TWI388113B - 減輕相電流之拍頻振盪的多相交錯式電壓調節器 - Google Patents

減輕相電流之拍頻振盪的多相交錯式電壓調節器 Download PDF

Info

Publication number
TWI388113B
TWI388113B TW099103356A TW99103356A TWI388113B TW I388113 B TWI388113 B TW I388113B TW 099103356 A TW099103356 A TW 099103356A TW 99103356 A TW99103356 A TW 99103356A TW I388113 B TWI388113 B TW I388113B
Authority
TW
Taiwan
Prior art keywords
phase
circuit
current
signal
regulator
Prior art date
Application number
TW099103356A
Other languages
English (en)
Other versions
TW201128911A (en
Inventor
Chen Hua Chiu
Ching Jan Chen
Dan Chen
Wei Hsu Chang
Original Assignee
Richtek Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Richtek Technology Corp filed Critical Richtek Technology Corp
Priority to TW099103356A priority Critical patent/TWI388113B/zh
Priority to US13/018,628 priority patent/US8525497B2/en
Publication of TW201128911A publication Critical patent/TW201128911A/zh
Application granted granted Critical
Publication of TWI388113B publication Critical patent/TWI388113B/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/618Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series and in parallel with the load as final control devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Description

減輕相電流之拍頻振盪的多相交錯式電壓調節器
本發明係有關一種多相交錯式電壓調節器,特別是關於一種減輕相電流之拍頻振盪的多相交錯式電壓調節器。
參考文獻:
[1] U.S. Pat. No. 6,683,441
[2] U.S. Pat. No. 6,144,194
[3] J. Sun,Q. Yang,M. Xu,F.C. Lee,"High-frequency dynamic current sharing analyses for multiphase buck VRs,"IEEE Trans. Power Electronics,vol. 22,no. 6,pp. 2424-2431,Nov. 2007.
[4] C.-J. Chen,D. Chen,M. Lee,E. K.-L. Tseng,"Design and modeling of a novel high-gain peak current control scheme to achieve adaptive voltage positioning for DC power converters,”in Proc. IEEE Power Electronics Specialists Conference,2008,pp. 3284-3290.
[5] U.S. Pat. No. 7,436,158
多相交錯式電壓調節器係負載點(point-of-load)應用的普及技術,例如[1]和[2],但在負載高頻動態變化時,此技術有相電流拍頻振盪的問題,此現象如圖1所示,以兩相交錯式電壓調節器為例,在負載電流Iload高頻變動下,兩相電流IL1和IL2表現出拍頻振盪,此拍頻係脈寬調變器的取樣頻率(切換頻率)ωsw 與負載變動頻率ωload 之間的差頻
ωbeatswload , 公式1
該振盪會引起有損效率,甚至可能摧毀主半導體開關的大電流振幅,已有文獻報導[3],峰值電流模式控制的電壓調節器增加電流感測增益可降低此問題,然而增加電流感測增益可能導致電壓調節器不穩定,此外,某些應用要求適應電壓調位(Adaptive Voltage Positioning;AVP),在此情況下,如果要求最佳AVP設計,則電流感測增益係由負載的規格決定。
雖然峰值電流模式控制具有許多優點,但用來達成AVP時,卻有輸出電壓直流偏移和差勁的線調節等缺點。AVP的設計考量係具有固定的調節器輸出阻抗,但此設計限制卻導致調節器的低頻電壓迴路增益很低,因而導致差勁的輸出電壓直流誤差和線調節[4]。[5]在低增益電流模式控制的電壓調節器中加入偏移消除電路改善輸出電壓因為低增益所造成的偏移偏移消除電路,但此電路也有高頻動態負載變化時的拍頻問題。
圖2係具峰值電流控制(Peak-Current Control;PCC)的兩相交錯式電壓調節器的電路圖,相1由開關S1、S2和電感L1組成,相2由開關S3、S4和電感L2組成,IL1和IL2分別表示相1和相2的相電流,電流感測器10及12的增益以Ri表示,Hv表示電壓控制迴路中的補償器14的增益,脈寬調變器16和18分別因應電流感測信號IS1、IS2和補償信號Vc實現電流模式控制。如果不需要同步整流的話,開關S2和S4可以用二極體取代。若是n相交錯式電壓調節器的話,會有n個相的電路並聯在調節器的輸入端22和輸出端24之間。
圖3係[5]應用在n相交錯式電壓調節器的電路圖,其係增加偏移消除電路26修改補償信號Vc,加減運算電路28加總所有的電流感測信號IS1到ISn得到總電流感測信號Isum,除法器30將總電流感測信號Isum除以相數n得到平均電流感測信號Iavg,加減運算電路32將修改後的補償信號V'c減去平均電流感測信號Iavg得到差值信號LI,再經低通濾波器34濾波產生偏移信號LO,加減運算電路36將偏移信號LO加入補償信號Vc並減去偏壓VID產生修改後的補償信號V'c,取代原來的補償信號Vc提供給每一相的脈寬調變器16到38。在多相應用中,偏移消除電路26只對所有的相施用一次,其低通濾波器34係用來消除輸出電壓Vo的直流偏移。
基於小信號分析,偏移消除電路26增加低通濾波器34的頻寬內的迴路增益[4]。[3]報導,每一相的電流迴路在拍頻時較高的迴路增益會抑制拍頻振盪。既然偏移消除電路26導致迴路增益增加,因此可用來減輕相電流的拍頻振盪。然而,基於以下所述的小信號分析,[5]實際上並未有減輕拍頻振盪的優點。
圖4係為圖2的電路分析相電流拍頻振盪的模型,其中Zoc(ωload )表示電壓調節器的閉迴路輸出阻抗,Hv(ωload )表示補償器14的轉移函數,Fm表示脈寬調變器16的增益,D表示責任週期的穩態值,G’id(ωbeat )係功率級(即開關S1、S2和電感L1)的拍頻責任週期對相電流轉移函數,He(ωbeat )表示電流迴路取樣及維持效應,方塊40係相1的ωbeat 成分,其拍頻振盪的敏感度(susceptibility)
其中G(ωloadbeat )為無電流迴路的敏感度,T’i(ωbeat )為每一相的電流迴路增益。在圖3中,偏移消除電路26將所有相的電流感測信號IS1到ISn加總起來。既然各相電流IL1到ILn之間有相位移,其拍頻成分的和將會是零,因此低通濾波器34的轉移函數GF(ω)不會出現在T’i(ωbeat )中。換言之,在習知技術中,偏移消除電路26不會影響相電流的拍頻振盪。
本發明的目的之一,在於提出一種減輕相電流拍頻振盪的多相交錯式電壓調節器。
根據本發明,一種減輕相電流之拍頻振盪的多相交錯式電壓調節器在每一相中單獨使用偏移消除電路增加其電流迴路增益,因而降低其相電流的拍頻振盪。該偏移消除電路包括低通濾波器,當拍頻低於該低通濾波器的頻寬時,該調節器的相電流拍頻振盪減輕。藉此技術減輕拍頻振盪的問題,不會像增加電流感測增益一樣帶來額外的穩定性問題。
為方便與習知技術對照,圖5係以圖3的電路為基礎設計的實施例,此n相交錯式電壓調節器包括輸入端22接受輸入電壓VG,輸出端24提供受調節的輸出電壓Vo,以及n個相電路42到44並聯在輸入端22及輸出端24之間,產生多個相位交錯的相電流IL1到ILn。本發明的特點係在每一相的電路42到44中單獨使用一個偏移消除電路,例如偏移消除電路46係增加相電路42的電流迴路增益,偏移消除電路48係增加相電路44的電流迴路增益。和習知技術一樣,補償器14產生正比於輸出電壓Vo及參考電壓VID之間的差值的補償信號Vc提供給每一相42到44,每一相的電路包括一個控制電路提供電流模式控制,例如控制電路50包括脈寬調變器16因應補償信號Vc及其所屬相電路42的相電流IL1產生脈寬調變信號PWM1實現電流模式控制。如果不需要同步整流的話,低位側的開關S2到S(2n)可以用二極體取代。在相電路42中,偏移消除電路46修改補償信號Vc後提供給脈寬調變器16。在偏移消除電路46中,加減運算電路28將修改後的補償信號VC1減去表示相電流IL1的電流感測信號IS1產生差值信號LI1,低通濾波器34對差值信號LI1濾波產生偏移信號LO1,加減運算電路36將偏移信號LO1加入補償信號Vc及減去偏壓VID產生信號VC1。換言之,偏移信號LO1係因應電流感測信號IS1及補償信號Vc產生,並注入脈寬調變器16中。由於電流感測信號IS1具有拍頻振盪成分,因此偏移信號LO1也具有拍頻振盪成分,偏移信號LO1注入脈寬調變器16將影響相電流IL1的拍頻振盪。
圖6係偏移消除電路46的頻率響應,ωLPF 係低通濾波器34的頻寬,偏移消除電路46的增益在ωLPF 以下大於1,在ωLPF 以上等於1,因此相電路42的電流迴路增益在頻率ωLPF 以下增加了,因而減輕了相電流IL1的拍頻振盪。但電流感測增益Ri並沒有增加,因此不會帶來穩定性的問題。
圖7係仿照圖4的小訊號分析模型,其中包含了低通濾波器34的轉移函數GF(ω),其拍頻振盪的敏感度
其中GF(ωload )近似於1,GF(ωbeat )大於1。因為偏移消除電路46的增益GF(ωbeat )加入,所以相電流IL1的電流迴路增益T’i(ωbeat )增加了,相電流IL1的拍頻振盪因而減少。
使用前述模型分析相電流拍頻振盪的計算結果如圖8所示,曲線52表達本發明的電路對相電流拍頻振盪的敏感度IL1(ωbeat )/Iload(ωload ),曲線54係沒有偏移消除電路的結果,兩者相比,在低拍頻時,本發明的電路對相電流拍頻振盪的敏感度明顯受到低通濾波器的轉移函數GF(ω)壓抑。
此結果也可用電路模擬來驗證,如圖9所示,顯示本發明達成的拍頻振盪的模擬結果非常符合模型。時域的波形如圖10所示,其中負載電流Iload=0~30A,負載變動頻率fload =299.9kKz,拍頻fbeat =100Kz。波形56及58係傳統的峰值控制模式(圖2)的相電流IL1和IL2,波形60及62係加入一個偏移消除電路(圖3)的相電流IL1和IL2,波形64及66係每一相單獨使用偏移消除電路(圖5)的相電流IL1和IL2,此圖的波形顯示本發明的電路幾乎沒有相電流拍頻振盪。
10...電流感測器
12...電流感測器
14...補償器
16...脈寬調變器
18...脈寬調變器
22...輸入端
24...輸出端
26...偏移消除電路
28...加減運算電路
30...除法器
32...加減運算電路
34...低通濾波器
36...加減運算電路
38...脈寬調變器
40...相1的ωbeat 成分
42...相電路
44...相電路
46...偏移消除電路
48...偏移消除電路
50...控制電路
52...相電流拍頻振盪的敏感度曲線
54...相電流拍頻振盪的敏感度曲線
56...相電流的波形
58...相電流的波形
60...相電流的波形
62...相電流的波形
64...相電流的波形
66...相電流的波形
圖1係習知的兩相交錯式電壓調節器的負載電流及相電流的波形圖;
圖2係具峰值電流控制的兩相交錯式電壓調節器的電路圖;
圖3係具有偏移消除電路的n相交錯式電壓調節器的電路圖;
圖4係為圖2的電路分析相電流拍頻振盪的模型;
圖5係本發明的實施例;
圖6係偏移消除電路的頻率響應;
圖7係為本發明的電路分析相電流拍頻振盪的模型;
圖8係根據圖7模型的計算結果;
圖9係本發明的電路的模擬圖;以及
圖10係兩相交錯式電壓調節器在傳統的峰值控制模式、所有相共用一個移消除電路以及每一相單獨使用偏移消除電路所得到的相電流波形。
10...電流感測器
14...補償器
16...脈寬調變器
22...輸入端
24...輸出端
28...加減運算電路
34...低通濾波器
36...加減運算電路
42...相電路
44...相電路
46...偏移消除電路
48...偏移消除電路
50...控制電路

Claims (9)

  1. 一種減輕相電流之拍頻振盪的多相交錯式電壓調節器,該調節器在一輸出端提供一受調節的輸出電壓,該調節器包括:一輸入端接受一輸入電壓;一電壓控制迴路的補償器耦接該輸出端,提供一補償信號;以及多個相電路耦接該輸入端、輸出端及補償器,產生多個相位交錯的相電流,每一該相電路含有一偏移消除電路增加其電流迴路增益,因而減輕其相電流的拍頻振盪。
  2. 如請求項1之調節器,其中該補償信號正比於該輸出電壓及一參考電壓之間的差值。
  3. 如請求項2之調節器,其中每一該相電路包括一控制電路提供電流模式控制。
  4. 如請求項3之調節器,其中每一該控制電路因應該補償信號及其所屬相電路的相電流產生一脈寬調變信號實現該電流模式控制。
  5. 如請求項4之調節器,其中每一該控制電路包括一脈寬調變器產生其所屬相電路的脈寬調變信號。
  6. 如請求項5之調節器,其中每一該偏移消除電路提供一偏移信號注入其所屬相電路的脈寬調變器。
  7. 如請求項6之調節器,其中每一該偏移信號係因應一表示其所屬相電路的相電流的電流感測信號與該補償信號產生。
  8. 如請求項7之調節器,其中每一該偏移消除電路包括:第一加減運算電路耦接該補償器,將該偏移信號加入該補償信號及減去一偏壓產生修改後的補償信號;第二加減運算電路耦接該脈寬調變器,將該修改後的補償信號減去該電流感測信號產生差值信號;以及低通濾波器耦接該第一及第二加減運算電路,對該差值信號濾波而產生該偏移信號。
  9. 如請求項8之調節器,其中該低通濾波器具有一增益,其在一頻率以下大於一,在該頻率以上等於一。
TW099103356A 2010-02-04 2010-02-04 減輕相電流之拍頻振盪的多相交錯式電壓調節器 TWI388113B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW099103356A TWI388113B (zh) 2010-02-04 2010-02-04 減輕相電流之拍頻振盪的多相交錯式電壓調節器
US13/018,628 US8525497B2 (en) 2010-02-04 2011-02-01 Using offset cancellation circuit to mitigate beat-frequency oscillation of phase currents in a multiphase interleaved voltage regulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099103356A TWI388113B (zh) 2010-02-04 2010-02-04 減輕相電流之拍頻振盪的多相交錯式電壓調節器

Publications (2)

Publication Number Publication Date
TW201128911A TW201128911A (en) 2011-08-16
TWI388113B true TWI388113B (zh) 2013-03-01

Family

ID=44341038

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099103356A TWI388113B (zh) 2010-02-04 2010-02-04 減輕相電流之拍頻振盪的多相交錯式電壓調節器

Country Status (2)

Country Link
US (1) US8525497B2 (zh)
TW (1) TWI388113B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106033251A (zh) * 2015-03-11 2016-10-19 王韦尧 互动系统及其显示装置及脑波侦测装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI388113B (zh) * 2010-02-04 2013-03-01 Richtek Technology Corp 減輕相電流之拍頻振盪的多相交錯式電壓調節器
CN102377342B (zh) * 2011-08-12 2015-08-26 成都芯源系统有限公司 直流到直流变换电路的控制电路和控制方法
US9712080B2 (en) * 2013-03-14 2017-07-18 Astec International Limited Reducing phase current imbalances in single phase redundant power supply systems with unbalanced loads
EP2869077B1 (en) * 2013-10-30 2017-06-14 Nxp B.V. Offset compensation for zero-crossing detection
US9217780B2 (en) 2014-01-07 2015-12-22 Qualcomm Incorporated Compensation technique for amplifiers in a current sensing circuit for a battery
CN104539155B (zh) * 2014-12-09 2017-09-29 矽力杰半导体技术(杭州)有限公司 一种具有自均流的多相并联变换器及其控制方法
CN104660019B (zh) * 2015-01-16 2017-12-05 矽力杰半导体技术(杭州)有限公司 一种多相并联变换器及其控制方法
CN105429455B (zh) * 2015-11-12 2018-12-11 成都芯源系统有限公司 直流变换器及其控制电路和方法
US10348197B2 (en) * 2015-11-12 2019-07-09 Monolithic Power Systems, Inc. DC-DC converter with transient control and the method thereof
CN108183596B (zh) * 2017-12-21 2020-08-25 成都芯源系统有限公司 直流变换器及其方法
IL278835B (en) 2020-11-19 2022-01-01 Visic Tech Ltd A dynamic controller for voltage rate-of-change design
CN112803738B (zh) * 2021-01-04 2022-05-13 烽火通信科技股份有限公司 一种抑制开关电源拍频的电路及其实现方法
US11362586B1 (en) * 2021-03-29 2022-06-14 Infineon Technologies Austria Ag Power supply, filter control, and dynamic adaptive voltage positioning

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6605931B2 (en) * 2000-11-07 2003-08-12 Microsemi Corporation Switching regulator with transient recovery circuit
US6534962B1 (en) * 2000-11-21 2003-03-18 Intel Corporation Voltage regulator having an inductive current sensing element
US7098728B1 (en) * 2004-08-11 2006-08-29 National Semiconductor Corporation Output voltage correction circuit for multiplexed multi-phase hysteretic voltage regulator
US7667440B2 (en) * 2007-01-05 2010-02-23 Intersil Americas Inc. Power-supply control
JP5205083B2 (ja) * 2008-03-07 2013-06-05 ルネサスエレクトロニクス株式会社 電源装置
TW201012037A (en) * 2008-09-10 2010-03-16 Richtek Technology Corp Control circuit of a multi-phase power converter with constant on-time control and method thereof
US8324875B2 (en) * 2008-10-30 2012-12-04 Rohm Co., Ltd. Multiphase DC/DC converter with output phases deviated from or aligned with each other and driven with fixed on time
TWI372506B (en) * 2009-03-19 2012-09-11 Richtek Technology Corp Hybrid control circuit and method for a multi-phase dc to dc converter
TWI393334B (zh) * 2009-10-12 2013-04-11 Richtek Technology Corp 具相數補償的多相降壓式轉換器及多相降壓式轉換器的相數補償方法
TWI388113B (zh) * 2010-02-04 2013-03-01 Richtek Technology Corp 減輕相電流之拍頻振盪的多相交錯式電壓調節器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106033251A (zh) * 2015-03-11 2016-10-19 王韦尧 互动系统及其显示装置及脑波侦测装置
CN106033251B (zh) * 2015-03-11 2019-04-05 王韦尧 互动系统及其显示装置及脑波侦测装置

Also Published As

Publication number Publication date
US20110187341A1 (en) 2011-08-04
US8525497B2 (en) 2013-09-03
TW201128911A (en) 2011-08-16

Similar Documents

Publication Publication Date Title
TWI388113B (zh) 減輕相電流之拍頻振盪的多相交錯式電壓調節器
KR101202582B1 (ko) 위상 전류를 분배하는 다상 스위칭 레귤레이터
US8896284B2 (en) DC-DC converter using internal ripple with the DCM function
US8285502B2 (en) Digital compensator for power supply applications
Chen et al. Line current distortion compensation for DCM/CRM boost PFC converters
JP4822144B2 (ja) リップル補償を備える供給回路
JP5643777B2 (ja) マルチフェーズ・スイッチング電源回路
TWI551018B (zh) Power factor correction conversion device and control method thereof
TWI492499B (zh) 多相開關變換器的數位控制器及數位控制方法
US20160094142A1 (en) System and method for regulation of multi-level boost based rectifiers with power factor correction
US20220166307A1 (en) Electrical circuits for power factor correction by measurement and removal of overtones and power factor maximization
TW546897B (en) Electronic circuit apparatus having suppression of harmonics and voltage stabilization function and control method
TW201725841A (zh) 用於直流對直流電壓轉換器的方法與系統
US8970192B2 (en) Buck converter with comparator output signal modification circuit
Tian et al. Unified equivalent circuit model of V 2 control
US8664923B2 (en) Buck converter with hysteresis correction
JP2004304960A (ja) 電源装置及びその制御装置
US8143871B1 (en) Dynamically-compensated controller
CN114069631A (zh) 一种低压配网谐波抑制电路
KR20210064200A (ko) N개의 스위칭 셀들을 갖는 부스트 컨버터를 제어하는 방법
Jakobsen et al. Comparison of state-of-the-art digital control and analogue control for high bandwidth point of load converters
US11409312B1 (en) Non-linear load line for a multiphase voltage regulator
Jiang et al. A buck converter with optimized dynamic response using lag-lead active voltage positioning
CN110168882B (zh) 具有循环电流补偿的电源和供电方法
KR20130035793A (ko) Pwm 컨버터의 제어 장치