濾此懸浮液並得到一濾餅,用二次以上五次以下的5q〇cc純 水h洗,將清洗後的觸媒先驅物’置於1〇〇 °C供箱中乾燥24小時以上 去除水分。 實施方 依實施方式1,惟改變製備氧化鈦擔體奈米金-銅雙金屬觸媒的{)11值 控制在5。 實施方式3. 依實施方式1,惟改變製備氧化鈦擔體奈米金-銅雙金屬觸媒的pH值 控制在9。 13 200842106 製備觸媒的pH值對於金屬晶粒大小影響的比較,如表一所示。 表一-丕同製備%的pH值金屬晶粒a小影響 實驗 煅燒溫度(Qc) 製備的pH值 金屬晶粒大小(nm) 實施方式1 未煅燒 7 1.8 實施方式2 未煅燒 5 2.7 實施方式3 未烺燒 9 1.9 實施方式4. 依貝加方式卜惟將製備乾燥後的觸媒先驅物放入高溫爐内,在2〇〇 C下進行煅燒以製備2〇〇 °c煅燒溫度的氧化鈦擔體奈米金_銅雙金屬觸媒。 實施方式5. 。依實施方式1,惟將製備乾燥後的觸媒先驅物放入高溫爐内,在400 C下進行烺燒以製備4〇0 °c煅燒溫度的氧化鈦擔體奈米金-銅雙金屬觸媒。 製備未煅燒和不同煅燒溫度觸媒的TEM結果,如圖一所示。未煅燒 和200°C與400 °C緞燒溫度下的金屬晶粒大小,如表二與圖一所示。 兔三二與400 °C煅燒溫度下的金屬晶粒大小 實驗 煅燒溫度(°C) 金屬晶粒大小(nm) 實施方式1 —---、 / 未锻燒 1.8 實施方式4 200 2.0 實施方式5 400 2.1 耋施方式6,甲醇部分氧化反應產製氫氣 本研究採用甲醇部分氧化反應做為氧化鈦擔體奈米金-銅雙金屬觸媒 的活性測試反應,整個系統在適當的溫度控制下,配合氣相層析技術的 產物分析,進行觸媒的活性測試,詳細步驟如下所示:將實施方式1製 備的觸媒裝填於反應管中;將反應器的溫度控制在250 〇C ;以甲醇及氧 氣為進料並將氧氣/曱醇進料莫耳比設定為〇·3,到反應床中進行甲醇部 分氧化反應90分鐘。 實施方式7. 14 200842106 同實施方式6,惟將實施方式2製備的觸媒裝填於反應管中。 實施方式8. 同實施方式6,惟將實施方式3製備的觸媒裝填於反應管中。 不同製備觸媒的pH值對於甲醇轉化率和氫氣選擇率的影響如表三與 圖二所示 實驗 製備的pH值 曱醇轉化率(%) :揮平 氫氣選擇率(%) 施方式ό 7 91 90 施方式7 5 87 75 方式8 9 83 93 复^式9· _同實施方式6,惟改變氧氣/曱醇進料莫耳比設定為〇」。 复巍^式10· 同貫施方式6,惟改變氧氣/甲醇補莫耳比設定為〇·5。 不同氧氣/曱醇進料莫耳比對於甲醇轉化率和氫氣選擇率的影響如 四輿圖三所示。 ^SUMMARY OF THE INVENTION The paste of the present invention is prepared by the method of smear-forming method to prepare oxidized simplified green-green copper double-gold fine medium for the purpose of partial oxidation reaction (CH3〇H + "2〇2~2+ c〇2) A procedure for preparing hydrogen for use in a method of reducing the purity of hydrogen in the south - the carbon oxide content. The residual titanium support of the invention is characterized by the fact that the nano-gold-copper and the genus of the genus of the genus are in the form of a spherical shape of the gold crystal and the copper medium, and the preparation method is adopted. _ copper aqueous solution two, two Xiao 〇 1 material sulphur sodium hydroxide to control the acidity of the aqueous solution pH value of 7, and then ΐΓ ΐΓ ΐΓ ΐΓ , , , 逐渐 逐渐 逐渐 逐渐 逐渐 逐渐 逐渐 逐渐 逐渐 逐渐 逐渐 逐渐 逐渐 逐渐 逐渐 逐渐 逐渐 逐渐 逐渐 逐渐 逐渐 逐渐 逐渐 逐渐 逐渐 逐渐 逐渐 逐渐Next, prepare a nano-silver of titanium carbide support nano-gold; change the different calcination 12 200842106 temperature 20 (K400 C. in 200~3 〇 (the partial oxidation of sterol at TC reaction temperature, can play the best The activity and hydrogen selectivity. The gold-copper ratio of the non-calcining procedure is the oxidized chelating gold-copper bimetallic catalyst. When the feed ratio 〇2/CH3〇h is 〇·3, the reaction temperature is 2, Under the condition of pH of 7曰, the methanol conversion rate can reach %%, and the chlorine gas selectivity is only a small amount: the oxidation of iron oxide. Obviously, gold and catalyst can catalyze the partial oxidation reaction of sterol. , the high cap is identifiable and can selectively oxidize carbon monoxide, so that only a few of the hydrogen products are - Anti-corrosion of oxidized stone. The gold precursor is gold chlorate solution. It is best to prepare _ molar concentration. After preparing the filtered filter cake, it needs to be washed twice or less to remove chloride ions. [Embodiment] Preparation of titanium oxide support nano gold-copper bimetallic catalyst by solid concealer 4-L The present invention uses a precipitation fixation method to prepare a titanium oxide support nano gold-copper bimetallic catalyst. O.lg gold chlorate and 0.18g copper nitrate, mixed with 4.9g titanium oxide in deionized water of 2〇〇mi, prepared by titration and immobilization method for titanium oxide copper nano copper catalyst The step is to adjust the pH value of the pH by using an aqueous solution of sodium hydrogen sulfide, and to produce a precursor containing gold and copper on the surface of the catalyst, which is subjected to pretreatment such as washing, filtering, drying and calcining. The titanium oxide support nano gold-copper ( 1:1%) The preparation steps of the bimetallic catalyst are described as follows: 〇jg gold chlorate and 〇J8g copper nitrate are prepared separately into a 10 ml solution, which is added dropwise to 200 ml of 70QC deionized water. Then add 4.9g of titanium oxide. In the suspension of the above step, 卩1|^灿011 is used to control the value of 卩11. Maintain at 7, _ maintain the temperature at C ' continue to stir for 2 hours, that is, a sinking liquid, after the sedimentation of the temple, the suspension is filtered by a suction device and a filter cake is obtained, using 5 times less than five times 〇 cc pure water h wash, the cleaned catalyst precursor 'distributed in 1 ° ° C for more than 24 hours to remove moisture. The implementation method according to the embodiment 1, only to change the preparation of titanium oxide nano gold - The {11] value of the copper bimetallic catalyst is controlled at 5. Embodiment 3. According to Embodiment 1, the pH of the prepared titanium oxide support nano gold-copper bimetallic catalyst is controlled at 9. 13 200842106 Preparation A comparison of the effect of the pH of the catalyst on the metal grain size is shown in Table 1. Table 1 - 制备% % Preparation of Metallic Grains a Small Effect Experimental Calcination Temperature (Qc) Prepared pH Metal Grain Size (nm) Embodiment 1 Uncalcined 7 1.8 Embodiment 2 Uncalcined 5 2.7 Embodiment 3 Not calcined 9 1.9 Embodiment 4. In the Beiga mode, the prepared catalyst precursor is placed in a high temperature furnace and calcined at 2 ° C to prepare a titanium oxide having a calcination temperature of 2 ° C. Support nano gold _ copper bimetallic catalyst. Embodiment 5. According to the first embodiment, the prepared catalyst precursor is placed in a high temperature furnace and calcined at 400 C to prepare a titanium oxide support nano gold-copper bimetallic contact at a calcination temperature of 4 〇 0 °c. Media. TEM results for the preparation of uncalcined and different calcination temperature catalysts are shown in Figure 1. Uncalcined and metal grain sizes at 200 ° C and 400 ° C satin temperature, as shown in Table 2 and Figure 1. Metallic grain size at 30 °C and 400 °C calcination temperature Experimental calcination temperature (°C) Metal grain size (nm) Embodiment 1 —---, / not calcined 1.8 Embodiment 4 200 2.0 Embodiment 5 400 2.1 Hydration method 6, partial oxidation of methanol to produce hydrogen This study used methanol partial oxidation reaction as the activity test of titanium oxide supported nano-copper bimetallic catalyst, the whole system under proper temperature control, The activity test of the catalyst is carried out in combination with the product analysis of the gas chromatography technique. The detailed steps are as follows: the catalyst prepared in Embodiment 1 is loaded in the reaction tube; the temperature of the reactor is controlled at 250 〇C; And oxygen is fed and the oxygen/sterol feed molar ratio is set to 〇·3, and partial oxidation of methanol is carried out to the reaction bed for 90 minutes. Embodiment 7.14 200842106 In the same manner as Embodiment 6, the catalyst prepared in Embodiment 2 is loaded in a reaction tube. Embodiment 8. In the same manner as Embodiment 6, the catalyst prepared in Embodiment 3 is loaded in a reaction tube. The effect of different preparation catalyst pH on methanol conversion rate and hydrogen selectivity rate is shown in Table 3 and Figure 2. The pH value of the experimentally prepared sterol conversion rate (%): the flat hydrogen selectivity rate (%). 91 90 Application mode 7 5 87 75 Mode 8 9 83 93 Complex formula 9· _ Same as Embodiment 6, except that the oxygen/sterol feed molar ratio is set to 〇”. The formula is the same as the method of the sixth method, but the oxygen/methanol complement molar ratio is set to 〇·5. The effect of different oxygen/sterol feed molar ratios on methanol conversion and hydrogen selectivity is shown in Figure 3. ^

• 實驗 S^___ 氧氣/甲醇進料 莫耳比 甲醇轉化率(%) 虱氣逛摔平 ---—- ------^ 氫氣選擇率(%) 方式ό 0.3 91 90 — 方式9 0.1 85 -—--------. 85 ^方式10 0.5 ------- 86 7Q 式Π· 式6 ’惟將錢方式4製備的觸媒裝填減應管中。 之式12· 同實施f式6,惟將實施方式5製備_媒裝埴於反應管中。 不同紙溫度製備__於甲轉辨和統選擇率_響如表五 15 200842106 和圖四所示。 表五不同煅燒溫度下的曱醇轉化率與氫氣選擇率 實驗 烺燒溫度(°c) 甲醇轉化率(%) 氫氣選擇率 實施方式6 未煅燒 91 90 實施方式11 200 87 81 實施方式12 400 83 92 〜 —— 實施方式13. 同實施方式6,惟改變反應溫度為200°C。• Experiment S^___ Oxygen/methanol feed Mohr than methanol conversion (%) Helium wandering----- ------^ Hydrogen selectivity (%) Mode ό 0.3 91 90 — Mode 9 0.1 85 ----------. 85 ^Mode 10 0.5 ------- 86 7Q Formula Π · Equation 6 'Only the catalyst prepared by the money method 4 is loaded into the reduction tube. The formula 12 is the same as the formula f, except that the preparation of the fifth embodiment is carried out in a reaction tube. The preparation of different paper temperatures __ in the case of A and the selection rate _ ring as shown in Table 5 15 200842106 and Figure 4. Table 5. Sterol conversion and hydrogen selectivity at different calcination temperatures Experimental calcination temperature (°c) Methanol conversion (%) Hydrogen selectivity Embodiment 6 Uncalcined 91 90 Embodiment 11 200 87 81 Embodiment 12 400 83 92 to - Embodiment 13. The same as Embodiment 6, except that the reaction temperature was changed to 200 °C.

實施方式14. 同實施方式6,惟改變反應溫度為225°C。 實施方式15. 同實施方式6,惟改變反應溫度為2750C。 實施方式1& 同實施方式6,惟改變反應溫度為300°C。 甲醇轉化率、氫氣選擇率與_氧化碳選醉和反應溫度_係如 和圖五所示。 ’、Embodiment 14. In the same manner as Embodiment 6, except that the reaction temperature was changed to 225 °C. Embodiment 15. The same as Embodiment 6, except that the reaction temperature was changed to 2,750C. Embodiment 1 & Same as Embodiment 6, except that the reaction temperature was changed to 300 °C. Methanol conversion rate, hydrogen selectivity and _ oxidized carbon selection and reaction temperature are shown in Figure 5. ’,

赵,應巧的 實驗 實施方式13 實施方式14 實施方式6 實施方式15 貫知*方式16 反應溫度 (°C) 200 225 250 275 300 甲醇轉化率 (%) 71 80 91 89 90 氫氣選擇率(%)a 96 97 90 67 氧化碳選擇率(%)b 1.7 2.0 3.9 15.2 ^氫氣選醉(%卜(躲生成一-b· —氣化碳選擇率(%)=(一負介 、斗数)xl00 火生成莫耳數/甲醇消耗莫耳數)χ1〇〇 16 200842106 【圖式簡單說明】 圖一.不同煅燒溫度下的Au-Cu/Ti02(mwt%)觸媒的穿透式電子顯微 鏡圖. 圖二.觸媒在不同pH值下製備的曱醇轉化率與氫氣選擇率的關係圖· 圖三.不同氧氣/曱醇進料莫耳比的甲醇轉化率與氫氣選擇率的關係 圖· 圖四.觸媒在不同煅燒溫度下的曱醇轉化率與氫氣選擇率的關係圖. 圖五.不同反應溫度下的甲醇轉化率、氫氣選擇率與一氧化碳選擇率 ^ 的關係圖· ^ 【主要元件符號說明】 無 17ZHAO, JIAO Experimental Embodiment 13 Embodiment 14 Embodiment 6 Embodiment 15 Conventional *Mode 16 Reaction temperature (°C) 200 225 250 275 300 Methanol conversion rate (%) 71 80 91 89 90 Hydrogen selectivity (%) ) a 96 97 90 67 Carbon oxide selectivity (%) b 1.7 2.0 3.9 15.2 ^ Hydrogen selective drunk (% b (hidden generation - b · - gasification carbon selectivity (%) = (one negative media, bucket number) Xl00 fire generation mole number / methanol consumption mole number) χ1〇〇16 200842106 [Simple diagram of the diagram] Figure 1. Transmissive electron micrograph of Au-Cu/Ti02 (mwt%) catalyst at different calcination temperatures Figure 2. Relationship between sterol conversion and hydrogen selectivity for catalysts prepared at different pH values. Figure 3. Relationship between methanol conversion and hydrogen selectivity for different oxygen/sterol feed molar ratios. Figure 4. Relationship between sterol conversion and hydrogen selectivity at different calcination temperatures. Figure 5. Relationship between methanol conversion, hydrogen selectivity and carbon monoxide selectivity at different reaction temperatures. ^ [Main Component Symbol Description] No 17

Claims (1)

200842106 十、申請專利範圍·· 1. 觸媒的方法,並利用甲醇部份 〇·3,反應 -種製備氧化鈦擔體奈米金,t 氧化反應以產製高純度氫氣。其 溫度為〜雜。氧化鈦魏夺反應今進2氣/甲醇莫耳比為 — 製備,製備方法如下: ”金-鋼又金屬觸媒使用沈澱固著法來 a.先秤取氯酸金與硝酸銅分別溶於 (U wt%以上氧化鈦奈米金娜^觸^加入氧化鈦漏,調配成 b·在步驟a的懸浮液中,逐滴加入〇丨且曲、危 維持pH值7; •旲耳/辰度的虱氧化鈉水溶液,並200842106 X. Patent application scope ·· 1. Catalyst method, and use methanol part 〇·3, reaction - kind to prepare titanium oxide nano gold, t oxidation reaction to produce high purity hydrogen. Its temperature is ~ miscellaneous. Titanium oxide Wei won the reaction of the current 2 gas / methanol molar ratio - preparation, the preparation method is as follows: "Gold-steel and metal catalyst using precipitation fixation method a. First weigh gold chlorate and copper nitrate dissolved separately (U wt% or more of titanium oxide nanokina ^ touch ^ added titanium oxide leak, formulated into b · in the suspension of step a, added dropwise and sputum, dangerous to maintain pH 7; • 旲 ear / chen Degree of sodium hydroxide aqueous solution, and c.待沈殿後,過濾此懸浮液並得到一 d_將清洗後的觸媒前趨物^於刚^扭’^魏 分; 、/、相中乾餘24小時以上去除水 e·乾燥後的觸媒先驅物放人高_内,在細〜伽qc下 ::ir1 — 5. 如申請專纖圍第1 _方法,其帽氧氣的麵為純氧氣或空氣。 6. 如申請專利範圍第!項的方法,其中氧氣/甲醇的進料比為〇⑷。 7·如申請專纖圍第!稱方法,其巾反應使關縣未峨和锻燒溫 度介於200〜400°C之間。 8·如申請專利範圍帛1項的方法,其中反應溫度為室溫以上到·〇c。 9·如申請專利範圍第1項的方法,其中反應時間為1〇分鐘以上。 18c. After the sinking hall, filter the suspension and obtain a d_ will be washed after the catalyst precursors ^ just twisted ^ ^ Wei points; /, phase in the dry for more than 24 hours to remove water e · dry The catalyst precursor is placed high _, in the fine ~ gamma qc:: ir1 - 5. If you apply for the special fiber around the first _ method, the surface of the cap oxygen is pure oxygen or air. 6. If you apply for a patent scope! The method of the item wherein the oxygen/methanol feed ratio is 〇(4). 7·If you apply for special fiber circumference! The method is called the towel reaction, so that the temperature of Guanxian and the calcination temperature is between 200 and 400 °C. 8. The method of claim 1, wherein the reaction temperature is from room temperature to 〇c. 9. The method of claim 1, wherein the reaction time is more than 1 minute. 18
TW096113574A 2007-04-17 2007-04-17 Hydrogen production via partial oxidation of methanol over Au-Cu/TiO2 catalysts TW200842106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096113574A TW200842106A (en) 2007-04-17 2007-04-17 Hydrogen production via partial oxidation of methanol over Au-Cu/TiO2 catalysts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096113574A TW200842106A (en) 2007-04-17 2007-04-17 Hydrogen production via partial oxidation of methanol over Au-Cu/TiO2 catalysts

Publications (1)

Publication Number Publication Date
TW200842106A true TW200842106A (en) 2008-11-01

Family

ID=44821841

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096113574A TW200842106A (en) 2007-04-17 2007-04-17 Hydrogen production via partial oxidation of methanol over Au-Cu/TiO2 catalysts

Country Status (1)

Country Link
TW (1) TW200842106A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI403459B (en) * 2010-06-15 2013-08-01 Nat Univ Tsing Hua Process for producing hydrogen with high yield under low temperature

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI403459B (en) * 2010-06-15 2013-08-01 Nat Univ Tsing Hua Process for producing hydrogen with high yield under low temperature

Similar Documents

Publication Publication Date Title
US7384986B2 (en) Process for the selective methanation of carbonmonoxide (CO) contained in a hydrogen-rich reformate gas
TWI600468B (en) Preparation of copper oxide-cerium oxide-supported nano-gold catalysts and its application in removal of carbon monoxide in hydrogen stream
WO2016173285A1 (en) Supported catalyst having core-shell structure, preparation method therefor, and application thereof
JP2004525047A (en) Non-ignitable water-gas conversion catalyst
US7906098B2 (en) Method for making hydrogen using a gold containing water-gas shift catalyst
Zhang et al. Octahedral core–shell bimetallic catalysts M@ UIO-67 (M= Pt–Pd nanoparticles, Pt–Pd nanocages): metallic nanocages that enhanced CO2 conversion
JP4185952B2 (en) Carbon monoxide removal catalyst, production method thereof, and carbon monoxide removal apparatus
Feng et al. Copper oxide hollow spheres: synthesis and catalytic application in hydrolytic dehydrogenation of ammonia borane
CN112993285A (en) Catalyst for preferentially oxidizing CO in hydrogen-rich gas and preparation method and application thereof
TW200838607A (en) Preparation of mangania-iron-supported nano-gold catalysts and using the same
CN105597753B (en) Three-dimensional ordered large-hole manganese acid lanthanum Supported Pt Nanoparticles tin nanocatalyst and its preparation method and application
Yue et al. Facile synthesis and characterization of nano-Pd loaded NiCo microfibers as stable catalysts for hydrogen generation from sodium borohydride
Chen et al. Synthesis of a novel Co–B/CuNWs/CTAB catalyst via chemical reaction at room temperature for hydrolysis of ammonia-borane
Naren et al. Development of platinum assisted ternary catalyst with high activity and selectivity at working temperature of proton-exchange membrane fuel cells for preferential oxidation of CO
JP2006239551A (en) Co methanizing catalyst, co removing catalyst device and fuel cell system
Roshan et al. Single-stage water gas shift reaction over structural modified Cu–Ce catalysts at medium temperatures: Synthesis and catalyst performance
US7666377B2 (en) Method for the removal of carbon monoxide from a gas mixture
Choi et al. Complete removal of carbon monoxide by functional nanoparticles for hydrogen fuel cell application
Du et al. Monolithic Pt/Ce0. 8Zr0. 2O2/cordierite catalysts for low temperature water gas shift reaction in the real reformate
Yan et al. Solar-promoted photo-thermal CH4 reforming with CO2 over Ni/CeO2 catalyst: Experimental and mechanism studies
TW200842106A (en) Hydrogen production via partial oxidation of methanol over Au-Cu/TiO2 catalysts
Guo et al. Direct synthesis of CuO–ZnO–CeO2 catalyst on Al2O3/cordierite monolith for methanol steam reforming
TWI320000B (en) Preparation of mangania-titania -supported nano-gold catalysts and its application in preferential oxidation of carbon monoxide in hydrogen stream
TWI293061B (en) Process of producing hydrogen using au/zro2 catalysts
TWI469830B (en) Preparation of iron oxide-titania-supported nano-gold catalysts and its application on preferential oxidation of carbon monoxide in hydrogen stream